KR101751213B1 - Manufacturing method of additive material for high power energy storage device, additive material for high power energy storage device made by the same, high power energy storage device comprising the same - Google Patents

Manufacturing method of additive material for high power energy storage device, additive material for high power energy storage device made by the same, high power energy storage device comprising the same Download PDF

Info

Publication number
KR101751213B1
KR101751213B1 KR1020170023496A KR20170023496A KR101751213B1 KR 101751213 B1 KR101751213 B1 KR 101751213B1 KR 1020170023496 A KR1020170023496 A KR 1020170023496A KR 20170023496 A KR20170023496 A KR 20170023496A KR 101751213 B1 KR101751213 B1 KR 101751213B1
Authority
KR
South Korea
Prior art keywords
storage device
energy storage
high power
lithium ion
power energy
Prior art date
Application number
KR1020170023496A
Other languages
Korean (ko)
Other versions
KR20170023908A (en
Inventor
송준호
김영준
박민식
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Priority to KR1020170023496A priority Critical patent/KR101751213B1/en
Publication of KR20170023908A publication Critical patent/KR20170023908A/en
Application granted granted Critical
Publication of KR101751213B1 publication Critical patent/KR101751213B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

본 발명은 리튬이온커패시터용 첨가제의 제조 방법, 이에 의하여 제조된 리튬이온커패시터용 첨가제, 및 이를 포함하는 리튬이온커패시터에 관한 것으로, 더욱 상세하게는 리튬이온커패시터의 양극 활물질로 적용되는 탄소계 재료에 첨가되어 전기화학적으로 음극에 리튬 이온을 도핑 함으로써 용량 및 에너지 밀도를 향상시킬 수 있는 새로운 리튬이온커패시터용 첨가제의 제조 방법, 이에 의하여 제조된 리튬이온커패시터용 첨가제, 및 이를 포함하는 리튬이온커패시터에 관한 것이다.The present invention relates to a method for producing an additive for a lithium ion capacitor, an additive for a lithium ion capacitor produced thereby, and a lithium ion capacitor including the additive, and more particularly to an additive for a lithium ion capacitor, A method for preparing an additive for a lithium ion capacitor capable of improving capacity and energy density by adding lithium ions to a negative electrode electrochemically, an additive for a lithium ion capacitor produced thereby, and a lithium ion capacitor including the same will be.

Description

고출력 에너지 저장 장치용 첨가제의 제조 방법, 이에 의하여 제조된 고출력 에너지 저장 장치용 첨가제, 및 이를 포함하는 고출력 에너지 저장장치{MANUFACTURING METHOD OF ADDITIVE MATERIAL FOR HIGH POWER ENERGY STORAGE DEVICE, ADDITIVE MATERIAL FOR HIGH POWER ENERGY STORAGE DEVICE MADE BY THE SAME, HIGH POWER ENERGY STORAGE DEVICE COMPRISING THE SAME}TECHNICAL FIELD The present invention relates to a method of manufacturing an additive for a high output energy storage device, an additive for the high output energy storage device manufactured thereby, and a high output energy storage device containing the same. BACKGROUND ART MADE BY THE SAME, HIGH POWER ENERGY STORAGE DEVICE COMPRISING THE SAME}

본 발명은 고출력 에너지 저장 장치용 첨가제의 제조 방법, 이에 의하여 제조된 고출력 에너지 저장 장치용 첨가제, 및 이를 포함하는 고출력 에너지 저장장치에 관한 것으로, 더욱 상세하게는 리튬이온커패시터의 양극 활물질로 적용되는 탄소계 재료에 첨가되어 전기화학적으로 음극에 리튬 이온을 도핑 함으로써 용량 및 에너지 밀도를 향상시킬 수 있는 새로운 리튬이온커패시터용 첨가제의 제조 방법, 이에 의하여 제조된 리튬이온커패시터용 첨가제, 및 이를 포함하는 리튬이온커패시터에 관한 것이다.The present invention relates to a method for producing an additive for a high output energy storage device, an additive for the high output energy storage device manufactured thereby, and a high output energy storage device including the same. More particularly, A method for manufacturing an additive for a new lithium ion capacitor capable of improving capacity and energy density by doping lithium ions into a negative electrode by electrochemically adding the additive for lithium ion capacitors, Capacitor.

휴대용의 소형 전기 전자기기의 보급이 확산됨에 따라 니켈수소전지나 리튬이차전지, 슈퍼커패시터, 리튬이온커패시터 라고 하는 신형의 이차전지 개발이 활발하게 진행되고 있다.With the spread of small portable electric and electronic devices, development of a new secondary battery called a nickel-hydrogen battery, a lithium secondary battery, a super capacitor, and a lithium ion capacitor is actively under way.

이 중 리튬이온커패시터는 기존 전기이중층커패시터(EDLC: Electric Double Layer Capacitor)의 고출력/장수명 특성과 리튬이온전지의 고에너지밀도를 결합한 새로운 개념의 이차전지 시스템이다.Among these, the lithium ion capacitor is a new concept secondary battery system that combines the high output / long life characteristics of an electric double layer capacitor (EDLC) and the high energy density of a lithium ion battery.

전기적 이중층 내 전하의 물리적 흡착반응을 이용하는 전기적이중층커패시터는 우수한 출력특성 및 수명특성에도 불구하고 낮은 에너지밀도 때문에 다양한 응용분야에 적용이 제한되고 있다. 이러한 전기적이중층커패시터의 문제점을 해결하는 수단으로서 음극 활물질로서 리튬 이온을 삽입 및 탈리할 수 있는 탄소계 재료를 이용하는 리튬이온커패시터가 제안되었다. Electrical double layer capacitors utilizing physical adsorption reactions of electrical charges in electrical double layers are limited in their application to a variety of applications due to their low energy density despite good power and lifetime characteristics. As a means for solving the problem of such an electric double layer capacitor, a lithium ion capacitor using a carbon-based material capable of inserting and separating lithium ions as a negative electrode active material has been proposed.

양쪽 전극에 활성탄 전극을 사용하는 전기이중층 수퍼커패시터에서는, 이온이 전극 표면에서 물리적으로 흡착 및 탈착되는 넌패러딕(non-faradic) 반응에 의해 충방전이 달성된다. 이와 달리, 리튬이온커패시터에 있어서는, 양극에서는 이온이 물리적으로 흡착 및 탈착되는 넌패러딕(non-faradic)반응이 일어나고, 음극에서는 리튬이온이 흑연층상구조에 전기화학적으로 삽입 및 탈리되는 패러딕(faradic) 반응이 일어난다. 그에 따라, 리튬이온커패시터는 전기이중층 수퍼커패시터보다 매우 큰 전기용량을 얻을 수 있다.In an electric double-layered supercapacitor using activated carbon electrodes on both electrodes, charge and discharge are achieved by a non-faradic reaction in which ions are physically adsorbed and desorbed on the electrode surface. On the other hand, in the lithium ion capacitor, a non-faradic reaction occurs in which ions are physically adsorbed and desorbed at the anode, and a paradigm in which lithium ions are electrochemically intercalated and deintercalated into the graphite layer structure faradic reaction occurs. Accordingly, the lithium ion capacitor can obtain a much larger electric capacity than the electric double layer supercapacitor.

이러한 리튬이온커패시터의 높은 전기용량 특성을 안정적으로 구현하기 위해서는, 흑연 음극을 리튬으로 프리도핑(pre-doping)하는 공정이 필요하다. 흑연음극에 리튬을 프리도핑함으로써, 리튬이온커패시터의 충방전 중 흑연 음극의 전위를 리튬메탈의 전위와 같은 전위로 유지시켜 높은 에너지 밀도를 얻을 수 있다. 이온화 경향이 큰 리튬 이온을 음극에 미리 도핑하여 음극의 전위를 대폭적으로 낮출 수 있고, 셀 전압도 종래의 전기적 이중층 커패시터의 2.5 V 대비 크게 향상된 3.8 V 이상의 고전압 구현이 가능하며 높은 에너지 밀도를 발현할 수 있다.In order to stably realize such a high capacitance characteristic of the lithium ion capacitor, a process of pre-doping the graphite anode with lithium is required. By pre-doping lithium into the graphite cathode, a high energy density can be obtained by maintaining the potential of the graphite cathode at the same potential as the potential of the lithium metal during charging and discharging of the lithium ion capacitor. It is possible to significantly lower the potential of the cathode by preliminarily doping lithium ions having a high ionization tendency to the negative electrode and to realize a high voltage of 3.8 V or more which is significantly improved compared with the conventional 2.5 V of the electric double layer capacitor and exhibits a high energy density .

통상적인 흑연 음극의 리튬 프리도핑 방법은 금속 리튬을 전극에 라미네이트한 후 전해액을 넣어 음극과 금속 리튬을 단락시키는 것만으로 음극과 금속 리튬의 전위차에 의해 라미네이트된 금속 리튬이 음극 속으로 녹아 들어가는 방식을 채용하고 있다. 즉, 흑연 전극과 리튬메탈 전극을 전해액에 담지하고, 두 전극들이 서로 분리된 상태에서, 전기화학적 방법으로 흑연 전극에 리튬을 도핑한다. A conventional method of lithium-doping a graphite cathode involves laminating metallic lithium to an electrode and then adding an electrolyte solution to short-circuit the anode and the metal lithium, thereby dissolving the metallic lithium laminated by the potential difference between the cathode and the metal lithium into the cathode . That is, a graphite electrode and a lithium metal electrode are supported on an electrolyte, and lithium is doped to the graphite electrode by an electrochemical method in a state where the two electrodes are separated from each other.

그러나, 이러한 전기 화학적 도핑공정은 금속 리튬을 전극에 라미네이트하는 리튬 도핑 방식의 경우, 리튬이 음극에 도핑되는 양을 제어하기가 어렵고, 도핑공정에서 발생하는 리튬 금속에 따른 안전성을 확보하기 어려우며,리튬의 도핑 속도가 매우 느려 공정비용 상승을 야기하고 이로 인하여 리튬이온커패시터의 범용화에 큰 장애가 되고 있다.However, in the case of the lithium doping method in which metal lithium is laminated on the electrode, it is difficult to control the amount of lithium doped in the cathode, and it is difficult to secure safety according to the lithium metal generated in the doping process. The doping rate of the lithium ion capacitor is very slow, which causes an increase in the process cost, which is a serious obstacle to the generalization of the lithium ion capacitor.

본 발명은 상기와 같은 종래 리튬이온커패시터의 리튬 이온 도핑의 문제점을 해결하기 위하여 금속 리튬을 사용하지 않고 별도의 프리도핑을 필요로 하지 않고 전기화학적 방식으로 리튬을 음극에 도핑할 수 있는 새로운 리튬이온커패시터용 양극 첨가제, 및 그의 제조 방법을 제공하는 것을 목적으로 한다. In order to solve the problem of lithium ion doping of the conventional lithium ion capacitor as described above, the present invention provides a lithium ion secondary battery which does not use metallic lithium and does not require additional pre-doping, A positive electrode additive for a capacitor, and a process for producing the same.

본 발명은 또한, 상기 리튬이온커패시터용 양극 첨가제를 포함하는 리튬이온커패시터를 제공하는 것을 목적으로 한다. The present invention also aims to provide a lithium ion capacitor including the positive electrode additive for the lithium ion capacitor.

본 발명은 상기와 같은 과제를 해결하기 위하여 The present invention has been made to solve the above problems

본 발명은 LixFeO4(5≤x≤6) 로 표시되고, 입자의 크기는 5 내지 10 nm이며, 결정면간 거리(d-spacing)이 결정면 210에 대해서 0.41 nm, 결정면 122에 대해서 0.31 nm인 리튬커패시터용 양극첨가제를 제공하는 것을 본 발명의 일 측면으로 한다.The present invention is characterized in that Li x FeO 4 (5? X? 6) has a particle size of 5 to 10 nm and a d-spacing of 0.41 nm to the crystal plane 210 and 0.31 nm to the crystal plane 122 It is an aspect of the present invention to provide a positive electrode additive for a lithium capacitor.

또한, 본 발명은 상기의 양극첨가제를 포함하며, 하기의 계산식 1에 따른 초기 충방전 효율(QE)이 20% 이하인 리튬커패시터용 양극활물질을 제공하는 것을 본 발명의 다른 측면으로 한다.The present invention also provides another aspect of the present invention to provide a positive electrode active material for a lithium capacitor including the above-described positive electrode additive and having an initial charge-discharge efficiency (QE) of 20% or less according to the following formula 1.

[계산식 1][Equation 1]

QE = (QD/QC)×100QE = (QD / QC) x100

(상기 계산식 1 중,(In the above formula 1,

QE는 리튬 복합 금속 산화물의 초기 충방전 효율을 나타낸 것이고,QE shows the initial charging / discharging efficiency of the lithium composite metal oxide,

QD는 방전 전압 2.3 V에서 Li/Li+ 컷-오프(cut-off)시 방전 용량(mAh/g)을 나타낸 것이고,QD shows the discharge capacity (mAh / g) at Li / Li + cut-off at a discharge voltage of 2.3 V,

QC는 충전 전압 4.7 V에서 Li/Li+ 컷-오프(cut-off)시 충전 용량(mAh/g)을 나타낸 것임) QC shows charge capacity (mAh / g) at Li / Li + cut-off at a charge voltage of 4.7 V.)

상기 초기 충방전 효율(QE)은 16%일 수 있다.The initial charge-discharge efficiency (QE) may be 16%.

본 발명에 의한 리튬이온커패시터용 첨가제의 제조 방법은 LixFeO4(5≤x≤6)로 표시되며 불순물이 포함되지 않는 리튬이온커패시터용 첨가제를 제조할 수 있으며, 본 발명에 의하여 제조된 리튬이온커패시터용 첨가제를 포함하는 리튬이온커패시터는 종래와 같이 리튬 금속을 이용한 프리 도핑 과정 없이도 전기화학적 방식으로 리튬을 음극에 도핑할 수 있다.The method for producing an additive for a lithium ion capacitor according to the present invention can produce an additive for a lithium ion capacitor represented by Li x FeO 4 (5? X? 6) and containing no impurities, A lithium ion capacitor including an additive for an ion capacitor can dope lithium to a cathode in an electrochemical manner without a pre-doping process using a lithium metal as in the prior art.

도 1은 본 발명의 실시예에서 제조된 LixFeO4(5≤x≤6) 분말에 대해 FESEM 사진을 측정한 결과를 나타낸다.
도 2 및 도 3은 본 발명의 실시예에서 제조된 LixFeO4(5≤x≤6) 분말에 대해 TEM 및 HRTEM 사진을 측정한 결과를 나타낸다.
도 4는 본 발명의 실시예에서 제조된 LixFeO4(5≤x≤6) 분말에 대해 synchrotron X-ray diffraction (SXRD) pattern을 측정한 결과를 나타낸다.
도 5 는 본 발명의 실시예에서 제조된 LixFeO4(5≤x≤6) 분말의 열분해 특성을 High-temperature powder X-ray diffraction로 측정한 결과를 나타낸다.
도 6 은 본 발명의 실시예에서 제조된 LixFeO45≤x≤6) 분말의 열분해 특성을 Mcssbauer spectroscopy 로 측정한 결과를 나타낸다.
도 7은 본 발명의 실시예에서 제조된 LixFeO4(5≤x≤6) 분말의 galvanostatic 충방전 특성을 측정한 결과를 나타낸다.
도 8 은 본 발명의 실시예에서 제조된 LixFeO4(5≤x≤6) 을 포함하는 리튬이온커패시터의 충방전 특성을 측정한 결과를 나타낸다.
도 9 및 도 10은 본 발명의 실시예에서 제조된 LixFeO4(5≤x≤6) 분말의 초기 galvanostatic 충방전 특성을 2.0 내지 4.7V 에서 측정한 결과를 나타낸다.
FIG. 1 shows FESEM photographs of Li x FeO 4 (5? X? 6) powder prepared in the examples of the present invention.
FIGS. 2 and 3 show TEM and HRTEM photographs of Li x FeO 4 (5? X? 6) powder prepared in the examples of the present invention.
FIG. 4 shows the result of measurement of synchrotron X-ray diffraction (SXRD) pattern for Li x FeO 4 (5? X? 6) powder prepared in the embodiment of the present invention.
FIG. 5 shows the results of measurement of pyrolysis characteristics of Li x FeO 4 (5? X? 6) powder produced by the embodiment of the present invention by high-temperature powder X-ray diffraction.
6 shows the results of measurement of the thermal decomposition characteristics of Li x FeO 4 5 ? X? 6 powder produced by the embodiment of the present invention by Mcssbauer spectroscopy.
FIG. 7 shows the results of measurement of galvanostatic charging / discharging characteristics of Li x FeO 4 (5? X? 6) powder prepared in the embodiment of the present invention.
FIG. 8 shows the results of measurement of charge / discharge characteristics of a lithium ion capacitor including Li x FeO 4 (5? X? 6) produced in the embodiment of the present invention.
9 and 10 show the initial galvanostatic charging / discharging characteristics of Li x FeO 4 (5? X? 6) powder prepared in the embodiment of the present invention at a measurement of 2.0 to 4.7 V. FIG.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.

<실시예> LiFeO 제조<Examples> LiFeO 2 production

밀폐된 드라이룸에서 원료로서 Li2O 와 Fe2O3 을 5 :1 의 몰비로 혼합하고, 기계적으로 밀링하여 분쇄하였다. 상기 혼합물을 분쇄하여 분말로 제조한 후, 펠렛 형태로 제조하고, 상기 펠렛을 900℃ 에서 48 시간 동안 열처리하여 흰색 분말 타입의 LixFeO4(5≤x≤6) 분말을 제조하였다. Li 2 O and Fe 2 O 3 were mixed as a raw material in a molar ratio of 5: 1 in a closed drier room and mechanically milled and pulverized. The mixture was pulverized to prepare a powder. The pellet was then heat-treated at 900 ° C. for 48 hours to prepare white powder type Li x FeO 4 powder (5 ≦ x ≦ 6).

<실험예> FESEM(field emission scanning electron microscope) 측정<Experimental Example> FESEM (field emission scanning electron microscope) measurement

상기 본 발명의 실시예에서 제조된 LixFeO4(5≤x≤6) 분말에 대해 FESEM 사진을 측정한 결과를 도 1에 나타내었다. FIG. 1 shows FESEM photographs of the Li x FeO 4 (5? X? 6) powder prepared in the example of the present invention.

도 1에서 본 발명의 실시예에서 제조된 LixFeO4(5≤x≤6) 입자는 비정형이고 평평하지 않은(uneven) 형상임을 확인할 수 있다. 1, Li x FeO 4 (5? X? 6) particles prepared in the embodiment of the present invention are irregular and uneven.

<실험예> TEM, HRTEM, SAED 측정<Experimental Example> Measurement of TEM, HRTEM, and SAED

상기 본 발명의 실시예에서 제조된 LixFeO4(5≤x≤6) 분말에 대해 TEM 과 HRTEM 및 selected area electron-diffraction (SAED)을 측정한 결과를 도 2 및 도 3 에 나타내었다. The results of measurement of TEM, HRTEM and selected area electron-diffraction (SAED) for the Li x FeO 4 (5? X? 6) powder prepared in the example of the present invention are shown in FIG. 2 and FIG.

도 2 및 도 3 에서 본 발명의 실시예에서 제조된 LixFeO4(5≤x≤6) 입자 크기는 5 내지 10 nm 의 나노 크기이며, 210 에 대한 d-spacing 이 약 0.41nm, 122 d에 대한 d-spacing 이 약 0.31 nm 임을 알 수 있다. 2 and 3, the Li x FeO 4 (5? X? 6) particle size produced in an embodiment of the present invention is nano-sized of 5 to 10 nm and the d-spacing for 210 is about 0.41 nm, 122 d Lt; / RTI &gt; is about 0.31 &lt; RTI ID = 0.0 &gt; nm. &Lt; / RTI &gt;

또한, 도 3의 SAED 측정 결과에서 실시예에서 제조된 LixFeO4(5≤x≤6) 입자는 불순물로서 a-LiFeO2 가 포함되지 않은 anti fluorite 구조임을 알 수 있다. 3, the Li x FeO 4 (5 ≦ x ≦ 6) particles prepared in the examples show an anti-fluorite structure containing no a-LiFeO 2 as an impurity.

<실험예> synchrotron X-ray diffraction (SXRD) patternExperimental Example Synchrotron X-ray diffraction (SXRD) pattern

상기 본 발명의 실시예에서 제조된 LixFeO4(5≤x≤6) 분말에 대해 synchrotron X-ray diffraction (SXRD) pattern을 측정한 결과를 도 4 에 나타내었다. Synchrotron X-ray diffraction (SXRD) patterns of the Li x FeO 4 powder (5? X? 6) prepared in the example of the present invention are shown in FIG.

도 4에서 본 발명의 실시예에서 제조된 LixFeO4(5≤x≤6) 입자가 Fe3+ 이온이 tetrahedral site 를 차지하고, Li+ 이온이 나머지 tetrahedral site 를 차지하는 이론적인 antifluorite 구조와 일치하는 것을 확인할 수 있다. In FIG. 4, the Li x FeO 4 (5 x 6) particles prepared in the present embodiment correspond to the theoretical antifluorite structure in which Fe 3+ ions occupy tetrahedral sites and Li + ions occupy the remaining tetrahedral sites .

<실험예> 열분해 특성 평가&Lt; Experimental Example > Evaluation of pyrolysis characteristics

상기 본 발명의 실시예에서 제조된 LixFeO4(5≤x≤6) 분말의 열분해 특성을 평가하기 위해 열처리 온도를 298K 에서 1073K 까지 증가시키면서 High-temperature powder X-ray diffraction를 측정하고 그 결과를 도 5 에 나타내었다. 도 5 에서 본 발명의 실시예에서 제조된 LixFeO4(5≤x≤6) 분말은 불순물이 포함되지 않은 단일상이며, 773K 까지 본래 구조를 유지하지만, 773K 이상으로 열처리시 는 Fe2O3 (ICSD 10-8905) 에 해당하는 피크가 나타나는 것을 알 수 있다. In order to evaluate the pyrolysis characteristics of the Li x FeO 4 powder (5 ≦ x ≦ 6) prepared in the present invention, the high-temperature powder X-ray diffraction was measured while increasing the heat treatment temperature from 298 K to 1073 K. As a result, Is shown in Fig. In FIG. 5, the Li x FeO 4 (5? X? 6) powder prepared in the embodiment of the present invention is a single phase containing no impurities and retains its original structure up to 773 K. However, The peak corresponding to Fe 2 O 3 (ICSD 10-8905) appears.

Mossbauer spectroscopy 로 열분해 특성을 측정하고 그 결과를 도 6에 나타내었다. Mossbauer spectroscopy 에서는 297K 에서 isomer shift (I.S.) 및 quadruple splitting (Q.S.) 가 각각 0.13 mms-1, 0.95 mms-1,로 나타나서 본 발명의 실시예에서 제조된 LixFeO4(5≤x≤6) 분말에서의 isomer shift (I.S.) 및 quadruple splitting (Q.S.) 가 전형적인 Fe+3과 같은 형태임을 알 수 있으며, Fe 의 산화수는 +3 임을 알 수 있다. The thermal decomposition characteristics were measured by Mossbauer spectroscopy and the results are shown in FIG. In the Mossbauer spectroscopy, the isomer shift (IS) and the quadruple splitting (QS) were found to be 0.13 mms -1 and 0.95 mms -1 , respectively, at 297 K. The Li x FeO 4 (5? X? 6) powder The isomer shift (IS) and the quadruple splitting (QS) in FeCl 3 are similar to Fe 3 +, and the oxidation number of Fe is +3.

<제조예> 리튬이온커패시터 제조&Lt; Preparation Example > Lithium ion capacitor production

먼저, 상기 양극 활물질로서 활성탄과 LixFeO4(5≤x≤6) 분말 혼합물 80 wt%, 도전재인 Super P 10 wt%, 바인더 PVdF를 10 wt%로 하여, N-메틸피롤리돈(NMP)을 용매로 슬러리(slurry)를 제조하였다. First, 80 wt% of a mixture of activated carbon and Li x FeO 4 (5 ≤ x ≤ 6) powder as a cathode active material, 10 wt% of a super P as a conductive material, and 10 wt% of a binder PVdF were mixed with N-methylpyrrolidone ) Was used as a solvent to prepare a slurry.

이 슬러리를 두께 20㎛의 알루미늄 호일(Al foil)에 도포하여 건조 후 프레스로 압밀화시켜, 진공상에서 120 ℃로 16 시간 건조해 직경 12 mm의 원판으로 전극(cathode)을 제조하였다.This slurry was applied to an aluminum foil having a thickness of 20 μm, dried and compacted by a press, and dried in a vacuum at 120 ° C. for 16 hours to prepare an electrode (cathode) having a diameter of 12 mm.

또한, 상대극(anode)으로는 직경 12 mm로 펀칭(punching)을 한 리튬 금속박을, 분리막으로는 폴리에틸렌(PE) 필름을 사용하였다. 이때, 양극 재료로 실시예 1의 양극 활물질을 사용하였으며, 전해액으로는 1M의 LiPF6의 에틸렌글리콜/디메틸클로라이드(EC/DMC)를 3:7로 배합한 혼합 용액을 사용하였다.A lithium metal foil punched with a diameter of 12 mm was used as an anode, and a polyethylene (PE) film was used as a separator. At this time, the cathode active material of Example 1 was used as the cathode material, and a mixed solution of ethylene glycol / dimethyl chloride (EC / DMC) of 1M LiPF 6 in an amount of 3: 7 was used as the electrolyte.

<실험예> galvanostatic 충방전 특성 평가<Experimental Example> Evaluation of charge / discharge characteristics of galvanostatic

상기 본 발명의 실시예에서 제조된 LixFeO4(5≤x≤6) 분말의 galvanostatic 충방전 특성을 cut off 전압을 4.3, 4.5 및 4.7로 변화시키면서 측정하고 그 결과를 도 7 에 나타내었다. The galvanostatic charge and discharge characteristics of the Li x FeO 4 powder (5 ≦ x ≦ 6) prepared in the example of the present invention were measured while changing the cut-off voltage to 4.3, 4.5 and 4.7, and the results are shown in FIG.

<실험예> galvanostatic 충방전 특성 평가<Experimental Example> Evaluation of charge / discharge characteristics of galvanostatic

탄소 재료에 대한 상기 제조예에서 LixFeO4(5≤x≤6) 분말의 혼합 비율을 0 중량%, 3 중량%, 5 중량% 및 10 중량% 로 한 경우 충방전 특성을 측정한 결과를 도 8 에 나타내었다. Discharge characteristics were measured when the mixing ratio of Li x FeO 4 (5? X? 6) powders to the carbon material was 0 wt%, 3 wt%, 5 wt% and 10 wt% Degree 8.

<실험예> 초기 충방전 특성 평가&Lt; Experimental Example > Evaluation of initial charge / discharge characteristics

상기 본 발명의 실시예에서 제조된 LixFeO4(5≤x≤6) 분말의 초기 galvanostatic 충방전 특성을 2.0 내지 4.7V 에서 측정하고 그 결과를 도 9 에 나타내었다. The initial galvanostatic charging and discharging characteristics of the Li x FeO 4 powder (5 ≦ x ≦ 6) prepared in the example of the present invention were measured at 2.0 to 4.7 V and the results are shown in FIG.

<제조예> 리튬이온커패시터 제조&Lt; Preparation Example > Lithium ion capacitor production

상기 본 발명에 의하여 제조된 LixFeO4(5≤x≤6) 분말을 음극에 혼합하고 각각의 경우의 충방전 특성을 측정한 결과를 도 10에 나타내었다. The Li x FeO 4 (5? X? 6) powders prepared according to the present invention were mixed in a negative electrode and the charging / discharging characteristics of each case were measured. The results are shown in Fig.

Claims (3)

LixFeO4(5≤x≤6) 로 표시되고,
입자의 크기는 5 내지 10 nm이며,
결정면간 거리(d-spacing)이 결정면 210에 대해서 0.41 nm, 결정면 122에 대해서 0.31 nm인 리튬커패시터용 양극첨가제.
Li x FeO 4 (5? X? 6)
The size of the particles is 5 to 10 nm,
Wherein the d-spacing is 0.41 nm with respect to the crystal face 210 and 0.31 nm with respect to the crystal face 122. [
제1항의 양극첨가제를 포함하며,
하기의 계산식 1에 따른 초기 충방전 효율(QE)이 20% 이하인 리튬커패시터용 양극활물질.
[계산식 1]
QE = (QD/QC)×100
(상기 계산식 1 중,
QE는 리튬 복합 금속 산화물의 초기 충방전 효율을 나타낸 것이고,
QD는 방전 전압 2.3 V에서 Li/Li+ 컷-오프(cut-off)시 방전 용량(mAh/g)을 나타낸 것이고,
QC는 충전 전압 4.7 V에서 Li/Li+ 컷-오프(cut-off)시 충전 용량(mAh/g)을 나타낸 것임)
A positive electrode composition comprising the positive electrode additive of claim 1,
Wherein the initial charge-discharge efficiency (QE) according to the following equation (1) is 20% or less.
[Equation 1]
QE = (QD / QC) x100
(In the above formula 1,
QE shows the initial charging / discharging efficiency of the lithium composite metal oxide,
QD shows the discharge capacity (mAh / g) at Li / Li + cut-off at a discharge voltage of 2.3 V,
QC shows charge capacity (mAh / g) at Li / Li + cut-off at a charge voltage of 4.7 V.)
제2항에 있어서,
상기 초기 충방전 효율(QE)이 16%인 리튬커패시터용 양극활물질.
3. The method of claim 2,
Wherein the initial charge-discharge efficiency (QE) is 16%.
KR1020170023496A 2017-02-22 2017-02-22 Manufacturing method of additive material for high power energy storage device, additive material for high power energy storage device made by the same, high power energy storage device comprising the same KR101751213B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170023496A KR101751213B1 (en) 2017-02-22 2017-02-22 Manufacturing method of additive material for high power energy storage device, additive material for high power energy storage device made by the same, high power energy storage device comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170023496A KR101751213B1 (en) 2017-02-22 2017-02-22 Manufacturing method of additive material for high power energy storage device, additive material for high power energy storage device made by the same, high power energy storage device comprising the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020150093557A Division KR20170003194A (en) 2015-06-30 2015-06-30 Manufacturing method of additive material for high power energy storage device, additive material for high power energy storage device made by the same, high power energy storage device comprising the same

Publications (2)

Publication Number Publication Date
KR20170023908A KR20170023908A (en) 2017-03-06
KR101751213B1 true KR101751213B1 (en) 2017-06-28

Family

ID=58399145

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170023496A KR101751213B1 (en) 2017-02-22 2017-02-22 Manufacturing method of additive material for high power energy storage device, additive material for high power energy storage device made by the same, high power energy storage device comprising the same

Country Status (1)

Country Link
KR (1) KR101751213B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101383360B1 (en) * 2012-04-04 2014-04-14 전자부품연구원 Positive active material for lithium ion capacitor and preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101383360B1 (en) * 2012-04-04 2014-04-14 전자부품연구원 Positive active material for lithium ion capacitor and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C.S. Johnson et al., ‘Li2O Removal from Li5FeO4:A Cathode Precursor for Lithium-Ion Batteries,’ Chem. Mater. 2010, Vol.22, No.3, P.1263-1270 (2010.01.11.)
S. Narukawa et al., ‘Anti-fluorite type Li6CoO4, Li5FeO4, and Li6MnO4 as the cathode for lithium secondary batteries,’ Solid State Ionics 122 (1999) 59-64 (1999.07.01.)

Also Published As

Publication number Publication date
KR20170023908A (en) 2017-03-06

Similar Documents

Publication Publication Date Title
KR101892177B1 (en) Additive material for high power energy storage device, and high power energy storage device comprising the same
Martha et al. Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1. 2Mn0. 525Ni0. 175Co0. 1O2
Plitz et al. The design of alternative nonaqueous high power chemistries
KR101670327B1 (en) Composite cathode materials with controlled irreversible capacity loss for lithium ion batteries
KR101383360B1 (en) Positive active material for lithium ion capacitor and preparation method thereof
EP1720211B1 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP5370937B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
KR101182433B1 (en) Negative active material, method for preparing the same, and lithium battery comprising the same
KR102260425B1 (en) Anode Active Material for lithium secondary battery and Method for preparing the same
KR102633443B1 (en) Positive active material having tunnel structure for sodium secondary battery and the sodium secondary battery comprising the same
Narsimulu et al. Enhanced energy storage performance of nanocrystalline Sm-doped CoFe 2 O 4 as an effective anode material for Li-ion battery applications
JP2011129442A (en) Cathode for lithium ion secondary battery and lithium ion secondary battery
JP5451671B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
KR101783435B1 (en) Manufacturing method of sodium hybrid capacitor electrode, and sodium hybrid capacitor made by the same
US10777805B2 (en) Negative electrode active material containing graphite material and battery including negative electrode containing negative electrode active material
KR20170124700A (en) Lithium-sulfur ultracapacitor and manufacturing method of the same
KR101751213B1 (en) Manufacturing method of additive material for high power energy storage device, additive material for high power energy storage device made by the same, high power energy storage device comprising the same
KR101645406B1 (en) NASICON structred vanadium phosphate as cathode material for Mg rechargeable batteries
KR20180007556A (en) Electrode material for lithium battery and lithium battery including thereof
KR101342600B1 (en) Negative active material, method for preparing the same, and lithium battery comprising the same
KR101138021B1 (en) Anode material for lithium ion capacitor and manufacturing method thereof
KR20170003194A (en) Manufacturing method of additive material for high power energy storage device, additive material for high power energy storage device made by the same, high power energy storage device comprising the same
KR20200077177A (en) Lithium cobalt oxide-carbon composite for positive active material for lithium ion capacitor, positive active material comprising the same, lithium ion capacitor comprising the same, and preparation method thereof
JP7299431B2 (en) Pre-dopant for power storage device and method for producing the same
KR101587882B1 (en) NbO Method for Preparing of Carbon-Coated NbO as Negative Electrode Material for Lithium-ion Secondary Battery

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant