KR101678938B1 - Photoelectrical device based on transition metal phosphorus sulfides materials - Google Patents

Photoelectrical device based on transition metal phosphorus sulfides materials Download PDF

Info

Publication number
KR101678938B1
KR101678938B1 KR1020160003001A KR20160003001A KR101678938B1 KR 101678938 B1 KR101678938 B1 KR 101678938B1 KR 1020160003001 A KR1020160003001 A KR 1020160003001A KR 20160003001 A KR20160003001 A KR 20160003001A KR 101678938 B1 KR101678938 B1 KR 101678938B1
Authority
KR
South Korea
Prior art keywords
transition metal
channel layer
photoelectric device
crps
materials
Prior art date
Application number
KR1020160003001A
Other languages
Korean (ko)
Inventor
박배호
이상익
이미정
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020160003001A priority Critical patent/KR101678938B1/en
Application granted granted Critical
Publication of KR101678938B1 publication Critical patent/KR101678938B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0871Complete apparatus or systems; circuits, e.g. receivers or amplifiers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/06Ceramics; Glasses; Refractories
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Light Receiving Elements (AREA)

Abstract

The present invention relates to a photo-electrical device using phosphorus sulfides combined with a transition metal having a layered structure (transition metal phosphorus sulfides (MPSx); M is the transition metal, 0 < x <= 10). The photo-electrical device includes a channel layer disposed on a gate insulation layer, a plurality of electrodes spaced apart from each other for applying a voltage onto the channel layer, and a gate electrode prepared to form an electronic field on the gate insulation layer, wherein the channel layer is the phosphorus sulfides combined with the transition metal having the layered structure.

Description

MPSx 물질을 이용한 광전소자{Photoelectrical device based on transition metal phosphorus sulfides materials}&Lt; Desc / Clms Page number 1 &gt; Photoelectrical device based on transition metal phosphorus sulfide materials

본 발명은 층상구조를 갖는 전이 금속이 결합된 황화인(transition metal phosphorus sulfides, MPSx; M=전이금속, 0<x≤10)을 이용한 광전소자에 관한 것이다.
The present invention relates to a photoelectric device using transition metal phosphorus sulfides (MPSx; M = transition metal, 0 < x &lt; = 10) having a layered structure.

2차원 물질은 다양한 전기적 특성과 잠재적인 응용 가능성으로 인하여 새로운 물질로서 활발히 연구되고 있다. 이러한 물질로는 그래핀이 가장 많은 주목을 받고 있으며, 이외에도 절연물질인 질화붕소(boron nitride; BN)와 반도체인 MoS2와 WSe2 등이 전계효과 트랜지스터(FETs)의 게이트 절연물질과 채널 물질로서 관심을 받고 있다.Two-dimensional materials are being actively studied as new materials due to their various electrical properties and their potential applicability. Graphene has attracted the greatest attention as such materials, and boron nitride (BN), which is an insulating material, and MoS 2 and WSe 2 , which are semiconductors, are used as gate insulating materials and channel materials of field effect transistors I am interested.

MoS2와 WSe2와 같은 2차원 물질들은 박리법을 이용하여 두께제어가 용이하고 두께에 따라서 직접 밴드갭(direct band gap)을 가짐으로써 FET 소자뿐만 아니라 광전소자로써 많은 연구가 이루어지고 있다. 또한 이러한 2차원 물질을 이용함으로써 유연하고 투명한 광전소자로 응용이 가능하다.Two-dimensional materials such as MoS 2 and WSe 2 have been studied as a photoelectric device as well as an FET device because of easy thickness control using a stripping method and a direct band gap depending on the thickness. Moreover, by using such two-dimensional material, it is possible to apply it as a flexible and transparent photoelectric device.

최근 O. Lopenz-Sanchez 등에 의해 2013년7월에 nature nanotechnology, Vol. 8에서는 MoS2 단일층을 이용한 고감도의 광검출 소자를 발표하였다.Recently, in O. Lopenz-Sanchez et al., In July 2013, Nature Nanotechnology, Vol. 8 presented a high-sensitivity photodetector using MoS 2 monolayer.

도 1의 (a)(b)는 상기 광검출 소자의 단면 구성을 보여주는 도면으로서, 광검출 소자는 축퇴 도핑된 기판(10)에 일정 두께로 성장된 절연층(20)을 포함하며, 절연층(20) 상부에는 단일층의 MoS2를 전도성의 채널층(40)으로 형성하고 채널층(40)에는 서로 이격되게 소스 전극(51)과 드레인 전극(52)이 형성된다.1 (a) and 1 (b) show a cross-sectional structure of the photodetecting device, in which the photodetecting device comprises an insulating layer 20 grown to a constant thickness on a deeply doped substrate 10, A single layer of MoS 2 is formed as a conductive channel layer 40 and a source electrode 51 and a drain electrode 52 are formed in the channel layer 40 so as to be spaced apart from each other.

축퇴 도핑된 기판(10)은 (백)게이트 전극으로 기능하여 일정한 게이트 전압(Vg)이 인가되며, 소스 전극(51)과 드레인 전극(52) 사이에도 일정한 전압(Vds)이 인가된다.The degenerately doped substrate 10 functions as a (white) gate electrode to apply a constant gate voltage Vg and a constant voltage Vds between the source electrode 51 and the drain electrode 52.

이와 같이 구성된 광검출 소자는 채널층(40)에 MoS2 단일층의 밴드갭 에너지(∼1.8 eV) 이상의 에너지를 갖는 파장(<680㎚)의 광(light)을 조사하게 되면 여기된 전자에 의한 광전류가 발생되어 소스 전극(51)과 드레인 전극(52) 사이의 전류 흐름이 변화하게 된다.When a light having a wavelength (< 680 nm) having an energy of band gap energy (~ 1.8 eV) of MoS 2 single layer is irradiated to the channel layer 40, A photocurrent is generated and the current flow between the source electrode 51 and the drain electrode 52 is changed.

소스 전극과 드레인 전극 사이의 전류는 조사 광의 파장과 출력에 의해 달라지며, 이러한 특성들을 이용하여 다양한 광전소자로 응용이 가능하다.
The current between the source electrode and the drain electrode depends on the wavelength and output of the irradiation light, and can be applied to various photoelectric devices by using these characteristics.

공개특허공보 제10-2014-0106263호(공개일자: 2014.09.03)Japanese Patent Application Laid-Open No. 10-2014-0106263 (Publication date: 2014.09.03) 미국 특허공보 제2013/0048952호(공개일자: 2013.02.28)U.S. Patent Publication No. 2013/0048952 (Publication date: 2013.02.28) 미국 특허번호 제6,469,292호(특허일자: 2002.10.22)U.S. Patent No. 6,469,292 (Patent Date: Oct. 22, 2002)

: "Ultrasensitive photodetectors based on monolayer MoS2"; O. Lopenz-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis; nature nanotechnology, Vol. 8, JULY, 2013. : "Ultrasensitive photodetectors based on monolayer MoS2 "; O. Lopenz-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis; Nature Nanotechnology, Vol. 8, JULY, 2013.

본 발명은 층상구조를 갖는 전이 금속이 결합된 황화인(transition metal phosphorus sulfides, MPSx; M=전이금속, 0<x≤10)을 이용하여 대략 530 nm 이하의 파장에서 높은 온/오프 특성과 빠른 반응속도를 구현할 수 있는 광전소자를 제공하고자 한다.
The present invention relates to a method for manufacturing a semiconductor device having a high on / off characteristic at a wavelength of approximately 530 nm or less using a transition metal phosphorus sulfide (MPSx; M = transition metal, 0 < And to provide a photoelectric device capable of realizing a reaction rate.

이러한 목적을 달성하기 위한 광전소자는, 게이트 절연층 상에 마련되어 조사 광원의 파장에 따라서 광전류가 발생되는 채널층과, 서로 이격되게 형성되어 상기 채널층에 전압을 인가하기 위한 복수의 전극과, 상기 게이트 절연층에 전계를 형성하도록 마련된 게이트 전극;을 포함하는 광전소자에 있어서, 상기 채널층은 층상구조를 갖는 전이금속이 결합된 황화인(MPSx, M=전이금속, 0<x≤10)인 것을 특징으로 한다.The photoelectric device for achieving this object includes a channel layer provided on the gate insulating layer and generating a photocurrent according to the wavelength of the irradiation light source, a plurality of electrodes formed to be spaced apart from each other and adapted to apply a voltage to the channel layer, (MPSx, M = transition metal, 0 < x &lt; / = 10) bonded with a transition metal having a layered structure, and a gate electrode formed to form an electric field in the gate insulating layer .

바람직하게는, 상기 채널층은 CrPS4인 것을 특징으로 하며, 보다 바람직하게는, 상기 채널층의 광전류는 상기 조사 광원의 파장이 532nm 이하에서 증가하는 것을 특징으로 한다.Preferably, the channel layer is CrPS 4 , and more preferably, the photocurrent of the channel layer is increased at a wavelength of the irradiation light source of 532 nm or less.

바람직하게는, 상기 복수의 전극은 상기 채널층을 기준으로 수평 방향으로 형성됨을 특징으로 한다.
Preferably, the plurality of electrodes are formed in a horizontal direction with respect to the channel layer.

본 발명에 따른 광전소자는, 층상구조를 갖는 전이금속이 결합된 황화인(MPSx, M=전이금속, 0<x≤10)을 채널층 물질로 사용하여 532nm 이하의 파장에서 높은 온/오프 특성과 빠른 응답속도를 보여주며, 2차원 소재기반의 고성능, 고감도 광전소자로 활용될 수 있다.
The photoelectric device according to the present invention has a high ON / OFF characteristic at a wavelength of 532 nm or less by using a sulphide (MPSx, M = transition metal, 0 < x & And it can be used as a high-performance, high-sensitivity photoelectric device based on a two-dimensional material.

도 1의 (a)(b)는 종래기술의 광전소자의 단면 구성을 보여주는 도면,
도 2의 (a)(b)(c)(d)는 화학 기상 증착법을 이용하여 CrPS4의 제작과정을 간략히 보여주는 도면,
도 3은 화학 기상 증착법에서 노 내의 설정 온도 조건을 보여주는 그래프,
도 4는 화학 기상 증착법에 의해 제작된 CrPS4의 SEM-EDX 측정결과를 보여주는 데이터,
도 5의 (a)(b)는 각각 박리법으로 제작된 CrPS4 광전소자의 구조 및 광학적 이미지,
도 6의 (a)(b)는 각각 제작된 CrPS4 광전소자의 레이저 파장에 따른 광전류 측정 결과를 보여주는 데이터,
도 7의 (a)(b)(c)와 (d)(e)(f)는 각각 수직방향 구조와 수평방향 구조의 광전소자에 대해 특정 파장(532nm)의 다른 에너지(250㎼,500㎼,750㎼)를 갖는 레이저를 조사하여 광전류 매핑(mapping)을 통한 광전류 측정결과를 보여주는 데이터.
1 (a) and 1 (b) illustrate cross-sectional configurations of a conventional photoelectric device,
2 (a), 2 (b), 2 (c) and 2 (d) schematically show the production process of CrPS 4 using chemical vapor deposition,
3 is a graph showing set temperature conditions in a furnace in the chemical vapor deposition method,
4 shows data showing the results of SEM-EDX measurement of CrPS 4 produced by the chemical vapor deposition method,
5 (a) and 5 (b) show the structure and optical image of the CrPS4 photoelectric device fabricated by the peeling method,
6 (a) and 6 (b) are data showing photocurrent measurement results according to the laser wavelength of each of the manufactured CrPS4 photoelectric elements,
7 (a), 7 (b), 7 (c) and 7 (d) , 750 ㎼), which shows photocurrent measurement results through photocurrent mapping.

본 발명의 실시예에서 제시되는 특정한 구조 내지 기능적 설명들은 단지 본 발명의 개념에 따른 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 개념에 따른 실시예들은 다양한 형태로 실시될 수 있다. 또한 본 명세서에 설명된 실시예들에 한정되는 것으로 해석되어서는 아니 되며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경물, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The specific structure or functional description presented in the embodiment of the present invention is merely illustrative for the purpose of illustrating an embodiment according to the concept of the present invention, and embodiments according to the concept of the present invention can be implemented in various forms. And should not be construed as limited to the embodiments described herein, but should be understood to include all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.

또한 본 발명에 따른 실시예의 설명에 있어서, 각 구성요소의 '상(위) 또는 하(아래)'에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)는 두개의 구성요소가 서로 직접 접촉되거나 하나 이상의 다른 구성요소가 위 두 구성요소 사이에 배치되어 형성되는 것을 모두 포함한다.In the description of embodiments according to the present invention, when it is described as being formed on the upper or lower side of each component, the upper (upper) or lower (lower) Or one or more other components are formed by being disposed between the two components.

또한 '상(위) 또는 하(아래)'로 표현되는 경우 하나의 구성요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.Also, when expressed as 'upper or lower', it may include not only an upward direction but also a downward direction based on one component.

도면에서 각층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다.
The thickness and size of each layer in the drawings are exaggerated, omitted, or schematically shown for convenience and clarity of explanation. Also, the size of each component does not entirely reflect the actual size.

이하, 본 발명의 실시예를 첨부 도면을 참고하여 상세히 설명하면 다음과 같다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 광전소자는, 게이트 절연층 상에 마련된 채널층과, 서로 이격되게 형성되어 상기 채널층에 전압을 인가하기 위한 복수의 전극과, 상기 게이트 절연층에 전계를 형성하도록 마련된 게이트 전극;을 포함하는 광전소자에 있어서, 상기 채널층은 층상구조를 갖는 전이금속이 결합된 황화인(MPSx, M=전이금속, 0<x≤10)인 것을 특징으로 한다.A photoelectric device of the present invention comprises a channel layer provided on a gate insulating layer, a plurality of electrodes formed so as to be spaced apart from each other to apply a voltage to the channel layer, and a gate electrode provided to form an electric field in the gate insulating layer (MPSx, M = transition metal, 0 < x &amp;le; 10) bonded with a transition metal having a layered structure in the photoelectric device.

게이트 절연층으로는 Si 및/또는 SiO2의 절연 물질일 수 있으며, 또는 GaAs, ITO를 포함한 반도체 물질이거나 SiNx, Al2O3, HfO2와 같은 절연 물질이 사용될 수 있다.The gate insulating layer may be an insulating material of Si and / or SiO 2 , or a semiconductor material including GaAs, ITO, or an insulating material such as SiNx, Al 2 O 3 , and HfO 2 .

특히, 본 발명에서 체널층은 층상구조를 갖는 전이금속이 결합된 황화인(transition metal phosphorus sulfides) 물질이 사용됨을 특징으로 하며, 예컨대, MPSx로 표현될 수 있고, 여기서, 'M'은 전이금속이며, x는 0 보다 크고 10 이하, 바람직하게는, 2 ~ 6의 값을 갖는다. M은 Cr, Mo, W, Nb, V, Ta, Ti, Zr, Hf, Tc, Re, Fe, Mn, Ni 등의 전이금속을 포함한다.Particularly, in the present invention, the channel layer is characterized by using a transition metal phosphorus sulfide material having a layered structure, for example, MPSx, where 'M' And x has a value of more than 0 and not more than 10, preferably 2 to 6. M includes transition metals such as Cr, Mo, W, Nb, V, Ta, Ti, Zr, Hf, Tc, Re, Fe, Mn and Ni.

MPSx는 기본적으로 육각밀집구조(hexagonally close packed)인 황화층(Sulfur layer)을 갖는 층상 구조이다.
MPSx is a layered structure with a sulfated layer, which is basically hexagonally close packed.

이하, 본 실시예에서는 전이금속으로서 Cr이 결합된 황화인(CrPS4)을 채널층으로 사용하여 광전소자를 제작하고 광원을 조사하여 광전류(photocurrent)를 측정하였으며, 이에 대하여 설명하도록 한다.Hereinafter, in this embodiment, photocurrent is measured by manufacturing a photoelectric device and irradiating a light source using phosphorus (CrPS 4 ) having Cr as a transition metal as a channel layer.

CrPSCrPS 4 4 의 제작Production

도 2의 (a)(b)(c)(d)는 화학 기상 증착법(chemical vapor transport, CVT)을 이용한 CrPS4의 제작과정을 간략히 보여주는 도면이다.2 (a), 2 (b), 2 (c) and 2 (d) are schematic views showing a process of manufacturing CrPS 4 using chemical vapor transport (CVT).

도 2의 (a)를 참고하면, 수분과 산소가 제거된 글러브 박스(50) 내에서 시재료(starting material)(Cr,P,S)를 알맞은 조성비로 혼합하여 석영관(60) 내에 넣고 공기가 통하지 않도록 임시로 막는다.2 (a), starting materials (Cr, P, and S) are mixed in an appropriate composition ratio in a glove box 50 in which water and oxygen are removed, Temporarily prevent the passage of.

다음으로, 밀봉된 석영관(60)을 글로브 박스(50)에서 꺼낸 후에, 도 2의 (b)에 도시된 것과 같이, 석영관(60)을 펌핑하여 내부의 공기를 빼내면서 토치를 이용하여 석영관(60)을 완전히 밀봉한다.Next, after the sealed quartz tube 60 is taken out from the glove box 50, the quartz tube 60 is pumped to draw air inside as shown in Fig. 2 (b) The quartz tube 60 is completely sealed.

밀봉된 석영관(60)은, 도 2의 (c)에 도시된 것과 같이, 두 구역으로 나눠진 노(furnace)(70)에 넣고 물질 형성에 알맞은 온도를 조절한다. 참고로, 노(30) 내에 온도 조건은 도 3에 예시된 그래프를 참고하여 이루어질 수 있다.The sealed quartz tube 60 is placed in a furnace 70 divided into two zones, as shown in Fig. 2 (c), to regulate the temperature suitable for material formation. For reference, temperature conditions in the furnace 30 can be made with reference to the graph illustrated in FIG.

다음으로 석영관(60)을 실온까지 식힌 후에, 도 2의 (d)에 도시된 것과 같이, 후드(80) 내에서 석영관(60)을 깨고 벌크 형태의 CrPS4를 수집한다.Next, after the quartz tube 60 is cooled to room temperature, the quartz tube 60 is broken in the hood 80 and the bulk CrPS 4 is collected as shown in FIG. 2 (d).

도 4는 화학 기상 증착법에 의해 제작된 CrPS4의 SEM-EDX 측정결과를 보여주는 데이터로서, 제작된 CrPS4의 임의의 세 영역(빨강, 파랑, 초록)에 대한 조성분석결과, P, S, Cr 원자의 비율이 각각 1:4:1임을 알 수 있으며, 따라서 CVT 방법에 의해 CrPS4 벌크가 성장되었음을 확인할 수 있다.
FIG. 4 is a graph showing the results of SEM-EDX measurement of CrPS 4 produced by the chemical vapor deposition method. As a result of analyzing the composition of CrPS 4 in any three regions (red, blue, green) Atoms are 1: 4: 1, respectively. Therefore, it can be confirmed that the CrPS 4 bulk is grown by the CVT method.

CrPSCrPS 4 4 광전소자의 제작Fabrication of optoelectronic devices

도 5의 (a)(b)는 각각 박리법으로 제작된 CrPS4 광전소자의 구조 및 광학적 이미지이다.5 (a) and 5 (b) show the structure and optical image of the CrPS4 photoelectric device fabricated by the peeling method, respectively.

도 5의 (a)에서와 같이, 본 실시예에서 광전소자는 수직방향 및 수평방향의 구조로 제작되었으며, SiO2 기판위에 준비된 벌크 형태의 CrPS4를 박리법에 의해 박막 형태로 제작하고 전자빔 리소그래피에 의해 하부전극이 제작된 SiO2 기판에 전사한 후에 전자빔 리소그래피에 의해 상부전극을 제작하였으며, 도 5의 (b)는 제작된 CrPS4 광전소자의 광학적 이미지를 보여주고 있다.
As shown in FIG. 5A, in this embodiment, the photoelectric device was fabricated in the vertical and horizontal directions, and CrPS 4 in the form of a bulk prepared on the SiO 2 substrate was formed into a thin film by a peeling method, after the lower electrode is manufactured is transferred to the SiO 2 substrate was fabricated by an upper electrode by an electron beam lithography, (b) of Figure 5 shows the optical image of the four photoelectric element made CrPS.

도 6의 (a)(b)는 각각 제작된 CrPS4 광전소자의 레이저 파장에 따른 광전류 측정 결과를 보여주는 데이터로서, 측정에 사용된 레이저의 파장은 각각 532nm와 650nm이다. (A) of Fig. 6 (b) are each manufactured as the data showing the photocurrent measurement results of the laser wavelength of CrPS 4 photoelectric device, the wavelength of the laser used for the measurement are respectively 532nm and 650nm.

도 6의 (a)에서 확인할 수 있듯이, 파장이 532nm인 레이저를 조사한 경우에 CrPS4 채널층에 흐르는 전류가 0.12V에서 573% 증가함을 알 수 있다. 이는 CrPS4의 밴드갭 에너지인 2.3 eV에 해당하는 파장으로 레이저의 포톤(photon) 에너지가 CrPS4 채널층에 흐르는 전류에 영향을 미치는 것을 알 수 있다.As can be seen from FIG. 6 (a), it can be seen that the current flowing through the CrPS 4 channel layer increases by 573% at 0.12 V when a laser with a wavelength of 532 nm is irradiated. It can be seen that the photon (photon) of the laser energy at a wavelength corresponding to the band gap energy of 2.3 eV CrPS 4 affects the current flowing through the channel layer 4 CrPS.

다음으로 도 6의 (b)는 인가해주는 레이저의 온/오프를 반복하면서 CrPS4 채널층에 흐르는 광전류를 측정한 결과로서, 레이저의 반복되는 온/오프에 따라서 광전류의 변화가 급격히 나타나며, 이는 광신호에 대해 CrPS4 채널층이 빠른 응답속도를 보여줌을 알 수 있다.Next, FIG. 6 (b) shows a result of measuring the photocurrent flowing through the CrPS 4 channel layer while repeatedly turning on / off the laser to be applied, and the change of the photocurrent rapidly appears depending on the repetitive ON / OFF of the laser, The CrPS 4 channel layer shows a fast response speed.

도 7의 (a)(b)(c)와 (d)(e)(f)는 각각 수직방향 구조와 수평방향 구조의 광전소자에 대해 특정 파장(532nm)의 다른 에너지(250㎼,500㎼,750㎼)를 갖는 레이저를 조사하여 광전류 매핑(mapping)을 통한 광전류 측정결과를 보여주는 데이터이다.7 (a), 7 (b), 7 (c) and 7 (d) , 750 ㎼), and shows photocurrent measurement results through photocurrent mapping.

도 7의 결과에서 수평방향 구조(d)(e)(f)에서 광전류가 수직방향 구조(a)(b)(c)와 비교하여 80배 높게 나타남을 알 수 있다.
7, it can be seen that the photocurrent in the horizontal direction structures (d) (e) and (f) is 80 times higher than the vertical direction structures (a), (b) and (c).

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명백할 것이다.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. It will be apparent to those of ordinary skill in the art.

10 : 기판 20 : 절연층
40 : 채널층 51 : 소스 전극
52 : 드레인 전극
10: substrate 20: insulating layer
40: channel layer 51: source electrode
52: drain electrode

Claims (4)

게이트 절연층 상에 마련되어 조사 광원의 파장에 따라서 광전류가 발생되는 채널층과, 서로 이격되게 형성되어 상기 채널층에 전압을 인가하기 위한 복수의 전극과, 상기 게이트 절연층에 전계를 형성하도록 마련된 게이트 전극;을 포함하는 광전소자에 있어서,
상기 채널층은 층상구조를 갖는 전이금속이 결합된 황화인(MPSx, M=전이금속, 0<x≤10)인 것을 특징으로 하는 광전소자.
A channel layer formed on the gate insulating layer and generating a photocurrent according to the wavelength of the irradiation light source; a plurality of electrodes spaced apart from each other to apply a voltage to the channel layer; a gate electrode formed to form an electric field in the gate insulating layer; A photoelectric device comprising an electrode,
Wherein the channel layer is a sulfide phosphorus (MPSx, M = transition metal, 0 < x &lt; = 10) bonded with a transition metal having a layered structure.
제1항에 있어서, 상기 채널층은 CrPS4인 것을 특징으로 하는 광전소자.The method of claim 1, wherein the channel layer is a photoelectric device characterized in that the CrPS 4. 제2항에 있어서, 상기 채널층의 광전류는 상기 조사 광원의 파장이 532nm 이하에서 증가하는 것을 특징으로 하는 광전소자.The photoelectric device according to claim 2, wherein the photocurrent of the channel layer increases at a wavelength of 532 nm or less. 제1항에 있어서, 상기 복수의 전극은 상기 채널층을 기준으로 수평 방향으로 형성됨을 특징으로 하는 광전소자.The photoelectric device according to claim 1, wherein the plurality of electrodes are formed in a horizontal direction with respect to the channel layer.
KR1020160003001A 2016-01-11 2016-01-11 Photoelectrical device based on transition metal phosphorus sulfides materials KR101678938B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160003001A KR101678938B1 (en) 2016-01-11 2016-01-11 Photoelectrical device based on transition metal phosphorus sulfides materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160003001A KR101678938B1 (en) 2016-01-11 2016-01-11 Photoelectrical device based on transition metal phosphorus sulfides materials

Publications (1)

Publication Number Publication Date
KR101678938B1 true KR101678938B1 (en) 2016-11-24

Family

ID=57705525

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160003001A KR101678938B1 (en) 2016-01-11 2016-01-11 Photoelectrical device based on transition metal phosphorus sulfides materials

Country Status (1)

Country Link
KR (1) KR101678938B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190017515A (en) 2017-08-11 2019-02-20 서울대학교산학협력단 Tunnel junction device using transition metal phosphorus sulfides
KR101990050B1 (en) * 2017-12-14 2019-09-30 재단법인 한국탄소융합기술원 Method for controlling the sensitivity of optical device made by transition metal dichalcogenide
CN114784125A (en) * 2022-03-25 2022-07-22 国科大杭州高等研究院 Asymmetric induction room-temperature high-sensitivity photoelectric detector and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3262303B2 (en) 1993-08-17 2002-03-04 大日本印刷株式会社 Halftone phase shift photomask and blank for halftone phase shift photomask
US20020062858A1 (en) 1992-09-21 2002-05-30 Thomas Mowles High efficiency solar photovoltaic cells produced with inexpensive materials by processes suitable for large volume production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020062858A1 (en) 1992-09-21 2002-05-30 Thomas Mowles High efficiency solar photovoltaic cells produced with inexpensive materials by processes suitable for large volume production
JP3262303B2 (en) 1993-08-17 2002-03-04 大日本印刷株式会社 Halftone phase shift photomask and blank for halftone phase shift photomask

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190017515A (en) 2017-08-11 2019-02-20 서울대학교산학협력단 Tunnel junction device using transition metal phosphorus sulfides
KR101980105B1 (en) * 2017-08-11 2019-05-20 서울대학교 산학협력단 Tunnel junction device using transition metal phosphorus sulfides
KR101990050B1 (en) * 2017-12-14 2019-09-30 재단법인 한국탄소융합기술원 Method for controlling the sensitivity of optical device made by transition metal dichalcogenide
CN114784125A (en) * 2022-03-25 2022-07-22 国科大杭州高等研究院 Asymmetric induction room-temperature high-sensitivity photoelectric detector and preparation method thereof
CN114784125B (en) * 2022-03-25 2024-04-02 国科大杭州高等研究院 Asymmetric induction room temperature high-sensitivity photoelectric detection device and preparation method thereof

Similar Documents

Publication Publication Date Title
Kim et al. Ultrasensitive MoS2 photodetector by serial nano-bridge multi-heterojunction
Cheng et al. WSe2 2D p‐type semiconductor‐based electronic devices for information technology: design, preparation, and applications
Wu et al. Complementary black phosphorus tunneling field-effect transistors
Xue et al. p‐Type MoS2 and n‐Type ZnO diode and its performance enhancement by the piezophototronic effect
Wu et al. Photoinduced doping to enable tunable and high-performance anti-ambipolar MoTe2/MoS2 heterotransistors
Larentis et al. Reconfigurable complementary monolayer MoTe2 field-effect transistors for integrated circuits
Huo et al. Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS 2 and WS 2
Hong et al. Inclined ultrathin Bi2O2Se films: a building block for functional van der Waals heterostructures
Wang et al. Light induced double ‘on’state anti-ambipolar behavior and self-driven photoswitching in p-WSe2/n-SnS2 heterostructures
Roy et al. Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices
Zhao et al. Growth and device application of CdSe nanostructures
Yim et al. Heterojunction hybrid devices from vapor phase grown MoS2
Zhang et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures
US9472396B2 (en) Plasma treated semiconductor dichalcogenide materials and devices therefrom
Tong et al. Heterogeneous complementary field-effect transistors based on silicon and molybdenum disulfide
Dai et al. Large‐Area Chemical Vapor Deposited MoS2 with Transparent Conducting Oxide Contacts toward Fully Transparent 2D Electronics
Cao et al. Realizing stable p-type transporting in two-dimensional WS2 films
Oliva et al. Van der Waals MoS2/VO2 heterostructure junction with tunable rectifier behavior and efficient photoresponse
Elahi et al. Enhanced electrical and broad spectral (UV-Vis-NIR) photodetection in a Gr/ReSe 2/Gr heterojunction
Yu et al. Flexible photodetectors with single-crystalline GaTe nanowires
Meng et al. Repairing atomic vacancies in single-layer MoSe2 field-effect transistor and its defect dynamics
Xu et al. Bottom-up tri-gate transistors and submicrosecond photodetectors from guided CdS nanowalls
KR101678938B1 (en) Photoelectrical device based on transition metal phosphorus sulfides materials
Hosseini et al. High-photoresponsive backward diode by two-dimensional SnS2/Silicon heterostructure
Li et al. Piezotronic and piezo-phototronic logic computations using Au decorated ZnO microwires

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant