KR101687761B1 - Membrane filtration wastewater treatment system using the Stain resistance surface modified membrane - Google Patents

Membrane filtration wastewater treatment system using the Stain resistance surface modified membrane Download PDF

Info

Publication number
KR101687761B1
KR101687761B1 KR1020160084729A KR20160084729A KR101687761B1 KR 101687761 B1 KR101687761 B1 KR 101687761B1 KR 1020160084729 A KR1020160084729 A KR 1020160084729A KR 20160084729 A KR20160084729 A KR 20160084729A KR 101687761 B1 KR101687761 B1 KR 101687761B1
Authority
KR
South Korea
Prior art keywords
membrane
water
sludge
unit
treatment system
Prior art date
Application number
KR1020160084729A
Other languages
Korean (ko)
Inventor
김찬정
Original Assignee
주식회사 동아기술공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동아기술공사 filed Critical 주식회사 동아기술공사
Priority to KR1020160084729A priority Critical patent/KR101687761B1/en
Application granted granted Critical
Publication of KR101687761B1 publication Critical patent/KR101687761B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/109Characterized by the shape
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to a contamination-resistant surface modified membrane and a membrane filtration wastewater treatment system using the same. Provided is the membrane filtration wastewater treatment system using the contamination-resistant surface modified membrane, the system comprising: a storage unit which is equipped with a screen, and which deposits sludge by using gravity; an activated sludge part which includes a lower stage and an upper stage, in which the upper stage receives upper wastewater of influent water stored in the lower stage, which treats the influence water by using microorganisms, and in which inflow of the wastewater to the upper stage is performed by a screw device; a transfer part which transfers deposits, present in a lower region of the treated water, to the activated sludge part, and which discharges upper treated water; a membrane separation part which introduces the treated water into a plurality of module housings, in which interiors of the module housings are composed of surface-modified separation membranes, and which includes an influent water transfer conduit configured to discharge water, passing through the separation membrane, to a passed water discharge conduit and to discharge treated water, not passing through the separation membrane, to the transfer part; and a sterilization part which sterilizes the treated water by radiating ultraviolet rays onto the treated water by means of a light source means. A plurality of sludge deposition steps using gravity are included as a preprocessing process for a membrane separation process and an activated sludge process is employed, and thus membrane contamination can be reduced and maintenance, repair and management can be facilitated. Surface modification is performed by using an amphiphilic separation membrane having both hydrophilicity and hydrophobicity, and thus contamination of the separation membrane can be reduced, thereby increasing lifespan and thus increasing economic efficiency. A water treatment process is simplified into five steps, and thus economic efficiency can be increased. Moreover, the system can be manufactured in various sizes, including a large size and a small size.

Description

표면개질 내오염성 분리막 및 이를 이용한 막여과 하폐수 처리 시스템{Membrane filtration wastewater treatment system using the Stain resistance surface modified membrane}TECHNICAL FIELD The present invention relates to a surface-modified stain resistant membrane and a membrane filtration wastewater treatment system using the stain resistant membrane,

본 발명은 양친매성막을 이용한 표면개질 내오염성 분리막 및 이를 이용한 막여과 하폐수 처리 시스템으로, 보다 상세하게는 스크린이 시설되고, 중력에 의하여 슬러지를 침전시키는 저장부, 하부단과 상부단으로 구성되고, 상기 상부단은 하부단에 저장되어 있는 유입수의 상부영역 폐수를 유입시켜 미생물에 의하여 수처리하며, 상부단으로 폐수의 유입은 스크루장치에 의하여 실시되는 활성슬러지부, 처리수의 하부영역에 침전물을 활성슬러지부로 반송시키고, 상부영역의 처리수는 배출하는 반송부, 복수개의 모듈 하우징 내부로 처리수를 주입시키고, 모듈하우징 내부는 표면개질된 분리막으로 이루어져 있으며, 상기 분리막으로 투과된 투과수는 투과수 배출관, 투과되지 못한 처리수를 반송부로 배출하는 유입수 반송관을 포함하여 이루어지는 막분리부, 처리수를 광원수단으로 자외선을 조사하여 살균처리하는 살균부로 이루어진 표면개질 내오염성 분리막 및 이를 이요한 막여과 하폐수 처리 시스템에 관한 것이다.More particularly, the present invention relates to a membrane-filtration wastewater treatment system using an amphipathic membrane and a membrane filtration wastewater treatment system using the same, and more particularly, to a system for treating wastewater containing a storage part for depositing sludge by gravity, a lower end and an upper end, And the upper end is connected to an activated sludge part which is carried out by a screw device, and a sediment to an activated sludge part in a lower part of the treated water, And the module housing is made of a surface-modified separation membrane, and the permeated water permeated through the separation membrane passes through the permeated water discharge pipe And an inflow water conveying pipe for discharging the untransferred treated water to the conveying portion A membrane separation part, and a sterilizing part for sterilizing the treated water by irradiating ultraviolet rays with light source means, and a membrane filtration wastewater treatment system using the same.

일반적으로 종래의 하폐수 처리방법들로는 물리적 처리, 화학적 처리 및 생물학적 처리를 중심으로 시행되고 있으며, 물리적 처리는 하폐수 중의 고형물을 중력에 의해 액체로부터 분리하거나 또는 기타의 물리적 방법으로 처리하는 공법으로 처리의 한계성이 있고, 화학적 처리는 화학 약품을 하폐수에 첨가하여 중화 또는 pH조정, 산화환원, 응집 침전, 흡착등의 처리공법으로 화학약품 비용 및 슬러지 발생량의 증가에 따른 처리비용이 매우 높으며, 상기 물리 화학적 방법의 단점을 보완하기 위하여 생물학적 고도처리방법을 적용하고 있으나 생물학적 고도 처리방법인 경우 유입수 중의 유기물과 영양염류의 농도에 따라 처리 효율에 큰 영향을 받고 있으며, 이에 활성미생물에 의한 영양염류 제거율의 신뢰가 낮은 형편이다.In general, conventional wastewater treatment methods are mainly focused on physical treatment, chemical treatment and biological treatment, and physical treatment is a method in which solids in wastewater are separated from liquid by gravity or treated by other physical methods, , And the chemical treatment is very expensive due to the increase in chemical cost and sludge generation amount by the treatment method such as neutralization or pH adjustment, redox treatment, coagulation sedimentation, adsorption, etc. by adding chemicals to the wastewater, In order to compensate for the disadvantages of biosolids treatment, biological elevation treatment methods have been influenced greatly by the concentration of organic matter and nutrients in influent water. However, the reliability of nutrient removal by active microorganisms It is low.

상기의 문제점에 따라서 최근에는 막분리 공정이 활발히 연구 및 실시되고 있는 실정으로 막분리 공정은 기화 및 응축을 반복하는 증류 공정과는 달리 상변화를 필요로 하지 않는 물리 기계적인 분리 조작으로 기존의 에너지 다소비형인 공정과 비교하여 70~80% 또는 그 이상까지도 에너지를 절약할 수 있고, 특히, 한외여과는 오염된 물을 전처리 하는 과정에서 매우 중요한 공정이며, 수천 내지 수십만에 달하는 콜로이드 입자나 거대분자를 분리하며, 미생물, 바이러스 및 각종 단백질 분리와 유가공 제품에도 사용 되어진다.In recent years, the membrane separation process has been actively researched and carried out in accordance with the problems described above. Unlike a distillation process in which vaporization and condensation are repeated, the membrane separation process is a physical mechanical separation operation that does not require a phase change. In particular, ultrafiltration is a very important process in the process of pretreatment of contaminated water, and it is a very important process to process thousands to hundreds of thousands of colloidal particles or macromolecules It is also used for microbial, virus and various protein separation and dairy products.

반면, 상기 막분리공정은 현재까지 상당한 기술적인 진보가 있어왔지만, 분리막 연구개발의 커다란 기술적인 어려움으로 꼽히는 것은 오염물질의 비가역적인 흡착에 의한 분리막 오염과 이로 인한 시스템 성능의 저하이다. 그 결과 수처리 공정의 경제적인 효율은 갈수록 떨어지고 대형 산업에 적용하기도 어려움을 겪고 있으며, 그에 따라서 수처리 분리막의 오염을 최소화하고 사용수명을 최대한 연장할 수 있는 기술의 개발이 증가되고 있고, 그 방법으로는 오존 또는 자외선 전처리, 역세척, 화학약품 세척 및 적절한 모듈 디자인 선택과 가동조건 조절등이 있으나 이미 분리막이 충분히 오염되었다고 판단하였을 때 실시하는 일회성 처치수단에 지나지 않으므로 수질 오염원의 비가역적 흡착을 줄여 내오염성을 향상시키기 위한 근본적인 방안이 필요한 실정이다.On the other hand, although there has been considerable technological progress in the membrane separation process up to now, a major technical difficulty in separator membrane research and development is separation membrane contamination due to irreversible adsorption of contaminants and deterioration of system performance. As a result, the economical efficiency of the water treatment process is gradually decreasing and it is difficult to apply to a large-sized industry. Accordingly, the development of a technique for minimizing the contamination of the water treatment membrane and extending the service life is increasing. Ozone or UV pretreatment, backwashing, chemical cleaning and selection of appropriate module design and control of operating conditions. However, since it is nothing more than a one-time treatment means when it is judged that the separation membrane is sufficiently contaminated, irreversible adsorption of water pollution source is reduced, And the like.

상기 수처리 분리막의 사용수명을 늘리기 위한 근본적인 방안으로는 대부분의 오염물질은 소수성을 띄기 때문에 분리막을 친수화로 개질하면 표면에 물분자층을 형성함으로 오염물질에 저항성을 가져 흡착을 줄여주는 분리막 소재의 친수성(hydrophilicity)을 향상하는 방법, 오염물질과 분리막 표면의 정전기적 반발력을 이용하는 것으로 분리막 표면의 전하와 오염물질 전하를 동일하게 하는 표면전하(surface charge)를 조절하는 방법 및 PEG(poly ethylene glycol)와 같은 친수성의 긴 고분자 사슬을 표면에 그래프팅하여 거대분자로 이루어진 콜로이드의 흡착을 방지하는 것으로 입체반발을 유도하는 방법등이 있다. 그러나, 상기의 방법들도 기술적 한계가 있다는 문제점은 여전히 가지고 있다.In order to increase the service life of the water treatment separator, most of the contaminants are hydrophobic. Therefore, when the separation membrane is modified by hydrophilization, a water molecule layer is formed on the surface of the separator. (PEG), which is a method of controlling the surface charge, which makes the charge and contaminant charge equal on the surface of the separator, by using the electrostatic repulsive force of the contaminants and the surface of the separator, And a method in which steric repulsion is induced by grafting a long hydrophilic polymer chain on the surface to prevent adsorption of colloid composed of macromolecules. However, the above-mentioned methods still have a problem that there are technical limitations.

따라서, 상기 문제점들을 해결하기 위해 친수성 및 소수성을 동시에 가지고 있는 양친매성막으로 수처리하는 방법이 제시되고 있으며, 그 선행기술로는 한국공개특허 제10-2015-0086244호(2015. 07. 27.) 양친매성 블록 코폴리머로 이루어진 일체형-비대칭 중공사 폴리머막의 제조방법, 수득된 중공사막 및 그 용도에 관한 것으로 건식/습식 방사법으로 이소포러스 외피, 포러스 내피 및 스펀지-유사 내부구조를 갖는 자립 일체형-비대칭 중공사 폴리머막을 제조하기 위하여 건식/습식 방사법을 이용하는 방법을 제공하고 있다.Accordingly, in order to solve the above-mentioned problems, a method of water treatment with an amphiphilic film having both hydrophilic and hydrophobic has been proposed. As a prior art, Korean Patent Laid-Open No. 10-2015-0086244 (May 27, 2015) Asymmetric hollow polymer membrane comprising an amphipathic block copolymer, the obtained hollow fiber membrane and the use thereof, which relates to a self-assembled monolithic asymmetric membrane having an isophorus envelope, a porous endothelium and a sponge-like internal structure by dry / wet spinning A method of using dry / wet spinning to produce a hollow fiber polymer membrane is provided.

한국공개특허 제10-2015-0086244호(2015. 07. 27.)Korean Patent Publication No. 10-2015-0086244 (June 27, 2015)

본 발명이 이루고자 하는 기술적 과제는 상기와 같은 종래 일반적인 기술과, 선행기술들의 수처리 분리막의 내오염성 문제점을 해결하는 것으로, 근본적인 해결책으로 소수성과 친수성을 가지고 있는 양친매성막을 이용하여 막분리 공정을 실시하고, 상기 양친매성막 구성을 독립적으로 고려하지 않고, 미생물을 이용한 전처리 과정을 실시하여 종합적인 안목으로 분리막 오염저감 및 하폐수처리 시스템을 제공하는 것이다.The present invention has been made in view of the above problems, and it is an object of the present invention to solve the problem of contamination resistance of the water treatment separator of the prior art as described above, and a membrane separation process is performed using an amphiphilic membrane having hydrophobicity and hydrophilicity as a fundamental solution A pretreatment process using a microorganism without considering the constitution of the amphiphilic film independently, and to provide a system for reducing separation membrane pollution and a wastewater treatment system with a comprehensive view.

상기와 같은 문제점을 해결하고 목적을 달성하기 위하여 본 발명의 일실시예에 따른 표면개질 내오염성 분리막 및 이를 이용한 막여과 하폐수 처리 시스템은 저장부(10), 활성슬러지부(20), 반송부(30), 막분리부(40) 및 살균부(50)로 구성되되, 상기 저장부(10)는 스크린(12)이 시설되어 유입되는 폐수내 입자크기가 큰 슬러지를 제거한 후 유입시켜 저장하고, 중력에 의하여 슬러지를 침전시키며, 상기 활성슬러지부(20)는 내부에 분리판으로 하부단(22)과 상부단(26)으로 구성되고, 상기 하부단(22)은 저장부(10)에 폐수가 유입되어 저장되는 유입수를 중력에 의해 슬러지를 침전시키며, 상기 상부단(26)은 다공성 볼(28)이 복수개 충진되어 있고, 하부단(22)에 저장되어 있는 유입수의 상부영역 폐수를 유입시켜 미생물에 의하여 수처리하고, 상부단(26)으로 폐수의 유입은 천장의 모터가 고정되어 연결설치되는 스크루장치(24)에 의하여 실시되고, 상기 반송부(30)는 상기 상부단(26)에서 처리된 처리수를 유입시켜 슬러지를 중력에 의하여 침전시키며, 처리수의 하부영역에 침전물을 활성슬러지부(20) 하부단(22)으로 반송시키고, 상부영역의 처리수는 배출하며, 상기 막분리부(40)는 반송부(30)에서 배출되는 처리수를 복수개의 모듈하우징(42) 내부로 주입시키고, 모듈하우징(42) 내부는 친수성 및 소수성을 포함되어 표면개질된 분리막인 양친매성막(44)으로 이루어져 있으며, 상기 분리막으로 투과된 투과수를 배출하는 투과수 배출관(48) 및 투과되지 못한 슬러지 및 미생물을 포함하는 처리수를 반송부(30)로 배출하는 유입수 반송관(46)을 포함하여 이루어져 있고, 상기 살균부(50)는 투과수 배출관(48)을 통하여 유입되는 처리수를 광원수단(52)으로 자외선을 조사하여 살균처리하며, 상기 광원수단(52)을 감싸는 석영셀(54)과 알루미늄 재질의 반사틀(56)로 이루어진다.In order to solve the above-mentioned problems and to achieve the object, the surface-modified contaminant separating membrane according to an embodiment of the present invention and the membrane filtration wastewater treatment system using the same include a storage unit 10, an activated sludge unit 20, And the sterilizing unit 50. The storage unit 10 removes sludge having a large particle size in the wastewater to which the screen 12 is installed to introduce the sludge into the storage unit 10, The activated sludge part 20 is formed as a separation plate in the form of a lower end 22 and an upper end 26 and the lower end 22 is connected to the waste water The upper end 26 is filled with a plurality of porous balls 28 and the upper area wastewater of the inflow water stored in the lower end 22 flows into the upper end 26 of the sludge Water treatment by the microorganism, and the upper end (26) Is carried out by a screw device (24) to which a ceiling motor is fixedly connected, and the conveying part (30) introduces treated water from the upper end (26) to sediment the sludge by gravity, The sediment is returned to the lower end 22 of the activated sludge section 20 in the lower region of the water and the treated water in the upper region is drained and the membrane separation section 40 separates the treated water discharged from the return section 30 The module housing 42 is filled with the amphiphilic membrane 44, which is a surface-modified membrane including hydrophilic and hydrophobic, and discharges the permeated water through the membrane housing 42 And an inflow water conveyance pipe 46 for discharging the treated water including the permeated water discharge pipe 48 and the untransferred sludge and microorganisms to the transfer unit 30. The sterilizing unit 50 is connected to the permeated water discharge pipe 48) A quartz cell 54 surrounding the light source means 52 and a reflective frame 56 made of aluminum.

상기 활성슬러지부(20)에서 스크루장치(24)는 일반적으로 사용되는 펌프를 이용하여 폐수를 상부단(26)으로 유입시킬 수 있는 것을 대체 가능하며, 상부단(26) 측면 또는 하부면에 산기관(미도시)을 설치한다.In the activated sludge section 20, the screw device 24 can be replaced with a pump that is generally used to introduce wastewater into the upper end 26, Install an engine (not shown).

상기 활성슬러지부(20) 다공성 볼(28)은 톱밥 또는 일정크기의 나무, 제올라이트, 황토 및 패각분말이 부피비율 1:0.5~0.6:0.3~0.4:0.1~0.2로 혼합되어 소성된 재질로 구성되고, 상기 톱밥 또는 일정크기의 나무재질은 볼 외부면에 돌출 및 노출되되 그 내부는 혐기성균이 주입되어 투입되며, 상기 다공성 볼(28)이 반송부(30)로 배출되는 것을 방지하기 위해 격자망이 배출구에 설치된다.The activated sludge part 20 porous ball 28 is composed of a material obtained by mixing sawdust or wood of a certain size, zeolite, loess, and shell powder in a volume ratio of 1: 0.5 to 0.6: 0.3 to 0.4: 0.1 to 0.2 In order to prevent the porous balls 28 from being discharged to the carry section 30, the sawtooth or wood material of a predetermined size is protruded and exposed to the outer surface of the ball, and the inside thereof is filled with anaerobic bacteria, A net is installed at the outlet.

상기 막분리부(40)의 표면개질된 분리막인 양친매성막(44)은 불소계 폴리플루오린화비닐라덴(PVDF), 소수성 물질인 PMMA{Poly(methyl methacrylate)}와 친수성 물질인 PPEGMEMA{Poly(polyethylene glycol methyl ether methacrylate)}의 공중합체인 PMMA-b-PPEGMEMA 및 염화리튬(LiCl)로 혼합된 용액을 부직포 위에 부은 후 독터 블레이드로 캐스팅을 한 후 25℃ 증류수에 함침하여 제조한다.The amphiphilic film 44 which is a surface modified membrane of the membrane separation unit 40 may be formed of fluorinated polyfluorinated vinylidene (PVDF), a hydrophobic material such as PMMA (poly (methyl methacrylate)) and a hydrophilic material PPEGMEMA glycol methyl ether methacrylate)}, which is a copolymer of PMMA-b-PPEGMEMA and lithium chloride (LiCl), is cast on a nonwoven fabric, cast with a doctor blade, and impregnated with distilled water at 25 ° C.

상기 막분리부(40)의 유입수 반송관(46) 관면적이 유입구로부터 작게 구배를 주어 내부 유압을 높여 양친매성막(44) 투과수의 양을 높이거나, 상기 유입수 반송관(46) 유입구에 금속막을 부착시켜 유압을 높여준다.The pipe area of the inflow water conveyance pipe 46 of the membrane separation unit 40 is made to be small from the inlet so as to increase the internal hydraulic pressure to increase the amount of permeated water in the amphiphilic membrane 44, Attach metal film to increase hydraulic pressure.

상기 살균부(50)는 180~300nm 크기의 파장세기로 조사되고, 반사틀(56)이 "U"형상을 이루어 광원수단(52)에서 조사되는 자외선의 분포를 넓히고 처리수에 집중시키는 하폐수 처리 시스템을 제공한다.The sterilizing unit 50 is irradiated with a wavelength intensity of 180 to 300 nm and the reflecting frame 56 is shaped like a U to perform a wastewater treatment for widening the distribution of ultraviolet rays irradiated by the light source unit 52 and concentrating the ultraviolet rays on the treated water System.

이상에서 설명한 바와 같이 본 발명에 의한 표면개질 내오염성 분리막 및 이를 이용한 막여과 하폐수 처리 시스템은 다음과 같은 효과가 있다.As described above, the surface-modified contaminant separation membrane according to the present invention and the membrane filtration wastewater treatment system using the same have the following effects.

(1) 본 발명은 막분리공정 전처리 과정으로 중력을 이용한 슬러지 침전 과정을 복수개 포함하고, 활성슬러지법을 실시하여 막오염을 줄이고, 유지 및 관리를 편리하게 실시 한다.(1) The present invention includes a plurality of sludge settling processes using gravity by a pretreatment process of a membrane separation process, and an activated sludge process is performed to reduce membrane contamination, and to facilitate maintenance and management.

(2) 본 발명은 친수성 및 소수성을 가지는 양친매성 분리막을 사용하여 표면개질함으로써 분리막 오염이 저감되어 사용수명이 늘어나 경제성이 높다.(2) According to the present invention, surface modification by using an amphipathic separation membrane having hydrophilicity and hydrophobicity reduces contamination of the separation membrane and increases service life, resulting in high economic efficiency.

(3) 본 발명은 수처리 과정을 다섯개의 공정으로 간소화하여 경제성을 높이고, 그 구성을 대형 또는 소형으로 제작이 가능하다는 장점을 가지고 있다. (3) The present invention has an advantage in that the water treatment process can be simplified to five processes to improve the economical efficiency, and the configuration can be made large or small.

도 1은 본 발명의 바람직한 일 실시예에 따른 표면개질 내오염성 분리막 및 이를 이용한 막여과 하폐수 처리 시스템의 흐름도이다.
도 2는 본 발명의 바람직한 일 실시예에 따른 활성슬러지부의 내부 수처리 흐름을 나타내는 단면도이다.
도 3은 본 발명의 바람직한 일 실시예에 따른 막분리부의 내부 수처리 흐름을 나타내는 단면도이다.
도 4는 본 발명의 바람직한 일 실시예에 따른 살균부의 단면도이다.
1 is a flow chart of a surface modification intumescent separation membrane and a membrane filtration wastewater treatment system using the same according to a preferred embodiment of the present invention.
FIG. 2 is a cross-sectional view illustrating an internal water treatment flow of an activated sludge according to a preferred embodiment of the present invention.
3 is a cross-sectional view illustrating an internal water treatment flow of a membrane separation unit according to a preferred embodiment of the present invention.
4 is a cross-sectional view of a sterilizing part according to a preferred embodiment of the present invention.

본 발명의 명칭은 "표면개질 내오염성 분리막 및 이를 이용한 막여과 하폐수 처리 시스템"으로 통상의 기술자가 쉽게 알 수 있도록 구체적인 내용을 기재하고 충분히 유추 가능한 별도의 기재는 생략하며 필요 경우 실시예 및 도면을 기재한다. 또한, 본 명세서 및 특허청구범위에서 정의된 용어들은 한정 해석하지 아니하며, 운용자의 의도 또는 관례 등에 따라 달라질 수 있고, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.The present invention will be described in detail with reference to the accompanying drawings, wherein like reference numerals refer to like elements, and in which: Fig. 1 is a cross-sectional view of a water- . In addition, terms defined in the present specification and claims are not to be interpreted as limiting, and may be changed according to the intention or custom of the operator, and should be construed in a meaning and a concept consistent with the technical idea of the present invention.

본 발명의 일면에 있어서,In one aspect of the present invention,

도 1은 본 발명의 바람직한 일 실시예에 따른 표면개질 내오염성 분리막 및 이를 이용한 막여과 하폐수 처리 시스템의 흐름도이고, 도 2는 본 발명의 바람직한 일 실시예에 따른 활성슬러지부의 내부 수처리 흐름을 나타내는 단면도이며, 도 3은 본 발명의 바람직한 일 실시예에 따른 막분리부의 내부 수처리 흐름을 나타내는 단면도이고, 도 4는 본 발명의 바람직한 일 실시예에 따른 살균부의 단면도로 도 1 내지 도 4를 참고하여 하기에 더욱 상세하게 개진한다.FIG. 1 is a flow chart of a surface modification internal contaminant separation membrane and a membrane filtration wastewater treatment system using the same according to a preferred embodiment of the present invention, and FIG. 2 is a cross-sectional view showing an internal water treatment flow of an activated sludge section according to a preferred embodiment of the present invention FIG. 3 is a cross-sectional view illustrating an internal water treatment flow of a membrane separation unit according to a preferred embodiment of the present invention. FIG. 4 is a sectional view of a sterilizing unit according to a preferred embodiment of the present invention, In detail.

분리막을 이용한 막여과 하폐수 처리 시스템은 저장부(10), 활성슬러지부(20), 반송부(30), 막분리부(40) 및 살균부(50)로 구성되되, 상기 저장부(10)는 스크린(12)이 시설되어 유입되는 폐수내 입자크기가 큰 슬러지를 제거한 후 유입시켜 저장하고, 중력에 의하여 슬러지를 침전시키며, 상기 활성슬러지부(20)는 내부에 분리판으로 하부단(22)과 상부단(26)으로 구성되고, 상기 하부단(22)은 저장부에 폐수가 유입되어 저장되는 유입수를 중력에 의해 슬러지를 침전시키며, 상기 상부단(26)은 다공성 볼(28)이 복수개 충진되어 있고, 하부단(22)에 저장되어 있는 유입수의 상부영역 폐수를 유입시켜 미생물에 의하여 수처리하고, 상부단(26)으로 폐수의 유입은 천장의 모터가 고정되어 연결설치되는 스크루장치(24)에 의하여 실시되고, 상기 반송부(30)는 상기 상부단(26)에서 처리된 처리수를 유입시켜 슬러지를 중력에 의하여 침전시키며, 처리수의 하부영역에 침전물을 활성슬러지부(20)로 반송시키고, 상부영역의 처리수는 배출하며, 상기 막분리부(40)는 반송부(30)에서 배출되는 처리수를 복수개의 모듈하우징(42) 내부로 주입시키고, 모듈하우징(42) 내부는 친수성 및 소수성을 포함되어 표면개질된 분리막인 양친매성막(44)으로 이루어져 있으며, 상기 분리막으로 투과된 투과수를 배출하는 투과수 배출관(48) 및 투과되지 못한 슬러지 및 미생물을 포함하는 처리수를 반송부로 배출하는 유입수 반송관(46)을 포함하여 이루어져 있고, 상기 살균부(50)는 투과수 배출관(48)을 통하여 유입되는 처리수를 광원수단(52)으로 자외선을 조사하여 살균처리하며, 상기 광원수단(52)을 감싸는 석영셀(54)과 알루미늄 재질의 반사틀(56)로 이루어진다.The membrane filtration wastewater treatment system using the separation membrane is composed of a storage unit 10, an activated sludge unit 20, a transport unit 30, a membrane separation unit 40 and a sterilizing unit 50, And the activated sludge part 20 is separated into a lower end 22a and a lower end 22b as a separating plate in the inside of the activated sludge part 20. The screen 12 is installed to remove the sludge having a large particle size in the inflow wastewater, And the upper end 26 of the lower end 22 precipitates the sludge by the gravity of the inflow water to which the wastewater flows and is stored, And the upper end wastewater stored in the lower end 22 flows into the upper end 26 to be treated with microorganisms and the wastewater is introduced into the upper end 26 through a screw device 24), and the carry section (30) is carried out by the upper end (26) The sludge is settled by gravity, the sediment is returned to the activated sludge section 20 in the lower region of the treated water, the treated water in the upper region is drained, And the amphiphilic film 44, which is a surface-modified separation membrane containing hydrophilicity and hydrophobicity, is injected into the module housing 42, and the process water discharged from the transfer unit 30 is injected into the module housings 42 And a permeated water discharge pipe (48) for discharging permeated water permeated to the separation membrane, and an inflow water conveyance pipe (46) for discharging treated water containing untransferred sludge and microorganisms to the transfer section, The microfluidic device 50 sterilizes the treated water flowing through the permeated water discharge tube 48 by irradiating ultraviolet rays to the light source means 52. The quartz cell 54 surrounds the light source means 52, (56) The lure is.

상기 활성슬러지부(20)에서 스크루장치(24)는 일반적으로 사용되는 펌프를 이용하여 폐수를 상부단(26)으로 유입시킬 수 있는 것을 대체 가능하며, 상부단(26) 측면 또는 하부면에 산기관(미도시)을 설치한다.In the activated sludge section 20, the screw device 24 can be replaced with a pump that is generally used to introduce wastewater into the upper end 26, Install an engine (not shown).

상기 활성슬러지부(20) 다공성 볼(28)은 톱밥 또는 일정크기의 나무, 제올라이트, 황토 및 패각분말이 부피비율 1:0.5~0.6:0.3~0.4:0.1~0.2로 혼합되어 소성된 재질로 구성되고, 상기 톱밥 또는 일정크기의 나무재질은 볼 외부면에 돌출 및 노출되되 그 내부는 혐기성균이 주입되어 투입되며, 상기 다공성 볼(28)이 반송부(30)로 배출되는 것을 방지하기 위해 격자망이 배출구에 설치된다.The activated sludge part 20 porous ball 28 is composed of a material obtained by mixing sawdust or wood of a certain size, zeolite, loess, and shell powder in a volume ratio of 1: 0.5 to 0.6: 0.3 to 0.4: 0.1 to 0.2 In order to prevent the porous balls 28 from being discharged to the carry section 30, the sawtooth or wood material of a predetermined size is protruded and exposed to the outer surface of the ball, and the inside thereof is filled with anaerobic bacteria, A net is installed at the outlet.

상기 막분리부(40)의 표면개질된 분리막인 양친매성막(44)은 불소계 폴리플루오린화비닐라덴(PVDF), 소수성 물질인 PMMA{Poly(methyl methacrylate)}와 친수성 물질인 PPEGMEMA{Poly(polyethylene glycol methyl ether methacrylate)}의 공중합체인 PMMA-b-PPEGMEMA 및 염화리튬(LiCl)로 혼합된 용액을 부직포 위에 부은 후 독터 블레이드로 캐스팅을 한 후 25℃ 증류수에 함침하여 제조한다.The amphiphilic film 44 which is a surface modified membrane of the membrane separation unit 40 may be formed of fluorinated polyfluorinated vinylidene (PVDF), a hydrophobic material such as PMMA (poly (methyl methacrylate)) and a hydrophilic material PPEGMEMA glycol methyl ether methacrylate)}, which is a copolymer of PMMA-b-PPEGMEMA and lithium chloride (LiCl), is cast on a nonwoven fabric, cast with a doctor blade, and impregnated with distilled water at 25 ° C.

상기 PMMA-b-PPEGMEMA 공중합체의 합성은 CuCl1, toluene, dNbpy(4,4'-dinonyl-2,2'-dipyridyl), MMA(Methyl methacrylate,99%) 및 toluene에 녹인 2-EBP(Ethyl 2-bromo propionate, 98%)을 25℃에서 아르곤 분위기에서 혼합 반응시킨 반응용액을 80℃ oil bath에 넣어 16~18시간동안 전환(conversion)이 95%되면 -78℃ 에서 반응을 끝내고, 퀀칭된 용액은 THF(tetrahydrofuran 99.9%)에 희석시킨 후 알루미늄옥사이드 컬럼에 통과시킨 뒤 용액이 모아지면 압력을 낮춰 용매를 제거하고, 응축된 용액을 methanol에 한 방울씩 떨어뜨려 걸러진 하얀색 결과물을 25℃, 진공에서 48시간동안 건조하여 PMMA를 제조한다.The PMMA-b-PPEGMEMA synthesis of the copolymer CuCl 1, toluene, dNbpy (4,4' -dinonyl-2,2'-dipyridyl), MMA (Methyl methacrylate, 99%) and 2-EBP (Ethyl dissolved in toluene 2-bromo propionate, 98%) were mixed in an argon atmosphere at 25 ° C. The reaction solution was put in an oil bath at 80 ° C and the reaction was terminated at -78 ° C when the conversion was 95% for 16-18 hours. The solution was diluted with THF (tetrahydrofuran 99.9%) and then passed through an aluminum oxide column. When the solution was collected, the solvent was removed by lowering the pressure. The condensed solution was dropped in methanol dropwise, For 48 hours to produce PMMA.

상기 PMMA 전구체 다음으로 순차적으로 PPEGMEMA 공중합 시키는데, 합성 방법은 CuCl1, toluene, dNbpy(4,4'-dinonyl-2,2'-dipyridyl), PMMA 및 PEGMEMA를 차례대로 25℃에서 아르곤 분위기에서 혼합하여 중합이 20시간동안 95%의 전환(conversion)을 이루면 -78℃에서 반응을 멈추고 hexan에 침전을 잡았으며, 상기 PMMA와 PPEGMEMA의 중량 비율은 1:2로 한다.The PMMA precursor is then subjected to PPEGMEMA copolymerization in sequence. The synthesis method is to mix CuCl 1 , toluene, dNbpy (4,4'-dinonyl-2,2'-dipyridyl), PMMA and PEGMEMA in an argon atmosphere at 25 ° C When the polymerization had a conversion of 95% for 20 hours, the reaction was stopped at -78 ° C and precipitation was carried out on hexane. The weight ratio of PMMA to PPEGMEMA was 1: 2.

상기 폴리플루오린화비닐라덴(PVDF), 소수성 물질인 PMMA{Poly(methyl methacrylate)}와 친수성 물질인 PPEGMEMA{Poly(polyethylene glycol methyl ether methacrylate)}의 공중합체인 PMMA-b-PPEGMEMA 및 염화리튬(LiCl)은 중량비율 1:0.1~1:0.01~0.1 로 하는 것이 바람직하며, 그이유로는 PMMA-b-PPEGMEMA공중합체와 LiCl은 첨가제로써 분리막 구조 형성에 큰 영향을 갖으므로 PMMA-b-PPEGMEMA 공중합체의 함량이 증가할수록 친수기인 PPEGMEMA의 양이 증가하여 제조중 물이 침투하는 속도가 빨라지기 때문에 표면 기공의 크기와 수가 증가하고 분리막의 뚜께도 증가하며, LiCl의 함량이 증가하면 도프 용액의 점도가 증가하여 상부니 속도가 느려지게 되고, 따라서 분리막의 두께와 macrovoid는 감소하였으며, PMMA-b-PPEGMWMA 공중합체와 LiCl의 조성을 중량비율을 1:0.1로하여 제조되었을때 표면에 균일한 크기의 기공이 형성되기 때문이다.PMMA-b-PPEGMEMA and lithium chloride (LiCl), which are copolymers of polyfluorinated vinylidene (PVDF), hydrophobic materials such as PMMA (poly (methyl methacrylate)) and hydrophilic materials such as PPEGMEMA (Polyethylene glycol methyl ether methacrylate) Of the PMMA-b-PPEGMEMA copolymer and the LiCl are added to the PMMA-b-PPEGMEMA copolymer because the PMMA-b-PPEGMEMA copolymer and LiCl have a great influence on the formation of the separator structure by the weight ratio of 1: 0.1-1: 0.01-0.1. As the content increases, the amount of PPEGMEMA, which is a hydrophilic group, increases, so that the rate of penetration of water increases during the manufacturing process. Therefore, the size and number of surface pores increase and the viscosity of the membrane increases. When the content of LiCl increases, The thickness of the membrane and the macrovoid were decreased. When the composition of the PMMA-b-PPEGMWMA copolymer and LiCl was produced at a weight ratio of 1: 0.1, uniform pore size .

상기 막분리부(40)의 유입수 반송관(46) 관면적이 유입구로부터 작게 구배를 주어 내부 유압을 높여 양친매성막(44) 투과수의 양을 높이거나, 상기 유입수 반송관(46) 유입구에 금속막을 부착시켜 유압을 높여준다.The pipe area of the inflow water conveyance pipe 46 of the membrane separation unit 40 is made to be small from the inlet so as to increase the internal hydraulic pressure to increase the amount of permeated water in the amphiphilic membrane 44, Attach metal film to increase hydraulic pressure.

상기 살균부(50)는 180~300nm 크기의 파장세기로 조사되고, 반사틀(56)이 "U"형상을 이루어 광원수단(52)에서 조사되는 자외선의 분포를 넓히고 처리수에 집중시킨다.The sterilizing unit 50 is irradiated with a wavelength intensity of 180 to 300 nm and the reflection frame 56 has a U shape to widen the distribution of ultraviolet rays irradiated by the light source unit 52 and concentrate the treatment water.

실험예 : 응집 특성 시험Experimental Example: Coagulation characteristic test

S하수종말처리장에서 채취한 원수를 본 발명에 따른 처리공정인 스크린이 시설되고 1차 침전시키는 저장부(10), 2차 침전후 상부영역의 폐수를 미생물이 함유된 처리조로 투입하는 활성슬러지부(20), 3차 침전시키고 침전물을 2차 침전공정으로 반송시키고 상부영역은 막분리부(40)로 배출하는 반송부(30), 양친매성막(44)으로 구성된 한외여과막을 이용한 막분리부(40) 및 자외선을 185nm 파장세기로 조사하여 살균하는 살균부(50)와 동일한 조건으로 구성된 흐름으로 처리한 후 원수 및 처리수를 채취하여 COD, BOD, pH농도 및 탁도를 측정하였다.S is a storage section (10) in which raw water collected in a sewage end treatment plant is treated and first settled by a screen, which is a treatment process according to the present invention, an activated sludge section (30) for carrying out a third precipitation, transporting the precipitate to the second precipitation process and discharging the upper region to the membrane separation section (40), and an amphiphilic membrane (44) BOD, pH concentration and turbidity were measured by treating the treated water with a flow of the same conditions as those of the sterilizing unit 50 for irradiating ultraviolet rays with a wavelength of 185 nm and sterilizing the ultraviolet rays.

구분division CODCOD BODBOD pHpH 탁도Turbidity 폐수원수Raw water source 2857.52857.5 3897.33897.3 5.25.2 1.7221.722 처리수Treated water 3.93.9 1.91.9 7.17.1 0.5210.521

상기 표 1을 살펴보면 처리된 폐수의 COD, BOD는 90%이상 제거되었고, pH의 변화는 약알칼리성으로 측정되었으며, 탁도도 60%이상 맑아지는 결과를 확인할 수 있다. 또한, 본 발명의 공정에 의하여 막 오염을 줄여 분리막의 교체량을 줄임으로써 유지비용도 절감할 수 있다.As shown in Table 1, COD and BOD of the treated wastewater were removed by 90% or more, pH was slightly alkaline, and turbidity was clarified by 60% or more. Also, by reducing the contamination of the membrane by the process of the present invention, the amount of replacement of the separation membrane can be reduced and the maintenance cost can also be reduced.

추가의 일면에 있어서,In a further aspect,

저장부(10)에 산화알루미늄(Al2O3)의 농도가 50~65%인 알루미늄 클로 하이드레이트, 염화알루미늄 및 폴리알루미늄 클로라이드 중에서 선택된 하나와, 농도가 30~60인 염산(HCl)및 순도가 60~98%인 빙초산을 중량비율로 1:0.5~1:0.1~0.3으로 혼합하여, 제올라이트, 패각분말 및 활성규사(quartz sand) 분말을 1:0.5~2:0.1~2:00.5~2의 중량비로 혼합하고, 70~80℃ 가열 후 농도가 10~40%인 가성소다(NaOH)를 혼합물의 중량비율 1:0.01~0.03으로 혼합한뒤 150~210℃의 조건하에서 10~16시간 반응시키고, 10~30℃ 냉각시켜 제조된 응집제를 저장부(10)에 투입하여 응집처리하는 과정을 실시 할 수 있다.The storage portion 10 is provided with one selected from aluminum chelate, aluminum chloride and polyaluminum chloride having a concentration of aluminum oxide (Al 2 O 3 ) of 50 to 65%, hydrochloric acid (HCl) having a concentration of 30 to 60 and purity The powder of zeolite, the shell powder and the active quartz sand are mixed at a weight ratio of 1: 0.5 to 2: 0.1 to 2: 00.5 to 2 (NaOH) having a concentration of 10 to 40% after heating at 70 to 80 ° C is mixed at a weight ratio of the mixture of 1: 0.01 to 0.03, and the mixture is reacted at 150 to 210 ° C for 10 to 16 hours , And the coagulant prepared by cooling at 10 to 30 ° C may be put into the storage section 10 and subjected to coagulation treatment.

또는, 구조유도체 주형 물질인 메조포러스 실리카(mesoporous silica;MS)를 계면활성제를 사용하여 계면활성제와 실리카의 상호 작용에 의해서 합성하여 흡착제를 제조할 수 있는데 상기 계면활성제 분자의 머리 부분에 있는 양전하와 규산 음이온이 정전기적 균형을 맞추기 위하여 결합하는 동시에 액정구조의 형성과 구조화에 참여하여 육각형 배열구조의 계면활성제의 액정 구조가 형성되고 합성이 안정화된 후 고온으로 소성시키면 구조유도체인 계면활성제는 탄화되고 다공성을 가지는 실리카겔만 남게되며 제조된 메조포러스 실리카의 표면 개질은 중금속 또는 소수성 유기화합물의 흡착에 용이하다. 따라서 상기 제조된 메조포러스 실리카 흡착제를 저장부(10)에 직접 투입하거나 격자형식의 구조물등에 코팅하여 투입하여 하폐수내 중금속을 제거하는 구성을 추가할 수 있다.Alternatively, mesoporous silica (MS), which is a structural derivative material, can be synthesized by the interaction of surfactant and silica using a surfactant to produce an adsorbent. The positive charge at the head of the surfactant molecule When silicate anions are combined to form an electrostatic balance and at the same time participate in the formation and structuring of the liquid crystal structure, a liquid crystal structure of a hexagonal arrayed surfactant is formed. When the synthesis is stabilized and then sintered at a high temperature, the surfactant as a structural derivative is carbonized Only the porous silica gel is left, and the surface modification of the mesoporous silica is easy to adsorb heavy metals or hydrophobic organic compounds. Therefore, it is possible to add a structure for directly injecting the mesoporous silica adsorbent into the storage part 10 or coating the mesoporous silica adsorbent on a lattice-type structure or the like to remove heavy metals in the wastewater.

이상에서 설명한 바와 같이 본 발명에 의한 표면개질 내오염성 분리막 및 이를 이용한 막여과 하폐수 처리 시스템은 막분리공정 전처리 과정으로 중력을 이용한 슬러지 침전 과정을 복수개 포함하고, 활성슬러지법을 실시하여 막오염을 줄이고, 유지 및 관리를 편리하게 실시하고, 친수성 및 소수성을 가지는 양친매성 분리막을 사용하여 표면개질함으로써 분리막 오염이 저감되어 사용수명이 늘어나 경제성이 높으며, 수처리 과정을 다섯개의 공정으로 간소화하여 경제성을 높이고, 그 구성을 대형 또는 소형으로 제작이 가능하다는 장점을 가진다.As described above, the surface-modified contaminant separator according to the present invention and the membrane filtration wastewater treatment system using the same include a plurality of sludge settling processes using gravity by a pretreatment process of a membrane separation process, and an activated sludge process is performed to reduce membrane contamination , Maintenance and management are conveniently carried out, and surface modification is carried out using an amphipathic separation membrane having hydrophilic and hydrophobic properties, thereby decreasing separation membrane contamination and increasing service life, resulting in high economic efficiency. In addition, the water treatment process is simplified to five processes, It has an advantage that the structure can be made large or small.

이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었지만, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술은 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.While the present invention has been described in connection with certain exemplary embodiments and drawings, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, Various modifications and variations are possible.

10 : 저장부 42 : 모듈하우징
12 : 스크린 44 : 양친매성막
20 : 활성슬러지부 46 : 유입수 반송관
22 : 하부단 47 : 금속막
24 : 스크루장치 48 : 투과수 배출관
26 : 상부단 50 : 살균부
28 : 다공성 볼 52 : 광원수단
29 : 격자망 54 : 석영셀
30 : 반송부 56 : 반사틀
40 : 막분리부
10: Storage part 42: Module housing
12: Screen 44:
20: Activated sludge section 46: Influent conveying pipe
22: lower end 47: metal film
24: Screw device 48: Permeated water outlet pipe
26: Upper end 50: Sterilization part
28: Porous ball 52: Light source means
29: Grid network 54: Quartz cell
30: conveying section 56: reflection frame
40:

Claims (6)

분리막을 이용한 막여과 하폐수 처리 시스템에 있어서,
상기 시스템은 저장부, 활성슬러지부, 반송부, 막분리부 및 살균부로 구성되되,
상기 저장부는 스크린이 시설되어 유입되는 폐수내 입자크기가 큰 슬러지를 제거한 후 유입시켜 저장하고, 중력에 의하여 슬러지를 침전시키며,
상기 활성슬러지부는 내부에 분리판으로 하부단과 상부단으로 구성되고, 상기 하부단은 저장부에 폐수가 유입되어 저장되는 유입수를 중력에 의해 슬러지를 침전시키며, 상기 상부단은 다공성 볼이 복수개 충진되어 있고, 하부단에 저장되어 있는 유입수의 상부영역 폐수를 유입시켜 미생물에 의하여 수처리하고, 상부단으로 폐수의 유입은 천장의 모터가 고정되어 연결설치되는 스크루장치에 의하여 실시되고,
상기 반송부는 상기 상부단에서 처리된 처리수를 유입시켜 슬러지를 중력에 의하여 침전시키며, 처리수의 하부영역에 침전물을 활성슬러지부로 반송시키고, 상부영역의 처리수는 배출하며,
상기 막분리부는 반송부에서 배출되는 처리수를 복수개의 모듈 하우징 내부로 주입시키고, 모듈하우징 내부는 친수성 및 소수성을 포함되어 표면개질된 분리막인 양친매성막으로 이루어져 있으며, 상기 분리막으로 투과된 투과수를 배출하는 투과수 배출관 및 투과되지 못한 슬러지 및 미생물을 포함하는 처리수를 반송부로 배출하는 유입수 반송관을 포함하여 이루어져 있고,
상기 살균부는 투과수 배출관을 통하여 유입되는 처리수를 광원수단으로 자외선을 조사하여 살균처리하며, 상기 광원수단을 감싸는 석영셀과 알루미늄 재질의 반사틀로 이루어지는 것을 특징으로 하는 표면개질 내오염성 분리막을 이용한 막여과 하폐수 처리 시스템.
A membrane filtration wastewater treatment system using a membrane,
The system comprises a storage unit, an activated sludge unit, a transport unit, a membrane separation unit, and a sterilizing unit,
The storage unit removes sludge having a large particle size in the wastewater into which the screen is installed and then flows in and stores the sludge. The sludge is precipitated by gravity,
The activated sludge section is composed of a lower plate and an upper end, and the lower end deposits the sludge by gravity on the inflow water, which is supplied and stored in the storage section. The upper end of the activated sludge section is filled with a plurality of porous balls And the upper area wastewater stored in the lower end is introduced and treated by microorganisms and the wastewater is introduced into the upper end by a screw device in which a ceiling motor is fixed and connected,
Wherein the returning unit causes the sludge to be settled by gravity by introducing the treated water from the upper end to return the sediment to the activated sludge section in the lower region of the treated water,
The membrane separation unit injects the treated water discharged from the transport unit into a plurality of module housings, and the interior of the module housing is composed of an amphiphilic membrane, which is a surface modified membrane including hydrophilic and hydrophobic, And an inflow water conveying pipe for discharging treated water containing untransferred sludge and microorganisms to the conveying unit,
Wherein the sterilizing unit comprises a quartz cell enclosing the light source means and a reflecting frame made of aluminum, the sterilizing unit irradiating the treated water flowing through the permeated water outlet tube with ultraviolet rays by irradiating ultraviolet rays, Membrane filtration wastewater treatment system.
제1 항에 있어서,
상기 활성슬러지부에서 스크루장치는 일반적으로 사용되는 펌프를 이용하여 폐수를 상부단으로 유입시킬 수 있는 것을 대체 가능하며, 상부단 측면 또는 하부면에 산기관(미도시)을 설치하는 것을 특징으로 하는 표면개질 내오염성 분리막을 이용한 막여과 하폐수 처리 시스템.
The method according to claim 1,
In the activated sludge section, the screw apparatus may be replaced with a pump which is generally used to introduce the wastewater into the upper end, and an accumulator (not shown) is installed on the upper end surface or the lower surface Membrane Filtration and Wastewater Treatment System Using Surface Modification Contaminated Membrane.
제1 항에 있어서,
상기 활성슬러지부 다공성 볼은 톱밥 또는 일정크기의 나무, 제올라이트, 황토 및 패각분말이 부피비율 1:0.5~0.6:0.3~0.4:0.1~0.2로 혼합되어 소성된 재질로 구성되고, 상기 톱밥 또는 일정크기의 나무재질은 볼 외부면에 돌출 및 노출되되 그 내부는 혐기성균이 주입되어 투입되며, 상기 다공성 볼이 반송부로 배출되는 것을 방지하기 위해 격자망이 배출구에 설치되는 것을 특징으로 하는 표면개질 내오염성 분리막을 이용한 막여과 하폐수 처리 시스템.
The method according to claim 1,
Wherein the activated sludge part porous balls are composed of a material obtained by mixing sawdust or wood of a predetermined size, zeolite, loess, and shell powder in a volume ratio of 1: 0.5 to 0.6: 0.3 to 0.4: 0.1 to 0.2, Wherein the mesh is protruded and exposed to the outer surface of the ball, the inside of which is injected with anaerobic bacteria, and the mesh is installed at the discharge port to prevent the porous ball from being discharged to the transport section. Membrane filtration wastewater treatment system using contaminated membrane.
제1 항에 있어서,
상기 막분리부의 표면개질된 분리막은 불소계 폴리플루오린화비닐라덴(PVDF), 소수성 물질인 PMMA{Poly(methyl methacrylate)}와 친수성 물질인 PPEGMEMA{Poly(polyethylene glycol methyl ether methacrylate)}의 공중합체인 PMMA-b-PPEGMEMA 및 염화리튬(LiCl)로 혼합된 용액을 부직포 위에 부은 후 독터 블레이드로 캐스팅을 한 후 25℃ 증류수에 함침하여 제조하는 것을 특징으로 하는 표면개질 내오염성 분리막을 이용한 막여과 하폐수 처리 시스템.
The method according to claim 1,
The surface-modified separation membrane of the membrane separation unit may be formed of a fluorinated polyfluorinated vinylidene (PVDF), a hydrophobic PMMA (poly (methyl methacrylate)) and a hydrophilic PPEGMEMA (polyethylene glycol methyl ether methacrylate) b-PPEGMEMA and lithium chloride (LiCl) is poured on a nonwoven fabric, cast with a doctor blade, and impregnated with distilled water at 25 ° C. The membrane filtration and wastewater treatment system using the surface-
제1 항에 있어서,
상기 막분리부의 유입수 반송관 관면적이 유입구로부터 작게 구배를 주어 내부 유압을 높여 양친매성막 투과수의 양을 높이거나, 상기 유입수 반송관 유입구에 금속막을 부착시켜 유압을 높여주는 것을 특징으로 하는 표면개질 내오염성 분리막을 이용한 막여과 하폐수 처리 시스템.
The method according to claim 1,
Wherein an area of the inflow water return pipe of the membrane separation unit is made small from the inlet so as to raise the internal hydraulic pressure to increase the amount of the permeated membrane for the amphiphilic membrane or to attach the metal membrane to the inflow water feed pipe inlet, Membrane Filtration and Wastewater Treatment System Using Modified Contamination Membrane.
제1 항에 있어서,
상기 살균부는 180~300nm 크기의 파장세기로 조사되고, 반사틀이 "U"형상을 이루어 광원수단에서 조사되는 자외선의 분포를 넓히고 처리수에 집중시키는 것을 특징으로 하는 표면개질 내오염성 분리막을 이용한 막여과 하폐수 처리 시스템.
The method according to claim 1,
Wherein the sterilizing unit is irradiated with a wavelength intensity of 180 to 300 nm and the reflection frame has a "U" shape, and the distribution of ultraviolet rays irradiated by the light source unit is widened and concentrated in the treatment water. Filtration wastewater treatment system.
KR1020160084729A 2016-07-05 2016-07-05 Membrane filtration wastewater treatment system using the Stain resistance surface modified membrane KR101687761B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160084729A KR101687761B1 (en) 2016-07-05 2016-07-05 Membrane filtration wastewater treatment system using the Stain resistance surface modified membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160084729A KR101687761B1 (en) 2016-07-05 2016-07-05 Membrane filtration wastewater treatment system using the Stain resistance surface modified membrane

Publications (1)

Publication Number Publication Date
KR101687761B1 true KR101687761B1 (en) 2016-12-19

Family

ID=57735428

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160084729A KR101687761B1 (en) 2016-07-05 2016-07-05 Membrane filtration wastewater treatment system using the Stain resistance surface modified membrane

Country Status (1)

Country Link
KR (1) KR101687761B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101742755B1 (en) * 2017-02-02 2017-06-15 주식회사 동아기술공사 Wastewater activated sludge treatment system for nitrogen and phosphorus removal
KR101795608B1 (en) * 2017-02-10 2017-12-01 (주)퍼스트엔지니어링 Vertical gravity sedimentation wastewater treatment system
WO2020175801A1 (en) * 2019-02-27 2020-09-03 (주)승진바이오 Water treatment agent using torrefied wood powder for deodorization and water purification, and method for manufacturing same
CN113230901A (en) * 2021-06-24 2021-08-10 浙江工业大学 Super-amphiphilic/submerged super-amphiphobic PAN composite membrane for emulsion separation, and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441208B1 (en) * 2001-10-24 2004-07-22 삼성엔지니어링 주식회사 Batch style waste water treatment apparatus using biological filtering process and waste water treatment method using the same
JP2006082024A (en) * 2004-09-16 2006-03-30 Kurita Water Ind Ltd Biological treatment apparatus
KR100917839B1 (en) * 2009-02-05 2009-09-18 브니엘 워터 주식회사 Treatment method for waste water
JP2014133216A (en) * 2013-01-11 2014-07-24 Stanley Electric Co Ltd Ultraviolet irradiator
KR20150086244A (en) 2012-11-22 2015-07-27 헬름올츠-첸트룸 게스트하흐트 첸트룸 푀어 마테리알-운드 퀴스텐포르슝 게엠베하 Method for producing an integral-asymmetric hollow-fibre polymer membrane consisting of an amphiphilic block copolymer, the hollow-fibre membrane obtained and the use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441208B1 (en) * 2001-10-24 2004-07-22 삼성엔지니어링 주식회사 Batch style waste water treatment apparatus using biological filtering process and waste water treatment method using the same
JP2006082024A (en) * 2004-09-16 2006-03-30 Kurita Water Ind Ltd Biological treatment apparatus
KR100917839B1 (en) * 2009-02-05 2009-09-18 브니엘 워터 주식회사 Treatment method for waste water
KR20150086244A (en) 2012-11-22 2015-07-27 헬름올츠-첸트룸 게스트하흐트 첸트룸 푀어 마테리알-운드 퀴스텐포르슝 게엠베하 Method for producing an integral-asymmetric hollow-fibre polymer membrane consisting of an amphiphilic block copolymer, the hollow-fibre membrane obtained and the use thereof
JP2014133216A (en) * 2013-01-11 2014-07-24 Stanley Electric Co Ltd Ultraviolet irradiator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101742755B1 (en) * 2017-02-02 2017-06-15 주식회사 동아기술공사 Wastewater activated sludge treatment system for nitrogen and phosphorus removal
KR101795608B1 (en) * 2017-02-10 2017-12-01 (주)퍼스트엔지니어링 Vertical gravity sedimentation wastewater treatment system
WO2020175801A1 (en) * 2019-02-27 2020-09-03 (주)승진바이오 Water treatment agent using torrefied wood powder for deodorization and water purification, and method for manufacturing same
CN113230901A (en) * 2021-06-24 2021-08-10 浙江工业大学 Super-amphiphilic/submerged super-amphiphobic PAN composite membrane for emulsion separation, and preparation method and application thereof
CN113230901B (en) * 2021-06-24 2022-04-19 浙江工业大学 Super-amphiphilic/submerged super-amphiphobic PAN composite membrane for emulsion separation, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR101687761B1 (en) Membrane filtration wastewater treatment system using the Stain resistance surface modified membrane
CA2642327C (en) Filtration appliance for sewage treatment using ceramic-based membrane
CN1232453C (en) Mehtod and apparatus for treating waste water
KR101162808B1 (en) Eco bio reactive system for water quality purification
KR20100093433A (en) Apparatus and method for treatment of textile wastewater using anaerobic-aerobic biofilter and post ozone process
CN108483806A (en) A kind of advanced waste treatment system and technique using activated carbon catalysis ozone pre-oxidation
CN106946407A (en) A kind of process for reclaiming of crushed coal pressure gasifying wastewater biochemical water outlet
JP2007136365A (en) Method for producing granular microbe sludge
Acarer A review of microplastic removal from water and wastewater by membrane technologies
CN105236670A (en) Biological reaction and adsorption water purifying device used for waste water treatment
CA2560794C (en) Tankage system incorporating adsorption clarification and parallel plate separation
JP6184541B2 (en) Sewage treatment apparatus and sewage treatment method using the same
Mahmood et al. Membrane design for extractive membrane bioreactor (EMBR): Mass transport, developments, and deployment
CN212924753U (en) Plastic regeneration cleaning wastewater treatment system
KR101667932B1 (en) Apparatus and method for anaerobic wastewater treatment with membrane distillation
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP2014000495A (en) Sewage treatment apparatus, and sewage treatment method using the same
RU2606610C2 (en) Method of processing and recycling of waste waters formed from production of polyvinyl chloride
CN109052840B (en) BDP waste water multistage coupling zero release water processing system
CN1803675A (en) Method and apparatus for advanced treatment and reclamation of industrial wastewater
CN113683240B (en) Method and device for treating hospital sewage by physical and chemical method
RU2600752C1 (en) Method and apparatus for cleaning and decontamination of waste water
CN1935689A (en) Apparatus and method for treating sewage by air-lift internal circulating membrane bioreactor
CN206014610U (en) A kind of dyeing waste water end secondary decolourization system
KR100971530B1 (en) Wastewater treatment apparatus having bioreactor filled with media containing immobilized microbe and method of treating wastewater

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant