KR101691893B1 - 자기저항 센서 - Google Patents

자기저항 센서 Download PDF

Info

Publication number
KR101691893B1
KR101691893B1 KR1020150028038A KR20150028038A KR101691893B1 KR 101691893 B1 KR101691893 B1 KR 101691893B1 KR 1020150028038 A KR1020150028038 A KR 1020150028038A KR 20150028038 A KR20150028038 A KR 20150028038A KR 101691893 B1 KR101691893 B1 KR 101691893B1
Authority
KR
South Korea
Prior art keywords
layer
saf
shielded
shield
saf layer
Prior art date
Application number
KR1020150028038A
Other languages
English (en)
Other versions
KR20150101953A (ko
Inventor
정키 루
다니엘 하셋
파울라 맥엘힌네이
지안성 수
Original Assignee
시게이트 테크놀로지 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 시게이트 테크놀로지 엘엘씨 filed Critical 시게이트 테크놀로지 엘엘씨
Publication of KR20150101953A publication Critical patent/KR20150101953A/ko
Application granted granted Critical
Publication of KR101691893B1 publication Critical patent/KR101691893B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3912Arrangements in which the active read-out elements are transducing in association with active magnetic shields, e.g. magnetically coupled shields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/10Structure or manufacture of housings or shields for heads
    • G11B5/11Shielding of head against electric or magnetic fields
    • G11B5/115Shielding devices arranged between heads or windings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Magnetic Heads (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)

Abstract

본 명세서에 기재된 구현들은, 상단 실드 합성 반강자성 층을 포함하는 상단 실드와 하단 실드 합성 반강자성 층을 포함하는 하단 실드를 포함하는 센서 구조를 포함하는 장치를 제공한다.

Description

자기저항 센서{MAGNETORESISTIVE SENSOR}
자기 하드 디스크 드라이브들은, 유형의 자기 저장 매체들에 인코딩된 데이터를 판독 및 기입하는 트랜스듀서(transducer) 헤드들을 포함한다. 자기 매체의 표면으로부터 검출되는 자기 플럭스(flux)는, 트랜스듀서 헤드 내의 자기저항(MR) 센서 내의 감지 층 또는 층들의 자화(magnetization) 벡터의 회전을 야기하며, 이는, 차례로, MR 센서의 전기 저항도에서의 변화를 야기한다. MR 센서의 저항에서의 변화는, MR 센서를 통해 전류를 통과시키고, MR 센서에 걸친 전압의 변화를 측정함으로써 검출될 수 있다. 관련된 회로는, 측정된 전압 변화 정보를 적절한 포맷으로 변환하고 그 정보를 조작(manipulate)하여 디스크 상에 인코딩된 데이터를 복원할 수 있다.
본 명세서에서 설명되고 청구되는 구현들은, 상단 실드 합성 반강자성(synthetic antiferromagnetic)(SAF) 층을 포함하는 상단 실드와 하단 실드 SAF 층을 포함하는 하단 실드를 포함하는 센서 구조를 포함하는 장치를 제공한다. 상단 실드 SAF는 익스 시튜(ex situ)일 수도 있고, 하단 실드 SAF 층은 인 시튜(in situ)일 수도 있다.
본 개요는, 상세한 설명에서 추가적으로 후술되는 간략화된 형태의 선정 개념들을 도입하기 위해 제공된다. 본 개요는, 청구된 요지의 주요 특성들 또는 본질적인 특성들을 식별하도록 의도되지 않으며, 청구된 요지의 범위를 제한하도록 의도되지도 않는다. 청구된 요지의 다른 특성들, 세부사항들, 효용들 및 이점들은, 다양한 구현들, 및 첨부된 도면들에서 추가적으로 도시되고 첨부된 청구항들에서 정의되는 바와 같은 구현들의 더 특정하게 쓰여진 다음의 상세한 설명으로부터 명백해질 것이다.
도 1은, 예시적인 디스크 드라이브 어셈블리(assembly)의 평면도를 그리고 익스 시튜 상단 합성 반강자성(SAF) 실드, 인 시튜 하단 SAF 실드, 및 측면 실드들 사이에 구성된 예시적인 자기저항 센서 스택의 에어-베어링(air-bearing) 표면-대면(surface-facing) 분해도를 예시한다.
도 2a는, 예시적인 익스 시튜 타입-1 상단 SAF 실드의 층 도면을 도시한다.
도 2b는, 도 2a에서의 익스 시튜 타입-1 상단 SAF 실드의 예를 도시한다.
도 2c는, 도 2b에서의 예시적인 익스 시튜 타입-1 상단 SAF 실드의 자화 그래프를 도시한다.
도 3a는, 예시적인 익스 시튜 타입-2 강화된 상단 SAF 실드의 층 도면을 도시한다.
도 3b는, 도 3a에서의 익스 시튜 타입-2 강화된 상단 SAF 실드의 예를 도시한다.
도 3c는, 도 3b에서의 예시적인 익스 시튜 타입-2 강화된 상단 SAF 실드의 자화 그래프를 도시한다.
도 4a는, 예시적인 인 시튜 타입-1 하단 SAF 실드의 층 도면을 도시한다.
도 4b는, 도 4a에서의 인 시튜 타입-1 하단 SAF 실드의 예를 도시한다.
도 4c는, 도 4b에서의 인 시튜 타입-1 하단 SAF 실드의 자화 그래프를 도시한다.
도 5a는, 예시적인 인 시튜 타입-2 강화된 하단 SAF 실드의 층 도면을 도시한다.
도 5b는, 도 5a에서의 인 시튜 타입-2 강화된 하단 SAF 실드의 예를 도시한다.
도 5c는, 도 5b에서의 예시적인 인 시튜 타입-2 강화된 하단 SAF 실드의 자화 그래프를 도시한다.
도 6a는, 예시적인 인 시튜 타입-3 하단 SAF 실드의 층 도면을 도시한다.
도 6b는, 도 6a에서의 인 시튜 타입-3 하단 SAF 실드의 예를 도시한다.
도 7은 자기 엘리먼트 제조를 위한 예시적인 동작들을 도시한다.
높은 데이터 밀도들, 및 자기 매체들로부터 데이터를 판독하는 민감한 센서들에 대한 수요가 증가하고 있다. 증가된 민감도를 갖는 거대 자기저항(GMR) 센서들은, 얇은 도전성의 비-자기 스페이서(spacer) 층에 의해 분리되는 2개의 연자성 층들("피닝된(pinned) 층" 및 "자유(free) 층")로 이루어진다. 터널 자기저항(TMR) 센서들은, 전자들이 얇은 절연 터널 배리어 층을 거쳐, 자신들의 스핀들이 층들에 수직으로 배향된 채로 이동하는 연장부(extension)를 GMR에 제공한다.
센서에서의 자기저항 스택에 걸친 전기 저항은, 스택에 포지셔닝된 자유 층 및 자기 기준 층의 상대적 자기 배향에 의존한다. 2개 층들의 자기 배향들이 역평행인 경우 전류에 대한 저항은 최대인 반면, 2개 층들의 자기 배향들이 평행인 경우 저항은 최소이다. 자기저항 스택은, 자기 층들의 자기 배향들을 셋팅하기 위해 자기 필드가 에어-베어링 표면(ABS) 방향에 수직으로 인가되는 자기 어닐링(anneal) 프로세스를 겪는다. 어닐링 프로세스 이후에, 자유 층의 (실질적으로 이방성 방향으로의) 자화용이 축(easy axis)은 ABS 방향을 향하여 지향되고, 자기 기준 층 및 피닝된 층은 ABS 방향에 수직인 역평행으로 포지셔닝된다.
센서 스택에서, 반강자성(AFM) 재료가 제 1 연자성 층, 즉 "피닝된 층"에 인접하게 배치되어 피닝된 층(및 특히 피닝된 층의 자화)이 회전하는 것을 방지할 수도 있다. 그에 의해, 자화는 미리결정된 방향으로 고정된다. 제 2 연자성 층, 즉 "자유 층"의 자화는 외부 필드에 응답하여 자유롭게 회전한다. 센서는, 수 개의 다른 층들을 또한 포함할 수도 있다.
AFM/피닝된 층 구조를 사용하는 것은 판독기의 실드간 스페이싱(shield-to-shield spacing)(SSS)을 증가시킨다. 기록 시스템에서 신호-대-잡음(SNR) 비를 결정하는 자기 센서들의 펄스 폭 PW50이 헤더의 SSS에 의존하기 때문에, 더 낮은 SSS를 달성하는 것은 기록 시스템의 SNR을 감소시킨다.
모델링 및 실험들 둘 모두에 의해 제안되는 바로서, PW50과 SSS 사이의 관계의 예는 다음, 즉
Figure 112015020387785-pat00001
와 같이 주어질 수 있다. 따라서, SSS에서의 감소는, PW50의 값에서의 감소를 유도하며, 그에 따라, 기록 시스템의 SNR 값에서의 증가를 유도한다. 따라서, 판독기의 더 높은 선형 밀도는 SSS를 감소시킴으로써 달성될 수 있다. 또한, 더 작은 SSS는 매체 판독기의 크로스-트랙(cross-track) 분해능(resolution)을 또한 개선하며, 크로스-트랙 분해능에서의 이러한 감소는, 매체 판독기에 의해 달성될 수 있는 면밀도(areal density)의 추가적인 개선에 기여한다.
자기저항 디바이스들의 사이즈가 감소함에 따라, 피닝된 층의 자화 방향에서의 변화는 증가한다. 시드(seed) 층은, AFM 층의 텍스처(texture) 및 그레인(grain) 성장을 촉진시키는데 사용될 수도 있다. 자신의 원자 구조 또는 어레인지먼트에 대해 선택된 시드 층은, AFM 및 자기 층들의 바람직한 결정 방향과 부합한다. 시드 층은, 비-자기 재료(예를 들어, Ta, Ru, Cr, Pt, Pd) 또는 합금(예를 들어, NiCr)일 수도 있다. 또한, 시드 층은, 자기 재료(예를 들어, NiFe)일 수도 있으며, 이는, AFM 층과 피닝된 자기 층 사이의 교환 바이어스 필드를 추가적으로 강화시킬 수 있다. 자기 시드 층의 자기 배향은, 피닝된 층과 동일한 방향인 ABS 방향에 수직으로 피닝된다.
그러나, 기록 매체 위로 플라잉(flying)하는 판독기 헤드의 판독 동안, 자기 시드 층의 자기 모멘트는, 기록 매체 밖의 표류자계(stray field) 하에서 플립-플롭(flip-flop)할 수도 있고, 스택의 상부 부분에서의 센서 자기 층들 및 실드 자기 층 하부(underneath) 둘 모두에 대해 소망하지 않은 도메인 이동들을 야기할 수도 있다. 이러한 소망하지 않은 도메인 이동들은 드라이브 불안정성 이슈들을 유도할 수도 있다. 자기저항 스택은, 낮은 자기 이방성(Hk)을 가질 수도 있는 연자성 재료들(예를 들어, NiFe 또는 CoNiFe)로 이루어지는 실드들 사이에 구성될 수도 있다.
본 명세서에 기재된 센서 구조는, 판독기에 대해 감소된 SSS를 제공하고 높은 자기 이방성을 도입시킨다. 구체적으로, 센서 구조는, 상단 실드 SAF 층을 포함하는 상단 실드, 및 하단 실드 SAF 층을 포함하는 하단 실드를 포함한다. 상단 실드 SAF 층은 익스 시튜일 수도 있고, 하단 실드 SAF 층은 인 시튜일 수도 있다. "인 시튜"는, 인 시튜 증착 즉, 진공 중단(breaking)이 없는 자기저항 스택에 관한 증착을 지칭한다. "익스 시튜"는, 익스 시튜 증착 즉, 자기저항 스택에 대해 증착에 이어 진공 중단 이후 증착을 지칭한다.
또한, 상단 실드 SAF 층 및 하단 실드 SAF 층은 높은 자기 이방성을 가지며, 높은 자기 이방성은, 실드들의 안정성을 개선하고 실드간 스페이싱 감소를 허용한다. 부가적으로, 하단 실드 SAF 층은, AFM 층과 피닝된 자기 층들 사이의 교환 바이어스 필드를 강화시키도록, 시드 층으로서 동작하고 결정 텍스처 성장을 촉진시키며 그레인 사이즈들을 제어한다. 상단 실드 SAF 층을 포함하는 상단 실드와 하단 실드 SAF 층을 포함하는 하단 SAF 실드 사이에 포지셔닝되는 자기저항 스택은, 자유 층, 배리어 층, 자기 기준 층, 커플링 스페이서 층, 자기 피닝된 층, 및 반강자성 층을 포함할 수도 있다.
기재된 센서 구조의 자기 모멘트는, 기록 매체로부터 나오는 임의의 방향의 표류자계에 선형으로 응답한다. 상단, 하단, 및 측면 실드들은, 센서 스택의 자유 층, 자기 기준 층, 및 자기 피닝된 층의 자기 배향들에서의 간섭 없이 표류자계를 흡수한다. 상단 실드 SAF 층 및 하단 실드 SAF 층 뿐만 아니라 상단 실드 SAF 층과 자기적으로 접속되는 측면 실드들의 높은 자기 이방성은, 판독기 헤드에 대해 도메인 안정성을 제공한다. 부가적으로, 상단 실드와 하단 실드에서의 SAF 층들은, SSS 감소를 허용하는 실드 구조의 일부를 형성한다. 또한, 하단 실드에서의 인 시튜 SAF 층은 시드 층으로서 기능하고, 이 인 시튜 SAF 층은, 하단 실드 위에 로케이팅된 AFM 층의 결정 텍스처 성장을 촉진시키고, 하단 실드 위에 로케이팅된 AFM 층의 그레인 사이즈들을 제어하며, 센서 스택의 피닝된 자기 층들과 AFM 층 사이의 향상된 교환 바이어스 필드를 초래한다. 또한, 상단 실드와 하단 실드에서의 SAF 층들은, 실드들 내의 도메인 벽(domain wall) 이동에 의해 생성되는 바크하우젠(barkhausen) 잡음을 감소시킨다.
하단 및 상단 SAF 실드들은, 실드 구조의 일부를 형성하고 실드간 스페이싱(SSS)을 감소시킨다. 감소된 SSS는, 감소된 PW50을 유도하고, 그에 따라, 판독기의 선형 밀도 능력을 증가시킨다. 또한, SSS를 감소시키는 것은, 판독기의 크로스-트랙 분해능을 또한 개선시키고, 그에 따라, 판독기의 면밀도 능력을 개선시킨다.
도 1은 예시적인 디스크 드라이브 어셈블리(100)의 평면도를 도시한다. 예시적인 디스크 드라이브 어셈블리(100)는, 매체 디스크(108) 위에 포지셔닝된 액츄에이터 암(110)의 원단(distal end) 상에 슬라이더(120)를 포함한다. 액츄에이터 회전 축(106)을 중심으로 회전하는 로터리(rotary) 보이스 코일 모터는, 데이터 트랙(예를 들어, 데이터 트랙(140)) 상에 슬라이더(120)를 포지셔닝시키는데 사용되고, 디스크 회전 축(111)을 중심으로 회전하는 스핀들 모터는 매체 디스크(108)를 회전시키는데 사용된다. 뷰 A를 구체적으로 참조하면, 매체 디스크(108)는, 외부 직경(102) 및 내부 직경(104)을 포함하며, 이들 사이에는 원형 점선들에 의해 도시된 데이터 트랙(140)과 같은 다수의 데이터 트랙들이 있다.
슬라이더(120)는, 다양한 기능들을 수행하는 다양한 층들을 갖는 적층형(laminated) 구조이다. 슬라이더(120)는, 기입기 섹션(도시되지 않음), 및 매체 디스크(108)의 데이터를 판독하기 위한 하나 또는 그 초과의 MR 센서들을 포함한다.
도 1에서의 뷰 B는, 디스크 드라이브 어셈블리(100)가 사용 중인 경우 매체 디스크(108)의 ABS를 대면하는 예시적인 MR 센서(130)의 측면을 도시한다. 따라서, 뷰 B에 도시된 MR 센서(130)는, 뷰 A에 도시된 슬라이더(120)에 동작적으로 부착된 경우를 중심으로 (예를 들어, z-축을 중심으로) 약 180도만큼 회전될 수도 있다.
다운-트랙(down-track) 방향(z-방향)에서, 센서 스택(132)은, 다음의 실드 엘리먼트들, 즉, 인 시튜 SAF 층을 포함하는 하단 실드(114)(인 시튜 하단 SAF 실드(114)로 또한 지칭됨)와 익스 시튜 SAF 층을 포함하는 상단 실드(116)(익스 시튜 상단 SAF 실드(116)로 또한 지칭됨) 사이에 포지셔닝된다. 익스 시튜 상단 SAF 실드(116)는, 자기저항 접합, 증착 절연체들(171 및 172), 및 측면 실드들(160 및 161)을 형성한 이후에 형성된다.
인 시튜 하단 SAF 실드(114)는 외부 하단 실드(112)에 접하게(next to) 포지셔닝되고, 익스 시튜 상단 SAF 실드(116)는 외부 상단 실드(118)에 접하게 포지셔닝된다. 인 시튜 하단 SAF 실드(114)는, 센서 스택(132)을 형성하는 것의 일부로서 형성된다. 즉, 인 시튜 하단 SAF 실드(114)는, 센서 스택(132)의 다른 층들이 진공 중단 없이 형성되는 경우 형성되며, 이는, 센서 스택(132)과 인 시튜 하단 SAF 실드(114)의 더 양호한 통합을 제공한다. 실드 엘리먼트들은, 센서 스택(132)을 전자기 간섭, 주로 z-방향 간섭으로부터 격리시키고, 프로세싱 전자장치들(도시되지 않음)에 접속된 전기적으로 도전성인 제 1 및 제 2 전기 리드들로서 기능한다.
동작 시, 매체 디스크(108) 상의 트랙(140)을 따르는 비트(bit)는, 외부 하단 실드(112) 아래, 인 시튜 하단 SAF 실드(114), 센서 스택(132) 아래, 익스 시튜 상단 SAF 실드(116), 및 그 후, 외부 상단 실드(118) 아래를 연속적으로 통과한다. 따라서, 외부 하단 실드(112)에 근접한 센서 스택(132)의 에지는 센서 스택의 "리딩(leading) 에지"로 지칭될 수도 있고, 외부 상단 실드(118)에 근접한 센서 스택(132)의 에지는 센서 스택의 "트레일링(trailing) 에지"로 지칭될 수도 있다.
센서 스택(132)은, 복수의 기능들을 수행하는 복수의 층들을 갖는다. 다양한 구현들에서, 그러한 층들의 기능 및 개수는 변할 수도 있다. 일 구현에서, 센서 스택(132)은, 인가된 자기 필드에 응답하여 자유롭게 회전하는 자기 모멘트를 갖는 자기 층(즉, 자유 층)을 포함한다. 매체 디스크(108) 상의 데이터 비트들은, 도 1의 평면에 수직인 방향, 즉, 도면의 평면 내로 또는 도면의 평면 바깥으로 중 어느 하나로 자화된다. 따라서, MR 센서(130)가 데이터 비트 위를 통과하는 경우, 자유 층의 자기 모멘트는, 도 1의 평면 내로 또는 도 1의 평면 바깥으로 회전되어 MR 센서(130)의 전기 저항을 변경시킨다. 따라서, MR 센서(130)에 의해 감지되는 비트의 값(예를 들어, 1 또는 0 중 어느 하나)은, 센서 스택(132)을 통해 흐르는 전류에 기초하여 결정될 수도 있다.
도 1에서, 센서 스택(132)의 리딩 에지는, 외부 하단 실드(112)에 인접하게 포지셔닝되는 인 시튜 하단 SAF 실드(114)와 접촉한다. 센서 스택(132)은, (인 시튜 하단 SAF 실드(114)에 접하게 포지셔닝되는) AFM 층(122), 자기 피닝된 층(124), Ru 층(126), 자기 기준 층(128), 배리어 층(또는 스페이서)(134), 자유 층(136), 및 캡핑(capping) 층(138)을 포함한다(센서 스택(132) 내의 다양한 층들의 다운-트랙 폭은 실척에 맞게 도시되지 않음).
피닝된 층(124)은 인접 AFM 층(122)에 의해 바이어싱되는 자기 모멘트를 갖는다. 그러한 바이어싱의 방향은, 기준 층(128)의 자기 배향에 실질적으로 역평행인 방향에 있다. 이들 역평행 자기 배향들은, 루테늄(Ru) 또는 다른 적절한 RKKY(Ruderman-Kittel-Kasuya-Yosida) 커플링 재료의 층일 수도 있는 층(126)에 걸친 반강자성 커플링으로 인한 것이다. 캡핑 층(138)은, 외부 상단 실드(118)에 인접하게 포지셔닝되는 익스 시튜 상단 SAF 실드(116)에 인접하여 포지셔닝된다.
증착 절연체들(171 및 172)은, Al2O3 또는 MgO로 이루어질 수도 있으며, 증착 절연체들은, 측면 실드들(160 및 161)을 하단 실드 및 자기저항 접합으로부터 전자적으로 절연시키고 센서 라인 폭을 정의한다. 측면 실드들(160 및 161)은, 연강자성(soft ferromagnetic) 니켈 합금(예를 들어, NiFe, NiFeCr, NiFeMo, NiFeW, CoNiFe 및 CoFeNiB)으로 이루어진다. 측면 실드들은, 상단 실드 SAF 층(116)에 자기적으로 접속한다. 또한, 측면 실드들(160 및 161)은 ABS 방향에 따라 자유 층의 자기 모멘트들을 안정화시키는 바이어스 필드를 제공한다.
도 2a는, 익스 시튜 타입-1 상단 SAF 실드(202)의 구현을 도시한다. 자기 층-21 및 자기 층-24은 연강자성 니켈 합금(예를 들어, NiFe, NiFeCr, NiFeMo, NiFeW, CoNiFe 및 CoFeNiB)으로 이루어진다. 이들 층들은 대략적으로 10 nm 내지 50 nm의 두께를 가질 수도 있다. 자기 층-22, 자기 층-23, 및 자기 층-25는, 연강자성 코발트 합금(예를 들어, CoFe, CoFeB, CoNiFe 또는 CoNiFeB)을 포함할 수도 있다. 이들 층들은 대략적으로 0.5 nm 내지 20 nm의 두께를 가질 수도 있다. 비-자기 층-27은 스페이서 층으로서 동작한다. 이러한 층은, Cu, Cr, Ag, Ru, 또는 Mo로 이루어지고 대략적으로 0.3 nm 내지 1.0 nm의 두께를 가질 수도 있으며, 자기 층-22와 층-23 사이에 반강자성 커플링을 제공한다. 반강자성 층(200)은, PtMn, IrMn, NiMn, FeMn, CrPtMn, CrIrMn, CrNiMn, 또는 CrFeMn을 포함할 수도 있다. 이러한 층은, 대략적으로 5.0 nm 내지 10 nm의 두께를 가질 수도 있고, 이러한 층은 자기 층-25의 자화를 ABS 방향으로 피닝시킨다.
도 2b는, 다음의 층들, 즉 NiFe 25 nm/ CoFe 2.0 nm/ Ru 0.8 nm/ CoFe 2.0 nm/ NiFe 25 nm/ CoFe 2.0 nm/ IrMn 7.0 nm를 갖는 일 구현에서의 익스 시튜 타입-1 상단 SAF 실드(204)을 도시한다. 도 2c는, 도 2b에서 상단 SAF 실드를 포함하는 센서 구조의 자화용이 축에 따른 자화 곡선(또는 BH 루프)(210)(점선에 의해 도시됨), 및 (실질적으로 자화용이 축에 직교인 방향으로의) 자화곤란 축(hard axis)에 따른 자화 곡선(212)을 포함하는 그래프(206)를 도시한다. 그래프(206)는, (x-축을 따른) 필드 강도에 대한 (y-축을 따른) 플럭스 밀도의 값을 도시한다. 플럭스 밀도(nWb 단위로 측정됨)는, 필드 강도(에르스텟(Oersteds) 단위로 측정됨)가 계속해서 증가함에 따라, 플럭스 밀도가 더 이상 증가할 수 없고 일정하게 되는 특정한 값에 플럭스 밀도가 도달할 때까지 필드 강도에 비례하여 증가한다. 도 2c의 BH 루프(210)는, 타입-1 상단 SAF 실드가 최대 300 Oe의 필드 내에서 편평한 플랫폼을 가짐을 나타낸다. 그것은, 표류자계에 의해 영향을 받는 실드에 대한 소망하지 않은 도메인 이동들을 방지하고, 그에 의해 센서 안정성을 개선시킬 수 있다. 도 2c의 BH 루프(212)는, 도 2b의 타입-1 상단 SAF 실드가, 연강자성 재료들(예를 들어, NiFe 및 CoFe)을 포함하는 상단 실드의 이방성보다 대략적으로 ~500 Oe의 Hk 및 ~1100 Oe의 자화곤란 축 포화 필드(Hsat_H95)(자화곤란 축에 따른, 95%가 포화된 자기 필드)의 훨씬 더 높은 자기 이방성을 가짐을 나타낸다.
도 3a는, 익스 시튜 타입-2 향상된 상단 SAF 실드(302)의 구현을 도시한다. 자기 층-31 및 자기 층-34는, 대략적으로 10 nm 내지 50 nm의 두께를 갖는 연강자성 니켈 합금들(예를 들어, NiFe, NiFeCr, NiFeMo, NiFeW, CoNiFe 또는 CoNiFeB)로 이루어진다. 자기 층-32, 자기 층-33, 자기 층-35, 및 자기 층-36은, 0.5 nm 내지 20 nm 의 두께를 갖는 연강자성 코발트 층(예를 들어, CoFe, CoFeB, CoNiFe 및 CoNiFeB)으로 이루어진다. 비-자기 층-37 및 비-자기 층-38은, 대략적으로 0.3 nm-1.0 nm의 두께를 갖는 금속(예를 들어, Cu, Cr, Ag, Ru, 또는 Mo)으로 이루어지는 스페이스 층들이며, 이는, 자기 층-32와 자기 층-33 사이, 및 자기 층-35와 자기 층-36 사이에 반강자성 커플링을 제공한다. 반강자성 층(300)은, 대략적으로 5.0 nm 내지 10 nm의 두께를 갖는 PtMn, IrMn, NiMn, FeMn, CrPtMn, CrIrMn, CrNiMn, 또는 CrFeMn 으로 이루어지며, 이는, 상단 SAF 실드의 자화를 ABS 방향을 향해 피닝시킨다.
도 3b는, NiFe 25 nm/ CoFe 2.0 nm/ Ru 0.8 nm/ CoFe 2.0 nm/ NiFe 25 nm/ CoFe 2.0 nm/ Ru 0.8 nm/ CoFe 5 nm/ IrMn 7 nm를 갖는 일 구현에서의 익스 시튜 타입-2 상단 SAF 실드(304)를 도시한다.
도 3c는, 도 3b에서 익스 시튜 타입-2 상단 SAF 실드의 자화용이 축에 따른 BH 루프(310)(점선) 및 자화곤란 축에 따른 BH 루프(312)를 포함하는 그래프(306)를 도시한다. 도 3c의 BH 루프(310)는, 타입-2 상단 SAF 실드가 최대 300 Oe 내에서 편평한 플랫폼을 가짐을 나타낸다. 이는, 표류자계에 의해 영향을 받는 실드에 대한 소망하지 않은 도메인 이동들을 방지하고, 그에 의해 실드 내의 안정성을 개선시킬 수 있다. 도 3c에서의 BH 루프(312)는, 도 3b의 타입-2 상단 SAF 실드가, 연강자성 재료들(예를 들어, NiFe 및 CoFe)을 포함하는 상단 실드의 이방성과 비교하여 대략적으로 ~700 Oe의 Hk 및 ~ 2100 Oe의 Hsat_H95의 훨씬 더 높은 자기 이방성을 가짐을 나타낸다.
도 4a는 인 시튜 타입-1 하단 SAF 실드(402)의 일 구현을 도시한다. 자기 층-41 및 층-44의 층들은 연강자성 니켈 합금들(예를 들어, NiFe, NiFeCr, NiFeMo, NiFeW, CoNiFe, 또는 CoNiFeB)로 이루어진다. 자기 층-42, 자기 층-43, 및 자기 층-45는 연강자성 코발트 합금(예를 들어, CoFe, CoFeB, CoNiFe 또는 CoNiFeB)를 포함할 수도 있다. 비-자기 층-40은, 대략적으로 0 nm 내지 3.0 nm의 두께를 갖는 금속(예를 들어, Cu, Ag, Au, Al, Pt, Pd, Ru, Ta, Cr, 또는 Mo)을 포함할 수도 있으며, 이는, 상기 층들의 텍스처 성장을 촉진시키고 그레인 사이즈들을 제어한다.
비-자기 층-47은, 0.3 nm 내지 1.0 nm의 두께를 갖는 금속(예를 들어, Cu, Cr, Ag, Ru, 또는 Mo)으로 이루어지는 스페이스(space) 층이며, 이는, 자기 층-42와 자기 층-43 사이에 반강자성 커플링을 제공한다. 또한, 이것은, 상기 센서 스택에 대한 평활(smooth) 층이며 상기 AFM 층(400)의 그레인 사이즈를 제어한다.
도 4b는, Ta 1.0 nm/ NiFe 4.5 nm/ CoFe 0.5 nm/ Ru 0.8 nm/ CoFe 0.5 nm/ NiFe 4.0 nm/ CoFe 0.5 nm/ IrMn 7.0 nm를 포함하는 인 시튜 타입-1 하단 실드(404)의 구현을 도시한다.
도 4c는, 도 4b에서 하단 SAF 실드의 자화용이 축에 따른 BH 루프(410)(점선), 및 자화곤란 축에 따른 BH 루프(412)를 포함하는 그래프(406)를 도시한다. 도 4c에서의 BH 루프(412)는, 도 4b의 타입-1 하단 SAF 실드가, 연강자성 재료들(예를 들어, NiFe 또는 CoFe)의 외부 하단 실드보다 대략적으로 300 내지 800 Oe의 Hk 및 800 내지 1600 Oe의 Hsat_H95의 훨씬 더 높은 자기 이방성을 가짐을 나타낸다. 도 4c의 BH 루프(410)는, 타입-1 하단 SAF 실드가 300 Oe에 걸쳐 편평한 플랫폼을 가짐을 나타낸다. 이는, 표류자계로 인한 실드에 대한 소망하지 않은 도메인 이동들을 방지하고, 그에 의해, 안정성을 개선시킬 수 있다.
도 5a는, 인 시튜 타입-2 강화된 하단 SAF 실드(502)의 일 구현을 도시한다. 자기 층-51 및 자기 층-54의 층들은, 연강자성 니켈 합금(예를 들어, NiFe, NiFeCr, NiFeMo, NiFeW, CoNiFe, 또는 CoNiFeB)으로 이루어진다. 자기 층-52, 자기 층-53, 자기 층-55, 및 자기 층-56은, 연강자성 코발트 합금(예를 들어, CoFe, CoFeB, CoFeNi 또는 CoNiFeB)으로 이루어진다. 비-자기 층-50 층은, 대략적으로 0.0 nm 내지 3.0 nm의 두께를 갖는 금속(예를 들어, Cu, Ag, Au, Al, Pt, Pd, Ru, Ta, Cr, 또는 Mo)로 이루어지며, 이는, 상기 층들의 텍스처 성장을 촉진시키고 그레인 사이즈들을 제어한다. 비-자기 층-57 및 비-자기 층-58은, 대략적으로 0.3 nm 내지 1.0 nm의 두께를 갖는 금속(예를 들어, Cu, Cr, Ag, Ru, 또는 Mo)으로 이루어지는 스페이스 층들이며, 이는, 자기 층-52와 자기 층-53 사이, 및 자기 층-55와 층-56 사이에 반강자성 커플링을 제공하고, 이는 또한, 상기 스택에 대한 평활 층이며 상기 AFM 층(500)의 그레인 사이즈를 제어한다.
도 5b는, Ta 1 nm/ NiFe 4.5 nm/ CoFe 0.5 nm/ Ru 0.8 nm/ CoFe 0.5 nm/ NiFe 4.0 nm/ CoFe 0.5 nm/ Ru 0.8 nm/ CoFe 1.0 nm/ IrMn 7.0 nm를 포함하는 일 구현에서의 예시적인 인 시튜 타입-2 강화된 하단 SAF 실드(504)를 도시한다.
도 5c는, 도 5b에서 하단 SAF 실드의 자화용이 축에 따른 BH 루프(510), 및 자화곤란 축에 따른 BH 루프(512)를 포함하는 그래프(506)를 도시한다. 도 5c에서의 BH 루프(512)는, 도 5b의 타입-2 강화된 하단 SAF 실드가, 연강자성 재료들(예를 들어, NiFe 및 CoFe)을 포함하는 하단 실드의 이방성과 비교하여 대략적으로 ~2100 Oe의 Hk 및 ~2900 Oe의 Hsat_H95의 훨씬 더 높은 자기 이방성을 가짐을 나타낸다. 도 5c의 BH 루프(510)는, 타입-2 하단 SAF 실드가 300 Oe에 걸쳐 편평한 플랫폼을 가짐을 나타낸다. 이는, 표류자계로 인한 실드에 대한 소망하지 않은 도메인 이동들을 방지하고, 그에 의해, 안정성을 개선시킬 수 있다.
도 6a는, 인 시튜 타입-3 하단 SAF 실드(602)의 구현을 도시한다. 자기 층-61 및 자기 층-64의 층들은, 연강자성 니켈 합금(예를 들어, NiFe, NiFeCr, NiFeMo, NiFeW, CoFeNi, 또는 CoNiFeB)으로 이루어진다. 자기 층-62 및 자기 층-63은, 연강자성 코발트 합금(예를 들어, CoFe, CoFeB, CoFeNi, 또는 CoNiFeB)으로 이루어진다.
비-자기 층-60은, 대략적으로 0 nm 내지 3.0 nm의 두께를 갖는 금속(예를 들어, Cu, Cr, Ag, Au, Al, Pt, Pd, Ta, Ru, 또는 Mo)으로 이루어지며, 이는, 상기 층들의 텍스처 성장을 촉진시키고 및 그레인 사이즈들을 제어한다.
비-자기 층-67은, 대략적으로 0.3 nm 내지 1.0 nm의 두께를 갖는 금속(예를 들어, Cu, Ag, Ru, Cr, 또는 Mo)으로 이루어지는 스페이스 층이며, 이는 자기 층-62와 자기 층-63 사이에 반강자성 커플링을 제공하고, 이는 또한, 상기 스택에 대한 평활 층이며 상기 AFM 층(600)의 그레인 사이즈를 제어한다.
도 6b는, Ta 1.0 nm/ NiFe 4.5 nm/ CoFe 0.5 nm/ Ru 0.8 nm/ CoFe 0.5 nm/ NiFe 4.5 nm/ IrMn 7.0 nm를 포함하는 일 구현에서의 도 6a의 인 시튜 타입-3 하단 SAF 실드(604)의 예를 도시한다.
이제 도 7을 참조하면, 자기 엘리먼트 제조를 위한 방법의 예시적인 동작들(700)이 도시된다. 도시된 바와 같이, 하단 실드는 하단 실드를 형성하는 동작(702)에서 형성된다. 일 구현에서, 인 시튜 하단 SAF 실드 자기저항 스택은, 증착 동작(704)에서, 진공 중단 없이 증착된다. 그 후, 자기저항 접합이, 형성 동작(706)에서, 밀링(milling)에 의해 형성된다. 절연체는 증착 동작(708)에서 증착된다. 그 후, 측면 실드들이 다른 증착 동작(710)에서 증착된다. 익스 시튜 상단 SAF 실드는 증착 동작(712)에서 증착된다. 마지막으로, 상단 실드가 상단 실드를 형성하는 동작(714)에서 형성된다.
상기 규격, 예들, 및 데이터는, 본 발명의 예시적인 구현들의 사용 및 구조의 완전한 설명을 제공한다. 본 발명의 많은 구현들이 본 발명의 사상 및 범위를 벗어나지 않으면서 이루어질 수 있기 때문에, 본 발명은 아래에 첨부된 청구항들에 상주한다. 또한, 상이한 구현들의 구조적 특성들이 인용된 청구항들을 벗어나지 않으면서 또 다른 구현에서 결합될 수도 있다. 상술된 구현들 및 다른 구현들은 다음의 청구항들의 범위 내에 있다.

Claims (20)

  1. 자기저항(MR) 센서로서,
    상단 실드 합성 반강자성(synthetic antiferromagnetic)(SAF) 층을 포함하는 상단 실드와 하단 실드 SAF 층을 포함하는 하단 실드를 포함하는 센서 구조를 포함하고,
    상기 하단 실드 SAF 층은 에어-베어링 표면 방향에 수직으로 피닝되는 자화 배향을 갖는, 반강자성 층의 결정 텍스처 성장을 촉진시키는 시드 층으로서 기능하는,
    자기저항 센서.
  2. 삭제
  3. 제 1 항에 있어서,
    상기 상단 실드 SAF 층은 익스 시튜(ex situ) SAF 층인,
    자기저항 센서.
  4. 제 1 항에 있어서,
    상기 하단 실드 SAF 층은 인 시튜(in situ) SAF 층인,
    자기저항 센서.
  5. 제 4 항에 있어서,
    인 시튜 하단 실드 SAF 층은 시드 층으로서 기능하는,
    자기저항 센서.
  6. 제 1 항에 있어서,
    상기 상단 실드 SAF 층과 상기 하단 실드 SAF 층 사이에, 자유(free) 층, 배리어 층, 자기 기준 층, 커플링 스페이서(spacer), 자기 피닝된(pinned) 층, 및 반강자성 층을 포함하는 자기저항 센서 엘리먼트를 더 포함하는,
    자기저항 센서.
  7. 제 1 항에 있어서,
    상기 상단 실드 SAF 층은 익스 시튜 SAF 층이고, 상기 하단 실드 SAF 층은 인 시튜 SAF 층이며, 인 시튜 하단 실드 SAF 층은 시드 층으로서 기능하는,
    자기저항 센서.
  8. 제 7 항에 있어서,
    상기 하단 실드 SAF 층에 인접한 다결정질 조성(composition)의 반강자성 층을 더 포함하는,
    자기저항 센서.
  9. 제 8 항에 있어서,
    상기 반강자성 층은, 백금 및 망간 중 적어도 하나를 포함하는,
    자기저항 센서.
  10. 제 1 항에 있어서,
    상기 상단 실드 SAF 층은, 니켈 합금들 및 코발트 합금들 중 적어도 하나로 이루어진 층들을 더 포함하는,
    자기저항 센서.
  11. 제 1 항에 있어서,
    상기 하단 실드 SAF 층은, 니켈 합금들 및 코발트 합금들 중 적어도 하나로 이루어진 층들을 더 포함하는,
    자기저항 센서.
  12. 자기저항(MR) 센서로서,
    상단 실드 합성 반강자성(SAF) 층을 포함하는 상단 실드와 하단 실드 SAF 층을 포함하는 하단 실드를 포함하는 센서 구조를 포함하며,
    상기 상단 실드 SAF 층은 익스 시튜 상단 실드 SAF 층이고, 상기 하단 실드 SAF 층은 인 시튜 하단 실드 SAF 층이고,
    상기 하단 실드 SAF 층은 에어-베어링 표면 방향에 수직으로 피닝되는 자화 배향을 갖는, 반강자성 층의 결정 텍스처 성장을 촉진시키는 시드 층으로서 기능하는,
    자기저항 센서.
  13. 삭제
  14. 제 12 항에 있어서,
    상기 상단 실드 SAF 층은, 300 Oe보다 큰 자기 이방성 Hk를 갖는,
    자기저항 센서.
  15. 제 14 항에 있어서,
    상기 하단 실드 SAF 층은 300 Oe보다 큰 자기 이방성 Hk를 갖는,
    자기저항 센서.
  16. 자기저항(MR) 센서로서,
    다운-트랙(down-track) 방향을 따라 상단 실드와 하단 실드 사이에 구성되는 MR 스택;
    상기 상단 실드에 구성되는 상단 실드 SAF 층; 및
    상기 하단 실드에 구성되는 하단 실드 SAF 층
    을 포함하고,
    상기 하단 실드 SAF 층은 에어-베어링 표면 방향에 수직으로 피닝되는 자화 배향을 갖는 시드 층으로서 기능하는,
    자기저항 센서.
  17. 제 16 항에 있어서,
    상기 상단 실드 SAF 층은 익스 시튜 프로세스를 사용하여 구성되는,
    자기저항 센서.
  18. 제 16 항에 있어서,
    상기 하단 실드 SAF 층은 인 시튜 프로세스를 사용하여 구성되는,
    자기저항 센서.
  19. 삭제
  20. 제 16 항에 있어서,
    상기 상단 실드 SAF 층의 이방성 Hk는 300 Oe보다 큰,
    자기저항 센서.
KR1020150028038A 2014-02-27 2015-02-27 자기저항 센서 KR101691893B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/192,388 US9368136B2 (en) 2014-02-27 2014-02-27 Magnetoresistive sensor having synthetic antiferromagnetic layer in top and bottom shields
US14/192,388 2014-02-27

Publications (2)

Publication Number Publication Date
KR20150101953A KR20150101953A (ko) 2015-09-04
KR101691893B1 true KR101691893B1 (ko) 2017-01-02

Family

ID=53882831

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150028038A KR101691893B1 (ko) 2014-02-27 2015-02-27 자기저항 센서

Country Status (4)

Country Link
US (1) US9368136B2 (ko)
JP (1) JP2015162260A (ko)
KR (1) KR101691893B1 (ko)
CN (1) CN104978978B (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9412401B2 (en) * 2014-05-13 2016-08-09 Seagate Technology Llc Data reader magnetic shield with CoFeNiB material
US9454979B1 (en) * 2014-11-14 2016-09-27 Seagate Technology Llc Sensor structure with multilayer top shield
US9922670B1 (en) * 2015-04-30 2018-03-20 Seagate Technology Llc Method of manufacturing a recessed data reader pinning structure with vertical sidewall
US20160365104A1 (en) 2015-06-15 2016-12-15 Seagate Technology Llc Magnetoresistive sensor fabrication
US9552834B1 (en) * 2015-09-28 2017-01-24 Seagate Technology Llc Stabilization of one or more upper sensors in multi-sensor readers
US9947344B2 (en) * 2016-04-12 2018-04-17 International Business Machines Corporation Stabilizing layered structure for magnetic tape heads
US9870791B1 (en) * 2016-04-15 2018-01-16 Seagate Technology Llc Stabilization of one or more upper sensors in multi-sensor readers
US9786305B1 (en) * 2016-05-12 2017-10-10 Western Digital (Fremont), Llc Magnetic read apparatus having multiple read sensors with reduced sensor spacing usable in two-dimensional magnetic recording applications
CN113449834A (zh) * 2020-03-26 2021-09-28 希捷科技有限公司 具有多层合成铁磁体自由层的读取器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060158792A1 (en) * 2005-01-20 2006-07-20 Hitachi Global Storage Technologies Netherlands, B.V. In-stack biasing of the free layer of a magnetoresistive read element
US20090279213A1 (en) 2008-05-09 2009-11-12 Headway Technologies, Inc. Stabilized shields for magnetic recording heads
US20100079917A1 (en) 2008-09-29 2010-04-01 Tdk Corporation Magnetoresistive element including a pair of free layers coupled to a pair of shield layers

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205052B1 (en) * 1999-10-21 2001-03-20 Motorola, Inc. Magnetic element with improved field response and fabricating method thereof
US7611912B2 (en) * 2004-06-30 2009-11-03 Headway Technologies, Inc. Underlayer for high performance magnetic tunneling junction MRAM
JP2007219130A (ja) * 2006-02-16 2007-08-30 Renesas Technology Corp マスクブランクの欠陥検査方法及び欠陥検査装置、並びにそれらを用いた半導体装置の製造方法
US7606007B2 (en) * 2006-02-17 2009-10-20 Hitachi Global Storage Technologies Netherlands B.V. Shield stabilization for magnetoresistive sensors
US8477461B2 (en) * 2008-07-29 2013-07-02 Tdk Corporation Thin film magnetic head having a pair of magnetic layers whose magnetization is controlled by shield layers
US8755152B1 (en) * 2008-09-24 2014-06-17 Western Digital (Fremont), Llc Method and system for providing an improved sensor stack for a recording head
US8437105B2 (en) * 2009-07-08 2013-05-07 Seagate Technology Llc Magnetic sensor with composite magnetic shield
US8922950B2 (en) * 2011-05-06 2014-12-30 Seagate Technology Llc Multi-layer magnetoresistive shield with transition metal layer
US20120327537A1 (en) * 2011-06-23 2012-12-27 Seagate Technology Llc Shield Stabilization Configuration With Applied Bias
US20130341743A1 (en) * 2012-06-25 2013-12-26 Seagate Technology Llc Devices including tantalum alloy layers
US8797692B1 (en) * 2012-09-07 2014-08-05 Western Digital (Fremont), Llc Magnetic recording sensor with AFM exchange coupled shield stabilization
US8760820B1 (en) * 2012-11-30 2014-06-24 Seagate Technology Llc Magnetic element with coupled side shield
US8638530B1 (en) * 2013-02-20 2014-01-28 HGST Netherlands B.V. Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor having a top shield with an antiparallel structure
US8780505B1 (en) * 2013-03-12 2014-07-15 Western Digital (Fremont), Llc Method and system for providing a read transducer having an improved composite magnetic shield

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060158792A1 (en) * 2005-01-20 2006-07-20 Hitachi Global Storage Technologies Netherlands, B.V. In-stack biasing of the free layer of a magnetoresistive read element
US20090279213A1 (en) 2008-05-09 2009-11-12 Headway Technologies, Inc. Stabilized shields for magnetic recording heads
US20100079917A1 (en) 2008-09-29 2010-04-01 Tdk Corporation Magnetoresistive element including a pair of free layers coupled to a pair of shield layers

Also Published As

Publication number Publication date
US9368136B2 (en) 2016-06-14
KR20150101953A (ko) 2015-09-04
US20150243307A1 (en) 2015-08-27
CN104978978B (zh) 2019-06-21
JP2015162260A (ja) 2015-09-07
CN104978978A (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
KR101691893B1 (ko) 자기저항 센서
US8638530B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor having a top shield with an antiparallel structure
US8576518B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with exchange-coupled side shield structure
US8514525B2 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with reference layer integrated in magnetic shield
JP5764684B2 (ja) スピンホール効果を利用する磁気読み取りセンサー
US8780506B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with side shields and an antiparallel structure top shield
US8077435B1 (en) Current perpendicular-to-plane read sensor with back shield
US8913349B2 (en) CPP-type magnetoresistance effect element and magnetic disk device using side shield layers
US9019664B2 (en) Magnetoresistive sensor with variable shield permeability
US7808748B2 (en) Magnetoresistive element including heusler alloy layer
US10090008B2 (en) Magnetoresistive sensor fabrication
US7872837B2 (en) Method and apparatus for providing a magnetic read sensor having a thin pinning layer and improved magnetoreistive coefficient
US8988832B2 (en) Magnetoresistive sensor shield
US9646635B2 (en) Magnetoresistive sensor
US8922953B1 (en) Dual current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with antiparallel-free (APF) structure and integrated reference layers/shields
US8576519B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with magnetic damping material at the sensor edges
US7177120B2 (en) Self-pinned spin valve sensor with a high coercivity antiparallel (AP) pinned layer
WO2008020817A1 (en) Read head and magnetic device comprising the same
US20090168269A1 (en) Current perpendicular to plane spin valve with high-polarization material in ap1 layer for reduced spin torque
US7268986B2 (en) Double tunnel junction using self-pinned center ferromagnet
US20150311430A1 (en) Magnetoresistive sensor
US9087525B2 (en) Layered synthetic anti-ferromagnetic upper shield
US9251815B2 (en) Magnetoresistive sensor with AFM-stabilized bottom shield
US7397638B2 (en) Magnetoresistive sensor having an in stack bias structure with NiFeCr spacer layer for improved bias layer pinning
US8902549B1 (en) Enhanced pinning property by inserted Si seed layer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant