KR101644237B1 - Combined cycle power generation system - Google Patents

Combined cycle power generation system Download PDF

Info

Publication number
KR101644237B1
KR101644237B1 KR1020140128076A KR20140128076A KR101644237B1 KR 101644237 B1 KR101644237 B1 KR 101644237B1 KR 1020140128076 A KR1020140128076 A KR 1020140128076A KR 20140128076 A KR20140128076 A KR 20140128076A KR 101644237 B1 KR101644237 B1 KR 101644237B1
Authority
KR
South Korea
Prior art keywords
steam
recovery boiler
heat
power generation
waste heat
Prior art date
Application number
KR1020140128076A
Other languages
Korean (ko)
Other versions
KR20160036685A (en
Inventor
김규종
김정래
권신호
김대희
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to KR1020140128076A priority Critical patent/KR101644237B1/en
Publication of KR20160036685A publication Critical patent/KR20160036685A/en
Application granted granted Critical
Publication of KR101644237B1 publication Critical patent/KR101644237B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K19/00Regenerating or otherwise treating steam exhausted from steam engine plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/04Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled condensation heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

복합화력발전 시스템이 개시된다. 본 발명에 따른 복합화력발전 시스템은, 폐열회수 보일러의 일측에 히트펌프를 설치하고, 폐열회수 보일러에서 배출되는 배기가스의 열을 이용하여 히트펌프의 냉매를 가열 증발시킨다. 그리고, 히트펌프의 증발된 냉매를 이용하여 해수를 가열하여 증기로 생성한 후, 증기를 냉각시켜 담수화시킨다. 따라서, 폐열회수 보일러에서 배출되는 배기가스의 열을 활용할 수 있으므로, 에너지를 절감할 수 있는 효과가 있을 수 있다.A combined-cycle power generation system is disclosed. In the combined-cycle power generation system according to the present invention, a heat pump is installed at one side of the waste heat recovery boiler, and the heat of the exhaust gas discharged from the waste heat recovery boiler is used to heat and evaporate the refrigerant of the heat pump. Then, the evaporated refrigerant of the heat pump is used to heat the seawater to generate steam, and then the steam is cooled to desalinate. Therefore, the heat of the exhaust gas discharged from the waste heat recovery boiler can be utilized, so that the energy saving effect can be obtained.

Description

복합화력발전 시스템 {COMBINED CYCLE POWER GENERATION SYSTEM}{COMBINED CYCLE POWER GENERATION SYSTEM}

본 발명은 폐열회수 보일러에서 배출되는 배기가스의 고온의 열을 이용하여 히트펌프의 냉매를 가열 증발시키고, 증발된 냉매의 열을 이용하여 해수를 가열하여 담수화하는 복합화력발전 시스템에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined-cycle power generation system for heating and evaporating a refrigerant of a heat pump using heat of exhaust gas discharged from a waste heat recovery boiler, and heating seawater using heat of the evaporated refrigerant to desalinate.

화력발전(火力發電)은 기체연료, 액체연료 또는 화석연료(化石燃料)를 연소시켜 증기를 생성하고, 생성된 증기로 회전기기를 회전시켜 발전하는 방식으로, 연료의 연소시 발생하는 배기가스로 인해 환경이 오염되는 문제가 있다.Thermal power generation is a method of generating steam by burning gaseous fuel, liquid fuel or fossil fuel (fossil fuel), and generating electricity by rotating the rotary device by the generated steam. As the exhaust gas There is a problem that the environment is contaminated.

이러한 문제점을 해소하기 위하여, 연료의 연소시 발생하는 가스로 가스터빈을 회전시켜 1차로 발전하고, 가스터빈에서 배출되는 배기가스를 이용하여 증기를 생성한 다음, 생성된 증기로 증기터빈을 회전시켜 2차로 발전하는 복합화력발전(復合火力發電)이 개발되어 사용되고 있다.In order to solve this problem, the gas turbine is rotated by the gas generated when the fuel is burned, and the steam is generated using the exhaust gas discharged from the gas turbine, and then the steam turbine is rotated Combined-cycle thermal power generation, which is a secondary power generation, has been developed and used.

복합화력발전은 두 차례에 걸쳐 발전하기 때문에 화력발전보다 열효율이 10% 정도 향상되고, 환경오염이 감소되며, 정지 후 재가동하는 시간이 짧은 장점이 있다. 또한, 복합화력발전은 석탄을 연료로 하는 화력발전에 비하여 발전소의 건설 기간이 단축되는 장점이 있다.Combined-cycle power generation has two advantages: it improves thermal efficiency by 10%, reduces environmental pollution, and shortens restart time after shutdown. In addition, the combined cycle power plant has the advantage that the construction period of the power plant is shortened compared to the thermal power plant using coal as fuel.

일반적인 복합화력발전 시스템에 대하여 설명한다.A general combined thermal power generation system will be described.

일반적인 복합화력발전 시스템은 가스화유닛, 가스터빈, 폐열회수 보일러, 증기터빈 및 응축기를 포함한다.Typical combined cycle power generation systems include gasification units, gas turbines, waste heat recovery boilers, steam turbines, and condensers.

상기 가스화유닛은 연료를 연소하여 합성가스를 생성하고, 상기 가스터빈은 합성가스의 연소시 발생되는 고온 및 고압의 가스에 의하여 구동하면서 발전기를 구동시킨다. 상기 폐열회수 보일러는 상기 가스터빈에서 배출되는 배기가스를 열원으로 하여 증기를 발생하고, 상기 증기터빈은 상기 폐열회수 보일러에서 발생된 증기에 의하여 구동하면서 발전기를 구동시킨다. 상기 응축기는 상기 증기터빈에서 배출된 증기를 응축시키며, 상기 응축기에서 응축된 응축수는 상기 폐열회수 보일러로 재유입된다.The gasification unit burns fuel to generate a syngas, and the gas turbine drives the generator while driving by the high-temperature and high-pressure gas generated when the synthesis gas is burned. The waste heat recovery boiler generates steam by using exhaust gas discharged from the gas turbine as a heat source, and drives the generator while driving the steam turbine by steam generated in the waste heat recovery boiler. The condenser condenses the steam discharged from the steam turbine, and the condensed water condensed in the condenser is reintroduced into the waste heat recovery boiler.

상기와 같은 종래의 복합화력발전 시스템은 폐열회수 보일러에서 배출되는 배기가스의 열을 활용하지 못하므로, 에너지가 낭비되는 단점이 있다.The conventional combined-cycle power generation system as described above has a disadvantage in that energy is wasted because heat of the exhaust gas discharged from the waste heat recovery boiler can not be utilized.

본 발명의 목적은 상기와 같은 종래 기술의 모든 문제점들을 해결할 수 있는 복합화력발전 시스템을 제공하는 것일 수 있다.It is an object of the present invention to provide a combined-cycle power generation system capable of solving all the problems of the conventional art as described above.

본 발명의 다른 목적은 폐열회수 보일러에서 배출되는 배기가스의 열을 이용하여 히트펌프의 냉매를 가열 증발시키고, 증발된 냉매를 이용하여 해수를 가열하여 담수화함으로써, 에너지를 절약할 수 있는 복합화력발전 시스템을 제공하는 것일 수 있다.It is another object of the present invention to provide a combined-cycle power generation system capable of saving energy by heating and evaporating the refrigerant of the heat pump using the heat of the exhaust gas discharged from the waste heat recovery boiler and heating the seawater using the evaporated refrigerant, System. ≪ / RTI >

상기 목적을 달성하기 위한 본 발명의 실시예에 따른 복합화력발전 시스템은, 연료를 연소하여 합성가스를 생성하는 가스화유닛; 상기 가스화유닛에서 생성된 합성가스의 연소에 의하여 구동하면서 발전기를 구동시키는 가스터빈; 상기 가스터빈에서 배출되는 배기가스의 열을 흡수하여 증기를 생성하는 폐열회수 보일러; 상기 폐열회수 보일러에서 생성된 증기에 의하여 구동하면서 발전기를 구동시키는 증기터빈; 상기 폐열회수 보일러에서 배출되는 배기가스의 열을 이용하여 냉매를 증발시키고, 증발된 냉매로 해수를 가열하여 증기를 생성하는 히트펌프를 포함할 수 있다.According to an aspect of the present invention, there is provided a combined-cycle thermal power generation system including: a gasification unit for combusting a fuel to produce a syngas; A gas turbine for driving the generator while being driven by combustion of syngas generated in the gasification unit; A waste heat recovery boiler for absorbing heat of the exhaust gas discharged from the gas turbine to generate steam; A steam turbine for driving the generator while being driven by the steam generated in the waste heat recovery boiler; And a heat pump for evaporating the refrigerant using the heat of the exhaust gas discharged from the waste heat recovery boiler and heating the seawater with the evaporated refrigerant to generate steam.

본 발명의 실시예에 따른 복합화력발전 시스템은, 폐열회수 보일러의 일측에 히트펌프를 설치하고, 폐열회수 보일러에서 배출되는 배기가스의 열을 이용하여 히트펌프의 냉매를 가열 증발시킨다. 그리고, 히트펌프의 증발된 냉매를 이용하여 해수를 가열하여 증기로 생성한 후, 증기를 냉각시켜 담수화시킨다. 따라서, 폐열회수 보일러에서 배출되는 배기가스의 열을 활용할 수 있으므로, 에너지를 절감할 수 있는 효과가 있을 수 있다.In the combined-cycle power generation system according to the embodiment of the present invention, a heat pump is installed at one side of the waste heat recovery boiler, and the heat of the exhaust gas discharged from the waste heat recovery boiler is used to heat and evaporate the refrigerant of the heat pump. Then, the evaporated refrigerant of the heat pump is used to heat the seawater to generate steam, and then the steam is cooled to desalinate. Therefore, the heat of the exhaust gas discharged from the waste heat recovery boiler can be utilized, so that the energy saving effect can be obtained.

도 1은 본 발명의 제1실시예에 따른 복합화력발전 시스템의 구성을 보인 도.
도 2 및 도 3을 본 발명의 제2실시예 및 제3실시예에 따른 복합화력발전 시스템의 구성을 보인 도.
1 is a view showing a configuration of a combined-cycle thermal power generation system according to a first embodiment of the present invention;
FIG. 2 and FIG. 3 are views showing a configuration of a combined-cycle thermal power generation system according to a second embodiment and a third embodiment of the present invention; FIG.

본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다.It should be noted that, in the specification of the present invention, the same reference numerals as in the drawings denote the same elements, but they are numbered as much as possible even if they are shown in different drawings.

한편, 본 명세서에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다.Meanwhile, the meaning of the terms described in the present specification should be understood as follows.

단수의 표현은 문맥상 명백하게 다르게 정의하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위한 것으로, 이들 용어들에 의해 권리범위가 한정되어서는 아니 된다.The word " first, "" second," and the like, used to distinguish one element from another, are to be understood to include plural representations unless the context clearly dictates otherwise. The scope of the right should not be limited by these terms.

"포함하다" 또는 "가지다" 등의 용어는 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.It should be understood that the terms "comprises" or "having" does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or combinations thereof.

"적어도 하나"의 용어는 하나 이상의 관련 항목으로부터 제시 가능한 모든 조합을 포함하는 것으로 이해되어야 한다. 예를 들어, "제1항목, 제2항목 및 제3항목 중에서 적어도 하나"의 의미는 제1항목, 제2항목 또는 제3항목 각각 뿐만 아니라 제1항목, 제2항목 및 제3항목 중에서 2개 이상으로부터 제시될 수 있는 모든 항목의 조합을 의미한다.It should be understood that the term "at least one" includes all possible combinations from one or more related items. For example, the meaning of "at least one of the first item, the second item and the third item" means not only the first item, the second item or the third item, but also the second item and the second item among the first item, Means any combination of items that can be presented from more than one.

"위에"라는 용어는 어떤 구성이 다른 구성의 바로 상면에 형성되는 경우 뿐만 아니라 이들 구성들 사이에 제3의 구성이 개재되는 경우까지 포함하는 것을 의미한다.The term "above" means not only when a configuration is formed directly on top of another configuration, but also when a third configuration is interposed between these configurations.

이하에서는, 본 발명의 실시예들에 따른 복합화력발전 시스템에 대하여 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, a combined-cycle thermal power generation system according to embodiments of the present invention will be described in detail with reference to the accompanying drawings.

제1실시예First Embodiment

도 1은 본 발명의 제1실시예에 따른 복합화력발전 시스템의 구성을 보인 도이다.1 is a view showing a configuration of a combined-cycle thermal power generation system according to a first embodiment of the present invention.

도시된 바와 같이, 본 발명의 제1실시예에 따른 복합화력발전 시스템(100)은 가스화유닛(110)을 포함할 수 있다. 가스화유닛(110)은 기체연료, 액체연료 또는 화석연료(化石燃料)를 연소하여 가연성 가스인 원시(Raw) 합성가스를 생성할 수 있다.As shown, the combined-cycle thermal power generation system 100 according to the first embodiment of the present invention may include a gasification unit 110. The gasification unit 110 may combust a gaseous fuel, a liquid fuel, or a fossil fuel to produce a raw syngas, which is a combustible gas.

특히, 석탄을 연료로 하여 합성가스를 생성한 후 발전하는 시스템을 석탄 가스화 복합발전 시스템이라 한다. 석탄은 슬러리(Slurry) 형태로 투입되거나, 미분탄 형태로 투입될 수 있다. 슬러리 형태의 석탄은 산화제인 공기 또는 산소와 함께 물이 투입되고, 미분탄 형태의 석탄은 산화제인 공기 또는 산소와 함께 증기가 투입된다.In particular, a system for generating syngas by using coal as fuel and generating electricity is called a coal gasification combined cycle power generation system. Coal may be put into slurry form or into pulverized coal form. The coal in the form of slurry is fed with water, which is an oxidant, with air or oxygen, and coal in the form of pulverized coal is fed with air or oxygen which is an oxidizing agent.

이하에서는, 화석연료인 미분탄을 연료로 사용하는 것을 예로 들어 설명한다.Hereinafter, the use of the fine coal as the fuel is described as an example.

미분탄의 연소에 의하여 생성된 원시 합성가스에는 이산화탄소, 황화카르보닐(COS) 및 황화수소가 포함될 수 있으며, 이산화탄소, 황화카르보닐(COS) 및 황화수소가 산성 가스이다.The raw syngas produced by the combustion of pulverized coal may include carbon dioxide, carbonyl sulfide (COS), and hydrogen sulfide, and carbon dioxide, carbonyl sulfide (COS), and hydrogen sulfide are acid gases.

미분탄을 가스화유닛(110)으로 공급하기 위하여, 석탄저장용기(115)와 석탄저장용기(115)에 저장된 석탄을 분쇄하는 분쇄기(116)가 마련될 수 있다.A pulverizer 116 for pulverizing the coal stored in the coal storage vessel 115 and the coal storage vessel 115 may be provided to supply the pulverized coal to the gasification unit 110. [

그리고, 산화제인 산소는 공기분리기(120)에서 생성되며, 공기분리기(120)는 공기를 냉각시켜 산소와 질소로 분리 생성할 수 있다. 공기가 소정 온도로 냉각되면 산소와 질소의 끓는점의 차이로 인하여 액체 산소와 액체 질소로 분리된다. 그러면, 저온의 산소는 열교환을 거친 후 가스화유닛(110)으로 공급될 수 있다.Oxygen, which is an oxidizing agent, is generated in the air separator 120, and the air separator 120 can cool the air to separate into oxygen and nitrogen. When the air is cooled to a predetermined temperature, it is separated into liquid oxygen and liquid nitrogen due to the difference in boiling point of oxygen and nitrogen. Then, the low temperature oxygen can be supplied to the gasification unit 110 after heat exchange.

석탄에는 불연소 물질인 석탄회분이 대략 2∼20% 정도 함유되어 있다.Coal contains about 2 to 20% of coal fly ash.

석탄회분의 대략 20%는 가스화유닛(110)의 고온의 연소열에 의해 용융되며, 여러 입자가 응결된 슬래그(Slag)가 되어 물과 함께 가스화유닛(110)의 하부와 연통 설치된 호퍼(미도시)를 통하여 외부로 배출될 수 있다. 가스화유닛(110)에서 배출된 물은 폐수처리기(118)에서 처리될 수 있으며, 폐수처리기(118)에서 처리된 물은 가스화유닛(110)으로 재유입될 수 있다.Approximately 20% of the coal ash is melted by the high-temperature combustion heat of the gasification unit 110, becomes a slag in which various particles are condensed, and is connected to a hopper (not shown) communicated with the lower part of the gasification unit 110, As shown in FIG. The water discharged from the gasification unit 110 can be treated in the wastewater treatment machine 118 and the treated water in the wastewater treatment machine 118 can be reintroduced into the gasification unit 110. [

그리고, 석탄회분의 나머지 대략 80%는 각 입자별로 연소되어 원시 합성가스의 흐름에 따라 비산하며, 석탄회분이 함유된 원시 합성가스는 정제장치(130)를 흐르면서 정제될 수 있다.The remaining 80% of the coal ash is burned for each particle and scattered according to the flow of the raw syngas, and the raw syngas containing the coal fly ash can be refined while flowing through the refiner 130.

정제장치(130)는 분진제거기(131), 가수분해기(133), 산성가스제거기(135) 및 황제거기(137) 등을 포함할 수 있다.The purification apparatus 130 may include a dust remover 131, a hydrolyzer 133, an acid gas remover 135, and an emulsifier 137 therein.

분진제거기(131)는 원시 합성가스에 함유된 플라이애쉬를 포함한 분진을 분리한 후, 집진하여 제거할 수 있다. 또한, 분진제거기(131)는 분진을 분리한 후, 감압 및 냉각시켜 집진하여 제거할 수 있다. 또한, 분진제거기(131)는 일부의 황화카르보닐(COS)을 가수분해하여 황화수소 및 이산화탄소로 변환할 수 있다.The dust remover 131 can separate dust containing fly ash contained in the raw syngas, collect dust and remove it. Further, the dust eliminator 131 can separate and remove the dust, and then can be collected and removed by decompression and cooling. The dust remover 131 can also convert some of the carbonyl sulfide (COS) to hydrogen sulfide and carbon dioxide by hydrolysis.

가수분해기(133)는 분진이 제거된 합성가스를 가수분해하여 황 성분을 제거할 수 있고, 가수분해기(133)에서 황 성분이 제거된 합성가스는 폐수처리기(118)로 유입되어 처리될 수 있다. 이때, 폐수처리기(118)는 사워가스(Sour Gas)를 황제거기(137)로 이송할 수 있다.The hydrolysis unit 133 can remove the sulfur component by hydrolyzing the syngas removed from the dust and the synthesis gas from which the sulfur component is removed from the hydrolysis unit 133 can be introduced into the wastewater treatment unit 118 and treated . At this time, the wastewater processor 118 can transfer the sour gas to the sulfurizer 137 therein.

산성가스제거기(135)는 황 성분이 제거된 합성가스를 산성가스와 순수 합성가스로 분리할 수 있고, 산성가스를 황제거기(137)로 이송할 수 있다. 그러면, 황제거기(137)는 황과 황산을 분리하여 배출하고, 테일가스(Tail Gsa)를 사용처로 이송할 수 있다.The acid gas remover 135 can separate the syngas from which the sulfur component has been removed into an acid gas and a pure syngas, and can transfer the acid gas to the sulfur gas 137. Then, the sulfur emitter 137 separates and discharges sulfur and sulfuric acid, and can transfer tail gas (Tail Gsa) to the user.

산성가스제거기(135)에서 분리된 순수 합성가스는 압축기(141), 연소기(143) 및 터빈(145)을 포함하는 가스터빈(140)으로 공급될 수 있다.The pure syngas separated from the acid gas remover 135 may be supplied to the gas turbine 140 including the compressor 141, the combustor 143 and the turbine 145.

압축기(141)는 공기를 압축할 수 있고, 연소기(143)는 압축기(141) 및 산성가스제거기(135)로부터 공기 및 합성가스를 각각 공급받아 합성가스를 연소할 수 있다. 그리고, 터빈(145)은 연소기(143)에서 배출되는 가스에 의하여 구동하면서, 발전기를 구동시킬 수 있다.The compressor 141 can compress the air and the combustor 143 can supply the air and the syngas from the compressor 141 and the acid gas remover 135 to burn the syngas. The turbine 145 can drive the generator while being driven by the gas discharged from the combustor 143.

연소기(143)에서 발생된 가스는 터빈(145)을 구동시킨 후 배출되며, 터빈(145)에서 배출된 배기가스는 폐열회수 보일러(150)로 유입되어 증기를 발생시키는 열원으로 작용할 수 있다.The gas generated in the combustor 143 is discharged after driving the turbine 145. The exhaust gas discharged from the turbine 145 may be supplied to the waste heat recovery boiler 150 and serve as a heat source for generating steam.

폐열회수 보일러(150)에서 생성된 증기는 증기터빈(160)으로 유입되어 증기터빈(160)을 구동시키며, 증기터빈(160)의 구동에 의하여 또 다른 발전기가 구동을 하면서 발전을 하는 것이다. 폐열회수 보일러(150)에서 증기를 생성하는데 사용된 배기가스는 폐열회수 보일러(150)의 내부에 설치된 탈질(脫窒)모듈(미도시) 등에 의해 정제된 후 연돌(煙突)(152)을 통하여 배출될 수 있다.The steam generated in the waste heat recovery boiler 150 flows into the steam turbine 160 to drive the steam turbine 160 and the steam turbine 160 drives the other generator to generate electric power. The exhaust gas used to generate steam in the waste heat recovery boiler 150 is refined by a denitrification module (not shown) installed inside the waste heat recovery boiler 150 and then discharged through a stack 152 Can be discharged.

증기터빈(160)의 구동에 사용된 증기는 배출되어 폐열회수 보일러(150)로 재유입될 수 있다. 폐열회수 보일러(150)는 가스터빈(140)에서 배출된 배기가스와 열교환하는 전열관(미도시)이 여러 단계로 배치되어 구성될 수 있고, 상기 전열관의 외면에는 복수의 열교환핀이 형성될 수 있다.The steam used to drive the steam turbine 160 may be vented and reintroduced into the waste heat recovery boiler 150. The waste heat recovery boiler 150 may include a plurality of heat transfer tubes (not shown) for heat exchange with the exhaust gas discharged from the gas turbine 140, and a plurality of heat exchange fins may be formed on an outer surface of the heat transfer tubes .

폐열회수 보일러(150)의 상기 전열관 내부에는 증기터빈(160)에서 배출되어 응축된 응축수를 포함한 물이 유입되어 흐르며, 상기 전열관과 배기가스의 열교환에 의하여 상기 전열관을 흐르는 물이 증발되어 증기터빈(160)으로 유입되는 것이다.Water containing condensed condensed water discharged from the steam turbine 160 flows into the heat transfer tube of the waste heat recovery boiler 150. Water flowing through the heat transfer tube is evaporated by heat exchange between the heat transfer tube and the exhaust gas, 160, respectively.

증기터빈(160)과 폐열회수 보일러(150) 사이에는 증기터빈(160)에서 배출된 증기를 응축시키기 위한 응축기(170)가 설치될 수 있고, 응축기(170)에서 응축된 응축수는 폐열회수 보일러(150)로 재유입될 수 있다.Between the steam turbine 160 and the waste heat recovery boiler 150 a condenser 170 for condensing the steam discharged from the steam turbine 160 may be installed and the condensed water condensed in the condenser 170 is supplied to a waste heat recovery boiler 150 < / RTI >

폐열회수 보일러(150)의 연돌(152)을 통하여 배출되는 배기가스는 고온이므로, 연돌(152)에서 배출되는 배기가스의 열을 활용할 수 있으면, 에너지를 절약할 수 있다.Since the exhaust gas discharged through the stack 152 of the waste heat recovery boiler 150 is at a high temperature, energy can be saved if heat of the exhaust gas discharged from the stack 152 can be utilized.

본 발명의 제1실시예에 따른 복합화력발전 시스템은 연돌(152)에서 배출되는 배기가스의 열을 이용하여 냉매를 가열 증발시키고, 증발된 냉매를 이용하여 해수를 가열하여 담수화시킨다.In the combined thermal power generation system according to the first embodiment of the present invention, the heat of the exhaust gas discharged from the stack 152 is used to heat and evaporate the refrigerant, and the seawater is heated and desalinated using the evaporated refrigerant.

상세히 설명하면, 폐열회수 보일러(150)의 일측에는 히트펌프(180)가 설치될 수 있다.In detail, a heat pump 180 may be installed at one side of the waste heat recovery boiler 150.

히트펌프(180)는 열원에 의하여 가열되어 냉매를 증발시키는 증발기(미도시), 상기 증발기에서 증발된 냉매를 압축시키는 압축기(미도시), 상기 압축기에 압축된 냉매를 응축시키는 응축기(미도시) 및 상기 응축기에서 응축된 냉매를 팽창시켜 상기 증발기로 공급하는 팽창밸브(미도시)를 포함할 수 있다.The heat pump 180 includes an evaporator (not shown) that is heated by the heat source to evaporate the refrigerant, a compressor (not shown) that compresses the refrigerant evaporated in the evaporator, a condenser (not shown) that condenses the refrigerant compressed in the compressor, And an expansion valve (not shown) for expanding the refrigerant condensed in the condenser and supplying the expanded refrigerant to the evaporator.

히트펌프(180)의 상기 증발기는 폐열회수보일러(150)의 연돌(152)에서 배출되는 배기가스와 열교환하고, 상기 응축기는 해수와 열교환한다. 그러므로, 히트펌프(180)의 상기 증발기의 냉매는 증발되고, 상기 응축기의 냉매는 응축된다. 이때, 히트펌프(180)의 상기 응축기와 열교환한 해수는 증기가 되어 배출되며, 상기 응축기에서 배출된 증기는 별도의 냉각설비에서 냉각된 후, 담수가 된다. 그리고, 해수에 용해되어 있는 용해물질은 히트펌프(180)의 외측으로 배출될 수 있다.The evaporator of the heat pump 180 exchanges heat with the exhaust gas discharged from the stack 152 of the waste heat recovery boiler 150, and the condenser performs heat exchange with seawater. Therefore, the refrigerant in the evaporator of the heat pump 180 is evaporated, and the refrigerant in the condenser is condensed. At this time, the seawater heat-exchanged with the condenser of the heat pump 180 is discharged as steam, and the steam discharged from the condenser is cooled in a separate cooling facility and then becomes fresh water. The dissolved substance dissolved in the seawater can be discharged to the outside of the heat pump 180.

본 발명의 제1실시예에 따른 복합화력발전 시스템은 폐열회수 보일러(150)의 연돌(152)에서 배출되는 배기가스의 열을 이용하여 히트펌프(180)를 구동시키고, 히트펌프(180)를 이용하여 해수를 담수화시킨다. 즉, 연돌(152)에서 배출되는 배기가스의 열을 버리지 않고 활용하므로 에너지가 절감된다.The combined cycle power generation system according to the first embodiment of the present invention drives the heat pump 180 using the heat of the exhaust gas discharged from the stack 152 of the waste heat recovery boiler 150, To desalinate seawater. That is, energy is saved because the heat of the exhaust gas discharged from the stack 152 is utilized without being discarded.

제2실시예Second Embodiment

도 2는 본 발명의 제2실시예에 따른 복합화력발전 시스템의 구성을 보인 도로서, 제1실시예와의 차이점만을 설명한다.FIG. 2 is a block diagram illustrating a configuration of a combined-cycle thermal power generation system according to a second embodiment of the present invention, and only differences from the first embodiment will be described.

도시된 바와 같이, 본 발명의 제2실시예에 따른 복합화력발전 시스템은 해수를 응축기(270)에서 예열한 후, 히트펌프(280)로 공급할 수 있다.As shown in the drawing, the combined-cycle power generation system according to the second embodiment of the present invention can preheat seawater in the condenser 270, and then supply the seawater to the heat pump 280.

상세히 설명하면, 증기터빈(260)에서 배출되어 응축기(270)로 유입된 증기는 응축기(270)로 공급된 상대적으로 저온인 해수와 열교환할 수 있다. 그러면, 응축기(270)로 유입된 증기는 해수에 의하여 냉각 응축되어 폐열회수 보일러(250)로 재유입되고, 응축기(270)의 증기와 열교환한 해수는 예열된다. 그리고, 예열된 해수는 히터펌프(280)로 유입되어 증기가 되어 배출될 수 있다.In detail, the steam discharged from the steam turbine 260 and introduced into the condenser 270 can be heat-exchanged with the relatively low-temperature seawater supplied to the condenser 270. The steam introduced into the condenser 270 is cooled and condensed by the seawater to be re-introduced into the waste heat recovery boiler 250, and the seawater heat-exchanged with the steam of the condenser 270 is preheated. The preheated seawater can be introduced into the heater pump 280 and discharged as steam.

본 발명의 제2실시예에 따른 복합화력발전 시스템은 해수가 응축기(270)에서 예열된 후, 히트펌프(280)에서 증기로 되므로, 해수의 담수화 효율을 향상시킬 수 있다.In the combined thermal power generation system according to the second embodiment of the present invention, the seawater is pre-heated in the condenser 270 and then becomes steam in the heat pump 280, so that the desalination efficiency of seawater can be improved.

제3실시예Third Embodiment

도 3은 본 발명의 제3실시예에 따른 복합화력발전 시스템의 구성을 보인 도로서, 제1실시예와의 차이점만을 설명한다.FIG. 3 is a block diagram showing a configuration of a combined-cycle thermal power generation system according to a third embodiment of the present invention, and only differences from the first embodiment will be described.

도시된 바와 같이, 가스터빈(340)의 압축기(341)의 효율이 향상되면, 가스터빈(340)의 효율이 향상됨은 당연하다. 그리고, 가스터빈(340)의 압축기(341)에서 압축되는 공기의 온도가 낮으면, 공기의 밀도가 높아지므로 압축기(341)의 효율이 향상될 수 있다.As shown, if the efficiency of the compressor 341 of the gas turbine 340 is improved, it is natural that the efficiency of the gas turbine 340 is improved. When the temperature of the air compressed by the compressor 341 of the gas turbine 340 is low, the density of the air is increased, so that the efficiency of the compressor 341 can be improved.

본 발명의 제3실시예에 따른 복합화력발전 시스템(300)은 가스터빈(340)의 압축기(341)에서 압축되는 공기의 온도를 낮추기 위하여 공기분리기(320)에서 생성된 질소를 사용할 수 있다.The combined cycle power generation system 300 according to the third embodiment of the present invention may use nitrogen generated in the air separator 320 to lower the temperature of the air compressed in the compressor 341 of the gas turbine 340.

이를 위하여, 공기분리기(320)와 가스터빈(340)의 압축기(341) 사이에는 질소 공급관로(NSL)가 설치될 수 있고, 질소 공급관로(NSL)에는 가스터빈(340)의 압축기(341)로 유입되는 공기를 냉각시키기 위한 열교환기(323)가 설치될 수 있고, 질소 공급관로(NSL)를 개폐하는 밸브(325)가 설치될 수 있다.A nitrogen supply line NSL may be provided between the air separator 320 and the compressor 341 of the gas turbine 340 and a compressor 341 of the gas turbine 340 may be installed in the nitrogen supply line NSL. And a valve 325 for opening and closing the nitrogen supply line NSL may be installed.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다. 그러므로, 본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Will be clear to those who have knowledge of. Therefore, the scope of the present invention is defined by the appended claims, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be interpreted as being included in the scope of the present invention.

110: 가스화유닛
120: 공기분리기
140: 가스터빈
150: 폐열회수 보일러
160: 증기터빈
170: 응축기
180: 히트펌프
110: Gasification unit
120: air separator
140: Gas turbine
150: Waste heat recovery boiler
160: Steam turbine
170: condenser
180: Heat pump

Claims (3)

연료를 연소하여 합성가스를 생성하는 가스화유닛;
상기 가스화유닛에서 생성된 합성가스의 연소에 의하여 구동하면서 발전기를 구동시키는 가스터빈;
상기 가스터빈에서 배출되는 배기가스의 열을 흡수하여 증기를 생성하는 폐열회수 보일러;
상기 폐열회수 보일러에서 생성된 증기에 의하여 구동하면서 발전기를 구동시키는 증기터빈;
상기 폐열회수 보일러에서 배출되는 배기가스의 열을 이용하여 냉매를 증발시키고, 증발된 냉매로 해수를 가열하여 증기를 생성하는 히트펌프;
상기 증기터빈에서 배출된 증기를 응축시켜 상기 폐열회수 보일러로 공급하는 응축기를 포함하며,
해수는 상기 응축기에서 예열된 후 상기 히트펌프로 공급되는 것을 특징으로 하는 복합화력발전 시스템.
A gasification unit for combusting fuel to produce a syngas;
A gas turbine for driving the generator while being driven by combustion of syngas generated in the gasification unit;
A waste heat recovery boiler for absorbing heat of the exhaust gas discharged from the gas turbine to generate steam;
A steam turbine for driving the generator while being driven by the steam generated in the waste heat recovery boiler;
A heat pump for evaporating the refrigerant using the heat of the exhaust gas discharged from the waste heat recovery boiler, and heating the seawater with the evaporated refrigerant to generate steam;
And a condenser for condensing the steam discharged from the steam turbine and supplying the condensed steam to the waste heat recovery boiler,
And the seawater is preheated by the condenser and then supplied to the heat pump.
삭제delete 제1항에 있어서,
공기를 산소와 질소로 분리하여 산소를 상기 가스화유닛으로 공급하는 공기분리기를 더 포함하고,
상기 공기분리기에서 생성된 질소는 상기 가스터빈의 압축기로 공급되는 공기를 냉각시키는 것을 특징으로 하는 복합화력발전 시스템.
The method according to claim 1,
Further comprising an air separator for separating the air into oxygen and nitrogen and supplying oxygen to the gasification unit,
And nitrogen generated in the air separator cools the air supplied to the compressor of the gas turbine.
KR1020140128076A 2014-09-25 2014-09-25 Combined cycle power generation system KR101644237B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140128076A KR101644237B1 (en) 2014-09-25 2014-09-25 Combined cycle power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140128076A KR101644237B1 (en) 2014-09-25 2014-09-25 Combined cycle power generation system

Publications (2)

Publication Number Publication Date
KR20160036685A KR20160036685A (en) 2016-04-05
KR101644237B1 true KR101644237B1 (en) 2016-08-01

Family

ID=55799974

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140128076A KR101644237B1 (en) 2014-09-25 2014-09-25 Combined cycle power generation system

Country Status (1)

Country Link
KR (1) KR101644237B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102195228B1 (en) * 2016-05-31 2020-12-28 한국조선해양 주식회사 Combined cycle power generation system
CN106703913B (en) * 2017-03-24 2018-11-23 苏州迪森能源技术有限公司 A kind of biomass energy comprehensive application system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101295806B1 (en) * 2012-09-07 2013-08-12 포스코에너지 주식회사 Combined cycle power plant utilizing absorption heat pump for improving generating efficiency, and method for controlling thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950011694B1 (en) * 1993-12-08 1995-10-07 고등기술연구원연구조합 Complex power generating system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101295806B1 (en) * 2012-09-07 2013-08-12 포스코에너지 주식회사 Combined cycle power plant utilizing absorption heat pump for improving generating efficiency, and method for controlling thereof

Also Published As

Publication number Publication date
KR20160036685A (en) 2016-04-05

Similar Documents

Publication Publication Date Title
JP5427741B2 (en) Multipurpose thermal power generation system
AU2008304752B2 (en) Turbine facility and power generating apparatus
WO2005045316A2 (en) Purification works for thermal power plant
US8752384B2 (en) Carbon dioxide capture interface and power generation facility
JP2008517216A (en) Method for removing and recovering CO2 from exhaust gas
JP2009097507A (en) Turbine facility co-producing alkaline carbonate and power generating facility co-producing alkaline carbonate
RU2273741C1 (en) Gas-steam plant
KR101644237B1 (en) Combined cycle power generation system
KR101593827B1 (en) Combined cycle power generation system
JP2010053809A (en) Coal gasification combined power generation facility
US9157369B2 (en) Waste heat utilization for energy efficient carbon capture
KR101644236B1 (en) Integrated gasification combined cycle system
KR101592766B1 (en) Combined cycle power generation system
KR101593826B1 (en) Combined cycle power generation system
KR20170136144A (en) Combined cycle power generation system
US20160195270A1 (en) Arrangement of a carbon dioxide generation plant, a capture plant and an carbon dioxide utilization plant and method for its operation
KR101592765B1 (en) Combined cycle power generation system
KR101219772B1 (en) Integrated gasification combined cycle power system
KR102195228B1 (en) Combined cycle power generation system
KR101704877B1 (en) Integrated gasification combined cycle system
KR101533725B1 (en) Integrated gasification combined cycle plant and waste heat recovery method thereof, electricity generation apparatus and method using waste heat thereof
KR102176087B1 (en) Steam power generation system with two-stage boiler and boiler used therein
KR20170136137A (en) Combined cycle power generation system
JP2013100726A (en) Residual heat low boiling point electric power generation system
JP2010151112A (en) Oxygen burning co2 recovery turbine system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190701

Year of fee payment: 5