KR101716242B1 - Poly(p-phenylene benzobisoxazole) fiber improved uv resistnat and compression strength, and method for preparing the same - Google Patents

Poly(p-phenylene benzobisoxazole) fiber improved uv resistnat and compression strength, and method for preparing the same Download PDF

Info

Publication number
KR101716242B1
KR101716242B1 KR1020150157494A KR20150157494A KR101716242B1 KR 101716242 B1 KR101716242 B1 KR 101716242B1 KR 1020150157494 A KR1020150157494 A KR 1020150157494A KR 20150157494 A KR20150157494 A KR 20150157494A KR 101716242 B1 KR101716242 B1 KR 101716242B1
Authority
KR
South Korea
Prior art keywords
polyparaphenylene benzobisoxazole
compressive strength
fiber
polymerization
spinning
Prior art date
Application number
KR1020150157494A
Other languages
Korean (ko)
Inventor
민병길
이상철
윤관한
박지현
Original Assignee
금오공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단 filed Critical 금오공과대학교 산학협력단
Priority to KR1020150157494A priority Critical patent/KR101716242B1/en
Application granted granted Critical
Publication of KR101716242B1 publication Critical patent/KR101716242B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/94Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of other polycondensation products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/30Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensation products not covered by indexing codes D10B2331/02 - D10B2331/14
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/22Physical properties protective against sunlight or UV radiation
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles

Abstract

The present invention relates to a polyparaphenylene benzobisoxazole fiber ensuring ultraviolet light resistance and compression strength, and to a production method thereof. To this end, the production method comprises the following steps: a dehydrochlorination step; a polymerization step for forming a polyparaphenylene benzobisoxazole precursor; a step for forming a spinning solution; and a step for producing the polyparaphenylene benzobisoxazole fiber.

Description

자외선 저항성 및 압축강도가 향상된 폴리파라페닐렌벤조비스옥사졸 섬유 및 이의 제조방법{POLY(P-PHENYLENE BENZOBISOXAZOLE) FIBER IMPROVED UV RESISTNAT AND COMPRESSION STRENGTH, AND METHOD FOR PREPARING THE SAME}FIELD OF THE INVENTION [0001] The present invention relates to a polyparaphenylene benzobisoxazole fiber having improved ultraviolet resistance and compressive strength, and a process for producing the same. BACKGROUND ART [0002]

본 발명은 자외선 저항성 및 압축강도가 향상된 폴리파라페닐렌벤조비스옥사졸 섬유 및 이의 제조방법에 관한 것이다.The present invention relates to a polyparaphenylene benzobisoxazole fiber having improved ultraviolet resistance and compressive strength and a method for producing the same.

우주항공, 자동차, 선박 등의 산업의 발달에 따라 섬유소재 분야에서도 유연하면서 고강도, 고내열성을 가지는 고기능성 섬유에 대한 관심이 증대되고 다. 그 중에서도 1998년 처음으로 일본의 Toyobo사에서 Zylon이라는 상표명으로 출시한 poly(p-phenylene benzobisoxazole)(PBO) 섬유는 상업화된 모든 합성섬유 중에서 최고의 인장 강도와 탄성률을 발휘하는 것으로 잘 알려져 있다. PBO 섬유는 대표적인 헤테로고리 방향족 고분자 (Heterocyclic Aromatic Polymer)로 이루어진 섬유로서 강도가 파라계 아라미드 섬유의 약 2배에 이르며, 탄소섬유와 비슷한 탄성율과 약 650℃의 높은 분해 온도와 LOI가 65인 난연성을 가지고 있을 뿐만 아니라 가볍고 유연한 섬유의 특성 또한 겸비하고 있어 차세대 슈퍼섬유라고 불리고 있다.With the development of industries such as aerospace, automobiles, and ships, there is growing interest in high-performance fibers that are flexible and have high strength and high heat resistance in the field of textile materials. Among them, poly (p-phenylene benzobisoxazole) (PBO) fiber, which was firstly marketed by Toyobo in Japan under the trade name Zylon, is known to exhibit the highest tensile strength and elastic modulus among all commercialized synthetic fibers. PBO fiber is a typical heterocyclic aromatic polymer. Its strength is about twice that of para-aramid fibers. It has a modulus of elasticity similar to that of carbon fiber, a high decomposition temperature of about 650 ° C, and a flame retardancy of LOI of 65 Not only that, but also combines the characteristics of light and flexible fibers, is called the next generation super fibers.

이러한 PBO 섬유는 우주항공, 군용 및 산업용 분야에서 고성능 복합재료의 보강섬유로서 큰 잠재력을 가지고 있다. 그러나 우수한 강도와 내열성, 내화학성 등의 특성에도 불구하고 PBO 섬유는 압축강도가 인장강도에 비해 매우 낮은 단점을 가지고 있으며, 더욱이 경쟁 재료인 파라계 아라미드 섬유, 초고분자량폴리에틸렌 섬유나 폴리아릴레이트 섬유에 비해 보다 낮은 UV 안정성을 가지는 치명적 단점이 응용 분야에 제약을 가져올 수가 있다. 그 동안 PBO 섬유의 표면에너지를 증대시켜 복합재료에서 수지와의 젖음성(wettability)을 향상시키는 표면처리에 대해서는 많은 연구가 있었으나, UV 조사하에서 PBO 섬유의 기계적 특성이 크게 저하되는 메카니즘에 대한 연구와 UV 저항성을 향상시키기 위한 표면처리기술 개발은 그리 많지 않았다. UV 노출 전 약 33 g/d의 강도를 가지고 있는 Zylon 섬유를 UV에 약 24시간 노출시켰을 때 노출 전에 비해 강도가 약 55% 감소하여 산업용 파라계 아라미드 섬유 보다 낮은 약 15 g/d의 강도를 가진다고 보고되고 있으며, 수산화기를 가지는 dihydroxy poly(p-phenylene benzobisoxazole) 중합체를 통하여 UV저항성을 향상시키는 연구결과도 발표되고 있다.These PBO fibers have great potential as reinforcing fibers for high performance composites in aerospace, military and industrial applications. However, in spite of its excellent strength, heat resistance and chemical resistance, the PBO fiber has a disadvantage in that the compressive strength is very low compared to the tensile strength. Further, the PBO fiber has a disadvantage in that it can not be used in the competitive aramid fiber, ultra high molecular weight polyethylene fiber or polyarylate fiber The fatal disadvantage of having a lower UV stability than the conventional one can impose limitations on the application field. There have been many researches on the surface treatment which improves the wettability with the resin in the composite material by increasing the surface energy of the PBO fiber. However, the mechanism of the degradation of the mechanical properties of the PBO fiber under UV irradiation and the UV There have been few developments in surface treatment technology to improve resistance. Zylon fiber, which has a strength of about 33 g / d before UV exposure, has a strength of about 15 g / d lower than that of industrial para-aramid fibers when exposed to UV for about 24 hours, by about 55% Studies have been reported to improve UV resistance through dihydroxy poly (p-phenylene benzobisoxazole) polymers with hydroxyl groups.

상기 PBO섬유와 다른 합성섬유에는 UV저항성을 증가시키는 특허로서 CN101338463A, CN103014901B, CN101407945A에서는 나노물질인 카본나노튜브(Carbon nanotube, CNT)나 그래핀(graphene)을 폴리파라페닐렌벤조비스올사졸(poly(p-phenylene benzobisoxazole, PBO)에 첨가하여 방사함으로써, 자외선에 대한 내광성이 양호하면서도 강도가 거의 저하되지 않는 폴리에틸렌테레프탈레이트의 용융방사방법을 제시하고 있으나, 본 발명의 대상인 PBO섬유에 대해서는 그 방법을 제시하지는 못하고 있다.In the case of CN101338463A, CN103014901B, and CN101407945A, the nanomaterial carbon nanotube (CNT) or graphene is used as a patent to increase the UV resistance of the PBO fiber and other synthetic fibers to polyparaphenylene benzobisisazole (PBO), which has good light resistance against ultraviolet rays and hardly decreases in strength, has been proposed. However, the PBO fiber, which is a subject of the present invention, has been proposed as a process for producing the polyethylene terephthalate I can not suggest it.

본 발명은 폴리파라페닐렌벤조비스옥사졸을 중합할 때, 카본나노섬유를 동시중합법으로 복합하여 방사함으로써, 자외선 저항성 및 압축강도가 향상된 폴리페닐렌벤조비스옥사졸 섬유 및 이의 제조방법을 제공하는 것을 목적으로 한다.Disclosed is a polyphenylene benzobisoxazole fiber improved in UV resistance and compressive strength by spinning a carbon nanofiber by simultaneous polymerization method when polymerizing polyparaphenylene benzobisoxazole, and a process for producing the same. .

본 발명은 4,6-디아미노리소시놀 디하이드로클로라이드(DAR) 단량체; 테레프탈산(TPA); 및 카본나노섬유를 오산화인(P2O5)을 포함하는 폴리인산(PPA) 용매에 용해시켜 염화수소를 제거하는 탈염화수소 단계; 상기 단량체들의 탈염화반응을 통한 중합에 의해 폴리파라페닐렌벤조비스옥사졸 전구체를 형성하는 중합 단계; 상기 폴리파라페닐렌벤조비스옥사졸 전구체의 고리화 반응에 의해 폴리파라페닐렌벤조비스옥사졸 중합체를 형성하여 폴리파라페닐렌벤조비스옥사졸 중합체 및 카본나노섬유를 포함하는 방사용액을 형성하는 단계; 및 상기 방사용액을 건습식 액정방사법으로 방사하는 단계를 포함하는 것을 특징으로 하는 자외선 저항성 및 압축강도가 향상된 폴리파라페닐렌벤조비스옥사졸 섬유의 제조방법을 제공한다.The present invention relates to a 4,6-diaminoriosolic dihydrochloride (DAR) monomer; Terephthalic acid (TPA); And a dehydrochlorination step of dissolving the carbon nanofibers in a polyphosphoric acid (PPA) solvent containing phosphorus pentoxide (P 2 O 5 ) to remove hydrogen chloride; A polymerization step of forming a polyparaphenylenebenzobisoxazole precursor by polymerization through dechlorination of the monomers; Forming a polyparaphenylene benzobisoxazole polymer by a cyclization reaction of the polyparaparylene benzo bis oxazole precursor to form a spinning liquid containing polyparaphenylene benzobisoxazole polymer and carbon nanofiber; ; And spinning the spinning solution by a dry-wet liquid crystal spinning method. The present invention also provides a method for producing a polyparaphenylene benzobisoxazole fiber having improved ultraviolet resistance and compressive strength.

이때, 상기 방사용액은 폴리파라페닐렌벤조비스옥사졸 중합 시에 카본나노섬유를 첨가하여 동시 중합을 통하여 제조되는 것을 특징으로 한다.At this time, the spinning solution is characterized in that carbon nanofibers are added during the polymerization of polyparaphenylenebenzobisoxazole, and the resultant solution is subjected to simultaneous polymerization.

또한, 상기 카본나노섬유는 폴리파라페닐렌벤조비스옥사졸 중합체의 총 중량대비 0.1 내지 5중량%인 것이 바람직하다.The carbon nanofibers are preferably 0.1 to 5% by weight based on the total weight of the polyparaphenylenebenzobisoxazole polymer.

아울러, 본 발명은 상기 제조방법으로 제조되고, 압축강도가 0.35 내지 1.50GPa인 것을 특징으로 하는 자외선 저항성 및 압축강도가 향상된 폴리파라페닐렌벤조비스옥사졸 섬유도 제공한다.The present invention also provides a polyparaphenylene benzobisoxazole fiber having improved ultraviolet resistance and compressive strength, which is produced by the above production method and has a compressive strength of 0.35 to 1.50 GPa.

본 발명에 따른 폴리파라페닐렌벤조비스옥사졸 섬유는 폴리파라페닐렌벤조비스옥사졸을 중합할 때, 카본나노섬유를 동시중합법으로 복합하여 방사함으로써, PBO 섬유의 단점인 낮은 UV 안정성을 보완하여 UV에 의한 강도저하를 감소시킬 수 있으며, 압축강도를 향상시킬 수 있다.The polyparaphenylenebenzobisoxazole fiber according to the present invention is a composite material prepared by co-polymerization of carbon nanofibers when polymerizing polyparaphenylene benzobisoxazole, thereby completing low UV stability, which is a disadvantage of PBO fibers Thereby reducing the decrease in strength due to UV, and improving the compressive strength.

도 1은 시간별 온도 및 PPA 농도를 보여주는 실시예 1에 따른 중합체의 중합과정을 나타낸 그래프이다.
도 2는 실시예 및 비교예에 따른 섬유를 제조하기 위한 건습식 방사기를 도시한 것이다.
도 3은 실시예에 다른 섬유의 전자현미경(SEM) 사진을 나타낸 것이다.
도 4는 실시예 및 비교예에 따른 섬유의 자외선 조사 시간에 따른 강도 유지율을 나타낸 그래프이다.
도 5는 실시예 및 비교예에 따른 섬유의 자외선 조사 후 섬유 표면을 나타낸 사진이다.
도 6은 압축강도를 측정하기 위한 루프 테스트를 도시한 것이다.
도 7은 실시예 및 비교예에 따른 섬유를 루프 테스트 방법으로 측정한 결과를 나타낸 그래프이다.
도 8은 탄소나노섬유가 PBO 섬유 매트릭스 내에 파일(pile)처럼 박혀서 PBO섬유의 압축강도를 향상시키는 메커니즘을 나타낸 것이다.
1 is a graph showing the polymerization process of the polymer according to Example 1 showing the temperature and PPA concentration over time.
Figure 2 shows a dry-wet emitter for making fibers according to the Examples and Comparative Examples.
Figure 3 is an electron micrograph (SEM) photograph of the fibers of the examples.
4 is a graph showing the strength retention ratios of the fibers according to the ultraviolet irradiation time according to Examples and Comparative Examples.
5 is a photograph showing the surface of a fiber after ultraviolet irradiation of the fiber according to Examples and Comparative Examples.
6 shows a loop test for measuring compressive strength.
7 is a graph showing the results of measurement of fibers according to Examples and Comparative Examples by a loop test method.
Figure 8 shows the mechanism by which the carbon nanofibers are embedded as a pile in the PBO fiber matrix to improve the compressive strength of PBO fibers.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

1. 섬유 및 이의 제조방법1. Fibers and methods for making the same

본 발명은 폴리파라페닐렌벤조비스옥사졸(PBO) 중합체에 카본나노섬유가 복합화된 방사용액을 이용하여 제조된 섬유를 제공한다. 본 발명의 방사용액은 PBO가 자외선(UV) 하에서 강도가 크게 열화되는 단점을 카본나노섬유를 동시중합법으로 복합화하여 제조함으로써 보완한다.The present invention provides a fiber produced by using a spinning solution in which carbon nanofibers are mixed with polyparaphenylene benzobisoxazole (PBO) polymer. The spinning solution of the present invention is supplemented by manufacturing a composite of carbon nanofibers by a simultaneous polymerization method, in which the strength of PBO is greatly deteriorated under ultraviolet (UV).

본 발명에 따른 상기 PBO 중합체에 카본나노섬유가 복합화된 방사용액은 다양한 방법으로 제조될 수 있다.The spinning solution in which the carbon nanofibers are combined with the PBO polymer according to the present invention can be prepared by various methods.

본 발명의 실시예에 따르면, 하기 반응식 1과 같이, 섬유는 4,6-디아미노리소시놀 디하이드로클로라이드(DAR) 단량체; 테레프탈산(TPA); 및 카본나노섬유를 오산화인(P2O5)을 포함하는 폴리인산(PPA) 용매에 용해시켜 염화수소를 제거하는 탈염화수소 단계; 상기 단량체들의 탈염화반응을 통한 중합에 의해 폴리파라페닐렌벤조비스옥사졸 전구체를 형성하는 중합 단계; 상기 폴리파라페닐렌벤조비스옥사졸 전구체의 고리화 반응에 의해 폴리파라페닐렌벤조비스옥사졸 중합체를 형성하여 폴리파라페닐렌벤조비스옥사졸 중합체 및 카본나노섬유를 포함하는 방사용액을 형성하는 단계; 및 상기 방사용액을 건습식 액정방사법으로 방사하는 단계를 포함하여 제조될 수 있다.According to an embodiment of the present invention, as shown in the following Reaction Scheme 1, the fibers may include 4,6-diaminoriosolic dihydrochloride (DAR) monomer; Terephthalic acid (TPA); And a dehydrochlorination step of dissolving the carbon nanofibers in a polyphosphoric acid (PPA) solvent containing phosphorus pentoxide (P 2 O 5 ) to remove hydrogen chloride; A polymerization step of forming a polyparaphenylenebenzobisoxazole precursor by polymerization through dechlorination of the monomers; Forming a polyparaphenylene benzobisoxazole polymer by a cyclization reaction of the polyparaparylene benzo bis oxazole precursor to form a spinning liquid containing polyparaphenylene benzobisoxazole polymer and carbon nanofiber; ; And spinning the spinning solution by dry-wet liquid crystal spinning.

[반응식 1] [Reaction Scheme 1]

Figure 112015109437813-pat00001
Figure 112015109437813-pat00001

먼저, 4,6-디아미노리소시놀 디하이드로클로라이드(DAR) 단량체와 테레프탈산(TPA) 및 카본나노섬유를 오산화인(P2O5) 농도가 70~85% 범위인 폴리인산(PPA) 중합용매에 넣고 질소 분위기 하에서 교반하면서 탈염화수소반응을 진행한다. First, a polyphosphoric acid (PPA) polymerization solvent having a concentration of phosphorus pentoxide pentoxide (P 2 O 5 ) in the range of 70 to 85% and a terephthalic acid (TPA) monomer and a 4,6- diaminoriosolic dihydrochloride (DAR) And the dehydrochlorination reaction proceeds while stirring in a nitrogen atmosphere.

이때, 산화방지제로 SnCl2를 첨가하는 것이 바람직하다.At this time, SnCl 2 is preferably added as an antioxidant.

상기 교반 온도 및 시간은 특별히 한정되지 않으나, 온도는 50 내지 100℃의 범위가 바람직하며, 교반 시간은 2 내지 8시간이 바람직하다.The stirring temperature and time are not particularly limited, but the temperature is preferably in the range of 50 to 100 ° C, and the stirring time is preferably 2 to 8 hours.

탈염화수소반응이 끝난 후, 중합물의 용해도를 향상시키기 위하여 오산화인을 추가로 반응물 내에 투입하고 온도를 올려 질소분위기 하에서 교반과 함께 중합한다. 이때, 상기 폴리인산 용매 내 오산화인의 농도는 85 내지 95%인 것이 바람직하나, 이에 한정되는 것은 아니다. 오산화인의 농도가 80% 미만인 경우, 고분자화 반응이 효율적으로 진행되지 않고, 오산화인의 농도가 95%를 초과할 경우, 단량체의 용해가 쉽지 않아 반응이 진행되기 어렵다.After the dehydrochlorination reaction is completed, phosphorus pentoxide is further added into the reaction mixture to raise the solubility of the polymer, and the temperature is raised to polymerize with stirring in a nitrogen atmosphere. At this time, the concentration of phosphorus pentoxide in the polyphosphoric acid solvent is preferably 85 to 95%, but is not limited thereto. When the concentration of phosphorus pentoxide is less than 80%, the polymerization reaction does not progress efficiently, and when the concentration of phosphorus pentoxide exceeds 95%, the dissolution of the monomers is not easy and the reaction is difficult to proceed.

또한, 상기 중합 온도 및 시간은 특별히 한정되지 않으나, 온도는 100 내지 170℃의 범위가 바람직하며, 중합 시간은 5 내지 10시간이 바람직하다.The polymerization temperature and time are not particularly limited, but the temperature is preferably in the range of 100 to 170 ° C, and the polymerization time is preferably 5 to 10 hours.

반응온도가 100℃ 미만이면 폴리머의 용해도가 낮아 반응성이 떨어지고, 170℃를 중합과 고리화가 동시에 일어나 중합도를 효율적으로 올리기 어렵다. If the reaction temperature is less than 100 ° C, the solubility of the polymer is low and the reactivity is poor. It is difficult to raise the degree of polymerization efficiently because polymerization and cyclization occur simultaneously at 170 ° C.

마지막으로, 질소 분위기 하에서 고온으로 가열하여 고리화 반응을 일어나게 함으로써 본 발명의 중합체를 제조할 수 있다. 상기 고리화 반응을 위한 가열 온도 및 시간은 특별히 한정되지 않으나, 온도는 170 내지 200℃의 범위가 바람직하며, 시간은 3 내지 15시간이 바람직하다.Finally, the polymer of the present invention can be prepared by heating at a high temperature in a nitrogen atmosphere to cause a cyclization reaction. The heating temperature and time for the cyclization reaction are not particularly limited, but the temperature is preferably in the range of 170 to 200 ° C, and the time is preferably 3 to 15 hours.

상기 반응식 1에서, 카본나노섬유는 폴리파라페닐렌벤조비스옥사졸 중합체의 총 중량대비 0.1 내지 5중량%인 것이 바람직하나, 이에 한정되는 것은 아니다.In the above Reaction Scheme 1, it is preferable that the carbon nanofiber is 0.1 to 5% by weight based on the total weight of the polyparaphenylenebenzobisoxazole polymer, but is not limited thereto.

상기와 같이 제조된 중합물을 그대로 방사 용액(dope)으로 사용한다. 용액중합한 중합체를 회수한 후, 다시 용해시키는 것은 어렵기 때문에 중합물의 농도를 섬유방사에 적합하도록 PPA내의 중합체의 농도가 중량비로 10~15% 범위로 중합을 행하여야 한다. 이후, 상기 방사 도프를 액정상태에서 건습식 방사법으로 방사구금을 통하여 토출한 후, 응고욕으로 들어가게 하여 고화시킨 다음 세척하고 권취한다. 이때, 액정을 형성하는 방사온도는 100 내지 150℃, 기격(air gap)은 1~10cm가 바람직하다. The polymerizate prepared as described above is used as a spinning solution (dope). Since it is difficult to recover the solution polymer after the solution polymerization, it is difficult to dissolve the polymer solution, so that the concentration of the polymer in the PPA should be in the range of 10 to 15% by weight in terms of the concentration of the polymer in the PPA. Thereafter, the spinning dope is ejected through a spinneret in a liquid crystal state by a dry-wet spinning method, and then the spinning dope is put into a coagulating bath, solidified, and then washed and wound. At this time, the spinning temperature for forming the liquid crystal is preferably 100 to 150 ° C, and the air gap is preferably 1 to 10 cm.

상기 방사구금의 노즐 직경은 특별히 한정되지 않으나, 본 발명에서는 직경이 0.2mm인 방사구금을 사용하였다.The nozzle diameter of the spinneret is not particularly limited, but a spinneret having a diameter of 0.2 mm is used in the present invention.

또한, 상기 응고욕의 응고액은 특별히 한정되지 않으나, 농도 중량비로 1~20% 인산수용액이 바람직하다The coagulating solution of the coagulating bath is not particularly limited, but a 1 to 20% aqueous solution of phosphoric acid is preferable in terms of concentration weight ratio

상기와 같은 방법으로 폴리파라페닐렌벤조비스옥사졸에 카본나노튜브보다 가격이 저렴한 카본나노섬유를 복합하여 제조된 섬유는, 일반 PBO 섬유에 비해 자외선 저항성 및 압축강도가 향상될 수 있다. 본 발명에 따른 PBO 섬유는 압축강도가 0.35 내지 1.50GPa인 것을 특징으로 한다.The fiber produced by combining carbon nanofibers with less expensive polyparaphenylene benzobisoxazole than carbon nanotubes in the same manner as described above can improve ultraviolet resistance and compressive strength as compared with general PBO fibers. The PBO fiber according to the present invention is characterized in that the compression strength is 0.35 to 1.50 GPa.

이하, 본 발명을 실시예에 의해 상세히 설명하기로 한다. 그러나 이들 실시예는 본 발명을 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to examples. However, these examples are for illustrating the present invention specifically, and the scope of the present invention is not limited to these examples.

[[ 실시예Example 1] One]

<단계 1> 중합체의 합성<Step 1> Synthesis of polymer

가열장치와 교반기가 갖추어진 중합기에 4,6-디아미노레조르시놀 디히드로클로리드(4,6-diaminoresocinol dihydrochloride, DAR)과 테레프탈산(terephtalic acid, TPA) 및 카본나노섬유를 하기 표 1과 같은 조성으로 투입하고, 질소기류를 흘려주며 용액중합을 하였다. 이때, 산화방지제로 SnCl2를 첨가하였다. 중합용매로는 물에 오산화 인(P2O5)을 용해시킨 폴리인산, 즉 PPA를 사용하였다.4,6-diaminoresocinol dihydrochloride (DAR), terephthalic acid (TPA) and carbon nanofibers were charged into a polymerization reactor equipped with a heating device and a stirrer as shown in Table 1 And a solution polymerization was carried out by flowing a stream of nitrogen. At this time, SnCl 2 was added as an antioxidant. As the polymerization solvent, polyphosphoric acid (PPA) in which phosphorus pentoxide (P2O5) was dissolved in water was used.

도 1은 중합 시, 시간별 온도 및 PPA 농도를 보여주는 그래프이다. DAR에서 염산을 제거하는 1단계, 축합중합의 2단계 및 고리화의 3단계로 이루어진다. 2단계가 시작하기 전 중합물의 용해도를 올려주기 위하여 오산화인을 추가로 투입하여 용매인 PPA 최종 농도를 87%로 조절하였다. 중합물 용액 중의 PBO 또는 PBO/CNF 농도는 바로 방사를 할 수 있도록 14wt%로 맞추었다.Figure 1 is a graph showing the temperature and PPA concentration over time during polymerization. The DAR consists of one step of removing hydrochloric acid, two stages of condensation polymerization and three stages of cyclization. In order to increase the solubility of the polymer, the final concentration of the solvent PPA was adjusted to 87% by addition of phosphorus pentoxide before the step 2 was started. The concentration of PBO or PBO / CNF in the polymer solution was adjusted to 14wt% for direct irradiation.

DAR
(mmol)
DAR
(mmol)
TPA
(mmol)
TPA
(mmol)
CNF
(wt%)
CNF
(wt%)
SnCl2
(wt%)
SnCl 2
(wt%)
중합용매 PPA 농도(P2O5 %)Polymerization solvent PPA concentration (P 2 O 5 %) 중합물의 PBO농도
(wt%)
PBO concentration of polymer
(wt%)
비교예 1Comparative Example 1 40.040.0 40.040.0 0.00.0 1.51.5 중합시작 -> 중합완료
80.0 -> 87.0
Start of polymerization -> Polymerization
80.0 -> 87.0
14.014.0
실시예 1Example 1 0.10.1 실시예 2Example 2 0.50.5 실시예 3Example 3 1One 실시예 4Example 4 22

<단계 2> 섬유의 제조<Step 2> Production of fiber

상기 <단계 1>에서 합성한 PBO 및 PBO/CNT 중합체 용액을 도 2에 도시된 바와 같은 건습식 방사기를 이용하여 섬유로 제조하였다. 이때, 건습식 방사조건은 하기 표 2와 같이, 방사온도 140 ℃에서 직경이 0.2 mm이고 길이가 20mm인 방사구금을 통하여 방사속도는 0.9m/min로 방사하였으며 기격(air gap)은 5cm로 하였다. 방사된 섬유는 2단계의 응고과정을 거쳤다. 1차 응고욕은 5중량% 인산수용액으로 구성되었으며, 2차 응고욕 및 세척욕은 증류수로 구성되었다. 권취속도는 23.5 m/min로 설정하였으며, 제조된 PBO 섬유 및 PBO/CNF 섬유는 25 ℃의 진공오븐에서 24시간 동안 건조하였다. 도 3은 제조된 섬유의 전자현미경(SEM) 사진을 나타낸 것이다.The PBO and PBO / CNT polymer solutions synthesized in the above <Step 1> were made into fibers using a dry-wet spinner as shown in FIG. At this time, the dry-wet spinning conditions were as follows. The spinning speed was 0.9 m / min through a spinneret having a diameter of 0.2 mm and a length of 20 mm at a spinning temperature of 140 ° C. and an air gap of 5 cm . The radiated fibers undergo a two-step coagulation process. The primary coagulation bath consisted of 5 wt% aqueous phosphoric acid solution, and the secondary coagulation bath and wash bath consisted of distilled water. The winding speed was set to 23.5 m / min, and PBO fibers and PBO / CNF fibers were dried in a vacuum oven at 25 ° C for 24 hours. Fig. 3 is an electron microscope (SEM) photograph of the fabric.

방사온도 (℃)Radiation temperature (℃) 방사구금 직경/길이
(mm)
Spinning diameter / length
(mm)
공기층 (cm)Air layer (cm) 응고욕Coagulation bath 방사속도(Vo)The radiation velocity (Vo) 권취속도(Vt)Winding speed (Vt) 방사연신비 (Vt/Vo)Radial stretching ratio (Vt / Vo)
응고욕 조성
(인산농도)
(wt%)
Coagulation bath composition
(Phosphoric acid concentration)
(wt%)
온도(℃)Temperature (℃) (m/min)(m / min) (m/min)(m / min)
140140 0.2/200.2 / 20 55 55 2525 0.90.9 23.523.5 26.126.1

[[ 실시예Example 2 내지 4] 2 to 4]

카본나노섬유의 함량을 상기 표 1에서와 같이 조절한 것을 제외하고는, 실시예 1과 동일한 과정으로 섬유를 제조하였다.The fibers were prepared in the same manner as in Example 1, except that the content of the carbon nanofibers was adjusted as shown in Table 1 above.

[[ 비교예Comparative Example 1] One]

카본나노섬유의 함량을 상기 표 1에서와 같이 조절한 것을 제외하고는, 실시예 1과 동일한 과정으로 섬유를 제조하였다.The fibers were prepared in the same manner as in Example 1, except that the content of the carbon nanofibers was adjusted as shown in Table 1 above.

[[ 실험예Experimental Example 1] 자외선 저항성 측정 1] UV resistance measurement

실시예 1 내지 4 및 비교예 1에서 각각 제조한 섬유의 자외선 저항성을 측정하기 위하여, 자외선 조사장치 및 하기 표 3과 같은 자외선 램프를 사용하여 섬유에 자외선을 4~16시간 조사하였다. In order to measure the ultraviolet resistance of the fibers prepared in Examples 1 to 4 and Comparative Example 1, the fibers were irradiated with ultraviolet rays for 4 to 16 hours using an ultraviolet irradiation apparatus and an ultraviolet lamp as shown in Table 3 below.

UV sourceUV source Model nameModel name Wavelength(nm)Wavelength (nm) UV power(W)UV power (W) SMV-1500SMV-1500 SMCM-M1K1SMCM-M1K1 300~500300 to 500 120120

자외선 조사 시간이 증가할수록 급격하게 강도와 신도가 감소하게 된다. 자외선에 의한 PBO 섬유의 강도가 저하되는 이유는 자외선에 의하여 하기의 반응식 2와 같이 헤테로환이 깨어지기 때문인 것으로 알려져있다.As the ultraviolet irradiation time increases, the intensity and elongation decrease sharply. It is known that the reason that the intensity of PBO fiber due to ultraviolet rays is lowered is that the heterocycle breaks down due to ultraviolet rays as shown in the following reaction formula (2).

[반응식 2][Reaction Scheme 2]

Figure 112015109437813-pat00002
Figure 112015109437813-pat00002

도 4는 실시예 1 내지 4 및 비교예 1에서 각각 제조한 섬유에 자외선을 조사한 후의 인장강도 유지율을 측정한 결과를 나타낸 것이다. 도 6에서 알 수 있는 바와 같이, 카본나노섬유 함유량이 증가함에 따라 UV 조사 시간에 따른 강도저하가 감소됨으로써 UV 저항성이 향상되는 것을 알 수 있다.Fig. 4 shows the results of measurement of the tensile strength retention ratios of the fibers prepared in Examples 1 to 4 and Comparative Example 1, respectively, after irradiation of ultraviolet rays. As can be seen from FIG. 6, as the content of the carbon nanofibers increases, the decrease in the strength according to the UV irradiation time is reduced, and the UV resistance is improved.

또한, 도 5는 비교예 1과 실시예 2 내지 4에서 각각 제조한 섬유에 대해서, 자외선 조사 16시간 후의 섬유 표면을 FE-SEM을 통하여 관찰한 결과를 나타낸 것이다. 도 5에서 알 수 있는 바와 같이, 카본나노섬유(CNF) 함유량이 많은 경우, 표면에 CNF가 많이 드러난 것을 볼 수 있다. 드러난 CNF가 PBO에 닿는 UV를 막아줌으로써 자외선 저항성이 향상되었음을 알 수 있다.5 shows the results of FE-SEM observation of the fiber surfaces after 16 hours of ultraviolet irradiation for the fibers prepared in Comparative Examples 1 and 2 to 4, respectively. As can be seen from Fig. 5, when the content of carbon nanofibers (CNF) is large, CNF is clearly visible on the surface. It can be seen that the revealed CNF has improved the UV resistance by blocking the UV that reaches the PBO.

[[ 실험예Experimental Example 2] 압축강도 측정 2] Compressive strength measurement

실시예 2 내지 4 및 비교예 1에서 각각 제조한 섬유의 압축강도를 측정하기 위하여, 도 6에 도시된 바와 같은 루프 테스트로 측정하였다. 섬유 한 가닥을 도 6에 도시된 바와 같이 루프 모양으로 시험기기에 걸어주고, 화살표 방향으로 섬유가 꺾일 때까지 양쪽을 당겨준다. 섬유를 당겨주면서 고리의 장축(L)과 단축(D)의 길이를 측정하여 값을 구하여 식을 통해 압축강도를 구한다. 루프 테스트에서 섬유가 당겨지면서 섬유의 안쪽에는 압축강도가 작용하게 되고, kink band가 작용하면서 섬유가 꺾이게 된다.In order to measure the compressive strengths of the fibers prepared in Examples 2 to 4 and Comparative Example 1, they were measured by a loop test as shown in Fig. A strand of fibers is looped into the test device as shown in Fig. 6 and pulled in both directions until the fibers are broken in the direction of the arrow. The length of the long axis (L) and the short axis (D) of the ring are measured while pulling the fiber, and the value is obtained. In the loop test, as the fibers are pulled, the compressive strength acts on the inside of the fibers, and the fibers are broken by the action of the kink bands.

루프 테스트를 통하여 측정된 압축강도 결과는 하기 표 4 및 도 7에 나타내었다. CNF가 첨가되자 압축강도 값이 3배 정도 상승하였다. 또한, 인장강도 대비 압축강도 값을 비교하였을 때, 순수한 PBO에 비하여 2~4배 정도까지 압축강도가 향상되었다. CNF가 PBO가 꺾일 때 발생하는 kink band 형성을 막아주기 때문에 이러한 결과가 나타난 것으로 예상된다. 도 8에 나타낸 바와 같이, 탄소나노섬유(CNF)가 PBO 섬유 매트릭스 내에 파일(pile)처럼 박혀서 PBO섬유의 압축강도를 향상시킬 수 있는 것이다.The compressive strength results measured through the loop test are shown in Table 4 and FIG. When CNF was added, the compressive strength increased by three times. Comparing the compressive strength values against the tensile strength, the compressive strength was improved to 2 to 4 times that of pure PBO. This result is expected because CNF prevents kink band formation when PBO is broken. As shown in FIG. 8, the carbon nanofibers (CNF) are embedded in the PBO fiber matrix as a pile, thereby improving the compressive strength of the PBO fiber.

섬유 직경
(㎛)
Fiber diameter
(탆)
섬유 길이
(㎛)
Fiber length
(탆)
인장
모듈러스
(GPa)
Seal
Modulus
(GPa)
압축강도
(GPa)
Compressive strength
(GPa)
인장강도
(GPa)
The tensile strength
(GPa)
인장강도 대비 압축강도 값(%)Compressive strength value versus tensile strength (%)
비교예 1Comparative Example 1 12.4612.46 63506350 123.1123.1 0.340.34 3.613.61 99 실시예 2Example 2 13.6613.66 52705270 107.4107.4 0.400.40 2.752.75 1515 실시예 3Example 3 14.6614.66 23502350 108.4108.4 0.970.97 3.613.61 2727 실시예 4Example 4 13.5813.58 19601960 102.7102.7 1.021.02 3.233.23 3232

Claims (4)

4,6-디아미노리소시놀 디하이드로클로라이드(DAR) 단량체; 테레프탈산(TPA); 및 카본나노섬유를 오산화인(P2O5)을 포함하는 폴리인산(PPA) 용매에 용해시켜 염화수소를 제거하는 탈염화수소 단계;
상기 단량체들의 탈염화반응을 통한 중합에 의해 폴리파라페닐렌벤조비스옥사졸 전구체를 형성하는 중합 단계;
상기 폴리파라페닐렌벤조비스옥사졸 전구체의 고리화 반응에 의해 폴리파라페닐렌벤조비스옥사졸 중합체를 형성하여 폴리파라페닐렌벤조비스옥사졸 중합체 및 카본나노섬유를 포함하는 방사용액을 형성하는 단계; 및
상기 방사용액을 건습식 액정방사법으로 방사하여 폴리파라페닐렌벤조비스옥사졸 섬유를 제조하는 단계를 포함하며,
상기 방사용액은 폴리파라페니렌벤조비스옥사졸 중합 시에 카본나노섬유를 첨가하여 동시 중합을 통하여 제조되며,
상기 폴리파라페닐렌벤조비스옥사졸 섬유는 직경이 13.58~14.66㎛, 길이가 1960~5270㎛, 인장 모듈러스 102.7~108.4Gpa, 압축강도 0.40~1.02GPa, 인장강도 대비 압축강도 값의 비율이 15~32%인 것을 특징으로 하는 자외선 저항성 및 압축강도가 향상된 폴리파라페닐렌벤조비스옥사졸 섬유의 제조방법.
4,6-diaminoriosolic dihydrochloride (DAR) monomer; Terephthalic acid (TPA); And a dehydrochlorination step of dissolving the carbon nanofibers in a polyphosphoric acid (PPA) solvent containing phosphorus pentoxide (P 2 O 5 ) to remove hydrogen chloride;
A polymerization step of forming a polyparaphenylenebenzobisoxazole precursor by polymerization through dechlorination of the monomers;
Forming a polyparaphenylene benzobisoxazole polymer by a cyclization reaction of the polyparaparylene benzo bis oxazole precursor to form a spinning liquid containing polyparaphenylene benzobisoxazole polymer and carbon nanofiber; ; And
And spinning the spinning solution with a dry-wet liquid crystal spinning method to produce a polyparaphenylene benzobisoxazole fiber,
The spinning solution is prepared by simultaneous polymerization with addition of carbon nanofibers during the polymerization of polyparaphenylene benzobisoxazole,
The polyparaphenylene benzobisoxazole fiber has a diameter of 13.58 to 14.66 탆, a length of 1960 to 5270 탆, a tensile modulus of 102.7 to 108.4 Gpa, a compressive strength of 0.40 to 1.02 GPa, Wherein the polyparaphenylene benzobisoxazole fiber has an ultraviolet resistance and an improved compressive strength.
삭제delete 제1항에 있어서,
상기 카본나노섬유는 폴리파라페닐렌벤조비스옥사졸 중합체의 총 중량대비 0.1 내지 5중량%인 것을 특징으로 자외선 저항성 및 압축강도가 향상된 폴리파라페닐렌벤조비스옥사졸 섬유의 제조방법.
The method according to claim 1,
Wherein the carbon nanofibers are 0.1 to 5 wt% based on the total weight of the polyparaphenylene benzobisoxazole polymer, wherein the ultraviolet resistance and compressive strength are improved.
제1항 및 제3항 중 어느 한 항에 기재된 제조방법으로 제조되고, 직경이 13.58~14.66㎛, 길이가 1960~5270㎛, 인장 모듈러스 102.7~108.4Gpa, 압축강도 0.40~1.02GPa, 인장강도 대비 압축강도 값의 비율이 15~32%인 것을 특징으로 하는 자외선 저항성 및 압축강도가 향상된 폴리파라페닐렌벤조비스옥사졸 섬유.A steel sheet produced by the manufacturing method according to any one of claims 1 to 3 and having a diameter of 13.58 to 14.66 탆, a length of 1960 to 5270 탆, a tensile modulus of 102.7 to 108.4 Gpa, a compressive strength of 0.40 to 1.02 GPa, And the ratio of the compressive strength value is 15 to 32%. The polyparaphenylene benzobisoxazole fiber with improved ultraviolet resistance and compressive strength.
KR1020150157494A 2015-11-10 2015-11-10 Poly(p-phenylene benzobisoxazole) fiber improved uv resistnat and compression strength, and method for preparing the same KR101716242B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150157494A KR101716242B1 (en) 2015-11-10 2015-11-10 Poly(p-phenylene benzobisoxazole) fiber improved uv resistnat and compression strength, and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150157494A KR101716242B1 (en) 2015-11-10 2015-11-10 Poly(p-phenylene benzobisoxazole) fiber improved uv resistnat and compression strength, and method for preparing the same

Publications (1)

Publication Number Publication Date
KR101716242B1 true KR101716242B1 (en) 2017-03-14

Family

ID=58459862

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150157494A KR101716242B1 (en) 2015-11-10 2015-11-10 Poly(p-phenylene benzobisoxazole) fiber improved uv resistnat and compression strength, and method for preparing the same

Country Status (1)

Country Link
KR (1) KR101716242B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113322535A (en) * 2020-02-28 2021-08-31 吉林师范大学 Preparation method of poly (terephthalic acid-2- (hexyl-5-alkenyl) -succinic acid-1, 4-benzodioxazole) fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119622A (en) * 2001-10-12 2003-04-23 Toyobo Co Ltd Polybenzazole fiber
KR20120099690A (en) * 2009-11-02 2012-09-11 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Cnt-infused aramid fiber materials and process therefor
KR20140108360A (en) * 2013-02-25 2014-09-11 금오공과대학교 산학협력단 Graphene-reinforced Poly(p-phenylene benzobisoxazole) composites and process for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119622A (en) * 2001-10-12 2003-04-23 Toyobo Co Ltd Polybenzazole fiber
KR20120099690A (en) * 2009-11-02 2012-09-11 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Cnt-infused aramid fiber materials and process therefor
KR20140108360A (en) * 2013-02-25 2014-09-11 금오공과대학교 산학협력단 Graphene-reinforced Poly(p-phenylene benzobisoxazole) composites and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113322535A (en) * 2020-02-28 2021-08-31 吉林师范大学 Preparation method of poly (terephthalic acid-2- (hexyl-5-alkenyl) -succinic acid-1, 4-benzodioxazole) fiber
CN113322535B (en) * 2020-02-28 2022-12-06 吉林师范大学 Method for preparing poly (terephthalic acid-2- (hexyl-5-alkenyl) -succinic acid-1, 4-benzodioxazole) fiber

Similar Documents

Publication Publication Date Title
KR101734895B1 (en) Poly(p-phenylene benzobisoxazole) nanocomposite fiber improved uv resistnat and compression strength, and method for preparing the same using modified polyhedral oligomeric silsesquioxane(poss)
JP6629296B2 (en) High strength copolymerized aramid fiber and method for producing the same
US6884506B2 (en) Polybenzazole fiber
KR101108425B1 (en) Method of manufacturing composite fiber of carbon nanotube and aramid
WO2013050779A1 (en) Formation of carbon nanotube-enhanced fibers and carbon nanotube-enhanced hybrid structures
KR101538716B1 (en) Graphene-reinforced Poly(p-phenylene benzobisoxazole) composites and process for producing the same
JP4734556B2 (en) Method for producing high-strength polyethylene fiber and high-strength polyethylene fiber
KR101716242B1 (en) Poly(p-phenylene benzobisoxazole) fiber improved uv resistnat and compression strength, and method for preparing the same
KR101432876B1 (en) Aramid Fiber and Method for Manufacturing The Same
KR102022914B1 (en) carbon fiber formed from chlorinated polyvinyl chloride and preparing method thereof
KR101245890B1 (en) Aramide Fiber and Method for Manufacturing The Same
KR100930204B1 (en) Aramide fiber and method for manufacturing the same
KR101387272B1 (en) Aramid Fiber and Method for Manufacturing The Same
KR101736720B1 (en) Poly(p-phenylene benzobisoxazole) copolymer having naphthalene, fiber compising the copolymer, and method for preparing the same
KR102266753B1 (en) Polyimide based carbon fiber with excellent flexibility and manufacturing method thereof
KR101432874B1 (en) Aramid Fiber and Method for Manufacturing The Same
KR101684874B1 (en) Polyketone Fiber with Improved Wearing Property and Method for Preparing the Same
KR101410544B1 (en) Method for manufacturing aramid fiber
KR102531748B1 (en) Polyimide-based carbon fibers and graphite fibers and manufacturing methods thereof
KR102432899B1 (en) Method for producing para-aramid fibers and para-aramid fibers producted thereform
KR101587046B1 (en) Method of manufacturing copolymerized aramid fiber
KR20220094640A (en) Method for producing para-aramid fibers and para-aramid fibers producted thereform
KR20140133176A (en) Method of manufacturing aramid copolymer and copolymerized aramid fiber
KR20140083310A (en) Method of manufacturing aramid copolymer
CN117661153A (en) Method for improving ultraviolet resistance of PBO fiber by doping nano particles

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200203

Year of fee payment: 4