KR101746296B1 - 코어-쉘 구조의 페로브스카이트 나노결정입자 발광체, 이의 제조방법 및 이를 이용한 발광소자 - Google Patents

코어-쉘 구조의 페로브스카이트 나노결정입자 발광체, 이의 제조방법 및 이를 이용한 발광소자 Download PDF

Info

Publication number
KR101746296B1
KR101746296B1 KR1020150156175A KR20150156175A KR101746296B1 KR 101746296 B1 KR101746296 B1 KR 101746296B1 KR 1020150156175 A KR1020150156175 A KR 1020150156175A KR 20150156175 A KR20150156175 A KR 20150156175A KR 101746296 B1 KR101746296 B1 KR 101746296B1
Authority
KR
South Korea
Prior art keywords
organic
core
hybrid perovskite
solution
shell
Prior art date
Application number
KR1020150156175A
Other languages
English (en)
Other versions
KR20160055092A (ko
Inventor
이태우
임상혁
김영훈
조힘찬
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to PCT/KR2015/011960 priority Critical patent/WO2016072806A2/ko
Priority to US15/524,735 priority patent/US11205757B2/en
Publication of KR20160055092A publication Critical patent/KR20160055092A/ko
Application granted granted Critical
Publication of KR101746296B1 publication Critical patent/KR101746296B1/ko
Priority to US17/535,570 priority patent/US20220085301A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/135OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising mobile ions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/811Of specified metal oxide composition, e.g. conducting or semiconducting compositions such as ITO, ZnOx
    • Y10S977/812Perovskites and superconducting composition, e.g. BaxSr1-xTiO3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/892Liquid phase deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy

Abstract

코어-쉘 구조의 페로브스카이트 나노결정입자 발광체, 이의 제조방법 및 이를 이용한 발광소자를 제공한다. 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 또는 금속할라이드 페로브스카이트 나노결정입자 발광체는 유기 용매에 분산이 가능하면서 페로브스카이트 나노결정 구조를 포함하고, 코어-쉘 구조의 나노결정입자 구조를 가진다. 따라서, 본 발명에 따른 페로브스카이트 나노결정입자 발광체는 코어보다 밴드갭이 큰 물질로 쉘을 형성함으로써 엑시톤이 코어에 좀더 잘 구속되도록 하고, 공기중에 안정한 페로브스카이트 혹은 무기 반도체 혹은 유기 고분자를 사용하여 코어 페로브스카이트가 공기중에 노출되지 않도록 하여 나노결정의 내구성을 향상시킬 수 있다.

Description

코어-쉘 구조의 페로브스카이트 나노결정입자 발광체, 이의 제조방법 및 이를 이용한 발광소자{Perovskite nanocrystal particle emitters having core-shell structure, method of manufacturing the same and electroluminescence devices using the same}
본 발명은 발광체 및 이를 이용한 발광소자에 관한 것으로, 더욱 자세하게는 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 또는 무기금속할라이드 페로브스카이트 나노결정입자 발광체, 이의 제조방법 및 이를 이용한 발광소자에 관한 것이다.
현재 디스플레이 시장의 메가 트렌드는 기존의 고효율 고해상도 지향의 디스플레이에 더 나아가서 고색순도 천연색 구현을 지향하는 감성화질 디스플레이로 이동하고 있다. 이러한 관점에서 현재 유기 발광체 기반 유기 발광 다이오드 (OLED) 소자가 비약적인 발전을 이루었고 색순도가 향상된 무기 양자점 LED가 다른 대안으로 활발히 연구 개발되고 있다. 그러나, 유기 발광체와 무기 양자점 발광체 모두 재료적인 측면에서 본질적인 한계를 가지고 있다.
기존의 유기 발광체는 효율이 높다는 장점은 있지만, 스펙트럼이 넓어서 색순도가 좋지 않다. 무기 양자점 발광체는 색순도가 좋다고 알려져 왔지만, 양자 사이즈 효과에 의한 발광이기 때문에 Blue 쪽으로 갈수록 양자점 크기가 균일하도록 제어하기가 어려워서 색순도가 떨어지는 문제점이 존재한다. 더욱이 무기 양자점은 매우 깊은 가전자대 (valence band)를 가지고 있어, 유기 정공 주입층에서의 정공주입 장벽이 매우 커 정공주입이 어렵다는 문제점이 존재한다. 또한 두 가지 발광체는 고가라는 단점이 있다. 따라서 이러한 유기와 무기 발광체의 단점을 보완하고 장점을 유지하는 새로운 방식의 유/무기 하이브리드 발광체가 필요하다.
유무기 하이브리드 소재는 제조 비용이 저렴하고, 제조 및 소자 제작 공정이 간단하며, 광학적, 전기적 성질을 조절하기 쉬운 유기 소재의 장점과 높은 전하 이동도 및 기계적, 열적 안정성을 가지는 무기 소재의 장점을 모두 가질 수 있어 학문적, 산업적으로 각광받고 있다.
그 중, 유무기 하이브리드 페로브스카이트 소재는 높은 색순도를 가지고, 색 조절이 간단하며 합성 비용이 저렴하기 때문에 발광체로서의 발전 가능성이 매우 크다. 높은 색순도는 무기물의 2차원 평면(2D plane)이 유기물의 2차원 평면(2D plane) 사이에 끼어 있는 층상 구조를 가지고 있고, 무기물(inorganic)과 유기물(organic)의 유전율 차이가 크기 때문에 (εorganic ≒ 2.4, εinorganic ≒ 6.1) 엑시톤이 무기층에 속박되고, 따라서 높은 색순도 (Full width at half maximum (FWHM) ≒ 20 nm)를 가지기 때문에 형성된다.
종래 페로브스카이트 구조(ABX3)를 가지는 물질은 무기금속산화물이다.
이러한 무기금속산화물은 일반적으로 산화물(oxide)로서, A, B site에 서로 다른 크기를 가지는 Ti, Sr, Ca, Cs, Ba, Y, Gd, La, Fe, Mn 등의 금속(알칼리 금속, 알칼리 토금속, 전이 금속 및 란타넘 족 등) 양이온들이 위치하고 X site에는 산소(oxygen) 음이온이 위치하고, B site의 금속 양이온들이 X site의 oxygen 음이온들과 6-fold coordination의 corner-sharing octahedron 형태로서 결합되어 있는 물질이다. 그 예로서, SrFeO3, LaMnO3, CaFeO3 등이 있다.
이에 반해, 유무기 하이브리드 페로브스카이트는 ABX3 구조에서 A site에 유기 암모늄(RNH3) 양이온이 위치하게 되고, X site에는 halides(Cl, Br, I)가 위치하게 되어 유기 금속 할라이드 페로브스카이트 재료를 형성하게 되므로 그 조성이 무기금속산화물 페로브스카이트 재료와는 완전히 다르다.
또한, 이러한 구성 물질의 차이에 따라 물질의 특성도 달라지게 된다. 무기금속산화물 페로브스카이트는 대표적으로 초전도성(superconductivity), 강유전성(ferroelectricity), 거대한 자기저항(colossal magnetoresistance) 등의 특성을 보이며, 따라서 일반적으로 센서 및 연료 전지, 메모리 소자 등에 응용되어 연구가 진행되어 왔다. 그 예로, yttrium barium copper oxide는 oxygen contents에 따라 초전도성(superconducting) 또는 절연(insulating) 특성을 지니게 된다.
반면, 유무기 하이브리드 페로브스카이트 (혹은 유기금속 할라이드 페로브스카이트)는 유기평면과 무기평면이 교대로 적층이 되어 있어 라멜라 구조와 유사하여 무기평면 내에 엑시톤의 속박이 가능하기 때문에, 본질적으로 물질의 사이즈보다는 결정구조 자체에 의해서 매우 높은 색순도의 빛을 발광하는 이상적인 발광체가 될 수 있다.
만약, 유무기 하이브리드 페로브스카이트라도, 유기 암모늄이 중심금속과 할로겐 결정구조(BX3)보다 밴드갭이 작은 발색단(chromophore)(주로 공액구조를 포함함)을 포함하는 경우에는 발광이 유기 암모늄에서 발생하기 때문에 높은 색순도의 빛을 내지 못하여 발광 스펙트럼의 반치폭이 50 nm보다 넓어져서 발광층으로서 적합하지 않게 된다. 그러므로 이런 경우 본 특허에서 강조하는 고색순도 발광체에는 매우 적합하지 않다. 그러므로, 고색순도 발광체를 만들기 위해서는 유기 암모늄이 발색단을 포함하지 않고 발광이 중심금속-할로겐 원소로 구성되어 있는 무기물 격자에서 일어나게 하는 것이 중요하다. 즉, 본 특허는 무기물 격자에서 발광이 일어나는 고색순도 고효율의 발광체 개발에 초점을 맞추고 있다. 예를 들어, 대한민국 공개특허 제10-2001-0015084호(2001.02.26.)에서는 염료-함유 유기-무기 혼성 물질을 입자가 아닌 박막형태로 형성하여 발광층으로 이용하는 전자발광소자에 대하여 개시되어 있지만 페로브스카이트 격자구조에서 발광이 나오는 것이 아니다. 그러나 유무기 하이브리드 페로브스카이트는 작은 엑시톤 결합 에너지를 가지기 때문에, 저온에서는 발광이 가능하나 상온에서는 열적 이온화 및 전하 운반체의 비편재화에 의해서 엑시톤이 발광으로 가지 못하고 자유 전하로 분리되어 소멸되는 근본적인 문제가 있다. 또한, 자유 전하가 다시 재결합하여 엑시톤을 형성할 때 엑시톤이 주변의 높은 전도성을 가지는 층에 의해 소멸되어 발광이 일어나지 못하는 문제가 있다. 그러므로 유무기 하이브리드 페로브스카이트 기반 LED의 발광 효율 및 휘도를 높이기 위해서는 엑시톤의 ??칭(quenching)을 막는 것이 필요하다.
본 발명이 해결하고자 하는 과제는 열적 이온화, 전하 운반체의 비편재화 및 엑시톤의 ??칭을 방지하도록 유무기 하이브리드 페로브스카이트를 박막 대신 나노결정으로 합성하여 발광 효율 및 내구성-안정성이 향상된 나노결정입자 발광체 및 이를 이용한 발광소자를 제공함에 있다.
나아가, 페로브스카이트 나노결정에 쉘을 형성하여 코어-쉘 구조를 형성함으로써 보다 향상된 발광 효율 및 내구성을 갖는 나노결정입자 발광체 및 이를 이용한 발광소자를 제공함에 있다.
상기 과제를 이루기 위하여 본 발명의 일 측면은 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 제공한다. 상기 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체는 유기 용매에 분산이 가능하면서 페로브스카이트 나노결정 구조를 포함하고, 코어-쉘 구조의 나노결정입자 구조를 가진다.
상기 유기 용매는 양성자성 용매 또는 극성 비양성자성 용매를 포함하고,
상기 극성 비양성자성 용매는, 다이메틸폼아마이드(dimethylformamide), 감마 부티로락톤(gamma butyrolactone), N-메틸피롤리돈(N-methylpyrrolidone), 디메틸설폭사이드(dimethylsulfoxide), 다이클로로에틸렌, 트라이클로로에틸렌, 클로로포름, 클로로벤젠, 다이클로로벤젠, 스타이렌, 자일렌, 톨루엔 및 사이클로헥센으로 이루어진 군으로부터 선택되는 적어도 하나의 것이고, 상기 양성자성 용매는 이소프로필알콜을 포함하는 것일 수 있다.
상기 유무기 하이브리드 페로브스카이트 나노결정입자는 구형, 원기둥, 타원기둥 또는 다각기둥 형태일 수 있다.
상기 유무기 하이브리드 페로브스카이트 나노결정입자의 크기는 1 nm 내지 900 nm인 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체일 수 있다
상기 유무기 하이브리드 페로브스카이트 나노결정입자의 밴드갭 에너지는 입자크기에 의해서 의존하지 않고 결정의 구조에 의해서 결정되는 것을 특징으로 한다.
상기 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자는, 제1 유무기 하이브리드 페로브스카이트 나노결정을 포함하는 코어 및 상기 코어를 둘러싸되, 상기 제1 유무기 하이브리드 페로브스카이트 보다 밴드갭이 큰 물질을 포함하는 쉘을 포함할 수 있다.
상기 제1 유무기 하이브리드 페로브스카이트 나노결정은 이차원적인 구조 또는 삼차원적인 구조를 갖는 것을 특징으로 한다.
상기 제1 유무기 하이브리드 페로브스카이트는 ABX3 , A2BX4, ABX4 또는 An-1PbnI3n+1(n은 2 내지 6사이의 정수)의 구조를 포함하고, 상기 A는 유기암모늄 물질이고, 상기 B는 금속 물질이고, 상기 X는 할로겐 원소이다. 상기 A는 (CH3NH3)n, ((CxH2x+1)nNH3)2(CH3NH3)n, (RNH3)2, (CnH2n + 1NH3)2, (CF3NH3), (CF3NH3)n, ((CxF2x+1)nNH3)2(CF3NH3)n, ((CxF2x + 1)nNH3)2 또는 (CnF2n + 1NH3)2이고 (n은 1이상인 정수, x는 1이상인 정수), 상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po 또는 이들의 조합이고, 상기 X는 Cl, Br, I 또는 이들의 조합일 수 있다.
상기 쉘은 제 2의 유무기 페로브 스카이트 재료일 수 있다. 또한 쉘은 유무기 페로브스카이트 재료가 아닌 제2의 물질인 것을 특징으로 하는 유무기 하이브리드 페로브스카이트 나노결정이다.
상기 쉘은 무기물 반도체, 유기물 고분자 물질 또는 유기 저분자 물질을 포함할 수 있다.
상기 쉘은 코어에 존재하는 유무기 페로브스카이트 물질의 에너지 밴드갭보다 큰 물질인 것을 특징으로 할 수 있다.
상기 무기물 반도체 물질은 TiOx(x는 1 내지 3의 실수임), 산화인듐(In2O3), 산화주석(SnO2), 산화아연(ZnO), 산화아연주석(Zinc Tin Oxide), 산화갈륨 (Ga2O3), 산화텅스텐(WO3), 산화알루미늄, 산화티타늄, 산화바나듐(V2O5 , VO2, V4O7 , V5O9 또는 V2O3), 산화몰리브데늄(MoO3 또는 MoOx), 산화철, 산화크롬, 산화비스무스, IGZO (indium-Gallium Zinc Oxide), ZrO2 , 산화니켈(NiO), 산화구리(Coppoer(II) Oxide: CuO), 산화구리알루미늄(CopperAluminiumOxide:CAO, CuAlO2), 산화아연로듐 (ZincRhodiumOxide: ZRO, ZnRh2O4) 등의 옥사이드 반도체 및 하이드로젠설파이드(H2S), 카드뮴설파이드 (CdS), 카본다이설파이드(CS2), 리드설파이드(PbS), 몰리브데늄 다이설파이드 (MoS2), 실버설파이드(Ag2S), 소듐설파이드(Na2S), 징크설파이드(ZnS), 머큐리설파이드(HgS), 아세닉설파이드(AsS), 폴리베닐렌설파이드(C6H4S), 셀레늄설파이드(SeS2) 또는 아이론다이설파이드(FeS2)를 포함할 수 있다.
상기 유기물 고분자 물질은 공액고분자로 폴로플루오렌(polyfluornee), 폴리파라페닐렌(poly(p-phenylee)), 폴리스파이로플루오렌(poly(spirofluorene)) 및 이들의 유도체를 포함할 수 있으며, 비공액고분자로 폴리 메틸 메타크릴레이트 (Poly(methyl methacrylate) (PMMA)), 폴리 바이닐 카파졸 (poly (N-vinylcarbazole) (PVK)), 폴리에틸렌글리콜(polyethylene glycol), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리바이닐피롤리돈 (polyvinylpyrrolidone), 폴리에틸렌이민 (polyethyleneimine) 또는 폴리바이닐알코올 (PVA)를 포함할 수 있다. 모든 종류의 공액고분자 및 비공액 고분자를 포함할 수 있으며 특별한 화학 구조에 제한되는 것은 아니다.
상기 유기물 저분자 물질은 공액물질로 4,4'-bis(N- carbazolyl)-1,1′'-biphenyl (CBP), 2,8-bis(diphenylphosphoryl)dibenzo[b,d]thiophene (PPT) 또는 N,N-dicarbazolyl-3,5-benzene (mCP)를 포함할 수 있다. 모든 종류의 공액 고분자 및 비공액 저분자를 포함할 수 있으며 특별한 화학 구조에 제한되는 것은 아니다.
또한, 상기 쉘을 둘러싸는 복수개의 유기리간드들을 더 포함할 수 있다. 상기 유기리간드는 알킬할라이드를 포함할 수 있다. 상기 알킬할라이드의 알킬 구조는 CnH2n +1의 구조를 가지는 비고리형 알킬(acyclic alkyl), 일차 알코올(primary alcohol), 이차 알코올(secondary alcohol), 삼차 알코올(tertiary alcohol), 알킬아민(alkylamine), p-치환된 아닐린(p-substituted aniline), 페닐 암모늄(phenyl ammonium) 또는 플루오린 암모늄(fluorine ammonium)을 포함할 수 있다.
또한, 계면활성제는 4,4'-아조비스(4-시아노팔레릭 에시드) (4,4'-Azobis(4-cyanovaleric acid)), 아세틱 에시드(Acetic acid), 5-마이노살리클릭 에시드 (5-Aminosalicylic acid), 아크리릭 에시드 (Acrylic acid), L-아스펜틱 에시드 (L-Aspentic acid), 6-브로헥사노익 에시드 (6-Bromohexanoic acid), 프로모아세틱 에시드 (Bromoacetic acid), 다이클로로 아세틱 에시드 (Dichloro acetic acid), 에틸렌디아민테트라아세틱 에시드 (Ethylenediaminetetraacetic acid), 이소부티릭 에시드 (Isobutyric acid), 이타코닉 에시드 (Itaconic acid), 말레익 에시드 (Maleic acid), r-말레이미도부틸릭 에시드 (r-Maleimidobutyric acid), L-말릭 에시드 (L-Malic acid), 4-나이트로벤조익 에시드 (4-Nitrobenzoic acid), 1-파이렌카르복실릭 에시드 (1-Pyrenecarboxylic acid) 또는 올레익 에시드 (oleic acid) 와 같이 카르복실산 (COOH)를 포함할 수 있지만 이것으로 제한되는 것은 아니다.
상기 과제를 이루기 위하여 본 발명의 다른 측면은 코어-쉘 구조의 금속할라이드 페로브스카이트 나노결정입자 발광체를 제공한다. 상기 코어-쉘 구조의 금속할라이드 페로브스카이트 나노결정입자 발광체는 유기 용매에 분산이 가능하면서 페로브스카이트 나노결정 구조를 포함하고, 코어-쉘 구조의 나노결정입자 구조를 가질 수 있다.
상기 과제를 이루기 위하여 본 발명의 다른 측면은 태양전지를 제공한다. 이러한 태양전지는 제1 전극, 제2 전극 및 상기 제1 전극 및 제2 전극 사이에 위치하되, 상술한 코어-쉘 구조의 페로브스카이트 나노결정입자를 포함하는 광활성층을 포함할 수 있다.
또한, 상기 코어-쉘 구조의 금속할라이드 페로브스카이트 나노결정입자는, 제1 금속할라이드 페로브스카이트 나노결정을 포함하는 코어; 및 상기 코어를 둘러싸되, 상기 제1 금속할라이드 페로브스카이트 보다 밴드갭이 큰 물질을 포함하는 쉘을 포함할 수 있다.
또한, 상기 제1 금속할라이드 페로브스카이트는 ABX3 , A2BX4, ABX4 또는 An-1PbnI3n+1(n은 2 내지 6사이의 정수)의 구조를 포함하고, 상기 A는 알칼리금속 물질이고, 상기 B는 금속 물질이고, 상기 X는 할로겐 원소일 수 있다.
또한, 상기 A는 Na, K, Rb, Cs 또는 Fr인 것을 특징으로 한다.
또한, 상기 쉘을 둘러싸는 복수개의 유기리간드들을 더 포함할 수 있다.
상기 과제를 이루기 위하여 본 발명의 다른 측면은 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법을 제공한다. 상기 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법은 양성자성 용매에 제1 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액 및 비양성자성 용매에 계면활성제가 녹아있는 제2 용액을 준비하는 단계; 상기 제1 용액을 상기 제2 용액에 섞어 제1 유무기 하이브리드 페로브스카이트 나노결정을 포함하는 코어를 형성하는 단계; 및 상기 제2 용액에 상기 제1 유무기 하이브리드 페로브스카이트보다 밴드갭이 큰 제2 유무기 하이브리드 페로브스카이트 또는 무기물 반도체 물질이 녹아있는 제3 용액을 첨가하여 상기 코어를 둘러싸는 제2 유무기 하이브리드 페로브스카이트 나노결정 또는 무기물 반도체 물질을 포함하는 쉘을 형성하는 단계를 포함할 수 있다.
상기 과제를 이루기 위하여 본 발명의 또 다른 측면은 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법을 제공한다. 상기 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법은 양성자성 용매에 제1 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액 및 비양성자성 용매에 계면활성제가 녹아있는 제2 용액을 준비하는 단계; 상기 제1 용액을 상기 제2 용액에 섞어 제1 유무기 하이브리드 페로브스카이트 나노결정을 포함하는 코어를 형성하는 단계; 및 상기 제2 용액에 유기암모늄 할로젠화물 용액을 첨가한 후 교반하여 상기 코어를 둘러싸는 상기 코어보다 밴드갭이 큰 쉘을 형성하는 단계를 포함할 수 있다.
상기 과제를 이루기 위하여 본 발명의 또 다른 측면은 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법을 제공한다. 상기 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법은 양성자성 용매에 제1 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액 및 비양성자성 용매에 계면활성제가 녹아있는 제2 용액을 준비하는 단계; 상기 제1 용액을 상기 제2 용액에 섞어 제1 유무기 하이브리드 페로브스카이트 나노결정을 포함하는 코어를 형성하는 단계; 상기 제2 용액을 열처리 하여 상기 코어의 표면을 열분해시키는 단계; 및 상기 열처리된 제2 용액에 유기암모늄 할로젠화물 용액을 첨가하여 상기 코어를 둘러싸는 상기 코어보다 밴드갭이 큰 쉘을 형성하는 단계를 포함할 수 있다.
상기 과제를 이루기 위하여 본 발명의 또 다른 측면은 발광소자를 제공한다. 이러한 발광소자는 제1 전극; 제2 전극; 및 상기 제1 전극 및 제2 전극 사이에 위치하되, 상술한 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 또는 코어-쉘 구조의 무기금속할라이드 페로브스카이트 나노결정입자 발광체를 포함하는 발광층을 포함할 수 있다.
본 발명에 따른 유무기 하이브리드 페로브스카이트 나노결정 또는 무기금속할라이드 페로브스카이트 나노결정을 포함하는 나노결정입자 발광체는 나노결정입자 발광체 안에 FCC와 BCC를 합친 결정구조를 갖는 유무기 하이브리드 페로브스카이트 또는 무기금속할라이드 페로브스카이트가 형성되며, 유기평면과 무기평면이 교대로 적층이 되어있는 라멜라 구조를 형성하고 있으며, 무기평면에 엑시톤이 구속되어 높은 색순도를 낼 수 있다.
또한, 900 nm 크기 이내의 나노결정 안에서 엑시톤 확산거리(exciton diffusion length)가 감소할 뿐만 아니라 엑시톤 바인딩 에너지(exciton binding energy)가 증가하여 열적 이온화 및 전하 운반체의 비편재화에 의한 엑시톤 소멸을 막아 높은 상온에서 발광 효율을 가질 수 있다.
또한, 상기 유무기 하이브리드 페로브스카이트 나노결정입자 또는 무기금속할라이드 페로브스카이트 나노결정입자의 밴드갭 에너지는 무기 양자점 발광체가 입자크기에 의해서 의존하는 것과 달리 페로브스카이트 결정의 구조에 의해서 결정된다.
또한, 삼차원 유무기 하이브리드 페로브스카이트에 비하여 이차원 유무기 하이브리드 페로브스카이트를 나노결정으로 합성함으로써, 엑시톤 바인딩 에너지를 증가시켜 발광 효율을 보다 향상 시킬 수 있을 뿐만 아니라 및 내구성-안정성을 증가시킬 수 있다.
또한, 본 발명에 따라 형성된 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 또는 무기금속할라이드 페로브스카이트 나노결정입자 발광체는 코어보다 밴드갭이 큰 물질로 쉘을 형성함으로써 엑시톤이 코어에 좀더 잘 구속되도록 하고, 공기중에 안정한 페로브스카이트 혹은 무기 반도체 혹은 유기 고분자를 사용하여 코어 페로브스카이트가 공기중에 노출되지 않도록 하여 나노결정의 내구성을 향상시킬 수 있다.
본 발명의 기술적 효과들은 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 페로브스카이트 나노결정구조의 모식도이다.
도 2는 본 발명의 일 실시예에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법을 나타낸 순서도이다.
도 3은 본 발명의 일 실시예에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법을 나타낸 모식도이다.
도 4는 본 발명의 일 실시예에 따른 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 및 무기금속할라이드 페로브스카이트 나노결정입자 발광체 나타낸 모식도이다.
도 5는 본 발명의 일 실시예에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정을 부분절단하여 나타낸 모식도 및 이의 밴드다이어그램이다.
도 6은 본 발명의 일 실시예에 따른 쉘을 형성하는 방법을 나타낸 모식도이다.
도 7은 제조예 1, 비교예 1 및 비교예 2에 따른 발광체에 자외선을 조사하여 발광 빛을 찍은 형광 이미지이다.
도 8은 제조예 1 및 비교예 1에 따른 발광체의 모식도이다.
도 9는 제조예 1 및 비교예 1에 따른 발광체의 광발광 (photoluminescence) 매트릭스(matrix)를 각각 상온과 저온에서 찍은 이미지이다.
도 10은 제조예 1 및 비교예 1에 따른 발광체의 광발광(photoluminescence)를 찍은 결과 그래프이다.
도 11은 본 발명에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체의 제조방법을 나타낸 개념도이다.
도 12는 본 발명에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체의 발광세기 특성을 나타낸 그래프이다.
도 13은 본 발명에 따른 쉘 물질들의 밴드갭을 나타낸 그림이다.
도 14는 본 발명에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체의 발광세기 특성을 나타낸 그래프이다.
이하, 첨부된 도면을 참고하여 본 발명에 의한 실시예를 상세히 설명하면 다음과 같다.
본 발명이 여러 가지 수정 및 변형을 허용하면서도, 그 특정 실시예들이 도면들로 예시되어 나타내어지며, 이하에서 상세히 설명될 것이다. 그러나 본 발명을 개시된 특별한 형태로 한정하려는 의도는 아니며, 오히려 본 발명은 청구항들에 의해 정의된 본 발명의 사상과 합치되는 모든 수정, 균등 및 대용을 포함한다.
층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
비록 제1, 제2 등의 용어가 여러 가지 요소들, 성분들, 영역들, 층들 및/또는 지역들을 설명하기 위해 사용될 수 있지만, 이러한 요소들, 성분들, 영역들, 층들 및/또는 지역들은 이러한 용어에 의해 한정되어서는 안 된다는 것을 이해할 것이다.
본 발명의 일 실시예에 따른 유무기 하이브리드 페로브스카이트 나노결정입자를 설명한다.
본 발명의 일 실시예에 따른 유무기 하이브리드 페로브스카이트 나노결정입자는 유기 용매에 분산이 가능하면서 페로브스카이트 나노결정구조를 포함할 수 있다.
도 1은 본 발명의 일 실시예에 따른 페로브스카이트 나노결정의 구조이다.
도 1에는 유무기 하이브리드 페로브스카이트 나노결정 및 무기금속할라이드 페로브스카이트 나노결정의 구조를 함께 도시하였다.
도 1을 참조하면, 본 유무기 하이브리드 페로브스카이트 나노결정은 중심 금속을 가운데에 두고, 면심입방구조(face centered cubic; FCC)로 무기할라이드 물질(X)이 육면체의 모든 표면에 6개가 위치하고, 체심입방구조(body centered cubic; BCC)로 유기 암모늄(organic ammonium, OA)이 육면체의 모든 꼭지점에 8개가 위치한 구조를 형성하고 있다. 이때의 중심 금속의 예로 Pb를 도시하였다.
또한, 무기금속할라이드 페로브스카이트 나노결정은 중심 금속을 가운데에 두고, 면심입방구조(face centered cubic; FCC)로 무기할라이드 물질(X)이 육면체의 모든 표면에 6개가 위치하고, 체심입방구조(body centered cubic; BCC)로 알칼리 금속이 육면체의 모든 꼭지점에 8개가 위치한 구조를 형성하고 있다. 이때의 중심 금속의 예로 Pb를 도시하였다.
이때 육면체의 모든 면이 90°를 이루며, 가로길이와 세로길이 및 높이길이가 같은 정육면체 (cubic) 구조뿐만 아니라 가로길이와 세로길이는 같으나 높이 길이가 다른 정방정계 (tetragonal) 구조를 포함한다.
따라서, 본 발명에 따른 이차원적 구조는 중심 금속을 가운데에 두고, 면심입방구조로 무기할라이드 물질이 육면체의 모든 표면에 6개가 위치하고, 체심입방구조로 유기 암모늄이 육면체의 모든 꼭지점에 8개가 위치한 유무기 하이브리드 페로브스카이트 나노결정구조로서, 가로길이와 세로길이는 같으나 높이길이가 상기 가로길이 및 세로길이보다 1.5배 이상 긴 구조로 정의한다.
본 발명의 일 실시예에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법을 설명한다.
도 2는 본 발명의 일 실시예에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법을 나타낸 순서도이다.
도 2를 참조하면, 본 발명에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법은 양성자성 용매에 제1 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액 및 비양성자성 용매에 계면활성제가 녹아있는 제2 용액을 준비하는 단계(S100), 상기 제1 용액을 상기 제2 용액에 섞어 제1 유무기 하이브리드 페로브스카이트 나노결정을 포함하는 코어를 형성하는 단계(S200) 및 상기 코어를 둘러싸되 상기 코어보다 밴드갭이 큰 물질을 포함하는 쉘을 형성하는 단계(S300)를 포함한다.
보다 구체적으로 설명하면,
먼저, 양성자성 용매에 제1 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액 및 비양성자성 용매에 계면활성제가 녹아있는 제2 용액을 준비한다(S100).
이때의 극성 비양성자성 용매는 다이메틸폼아마이드(dimethylformamide), 감마 부티로락톤(gamma butyrolactone) 또는 N-메틸피롤리돈(N-methylpyrrolidone), 디메틸설폭사이드(dimethylsulfoxide)를 포함할 수 있으나, 이에 제한되는 것은 아니다.
이때의 제1 유무기 하이브리드 페로브스카이트 나노결정은 이차원적인 구조 또는 삼차원적인 구조를 갖는다.
예를 들어, 삼차원적인 결정구조를 갖는 유무기 하이브리드 페로브스카이트는 ABX3 구조일 수 있다. 또한, 이차원적인 결정구조를 갖는 유무기 하이브리드 페로브스카이트는 ABX3, A2BX4, ABX4 또는 An- 1PbnI3n +1(n은 2 내지 6사이의 정수)의 구조일 수 있다.
또한, 이때의 A는 유기암모늄 물질이고, 상기 B는 금속 물질이고, 상기 X는 할로겐 원소이다.
예를 들어, 상기 A는 (CH3NH3)n, ((CxH2x + 1)nNH3)2(CH3NH3)n, (RNH3)2, (CnH2n+1NH3)2, (CF3NH3), (CF3NH3)n, ((CxF2x + 1)nNH3)2(CF3NH3)n, ((CxF2x + 1)nNH3)2 또는 (CnF2n+1NH3)2이고 (n은 1이상인 정수, x는 1이상인 정수), 상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po 또는 이들의 조합이고, 상기 X는 Cl, Br, I 또는 이들의 조합일 수 있다. 이때의 희토류 금속은 예컨대 Ge, Sn, Pb, Eu 또는 Yb일 수 있다. 또한, 알칼리 토류 금속은 예컨대, Ca 또는 Sr일 수 있다.
한편, 이러한 페로브스카이트는 AX 및 BX2를 일정 비율로 조합하여 준비할 수 있다. 즉, 제1 용액은 양성자성 용매에 AX 및 BX2를 일정 비율로 녹여서 형성될 수 있다. 예를 들어, 양성자성 용매에 AX 및 BX2를 2:1 비율로 녹여서 A2BX3 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액을 준비할 수 있다.
또한, 이때의 유무기 하이브리드 페로브스카이트는 삼차원적인 결정구조 보다 이차원적인 결정구조를 갖는 물질을 이용하는 것이 보다 바람직하다.
이는 삼차원적 구조를 갖는 유무기 하이브리드 페로브스카이트를 나노결정으로 형성하는 경우보다 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트를 나노결정으로 형성하는 것이 적층되어 있는 무기평면과 유기평면의 구분을 명확히 하여 유기평면에 의한 무기평면으로의 엑시톤 구속이 더 확실히 되어 엑시톤 바인딩 에너지를 증가시켜 발광 효율을 향상 시킬 수 있을 뿐만 아니라 및 내구성-안정성을 증가시킬 수 있으며, 더 높은 색순도를 낼 수 있다.
또한, 이때의 용매는 양성자성 용매 또는 극성 비양성자성 용매를 포함하고,
상기 극성 비양성자성 용매는, 다이메틸폼아마이드(dimethylformamide), 감마 부티로락톤(gamma butyrolactone), N-메틸피롤리돈(N-methylpyrrolidone), 디메틸설폭사이드(dimethylsulfoxide), 다이클로로에틸렌, 트라이클로로에틸렌, 클로로포름, 클로로벤젠, 다이클로로벤젠, 스타이렌, 자일렌, 톨루엔 및 사이클로헥센으로 이루어진 군으로부터 선택되는 적어도 하나의 것이고, 상기 양성자성 용매는 이소프로필알콜을 포함하는 것일 수 있다.
또한, 계면활성제는 알킬 할라이드 계면활성제로 alkyl-X의 구조일 수 있다. 이때의 X에 해당하는 할로겐 원소는 Cl, Br 또는 I 등을 포함할 수 있다. 또한, 이때의 alkyl 구조에는 CnH2n +1의 구조를 가지는 비고리형 알킬(acyclic alkyl), CnH2n+1OH 등의 구조를 가지는 일차 알코올(primary alcohol), 이차 알코올(secondary alcohol), 삼차 알코올(tertiary alcohol), alkyl-N의 구조를 가지는 알킬아민(alkylamine) (ex. Hexadecyl amine, 9-Octadecenylamine 1-Amino-9-octadecene (C19H37N)), p-치환된 아닐린(p-substituted aniline) 및 페닐 암모늄(phenyl ammonium) 및 플루오린 암모늄(fluorine ammonium)을 포함할 수 있지만 이것으로 제한되는 것은 아니다.
또한, 계면활성제는 4,4'-Azobis(4-cyanovaleric acid), Acetic acid, 5-Aminosalicylic acid, Acrylic acid, L-Aspentic acid, 6-Bromohexanoic acid, Bromoacetic acid, Dichloro acetic acid, Ethylenediaminetetraacetic acid, Isobutyric acid, Itaconic acid, Maleic acid, r-Maleimidobutyric acid, L-Malic acid, 4-Nitrobenzoic acid, 1-Pyrenecarboxylic acid, oleic acid 와 같이 카르복실산 (COOH)를 포함할 수 있지만 이것으로 제한되는 것은 아니다.
그 다음에, 상기 제1 용액을 상기 제2 용액에 섞어 제1 유무기 하이브리드 페로브스카이트 나노결정을 포함하는 코어를 형성한다(S200).
상기 제1 용액을 상기 제2 용액에 섞어 코어를 형성하는 단계는, 상기 제2 용액에 상기 제1 용액을 한방울씩 떨어뜨려 섞는 것이 바람직하다. 또한, 이때의 제2 용액은 교반을 수행할 수 있다. 예를 들어, 강하게 교반중인 알킬 할라이드 계면활성제가 녹아 있는 제2 용액에 유무기 하이브리드 페로브스카이트(OIP)가 녹아 있는 제2 용액을 천천히 한방울씩 첨가하여 제1 유무기 하이브리드 페로브스카이트 나노결정을 포함하는 코어를 합성할 수 있다.
이 경우, 제1 용액을 제2 용액에 떨어뜨려 섞게 되면 용해도 차이로 인해 제2 용액에서 유무기 하이브리드 페로브스카이트(OIP)가 석출(precipitation)된다. 그리고 제2 용액에서 석출된 유무기 하이브리드 페로브스카이트(OIP)를 알킬 할라이드 계면활성제가 표면을 안정화하면서 잘 분산된 유무기 페로브스카이트 나노결정(OIP-NC) 코어를 생성하게 된다. 따라서, 이 경우, 생성된 유무기 페로브스카이트 나노결정은 복수개의 알킬할라이드 유기리간드들에 의해 둘러싸여 있게 된다.
한편, 이러한 유무기 하이브리드 페로브스카이트 나노결정의 크기는 알킬 할라이드 계면활성제의 길이 또는 형태 인자(shape factor) 조절을 통해 제어할 수 있다. 예컨대, shape factor 조절은 선형, tapered 또는 역삼각 모양의 surfactant를 통해 크기를 제어할 수 있다.
또한, 이러한 유무기 페로브스카이트 나노결정입자의 크기는 1 nm 내지 900 nm일 수 있다. 한편, 이때의 나노결정입자의 크기는 후술하는 리간드의 길이를 고려하지 않은 크기 즉, 이러한 리간드를 제외한 나머지 부분의 크기를 의미한다.
만일 유무기 페로브스카이트 나노결정입자의 크기를 900 nm를 초과하여 형성할 경우 큰 나노결정안에서 열적 이온화 및 전하 운반체의 비편재화에 의해서 엑시톤이 발광으로 가지 못하고 자유 전하로 분리되어 소멸되는 근본적인 문제가 있을 수 있다.
그 다음에, 상기 코어를 둘러싸되 상기 코어보다 밴드갭이 큰 물질을 포함하는 쉘을 형성한다(S300).
예를 들어, 이때의 쉘은 제2 유무기 하이브리드 페로브스카이트 재료를 포함할 수 있다. 또한, 이때의 쉘은 무기물 반도체 또는 유기물 고분자 물질을 포함할 수 있다.
예컨대, 상기 제2 용액에 상기 제1 유무기 하이브리드 페로브스카이트보다 밴드갭이 큰 제2 유무기 하이브리드 페로브스카이트, 무기물 반도체 물질, 유기물 고분자 물질 또는 유기 저분자 물질이 녹아있는 용액을 첨가하여 상기 코어를 둘러싸는 제2 유무기 하이브리드 페로브스카이트 나노결정, 무기물 반도체 물질, 유기물 고분자 물질 또는 유기물 저분자 물질을 포함하는 쉘을 형성할 수 있다.
이때의 제2 유무기 하이브리드 페로브스카이트는 제1 유무기 하이브리드 페로브스카이트보다 밴드갭이 큰 물질로 선택하는 것이 바람직하다. 이러한 제2 유무기 하이브리드 페로브스카이트는 ABX3, A2BX4, ABX4 또는 An- 1PbnI3n +1 (n은 2 내지 6사이의 정수)의 구조일 수 있다. 이때의 A는 유기암모늄 물질이고, 상기 B는 금속 물질이고, 상기 X는 할로겐 원소이다.
예를 들어, 상기 A는 (CH3NH3)n, ((CxH2x + 1)nNH3)2(CH3NH3)n, (RNH3)2, (CnH2n+1NH3)2, (CF3NH3), (CF3NH3)n, ((CxF2x + 1)nNH3)2(CF3NH3)n, ((CxF2x + 1)nNH3)2 또는 (CnF2n+1NH3)2 이고 (n은 1이상인 정수, x는 1이상인 정수), 상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po 또는 이들의 조합이고, 상기 X는 Cl, Br, I 또는 이들의 조합일 수 있다. 이때의 희토류 금속은 예컨대 Ge, Sn, Pb, Eu 또는 Yb일 수 있다. 또한, 알칼리 토류 금속은 예컨대, Ca 또는 Sr일 수 있다.
상기 무기물 반도체 물질의 예로서, TiOx(x는 1 내지 3의 실수임), 산화인듐(In2O3), 산화주석(SnO2), 산화아연(ZnO), 산화아연주석(Zinc Tin Oxide), 산화갈륨 (Ga2O3), 산화텅스텐(WO3), 산화알루미늄, 산화티타늄, 산화바나듐(V2O5 , VO2, V4O7, V5O9 또는 V2O3), 산화몰리브데늄 (MoO3 또는 MoOx), 산화철, 산화크롬, 산화비스무스, IGZO (indium-Gallium Zinc Oxide), ZrO2, 산화니켈(NiO), 산화구리 (Coppoer(II) Oxide: CuO), 산화구리알루미늄(CopperAluminiumOxide:CAO, CuAlO2) 또는 산화아연로듐 (ZincRhodiumOxide: ZRO, ZnRh2O4) 등의 옥사이드 반도체를 들 수 있다.
또한, 상기 무기물 반도체 물질의 다른 예로서, 하이드로젠설파이드(H2S), 카드뮴설파이드(CdS), 카본다이설파이드(CS2), 리드설파이드(PbS), 몰리브데늄 다이설파이드(MoS2), 실버설파이드(Ag2S), 소듐설파이드(Na2S), 징크설파이드(ZnS), 머큐리설파이드(HgS), 아세닉설파이드(AsS), 폴리베닐렌설파이드(C6H4S), 셀레늄설파이드(SeS2) 또는 아이론다이설파이드(FeS2) 등을 들 수 있다.
상기 유기물 고분자 물질은 공액고분자로 폴로플루오렌(polyfluornee), 폴리파라페닐렌(poly(p-phenylee)), 폴리스파이로플루오렌(poly(spirofluorene)) 및 이들의 유도체를 포함할 수 있으며, 비공액고분자로 폴리 메틸 메타크릴레이트 (Poly(methyl methacrylate) (PMMA)), 폴리 바이닐 카파졸 (poly (N-vinylcarbazole) (PVK)), 폴리에틸렌글리콜(polyethylene glycol), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리바이닐피롤리돈 (polyvinylpyrrolidone), 폴리에틸렌이민 (polyethyleneimine) 또는 폴리바이닐알코올 (PVA)를 포함할 수 있다. 모든 종류의 공액고분자 및 비공액 고분자를 포함할 수 있으며 특별한 화학 구조에 제한되는 것은 아니다.
상기 유기물 저분자 물질은 공액물질로 4,4'-bis(N- carbazolyl)-1,1′'-biphenyl (CBP), 2,8-bis(diphenylphosphoryl)dibenzo[b,d]thiophene (PPT) 또는 N,N-dicarbazolyl-3,5-benzene (mCP)를 포함할 수 있다. 모든 종류의 공액 고분자 및 비공액 저분자를 포함할 수 있으며 특별한 화학 구조에 제한되는 것은 아니다.
도 3은 본 발명의 일 실시예에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법을 나타낸 모식도이다.
도 3(a)를 참조하면, 비양성자성 용매에 알킬 할라이드 계면활성제가 녹아있는 제2 용액에 양성자성 용매에 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액을 한방울씩 첨가한다.
도 3(b)를 참조하면, 제2 용액에 제1 용액을 첨가하면, 용해도 차이로 인해 제2 용액에서 유무기 하이브리드 페로브스카이트가 석출되고, 이러한 석출된 유무기 하이브리드 페로브스카이트를 알킬 할라이드 계면활성제가 둘러싸면서 표면을 안정화하면서 잘 분산된 유무기 하이브리드 페로브스카이트 나노결정 코어(110)를 포함하는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체(100)를 생성하게 된다. 이때 나노결정 코어(110)는 알킬 할라이드 유기 리간드들에 의해 둘러싸이게 된다.
한편, 본 발명의 일 실시예에 따른 코어를 이루는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 도 4를 참조하여 먼저 설명한다.
도 4는 본 발명의 일 실시예에 따른 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 및 무기금속할라이드 페로브스카이트 나노결정입자를 나타낸 모식도이다. 이때 도 4는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체로 도시하였는데, 도 4의 유무기 하이브리드를 페로브스카이트를 무기금속할라이드 페로브스카이트로 변경하면 무기금속할라이드 나노결정입자 발광체이므로 설명은 동일하다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 발광체는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 또는 무기금속할라이드 페로브스카이트 나노결정입자 발광체로서, 유기 용매에 분산이 가능한 유무기 하이브리드 페로브스카이트 나노결정구조 또는 무기금속할라이드 페로브스카이트 나노결정구조 (110)를 포함한다. 이러한 나노결정구조(110)는 본 발명에 따른 발광체의 나노결정 코어(110)가 된다.
또한, 이때의 유무기 하이브리드 페로브스카이트 또는 무기금속할라이드 페로브스카이트는 삼차원적인 결정구조 또는 이차원적인 결정구조를 갖는 물질일 수 있다.
예를 들어, 삼차원적인 결정구조를 갖는 유무기 하이브리드 페로브스카이트는 ABX3 구조일 수 있다. 또한, 이차원적인 결정구조를 갖는 유무기 하이브리드 페로브스카이트는 ABX3, A2BX4, ABX4 또는 An- 1PbnI3n +1(n은 2 내지 6사이의 정수)의 구조일 수 있다.
이때, 상기 A는 (CH3NH3)n, ((CxH2x + 1)nNH3)2(CH3NH3)n, (RNH3)2, (CnH2n + 1NH3)2, (CF3NH3), (CF3NH3)n, ((CxF2x + 1)nNH3)2(CF3NH3)n, ((CxF2x + 1)nNH3)2 또는 (CnF2n + 1NH3)2이고 (n은 1이상인 정수), 상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po 또는 이들의 조합이고, 상기 X는 Cl, Br, I 또는 이들의 조합일 수 있다. 이때의 희토류 금속은 예컨대 Ge, Sn, Pb, Eu 또는 Yb일 수 있다. 또한, 알칼리 토류 금속은 예컨대, Ca 또는 Sr일 수 있다.
예를 들어, 삼차원적인 결정구조를 갖는 무기금속할라이드 페로브스카이트는 ABX3 구조일 수 있다. 또한, 이차원적인 결정구조를 갖는 무기금속할라이드 페로브스카이트는 ABX3, A2BX4, ABX4 또는 An- 1PbnI3n +1(n은 2 내지 6사이의 정수)의 구조일 수 있다.
이때, 상기 A는 알칼리 금속, 상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po 또는 이들의 조합이고, 상기 X는 Cl, Br, I 또는 이들의 조합일 수 있다. 이때의 희토류 금속은 예컨대 Ge, Sn, Pb, Eu 또는 Yb일 수 있다. 또한, 알칼리 토류 금속은 예컨대, Ca 또는 Sr일 수 있다.
한편, 본 발명에 따른 유무기 하이브리드 페로브스카이트 나노결정입자 발광체(100)는 상술한 유무기 하이브리드 페로브스카이트 나노결정 코어(110)를 둘러싸는 복수개의 유기리간드들(120)을 더 포함할 수 있다.
이러한 유기리간드(120)는 알킬할라이드를 포함할 수 있다. 예컨대, 알킬할라이드는 alkyl-X의 구조일 수 있다. 이때의 X에 해당하는 할로겐 원소는 Cl, Br 또는 I 등을 포함할 수 있다. 또한, 이때의 alkyl 구조에는 CnH2n +1의 구조를 가지는 비고리형 알킬(acyclic alkyl), CnH2n + 1OH 등의 구조를 가지는 일차 알코올(primary alcohol), 이차 알코올(secondary alcohol), 삼차 알코올(tertiary alcohol), alkyl-N의 구조를 가지는 알킬아민(alkylamine) (ex. Hexadecyl amine, 9-Octadecenylamine 1-Amino-9-octadecene (C19H37N)), p-치환된 아닐린(p-substituted aniline), 페닐 암모늄(phenyl ammonium) 또는 플루오린 암모늄(fluorine ammonium)을 포함할 수 있지만 이것으로 제한되는 것은 아니다.
다시 도 3(c)를 참조하면, 상기 코어(110)를 둘러싸되 상기 코어(110)보다 밴드갭이 큰 물질을 포함하는 쉘(130)을 형성할 수 있다.
한편, 본 발명의 일 실시예에 따른 코어-쉘 구조에 대하여 도 5를 참조하여 먼저 설명한다.
본 발명의 일 실시예에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체는 유기 용매에 분산이 가능하면서 페로브스카이트 나노결정 구조를 포함하고, 코어-쉘 구조의 나노결정입자 구조를 가진다. 이때의 유기 용매는 양성자성 용매 또는 비양성자성 용매일 수 있다.
또한, 이때의 나노결정입자는 구형, 원기둥, 타원기둥 또는 다각기둥 형태일 수 있다.
또한, 이러한 나노결정입자의 크기는 1 nm 내지 900 nm일 수 있다. 한편, 이때의 나노결정입자의 크기는 후술하는 리간드의 길이를 고려하지 않은 크기 즉, 이러한 리간드를 제외한 나머지 부분의 크기를 의미한다. 예컨대 나노결정이 구형인 경우, 나노결정의 지름은 1 nm 내지 900 nm일 수 있다.
또한, 이러한 유무기 하이브리드 페로브스카이트 나노결정을 둘러싸는 복수개의 유기리간드들을 더 포함할 수 있다.
도 5는 본 발명의 일 실시예에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정을 나타낸 모식도 및 이의 밴드다이어그램이다.
도 5(a)를 참조하면, 본 발명에 따른 나노결정입자 발광체는 코어(110) 및 코어(130)를 둘러싸는 쉘(130) 구조인 것을 알 수 있다. 이때 도 5(b)를 참조하면, 코어의 에너지 밴드갭보다 쉘의 에너지 밴드갭이 더 큰 바, 엑시톤이 코어 페로브스카이트에 좀더 잘 구속되도록 할 수 있다.
다시, 이러한 쉘을 형성하는 방법들에 대하여 도 6을 참조하여 구체적으로 설명한다.
도 6은 본 발명의 일 실시예에 따른 쉘을 형성하는 방법을 나타낸 모식도이다.
도 6을 참조하면, 먼저, 제1 유무기 하이브리드 페로브스카이트 나노결정(120)을 코어로 형성한다. 이때 제1 유무기 하이브리드 페로브스카이트는 MAPbBr3로 예를 들어 설명한다. 이때의 MA는 메틸암모늄을 의미한다.
이러한 코어를 형성하는 방법은 Inverse nano-emulsion 법을 통해 수행될 수 있다. 예를 들어, 코어를 형성하는 방법은 양성자성 용매에 제1 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액 및 비양성자성 용매에 알킬 할라이드 계면활성제가 녹아있는 제2 용액을 준비하는 단계 및 상기 제1 용액을 상기 제2 용액에 섞어 제1 유무기 하이브리드 페로브스카이트 나노결정을 포함하는 코어를 형성하는 단계를 포함할 수 있다.
그 다음에 이러한 코어의 표면에 쉘을 형성하는 방법으로 아래와 같은 세가지 방법을 이용할 수 있다.
첫번째 방법으로 제2 유무기 하이브리드 페로브스카이트 용액 또는 무기물 반도체 물질 용액을 이용하여 쉘을 형성할 수 있다. 즉, 상기 제2 용액에 상기 제1 유무기 하이브리드 페로브스카이트보다 밴드갭이 큰 제2 유무기 하이브리드 페로브스카이트 또는 무기물 반도체 물질이 녹아있는 제3 용액을 첨가하여 상기 코어를 둘러싸는 제2 유무기 하이브리드 페로브스카이트 나노결정 또는 무기물 반도체 물질을 포함하는 쉘을 형성할 수 있다.
예를 들어, 상술한 방법 (Inverse nano-emulsion 법)을 통하여 생성된 유무기 하이브리드 페로브스카이트(MAPbBr3) 용액을 강하게 교반하면서, MAPbBr3보다 밴드갭이 큰 유무기 하이브리드 페로브스카이트(MAPbCl3) 용액, 또는 ZnS 또는 금속산화물(metal oxide)과 같은 무기반도체 물질 용액을 천천히 한방울씩 떨어뜨려 제2 유무기 하이브리드 페로브스카이트 나노결정(MAPbCl3) 또는 무기물 반도체 물질을 포함하는 쉘을 형성할 수 있다.
이는 코어 페로브스카이트와 쉘 페로브스카이트가 서로 섞여 얼로이(alloy)형태를 만들 거나 달라붙는 성질이 있기 때문에 코어-쉘 구조의 유무기 하이브리드 페로브스카이트를 합성 할 수 있다.
따라서, MAPbBr3/MAPbCl3 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성할 수 있다.
두번째 방법으로, 유기암모늄 할로젠화물 용액을 이용하여 쉘을 형성할 수 있다. 즉, 상기 제2 용액에 유기암모늄 할로젠화물 용액을 다량 첨가한 후 교반하여 상기 코어를 둘러싸는 상기 코어보다 밴드갭이 큰 쉘을 형성할 수 있다.
예를 들어, 상기와 같은 방법 (Inverse nano-emulsion 법)을 통하여 생성된 유무기 하이브리드 페로브스카이트(MAPbBr3) 용액에 MACl 용액을 넣고 강하게 교반하여 excess한 MACl에 의해 표면의 MAPbBr3가 MAPbBr3 - xClx로 변환되어 쉘(Shell)이 형성될 수 있다.
따라서, MAPbBr3/MAPbBr3 - xClx 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성할 수 있다.
세번째 방법으로, 열분해/합성(decomposition/alloying) 방법을 이용하여 쉘을 형성할 수 있다. 즉, 상기 제2 용액을 열처리 하여 상기 코어의 표면을 열분해시킨 후, 상기 열처리된 제2 용액에 유기암모늄 할로젠화물 용액을 첨가하여 다시 표면을 합성시켜 상기 코어를 둘러싸는 상기 코어보다 밴드갭이 큰 쉘을 형성할 수 있다.
예를 들어, 상기와 같은 방법 (Inverse nano-emulsion 법)을 통하여 생성된 유무기 하이브리드 페로브스카이트 (MAPbBr3) 용액을 열처리 하여 표면이 PbBr2로 변화되도록 열분해 시킨 후, MACl 용액을 첨가하여 다시 표면이 MAPbBr2Cl로 되도록 합성시켜 쉘을 형성할 수 있다.
즉, 이때 열분해를 통하여 MAPbBr3가 MABr 과 PbBr2로 열분해 할 수 있다.
따라서, MAPbBr3/MAPbBr2Cl 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성할 수 있다.
네번째 방법으로 유기물 반도체 물질 용액을 이용하여 쉘을 형성할 수 있다. 즉, 제2 용액에는 유무기 하이브리드 페로브스카이트보다 밴드갭이 큰 유기물 반도체 물질이 미리 녹아있고, 이러한 제2 용액에 상술한 제1 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액을 첨가하여 상기 제1 유무기 하이브리드 페로브스카이트 나노결정을 포함하는 코어 및 이러한 코어를 둘러싸는 유기물 반도체 물질을 포함하는 쉘을 형성할 수 있다.
이는 코어 페로브스카이트 표면에 유기 반도체 물질이 달라붙는 성질이 있기 때문에 코어-쉘 구조의 유무기 하이브리드 페로브스카이트를 합성 할 수 있다.
따라서, MAPbBr3-유기 반도체 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성할 수 있다.
다섯번째 방법으로는, 선택적 추출 (selective exctraction) 방법을 이용하여 쉘을 형성할 수 있다. 즉, 상기 제1 유무기 하이브리드 페로브스카이트 나노결정을 포함하는 코어가 형성된 제2 용액에 IPA용매를 소량 넣어줌으로써 나노결정 표면에서 MABr을 선택적으로 추출하여 표면을 PbBr2만으로 형성하여 상기 코어를 둘러싸는 상기 코어보다 밴드갭이 큰 쉘을 형성할 수 있다.
예를 들어, 상기와 같은 방법 (Inverse nano-emulsion 법)을 통하여 생성된 유무기 하이브리드 페로브스카이트 (MAPbBr3) 용액에 IPA를 소량 넣어줌으로써, 나노결정 표면의 MABr만 선택적으로 녹여 표면에 PbBr2만 남게 하도록 추출하여 PbBr2 쉘을 형성할 수 있다.
즉, 이때 선택적 추출을 통하여 MAPbBr3 표면의 MABr가 제거될 수 있다.
따라서, MAPbBr3-PbBr2 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성할 수 있다.
본 발명의 일 실시예에 따른 코어-쉘 구조의 무기금속할라이드 페로브스카이트 나노결정입자 발광체를 설명한다.
코어-쉘 구조의 무기금속할라이드 페로브스카이트 나노결정입자 발광체는 유기 용매에 분산이 가능하면서 페로브스카이트 나노결정 구조를 포함하고, 코어-쉘 구조의 나노결정입자 구조를 가질 수 있다.
이러한 무기금속할라이드 페로브스카이트 나노결정입자 발광체는 상술한 유무기 하이브리드 페로브스카이트 나노결정입자 발광체에서 A site에 유기암모늄 물질 대신에 알칼리 금속 물질이 들어간 것 이외에는 동일하다. 이때의 알칼리 금속 물질은 예컨대 상기 A는 Na, K, Rb, Cs 또는 Fr일 수 있다.
예컨대, 상기 코어-쉘 구조의 무기금속할라이드 페로브스카이트 나노결정입자는,
제1 무기금속할라이드 페로브스카이트 나노결정을 포함하는 코어 및 상기 코어를 둘러싸되, 상기 제1 무기금속할라이드 페로브스카이트 보다 밴드갭이 큰 물질을 포함하는 쉘을 포함할 수 있다. 그리고, 이때의 상기 제1 무기금속할라이드 페로브스카이트는 ABX3 , A2BX4, ABX4 또는 An- 1PbnI3n +1(n은 2 내지 6사이의 정수)의 구조를 포함하고, 상기 A는 알칼리금속 물질이고, 상기 B는 금속 물질이고, 상기 X는 할로겐 원소일 수 있다. 또한, 상기 쉘을 둘러싸는 복수개의 유기리간드들을 더 포함할 수 있다. 또한, 이때의 쉘은 제2 무기할라이드, 무기금속할라이드 페로브스카이트 나노결정 물질, 무기물 반도체 또는 유기물 고분자 물질을 포함할 수 있다.
이러한 코어-쉘 구조의 "무기금속할라이드" 페로브스카이트 나노결정입자는 A site 물질이 알칼리 금속이고, 코어-쉘 구조의 "유무기 하이브리드" 페로브스카이트 나노결정입자는 A site 물질이 유기암모늄 물질인 점만 다르고 나머지는 동일하다. 따라서, 코어-쉘 구조의 무기금속할라이드 페로브스카이트 나노결정입자 및 그 제조방법에 대한 자세한 설명은 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 및 그 제조방법과 관련하여 이미 상세히 설명하였는 바, 중복되므로 생략한다.
본 발명의 일 실시예에 따른 발광소자를 설명한다.
본 발명의 일 실시예에 따른 발광소자는 상술한 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 또는 코어-쉘 구조의 무기금속할라이드 페로브스카이트 나노결정입자 발광체를 포함하는 발광층을 이용한 소자일 수 있다. 이때의 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 또는 무기금속할라이드 페로브스카이트 나노결정입자 발광체는 상술한 제조방법에 의해 제조된 것일 수 있다.
예를 들어, 본 발명에 따른 발광소자는 제1 전극, 제2 전극, 및 상기 제1 전극 및 제2 전극 사이에 위치하되, 상술한 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 또는 무기금속할라이드 페로브스카이트 나노결정입자 발광체를 포함하는 발광층을 포함할 수 있다.
또 다른 예로 상술한 코어-쉘 구조의 유무기 페로브스카이트 나노결정입자 또는 코어-쉘 구조의 무기금속 할라이드 페로브스카이트 나노결정입자를 포함하는 광활성층을 이용하여 태양전지에 적용할 수도 있다. 이러한 태양전지는 제1 전극, 제2 전극 및 상기 제1 전극 및 제2 전극 사이에 위치하되, 상술한 페로브스카이트 나노결정입자를 포함하는 광활성층을 포함할 수 있다.
제조예 1
본 발명의 일 실시예에 따른 삼차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다. Inverse nano-emulsion 법을 통하여 형성하였다.
구체적으로, 양성자성 용매에 유무기 하이브리드 페로브스카이트를 녹여 제1 용액을 준비하였다. 이때의 양성자성 용매로 다이메틸폼아마이드(dimethylformamide)를 사용하고, 유무기 하이브리드 페로브스카이트로 CH3NH3PbBr3를 사용하였다. 이때 사용한 CH3NH3PbBr3은 CH3NH3Br 과 PbBr2를 1:1 비율로 섞은 것을 사용하였다.
그리고 비양성자성 용매에 알킬 할라이드 계면활성제가 녹아있는 제2 용액을 준비하였다. 이때의 비양성자성 용매는 톨루엔(Toluene)을 사용하였고, 알킬 할라이드 계면활성제는 옥타데실암모늄 브로마이드(octadecylammonium bromide, CH3(CH2)17NH3Br)를 사용하였다.
그 다음에, 강하게 교반중인 제2 용액에 제1 용액을 천천히 한방울씩 떨어뜨려 첨가하여 삼차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
그 다음에, 이러한 용액상태의 유무기 하이브리드 페로브스카이트 나노결정입자를 유리 기판 상에 스핀코팅하여 유무기 하이브리드 페로브스카이트 나노결정입자 박막(OIP-NP film)을 형성하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 크기는 약 20nm 이다.
제조예 2
제조예 1과 동일하게 수행하되, 알킬할라이드 계면활성제를 CH3(CH2)13NH3Br를 사용하여 본 발명의 일 실시예에 따른 삼차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 크기는 약 100nm 이다.
제조예 3
제조예 1과 동일하게 수행하되, 알킬할라이드 계면활성제를 CH3(CH2)10NH3Br를 사용하여 본 발명의 일 실시예에 따른 삼차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 크기는 약 300nm 이다.
제조예 4
제조예 1과 동일하게 수행하되, 알킬할라이드 계면활성제를 CH3(CH2)7NH3Br를 사용하여 본 발명의 일 실시예에 따른 삼차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 크기는 약 500nm 이다.
제조예 5
제조예 1과 동일하게 수행하되, 알킬할라이드 계면활성제를 CH3(CH2)4NH3Br를 사용하여 본 발명의 일 실시예에 따른 삼차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 크기는 약 700nm 이다.
제조예 6
제조예 1과 동일하게 수행하되, 알킬할라이드 계면활성제를 CH3CH2NH3Br를 사용하여 본 발명의 일 실시예에 따른 삼차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 크기는 약 800nm 이다.
제조예 7
제조예 1과 동일하게 수행하되, 알킬할라이드 계면활성제를 CH3NH3Br를 사용하여 본 발명의 일 실시예에 따른 삼차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 크기는 약 900nm 이다.
제조예 8
제조예 1에 따른 유무기 하이브리드 페로브스카이트 나노결정을 코어로 사용한다. 그리고, 이러한 유무기 하이브리드 페로브스카이트 나노결정 코어가 포함된 용액에 밴드갭이 큰 제2 유무기 하이브리드 페로브스카이트(MAPbCl3) 용액을 천천히 한방울씩 떨어뜨려 제2 유무기 하이브리드 페로브스카이트 나노결정(MAPbCl3)을 포함하는 쉘을 형성하여 본 발명의 일 실시예에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
제조예 9
제조예 2에 따른 유무기 하이브리드 페로브스카이트 나노결정을 코어로 사용한다. 그리고, 이러한 유무기 하이브리드 페로브스카이트 나노결정 코어가 포함된 용액에 밴드갭이 큰 제2 유무기 하이브리드 페로브스카이트(MAPbCl3) 용액을 천천히 한방울씩 떨어뜨려 제2 유무기 하이브리드 페로브스카이트 나노결정(MAPbCl3)을 포함하는 쉘을 형성하여 본 발명의 일 실시예에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
제조예 10
제조예 3에 따른 유무기 하이브리드 페로브스카이트 나노결정을 코어로 사용한다. 그리고, 이러한 유무기 하이브리드 페로브스카이트 나노결정 코어가 포함된 용액에 밴드갭이 큰 제2 유무기 하이브리드 페로브스카이트(MAPbCl3) 용액을 천천히 한방울씩 떨어뜨려 제2 유무기 하이브리드 페로브스카이트 나노결정(MAPbCl3)을 포함하는 쉘을 형성하여 본 발명의 일 실시예에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
제조예 11
제조예 4에 따른 유무기 하이브리드 페로브스카이트 나노결정을 코어로 사용한다. 그리고, 이러한 유무기 하이브리드 페로브스카이트 나노결정 코어가 포함된 용액에 밴드갭이 큰 제2 유무기 하이브리드 페로브스카이트(MAPbCl3) 용액을 천천히 한방울씩 떨어뜨려 제2 유무기 하이브리드 페로브스카이트 나노결정(MAPbCl3)을 포함하는 쉘을 형성하여 본 발명의 일 실시예에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
제조예 12
제조예 5에 따른 유무기 하이브리드 페로브스카이트 나노결정을 코어로 사용한다. 그리고, 이러한 유무기 하이브리드 페로브스카이트 나노결정 코어가 포함된 용액에 밴드갭이 큰 제2 유무기 하이브리드 페로브스카이트(MAPbCl3) 용액을 천천히 한방울씩 떨어뜨려 제2 유무기 하이브리드 페로브스카이트 나노결정(MAPbCl3)을 포함하는 쉘을 형성하여 본 발명의 일 실시예에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
제조예 13
제조예 6에 따른 유무기 하이브리드 페로브스카이트 나노결정을 코어로 사용한다. 그리고, 이러한 유무기 하이브리드 페로브스카이트 나노결정 코어가 포함된 용액에 밴드갭이 큰 제2 유무기 하이브리드 페로브스카이트(MAPbCl3) 용액을 천천히 한방울씩 떨어뜨려 제2 유무기 하이브리드 페로브스카이트 나노결정(MAPbCl3)을 포함하는 쉘을 형성하여 본 발명의 일 실시예에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
제조예 14
제조예 7에 따른 유무기 하이브리드 페로브스카이트 나노결정을 코어로 사용한다. 그리고, 이러한 유무기 하이브리드 페로브스카이트 나노결정 코어가 포함된 용액에 밴드갭이 큰 제2 유무기 하이브리드 페로브스카이트(MAPbCl3) 용액을 천천히 한방울씩 떨어뜨려 제2 유무기 하이브리드 페로브스카이트 나노결정(MAPbCl3)을 포함하는 쉘을 형성하여 본 발명의 일 실시예에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
제조예 15
제조예 8과 동일하게 수행하되, 코어 유무기 하이브리드 페로브스카이트로 (CH3NH3)2PbBr4를 사용하였다. 이때 사용한 (CH3NH3)2PbBr4은 CH3NH3Br 과 PbBr2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 코어-쉘 형태의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체는 자외선 혹은 파란색 근처의 빛을 발광한다. 발광 스펙트럼은 약 520 nm에 위치한다.
제조예 16
제조예 8과 동일하게 수행하되, 코어 유무기 하이브리드 페로브스카이트로 (CH3NH3)2PbI4를 사용하였다. 이때 사용한 (CH3NH3)2PbI4은 CH3NH3I 과 PbI2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 코어-쉘 형태의 유무기 하이브리드 페로브스카이트 나노결정입자는 적외선 혹은 붉은색 근처의 빛을 발광한다. 발광 스펙트럼은 약 780 nm에 위치한다.
제조예 17
제조예 8과 동일하게 수행하되, 코어 유무기 하이브리드 페로브스카이트로 (CH3NH3)2PbClxBr4-x를 사용하였다. 이때 사용한 (CH3NH3)2PbClxBr4 -x은 CH3NH3Cl 과 PbBr2를 일정 비율로 섞은 것을 사용하였다.
이때의 형성된 코어-쉘 형태의 유무기 하이브리드 페로브스카이트 나노결정입자의 발광 스펙트럼은 380 nm와 520 nm 사이에 위치한다.
제조예 18
제조예 8과 동일하게 수행하되, 코어 유무기 하이브리드 페로브스카이트로 (CH3NH3)2PbIxBr4-x를 사용하였다. 이때 사용한 (CH3NH3)2PbIxBr4 -x은 CH3NH3I 과 PbBr2를 일정 비율로 섞은 것을 사용하였다.
이때의 형성된 코어-쉘 형태의 유무기 하이브리드 페로브스카이트 나노결정입자의 발광 스펙트럼은 520 nm와 780 nm 사이에 위치한다.
제조예 19
제조예 8과 동일하게 수행하되, 코어 유무기 하이브리드 페로브스카이트로 (CH(NH2)2)2PbI4를 사용하였다. 이때 사용한 (CH(NH2)2)2PbI4은 CH(NH2)2I 과 PbI2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 코어-쉘 형태의 유무기 하이브리드 페로브스카이트 나노결정입자는 적외선의 빛을 내며 발광 스펙트럼은 약 800 nm에 위치한다.
제조예 20
제조예 8과 동일하게 수행하되, 코어 유무기 하이브리드 페로브스카이트로 (CH3NH3)2PbxSn1-xI4를 사용하였다. 이때 사용한 (CH3NH3)2PbxSn1 - xI4은 CH3NH3I 과 PbxSn1 -xI2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 코어-쉘 형태의 유무기 하이브리드 페로브스카이트 나노결정입자의 발광 스펙트럼은 820 nm와 1120 nm 에 위치한다.
제조예 21
제조예 8과 동일하게 수행하되, 코어 유무기 하이브리드 페로브스카이트로 (CH3NH3)2PbxSn1-xBr4를 사용하였다. 이때 사용한 (CH3NH3)2PbxSn1 - xBr4은 CH3NH3Br 과 PbxSn1-xBr2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 코어-쉘 형태의 유무기 하이브리드 페로브스카이트 나노결정입자의 발광 스펙트럼은 540 nm와 650 nm 에 위치한다.
제조예 22
제조예 8과 동일하게 수행하되, 코어 유무기 하이브리드 페로브스카이트로 (CH3NH3)2PbxSn1-xCl4를 사용하였다. 이때 사용한 (CH3NH3)2PbxSn1 - xCl4은 CH3NH3Cl 과 PbxSn1-xCl2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 코어-쉘 형태의 유무기 하이브리드 페로브스카이트 나노결정입자의 발광 스펙트럼은 400 nm와 460 nm 에 위치한다.
제조예 23
제조예 8과 동일하게 수행하되, 코어 유무기 하이브리드 페로브스카이트로 (C4H9NH3)PbBr4를 사용하였다. 이때 사용한 (C4H9NH3)PbBr4은 (C4H9NH3)Br 과 PbBr2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 코어-쉘 형태의 유무기 하이브리드 페로브스카이트 나노결정입자의 발광 스펙트럼은 약 411 nm 에 위치한다.
제조예 24
제조예 8과 동일하게 수행하되, 코어 유무기 하이브리드 페로브스카이트로 (C5H11NH3)PbBr4를 사용하였다. 이때 사용한 (C5H11NH3)PbBr4은 (C5H11NH3)Br 과 PbBr2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자의 발광 스펙트럼은 약 405 nm 에 위치한다.
제조예 25
제조예 8과 동일하게 수행하되, 코어 유무기 하이브리드 페로브스카이트로 (C7H15NH3)PbBr4를 사용하였다. 이때 사용한 (C7H15NH3)PbBr4은 (C7H15NH3)Br 과 PbBr2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자의 발광 스펙트럼은 약 401 nm 에 위치한다.
제조예 26
제조예 8과 동일하게 수행하되, 코어 유무기 하이브리드 페로브스카이트로 (C12H25NH3)PbBr4를 사용하였다. 이때 사용한 (C12H25NH3)PbBr4은 (C12H25NH3)Br 과 PbBr2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자의 발광 스펙트럼은 약 388 nm 에 위치한다.
제조예 27
본 발명의 일 실시예에 따른 삼차원 구조를 갖는 무기금속할라이드 페로브스카이트 나노결정입자 발광체를 형성하였다. Inverse nano-emulsion 법을 통하여 형성하였다.
구체적으로, 비양자성 용매인 Octadecene (ODE)에 세슘 카보네이트 (Cs2CO3)와 올레익 에시드 (oleic acid)를 넣고 고온에서 반응시켜 제 3 용액을 준비하였다. 비양자성 용매에 PbBr2와 올레익 에시드 (oleic acid) 그리고 올레라민 (oleylamine)을 넣고 고온 (120 ℃)에서 한시간 동안 반응을 한 제 4 용액을 준비한다.
그 다음에, 강하게 교반중인 제2 용액에 제1 용액을 천천히 한방울씩 떨어뜨려 첨가하여 삼차원적 구조를 갖는 무기금속할라이드 페로브스카이트 나노결정입자 발광체를 형성하였다.
그 다음에, 이러한 용액상태의 무기금속할라이드 페로브스카이트 나노결정입자를 유리 기판 상에 스핀코팅하여 무기금속할라이드 페로브스카이트 나노결정입자 박막(OIP-NP film)을 형성하였다.
이때의 형성된 무기금속할라이드 페로브스카이트 나노결정입자의 크기는 약 20nm 이다.
제조예 28
제조예 27에 따른 무기금속할라이드 페로브스카이트(CsPbBr3) 나노결정을 코어로 사용한다. 그리고, 이러한 무기금속할라이드 페로브스카이트 나노결정 코어가 포함된 용액에 밴드갭이 큰 제2 무기금속할라이드 페로브스카이트(CsPbCl3) 용액을 천천히 한방울씩 떨어뜨려 제2 무기금속할라이드 페로브스카이트 나노결정(CsPbCl3)을 포함하는 쉘을 형성하여 본 발명의 일 실시예에 따른 코어-쉘 구조의 무기금속할라이드 페로브스카이트 나노결정입자 발광체를 형성하였다.
제조예 29
본 발명의 일 실시예에 따른 발광 소자를 제조하였다.
먼저 ITO 기판(ITO 양극이 코팅된 유리 기판)을 준비한 후, ITO 양극 상에 전도성 물질인 PEDOT:PSS(Heraeus 社의 AI4083) 을 스핀 코팅한 후 150℃에서 30분 동안 열처리하여 40nm 두께의 정공 주입층을 형성하였다.
상기 정공 주입층 상에 제조예 8에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자가 녹아있는 용액을 스핀 코팅하고 80℃에서 20분간 열처리 하여 유무기 하이브리드 페로브스카이트 나노결정입자 발광층을 형성한다.
이 후, 유무기 하이브리드 페로브스카이트 나노결정입자 발광층 상에 50nm 두께의 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBI)를 1 x 10-7 Torr 이하의 높은 진공에서 증착하여 전자수송층을 형성하고, 그 위에 1nm 두께의 LiF를 증착하여 전자주입층을 형성하고, 그 위에 100nm 두께의 알루미늄을 증착하여 음전극을 형성하여 유무기 하이브리드 페로브스카이트 나노결정입자 발광 소자를 제작하였다.
제조예 30
본 발명의 일 실시예에 따른 태양전지를 제조하였다.
먼저 ITO 기판(ITO 양극이 코팅된 유리 기판)을 준비한 후, ITO 양극 상에 전도성 물질인 PEDOT:PSS(Heraeus 社의 CLEVIOS PH) 을 스핀 코팅한 후 150에서 30분 동안 열처리하여 40nm 두께의 정공 추출층을 형성하였다.
상기 정공 추출층 상에 제조예 1에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자를 Phenyl-C61-butyric acid methyl ester (PCBM)과 섞어서 코팅하여 광활성층을 형성하고, 광활성층 위에 바로 100 nm 두께의 Al을 증착하여 페로브스카이트 나노결정입자 태양전지를 제조하였다.
비교예 1
양성자성 용매인 다이메틸폼아마이드(dimethylformamide)에 CH3NH3PbBr3를 녹여 제1 용액을 제조하였다.
그 다음에, 상기 제1 용액을 유리 기판 상에 스핀 코팅하여 CH3NH3PbBr3 박막(OIP film)을 제조하였다.
비교예 2
양성자성 용매인 다이메틸폼아마이드(dimethylformamide)에 CH3NH3PbCl3를 녹여 제1 용액을 제조하였다.
그 다음에, 상기 제1 용액을 유리 기판 상에 스핀 코팅하여 CH3NH3PbCl3 박막(OIP film)을 제조하였다.
실험예
도 7은 제조예 1, 비교예 1 및 비교예 2에 따른 발광체에 자외선을 조사하여 발광 빛을 찍은 형광 이미지이다.
도 7을 참조하면, 비교예 1 및 비교예 2에 따른 나노결정 형태가 아닌 벌크(bulk) 형태의 유무기 하이브리드 페로브스카이트 용액은 어두운 빛을 발광하는 반면 제조예 1에 따른 나노결정 형태의 발광체는 매우 밝은 초록색 빛을 내는 것을 확인 할 수 있다.
또한, 절대광발광효율(photoluminescence quantum yield, PLQY)을 측정한 결과 제조예 1에 따른 유무기 하이브리드 페로브스카이트 나노결정입자 발광체는 52%의 매우 높은 수치를 보이는 것을 확인 할 수 있었다.
이에 반하여, 비교예 1 및 비교예 2에서, 유리 기판에 스핀 코팅하여 만든 박막형태의 유무기 하이브리드 페로브스카이트는 1% 내외의 낮은 PLQY 수치를 보였다.
도 8은 제조예 1 및 비교예 1에 따른 발광체의 모식도이다.
도 8(a)는 비교예 1에 따른 발광체 박막(OIP film)의 모식도이고, 도 8(b)는 제조예 1에 따른 발광체 박막(OIP-NP film)의 모식도이다. 도 8(a)를 참조하면, 비교예 1은 제1 용액을 유리 기판에 스핀 코팅하여 만든 박막 형태이고, 도 8(b)를 참조하면, 제조예 1에 따른 발광체는 나노결정구조(110)로서 나노결정 형태이다.
도 9는 제조예 1 및 비교예 1에 따른 발광체의 광발광 (photoluminescence) 매트릭스(matrix)를 각각 상온과 저온에서 찍은 이미지이다.
도 9(a)는 비교예 1에 따른 박막형태의 유무기 하이브리드 페로브스카이트(OIP film)의 광발광(Photoluminescence) 매트릭스를 저온(70 K)에서 찍은 이미지이고, 도 9(b)는 비교예 1에 따른 박막형태의 유무기 하이브리드 페로브스카이트(OIP film)의 광발광 매트릭스를 상온(room temperature)에서 찍은 이미지이다.
도 9(c)는 제조예 1에 따른 유무기 하이브리드 페로브스카이트 나노결정입자 박막(OIP-NP film)의 광발광 매트릭스를 저온(70 K)에서 찍은 이미지이고, 도 9(d)는 제조예 1에 따른 유무기 하이브리드 페로브스카이트 나노결정입자 박막(OIP-NP film)의 광발광 매트릭스를 상온(room temperature)에서 찍은 이미지이다.
도 9(a) 내지 도 9(d)를 참조하면, 제조예 1에 따른 유무기 하이브리드 페로브스카이트 나노결정입자 박막(OIP-NP film)의 경우 비교예 1에 따른 박막 형태의 유무기 하이브리드 페로브스카이트(OIP film)과 같은 위치의 광발광을 보여주며, 좀더 높은 색순도를 보이는 것을 알 수 있다. 또한 제조예 1에 따른 OIP-NP film의 경우 상온에서 저온과 동일한 위치의 높은 색순도의 광발광을 보여주며, 발광 세기 또한 감소하지 않는 것을 알 수 있다. 반면에 비교예 1에 따른 박막 형태의 유무기 하이브리드 페로브스카이트는 상온과 저온에서 색순도 및 발광 위치가 다를 뿐만 아니라, 상온에서 열적 이온화 및 전하 운반체의 비편재화에 의해서 엑시톤이 발광으로 가지 못하고 자유 전하로 분리되어 소멸되어 낮은 발광 세기를 보인다.
도 10은 제조예 1 및 비교예 1에 따른 발광체의 광발광(photoluminescence)를 찍은 결과 그래프이다.
도 10을 참조하면, 제조예 1에 따른 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 용액 내에 위치시킨 용액 상태와 이러한 나노결정입자 발광체를 이용하여 박막층을 형성한 박막 상태로 있는 경우 모두 비교예 1에 따른 유무기 하이브리드 페로브스카이트와 같은 위치의 광발광을 보여주며, 좀더 높은 색순도를 보이는 것을 알 수 있다.
도 11은 제조예 1에 따른 유무기 하이브리드 페로브스카이트 나노결정입자 발광체에 IPA(isopropyl alcohol) 용액을 이용하여 코어-쉘 구조로 형성하는 공정을 나타낸 개념도이다.
도 11을 참조하면, 제조예 1에 따른 유무기 하이브리드 페로브스카이트 나노결정입자 발광체(MAPbBr3)이 형성된 제2 용액에 IPA용액을 소량 떨어뜨리고 교반(Stir)한다. 이때의 MA는 제조예1에서는 CH3NH3이다. 이 경우 IPA에 의해 나노결정입자 발광체 표면의 CH3NH3Br만 선택적으로 추출되어 표면은 PbBr2만 남게 되어 쉘을 형성하고 이에 따라 코어-쉘 구조의 나노결정입자 발광제츨 형성할 수 있다.
도 12는 본 발명에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체의 발광세기 특성을 나타낸 그래프이다.
제조예 1에 따른 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 Reference로 한다.
제조예 1에 따라 유무기 하이브리드 페로브스카이트 나노결정입자 발광체가 0.6 mol 형성된 제2 용액(약 5 ml)에 IPA용액 20㎕, 40㎕ 및 60㎕을 넣고 교반하여 Core-shell(1) 구조, Core-shell(2) 구조 및 Core-shell(3) 구조를 형성하였다.
이에 따른 Core-shell(1) 구조, Core-shell(2) 구조 및 Core-shell(3) 구조의 나노결정입자 발광체가 제조예 1에 따른 나노결정입자 발광체보다 밝은 광발광을 보이는 것을 알 수 있다.
도 13은 본 발명에 따른 쉘 물질들의 밴드갭을 나타낸 그림이다.
도 13을 참조하면, 제조예 1에 따른 유무기 하이브리드 페로브스카이트 나노결정입자 발광체(OIP-NCs)의 표면에 나노결정보다 밴드갭이 큰 CBP, mCP, PVK, PPT 또는 PMMA와 같은 유기물질로 감쌀 경우, 코어(나노결정입자)-쉘(유기물질) 구조의 나노결정을 형성할 수 있다.
도 14는 본 발명에 따른 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체의 광발광세기 (Photoluminescence (PL) intensity) 특성을 나타낸 그래프이다.
제조예 1에 따른 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 Reference로 한다.
그리고 제조예 1과 동일하게 수행하되, 비양성자성 용매에 알킬 할라이드 계면활성제가 녹아있는 제2 용액에 쉘 물질용 유기물질을 함께 녹인 후, 제1 용액을 천천히 한방울씩 떨어뜨려 첨가하여 유무기 하이브리드 페로브스카이트 나노결정입자 발광체의 표면에 나노결정보다 밴드갭이 큰 유기물질로 감싼 코어(나노결정입자)-쉘(유기물질) 구조의 나노결정입자 발광체를 형성하였다.
이때, 첨가되는 쉘 물질용 유기물질로 CBP, mCP, PMMA, PPT 및 PVK를 0.01 g을 첨가하여 각각 코어-쉘 구조의 나노결정입자 발광체를 형성하였다.
그 결과, 코어(나노결정입자)-쉘(유기물질) 구조의 나노결정입자 발광체가 제조예 1에 따른 나노결정입자 발광체보다 밝은 광발광(PL)을 보이는 것을 알 수 있다.
본 발명에 따른 유무기 하이브리드 페로브스카이트 나노결정 또는 무기금속할라이드 페로브스카이트 나노결정을 포함하는 나노결정입자 발광체는 나노결정입자 발광체 안에 FCC와 BCC를 합친 결정구조를 갖는 유무기 하이브리드 페로브스카이트 또는 무기금속할라이드 페로브스카이트가 형성되며, 유기평면과 무기평면이 교대로 적층이 되어있는 라멜라 구조를 형성하고 있으며, 무기평면에 엑시톤이 구속되어 높은 색순도를 낼 수 있다.
또한, 900 nm 크기 이내의 나노결정 안에서 엑시톤 확산거리(exciton diffusion length)가 감소할 뿐만 아니라 엑시톤 바인딩 에너지(exciton binding energy)가 증가하여 열적 이온화 및 전하 운반체의 비편재화에 의한 엑시톤 소멸을 막아 높은 상온에서 발광 효율을 가질 수 있다.
또한, 상기 유무기 하이브리드 페로브스카이트 나노결정입자 또는 무기금속할라이드 페로브스카이트 나노결정입자의 밴드갭 에너지는 입자크기에 의해서 의존하지 않고 결정의 구조에 의해서 결정된다.
또한, 삼차원 유무기 하이브리드 페로브스카이트에 비하여 이차원 유무기 하이브리드 페로브스카이트를 나노결정으로 합성함으로써, 엑시톤 바인딩 에너지를 증가시켜 발광 효율을 보다 향상 시킬 수 있을 뿐만 아니라 및 내구성-안정성을 증가시킬 수 있다.
또한, 본 발명에 따라 형성된 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 또는 무기금속할라이드 페로브스카이트 나노결정입자 발광체는 코어보다 밴드갭이 큰 물질로 쉘을 형성함으로써 엑시톤이 코어에 좀더 잘 구속되도록 하고, 공기중에 안정한 페로브스카이트 혹은 무기 반도체 혹은 유기 고분자를 사용하여 코어 페로브스카이트가 공기중에 노출되지 않도록 하여 나노결정의 내구성을 향상시킬 수 있다.
한편, 본 명세서와 도면에 개시된 본 발명의 실시 예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
100: 유무기 하이브리드 페로브스카이트 나노결정입자 발광체
100': 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체
110: 유무기 하이브리드 페로브스카이트 나노결정 코어
120: 유기 리간드 130: 쉘

Claims (29)

  1. 유기 용매에 분산이 가능하면서 페로브스카이트 나노결정 구조를 포함하고,
    코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 구조를 가지되,
    상기 나노결정입자 구조는, 제1 유무기 하이브리드 페로브스카이트 나노결정을 포함하는 코어; 및 상기 코어를 둘러싸되, 상기 제1 유무기 하이브리드 페로브스카이트 보다 밴드갭이 큰 물질을 포함하는 쉘을 포함하고,
    상기 쉘은 제2 유무기 하이브리드 페로브스카이트 나노결정을 포함하고,
    상기 쉘은 무기물 반도체 또는 유기물 고분자 물질을 포함하는 것을 특징으로 하는 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  2. 제1항에 있어서,
    상기 유기 용매는 양성자성 용매 또는 극성 비양성자성 용매를 포함하고,
    상기 극성 비양성자성 용매는, 다이메틸폼아마이드(dimethylformamide), 감마 부티로락톤(gamma butyrolactone), N-메틸피롤리돈(N-methylpyrrolidone), 디메틸설폭사이드(dimethylsulfoxide), 다이클로로에틸렌, 트라이클로로에틸렌, 클로로포름, 클로로벤젠, 다이클로로벤젠, 스타이렌, 자일렌, 톨루엔 및 사이클로헥센으로 이루어진 군으로부터 선택되는 적어도 하나의 것이고,
    상기 양성자성 용매는 이소프로필알콜을 포함하는 것인, 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  3. 제1항에 있어서,
    상기 유무기 하이브리드 페로브스카이트 나노결정입자는 구형, 원기둥, 타원기둥 또는 다각기둥 형태인 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  4. 제1항에 있어서,
    상기 유무기 하이브리드 페로브스카이트 나노결정입자의 크기는 1 nm 내지 900 nm인 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  5. 제1항에 있어서,
    상기 유무기 하이브리드 페로브스카이트 나노결정입자의 밴드갭 에너지는 입자크기에 의해서 의존하지 않고 결정의 구조에 의해서 결정되는 것을 특징으로 하는 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  6. 삭제
  7. 제1항에 있어서,
    상기 제1 유무기 하이브리드 페로브스카이트 나노결정은 이차원적인 구조 또는 삼차원적인 구조를 갖는 것을 특징으로 하는 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  8. 제1항에 있어서,
    상기 제1 유무기 하이브리드 페로브스카이트는 ABX3, A2BX4, ABX4 또는 An-1PbnI3n+1(n은 2 내지 6사이의 정수)의 구조를 포함하고,
    상기 A는 유기암모늄 물질이고, 상기 B는 금속 물질이고, 상기 X는 할로겐 원소인 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  9. 제8항에 있어서,
    상기 A는 (CH3NH3)n, ((CxH2x+1)nNH3)2(CH3NH3)n, (RNH3)2, (CnH2n+1NH3)2, (CF3NH3), (CF3NH3)n, ((CxF2x+1)nNH3)2(CF3NH3)n, ((CxF2x+1)nNH3)2 또는 (CnF2n+1NH3)2이고 (n은 1이상인 정수, x는 1이상인 정수),
    상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po 또는 이들의 조합이고,
    상기 X는 Cl, Br, I 또는 이들의 조합인,
    코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  10. 삭제
  11. 제1항에 있어서,
    상기 쉘은 무기할라이드 또는 유기물 저분자 물질을 포함하는 것을 특징으로 하는 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  12. 삭제
  13. 제1항에 있어서,
    상기 무기물 반도체 물질은 TiOx(x는 1 내지 3의 실수임), 산화인듐, 산화주석, 산화아연, 산화아연주석, 산화갈륨, 산화텅스텐, 산화알루미늄, 산화티타늄, 산화바나듐, 산화몰리브데늄, 산화철, 산화크롬, 산화비스무스, IGZO(indium-Gallium Zinc Oxide), ZrO2, 산화니켈, 산화구리, 산화구리알루미늄, 산화아연로듐, 하이드로젠설파이드, 카드뮴설파이드, 카본다이설파이드, 리드설파이드, 몰리브데늄 다이설파이드, 실버설파이드, 소듐설파이드, 징크설파이드, 머큐리설파이드, 아세닉설파이드, 폴리베닐렌설파이드, 셀레늄설파이드 또는 아이론다이설파이드를 포함하는 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  14. 제1항에 있어서,
    상기 유기물 고분자 물질은 폴리에틸렌글리콜(polyethylene glycol), 폴리에틸렌옥사이드(polyethylene oxide), 폴리바이닐피롤리돈(polyvinylpyrrolidone), 폴리에틸렌이민(polyethyleneimine) 또는 폴리바이닐알코올(PVA)를 포함하는 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  15. 제1항에 있어서,
    상기 유기물 고분자 물질은 폴로플루오렌(polyfluornee), 폴리파라페닐렌(poly(p-phenylee)), 폴리스파이로플루오렌(poly(spirofluorene)) 및 이들의 유도체로 구성된 군에서 선택된 어느 하나를 포함하는 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  16. 제1항에 있어서,
    상기 유기물 고분자 물질은 폴리 메틸 메타크릴레이트 (Poly(methyl methacrylate) (PMMA)) 또는 폴리 바이닐 카파졸 (poly (N-vinylcarbazole) (PVK))를 포함하는 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  17. 제1항에 있어서,
    상기 쉘을 둘러싸는 복수개의 유기리간드들을 더 포함하는 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  18. 제17항에 있어서,
    상기 유기리간드는 알킬할라이드를 포함하는 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  19. 제18항에 있어서,
    상기 알킬할라이드의 알킬 구조는 CnH2n +1의 구조를 가지는 비고리형 알킬(acyclic alkyl), 일차 알코올(primary alcohol), 이차 알코올(secondary alcohol), 삼차 알코올(tertiary alcohol), 알킬아민(alkylamine), p-치환된 아닐린(p-substituted aniline), 페닐 암모늄(phenyl ammonium) 또는 플루오린 암모늄(fluorine ammonium)을 포함하는 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 양성자성 용매에 제1 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액 및 비양성자성 용매에 알킬 할라이드 계면활성제가 녹아있는 제2 용액을 준비하는 단계;
    상기 제1 용액을 상기 제2 용액에 섞어 제1 유무기 하이브리드 페로브스카이트 나노결정을 포함하는 코어를 형성하는 단계; 및
    상기 제2 용액에 상기 제1 유무기 하이브리드 페로브스카이트보다 밴드갭이 큰 제2 유무기 하이브리드 페로브스카이트 또는 무기물 반도체 물질이 녹아있는 제3 용액을 첨가하여 상기 코어를 둘러싸는 제2 유무기 하이브리드 페로브스카이트 나노결정 또는 무기물 반도체 물질을 포함하는 쉘을 형성하는 단계를 포함하는 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법.
  26. 양성자성 용매에 제1 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액 및 비양성자성 용매에 알킬 할라이드 계면활성제가 녹아있는 제2 용액을 준비하는 단계;
    상기 제1 용액을 상기 제2 용액에 섞어 제1 유무기 하이브리드 페로브스카이트 나노결정을 포함하는 코어를 형성하는 단계; 및
    상기 제2 용액에 용액을 유기암모늄 할로젠화물 용액을 첨가한 후 교반하여 상기 코어를 둘러싸는 상기 코어보다 밴드갭이 큰 쉘을 형성하는 단계를 포함하는 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법.
  27. 양성자성 용매에 제1 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액 및 비양성자성 용매에 알킬 할라이드 계면활성제가 녹아있는 제2 용액을 준비하는 단계;
    상기 제1 용액을 상기 제2 용액에 섞어 제1 유무기 하이브리드 페로브스카이트 나노결정을 포함하는 코어를 형성하는 단계;
    상기 제2 용액을 열처리 하여 상기 코어의 표면을 열분해시키는 단계; 및
    상기 열처리된 제2 용액에 유기암모늄 할로젠화물 용액을 첨가하여 상기 코어를 둘러싸는 상기 코어보다 밴드갭이 큰 쉘을 형성하는 단계를 포함하는 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법.
  28. 제1 전극;
    제2 전극; 및
    상기 제1 전극 및 제2 전극 사이에 위치하되, 제1항 내지 제5항, 제7항 내지 제9항, 제11항, 제13항 내지 제19항 중 어느 한 항의 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 포함하는 발광층을 포함하는 발광소자.
  29. 제1 전극;
    제2 전극; 및
    상기 제1 전극 및 제2 전극 사이에 위치하되, 제1항 내지 제5항, 제7항 내지 제9항, 제11항, 제13항 내지 제19항 중 어느 한 항의 코어-쉘 구조의 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 포함하는 광활성층을 포함하는 태양전지.
KR1020150156175A 2014-11-06 2015-11-06 코어-쉘 구조의 페로브스카이트 나노결정입자 발광체, 이의 제조방법 및 이를 이용한 발광소자 KR101746296B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/KR2015/011960 WO2016072806A2 (ko) 2014-11-06 2015-11-06 코어-쉘 구조의 페로브스카이트 나노결정입자 발광체, 이의 제조방법 및 이를 이용한 발광소자
US15/524,735 US11205757B2 (en) 2014-11-06 2015-11-06 Core-shell structured perovskite particle light-emitter, method of preparing the same and light emitting device using the same
US17/535,570 US20220085301A1 (en) 2014-11-06 2021-11-24 Core-shell structured perovskite nanocrystalline particle light-emitting body, method of preparing the same and light emitting device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140153970 2014-11-06
KR20140153970 2014-11-06

Publications (2)

Publication Number Publication Date
KR20160055092A KR20160055092A (ko) 2016-05-17
KR101746296B1 true KR101746296B1 (ko) 2017-06-21

Family

ID=56109629

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150156175A KR101746296B1 (ko) 2014-11-06 2015-11-06 코어-쉘 구조의 페로브스카이트 나노결정입자 발광체, 이의 제조방법 및 이를 이용한 발광소자

Country Status (1)

Country Link
KR (1) KR101746296B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200078290A (ko) * 2018-12-21 2020-07-01 서울대학교산학협력단 안정성이 향상된 금속 할라이드 페로브스카이트 나노결정입자-고분자 복합체 및 이의 제조방법
KR102305769B1 (ko) 2020-04-21 2021-09-28 경희대학교 산학협력단 페로브스카이트-고분자 복합체 및 미세유체장치를 활용한 이의 제조방법
US11177078B2 (en) 2017-12-26 2021-11-16 Lg Chem, Ltd. Light-absorbing layer precursor, organic-inorganic hybrid solar cell manufacturing method using same, and organic-inorganic hybrid solar cell
US11955578B2 (en) 2019-11-13 2024-04-09 Samsung Electronics Co., Ltd. Optoelectronic apparatus and method of manufacturing the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689569B2 (en) * 2016-08-05 2020-06-23 Taiwan Hopax Chemicals Mfg. Co., Ltd. Overcoating inorganic quantum dot and method for preparing the same
KR102535149B1 (ko) * 2016-11-15 2023-05-19 엘지디스플레이 주식회사 발광 입자, 발광 필름, 이를 포함하는 엘이디 패키지, 발광다이오드 및 및 표시장치
KR101902165B1 (ko) * 2016-12-29 2018-10-01 경희대학교 산학협력단 코어-쉘 구조의 페로브스카이트 나노결정 입자 및 그의 제조 방법
EP3597723A4 (en) * 2017-03-13 2020-10-07 Sumitomo Chemical Company Limited MIXTURE CONTAINING PEROVSKITE COMPOUND
CN111349429B (zh) * 2018-12-24 2023-11-14 苏州星烁纳米科技有限公司 钙钛矿量子点及其制备方法
CN112143493B (zh) * 2019-06-28 2022-09-06 纳晶科技股份有限公司 硫化锌或硒化锌包覆钙钛矿量子点制备方法、量子点器件
CN111777767B (zh) * 2019-08-29 2022-05-13 湖南科技大学 一种肝靶向零串扰比率检测硫化氢的荧光纳米探针及制备与应用
KR20210144481A (ko) * 2020-05-22 2021-11-30 엘지디스플레이 주식회사 무극성 오가노젤 조성물을 포함하는 무극성 오가노젤 복합체 및 이의 제조방법
WO2022055304A1 (ko) 2020-09-11 2022-03-17 연세대학교 산학협력단 페로브스카이트 화합물 기반 전기발광층 및 이를 포함하는 발광 소자
CN114086238B (zh) * 2021-11-03 2023-10-03 吉林大学 一种γ-Ga2O3或Cu掺杂γ-Ga2O3纳米晶及其制备方法和用途
CN117447996B (zh) * 2023-12-25 2024-02-20 甘肃农业大学 一种CsPbCl3:Mn2+/PEG纳米晶检测水中4-硝基苯酚的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040095658A1 (en) 2002-09-05 2004-05-20 Nanosys, Inc. Nanocomposites
JP2008227330A (ja) * 2007-03-15 2008-09-25 Canon Inc 発光素子
KR101165100B1 (ko) 2005-12-01 2012-07-12 삼성전자주식회사 다층구조 나노결정의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040095658A1 (en) 2002-09-05 2004-05-20 Nanosys, Inc. Nanocomposites
KR101165100B1 (ko) 2005-12-01 2012-07-12 삼성전자주식회사 다층구조 나노결정의 제조방법
JP2008227330A (ja) * 2007-03-15 2008-09-25 Canon Inc 発光素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11177078B2 (en) 2017-12-26 2021-11-16 Lg Chem, Ltd. Light-absorbing layer precursor, organic-inorganic hybrid solar cell manufacturing method using same, and organic-inorganic hybrid solar cell
KR20200078290A (ko) * 2018-12-21 2020-07-01 서울대학교산학협력단 안정성이 향상된 금속 할라이드 페로브스카이트 나노결정입자-고분자 복합체 및 이의 제조방법
KR102235038B1 (ko) * 2018-12-21 2021-04-01 서울대학교산학협력단 안정성이 향상된 금속 할라이드 페로브스카이트 나노결정입자-고분자 복합체 및 이의 제조방법
US11955578B2 (en) 2019-11-13 2024-04-09 Samsung Electronics Co., Ltd. Optoelectronic apparatus and method of manufacturing the same
KR102305769B1 (ko) 2020-04-21 2021-09-28 경희대학교 산학협력단 페로브스카이트-고분자 복합체 및 미세유체장치를 활용한 이의 제조방법

Also Published As

Publication number Publication date
KR20160055092A (ko) 2016-05-17

Similar Documents

Publication Publication Date Title
KR101746296B1 (ko) 코어-쉘 구조의 페로브스카이트 나노결정입자 발광체, 이의 제조방법 및 이를 이용한 발광소자
US20220085301A1 (en) Core-shell structured perovskite nanocrystalline particle light-emitting body, method of preparing the same and light emitting device using the same
KR101746297B1 (ko) 유기 리간드가 치환된 페로브스카이트 나노결정입자 발광체 제조방법, 이에 의해 제조된 나노결정입자 발광체 및 이를 이용한 발광소자
KR101746295B1 (ko) 함량이 변하는 페로브스카이트 나노결정입자 발광체, 이의 제조방법 및 이를 이용한 발광소자
KR101815588B1 (ko) 페로브스카이트 나노결정입자 및 이를 이용한 광전자 소자
JP7170998B2 (ja) ペロブスカイトナノ粒子、発光層、発光素子及び太陽電池
US11870004B2 (en) Metal oxide nanoparticles surface-treated with metal ion, quantum dot-light-emitting device comprising the same and method for fabricating the same
KR101746335B1 (ko) 금속 할라이드 페로브스카이트 나노결정입자 박막 제조방법 및 이를 이용한 광전자 소자
KR101752533B1 (ko) 이차원적인 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체, 그 제조방법 및 이를 이용한 발광소자
KR101658691B1 (ko) 안정적이고 모든 용액에 처리 가능한 양자점 발광 다이오드
CN107210366B (zh) 包含激子缓冲层的钙钛矿发光器件以及制造其的方法
KR101746337B1 (ko) 금속 할라이드 페로브스카이트 나노결정입자 제조방법 및 이를 이용한 광전자 소자
US11186770B2 (en) II-VI based non-Cd quantum dots, manufacturing method thereof and QLED using the same
KR101746336B1 (ko) 금속 할라이드 페로브스카이트 나노결정입자 크기 조절방법 및 이를 이용한 광전자 소자
US11326097B2 (en) Method for manufacturing perovskite particle light-emitter where organic ligand is substituted, particle light-emitter manufactured thereby, and light emitting device using same
US20140264269A1 (en) Tunable light emitting diode using graphene conjugated metal oxide semiconductor-graphene core-shell quantum dots and its fabrication process thereof
KR102191703B1 (ko) 패시베이션 층을 포함하는 페로브스카이트 발광 소자 및 이의 제조방법
EP3730589B1 (en) Light emitting device and display device including the same
KR20170136038A (ko) 유사(Quasi)-2차원 페로브스카이트 발광 다이오드 및 이의 제조방법
KR102028280B1 (ko) 금속 할라이드 페로브스카이트 나노결정입자의 크기분포 조절방법
TWI791164B (zh) 發光二極體及包含該發光二極體的發光裝置
CN113130794B (zh) 一种量子点发光二极管及其制备方法
KR101560088B1 (ko) 발광 소자 및 발광 소자 제조 방법
Ding Device optimization for high-performance quantum dot-based light-emitting diodes
Worku et al. The Past, Current, and Future of Metal Halide Perovskite Light-Emitting Diodes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant