KR101634712B1 - Control system of floating wind power generator - Google Patents

Control system of floating wind power generator Download PDF

Info

Publication number
KR101634712B1
KR101634712B1 KR1020150128474A KR20150128474A KR101634712B1 KR 101634712 B1 KR101634712 B1 KR 101634712B1 KR 1020150128474 A KR1020150128474 A KR 1020150128474A KR 20150128474 A KR20150128474 A KR 20150128474A KR 101634712 B1 KR101634712 B1 KR 101634712B1
Authority
KR
South Korea
Prior art keywords
wind
rotor
generator
wind speed
floating
Prior art date
Application number
KR1020150128474A
Other languages
Korean (ko)
Inventor
백인수
김관수
김현규
오용운
Original Assignee
강원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교 산학협력단 filed Critical 강원대학교 산학협력단
Priority to KR1020150128474A priority Critical patent/KR101634712B1/en
Application granted granted Critical
Publication of KR101634712B1 publication Critical patent/KR101634712B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0276Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling rotor speed, e.g. variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/97Mounting on supporting structures or systems on a submerged structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • F05B2270/1014Purpose of the control system to control rotational speed (n) to keep rotational speed constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1032Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1033Power (if explicitly mentioned)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

The present invention relates to a control system of a floating wind power generator installed on a floating structure. The control system of a floating wind power generator comprises: a rotor; a nacelle; a wind speed measurement unit; and a control unit. The rotor is provided with a plurality of blades along the circumference thereof. The nacelle includes a power generator which generates power by rotation of the rotor. The wind speed measurement unit measures the magnitude of the wind applied to the rotor through the change in rotation speed of the rotor. The control unit changes and outputs a pressurization torque value to increase the amount of output from the power generator when the magnitude of the wind measured by the wind speed measurement unit is equal to or more than a predetermined value.

Description

부유식 풍력발전기의 제어 시스템{Control system of floating wind power generator}[0001] The present invention relates to a control system of a floating wind power generator,

본 발명은 해수면상에 설치된 부유식 풍력발전기에 작용하는 풍하중을 고려하여 제어주기를 가변할 수 있도록 형성된 부유식 풍력발전기의 제어 시스템에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control system for a floating wind turbine configured to vary a control period in consideration of a wind load acting on a floating wind turbine installed on a sea surface.

일반적으로, 해양 풍력발전은 고정식과 부유식으로 나눌 수 있다. 고정식 풍력발전기는 수심이 깊지 않은 바다의 해저면에 기초공사를 하고, 그 기초공사 위에 구조물을 설치한 후 발전설비를 설치하는 방식이고, 부유식 풍력발전기는 해수면 위에 부유 구조물을 띄우고 그 부유 구조물 위에 발전설비를 설치하는 방식이다.In general, offshore wind power can be divided into fixed and floating. A fixed wind turbine is a type of foundation that is constructed on the undersurface of an undersea sea, a structure is installed on the base construction, and a power generation facility is installed. A floating type wind turbine floats a floating structure on the sea surface, It is a method of installing power generation facilities.

고정식 풍력발전기는 구조물이 해저에 고정되어 있어 유리한 조업조건을 제공하지만 수심이 깊어지면 구조물의 규모가 커지고, 피로파괴의 위험을 갖게 된다. 또한, 바람은 육상에서 멀어질수록 강하고 일정해지므로 발전 효율이 낮은 단점이 있다. Fixed wind power generators provide favorable operating conditions because the structure is fixed to the seabed, but deepening the depth increases the scale of the structure and risks fatigue failure. In addition, there is a disadvantage that the power generation efficiency is low because the wind is stronger and constant as it is farther from the land.

이에 최근에는 수심이 깊어져도 구조물의 크기에 제한을 받지 않는 부유식 구조물을 이용한 해상 풍력발전기에 대한 많은 연구가 이루어지고 있다. 이러한 부유식 풍력발전기는 고정식 풍력발전기와는 달리 블레이드의 회전속도를 상대적으로 느리게 제어해주어야만 전력생산 측면에서 안정성을 취할 수 있는 특징이 있다. Recently, many researches have been made on offshore wind turbines using floating structures that are not limited by the size of the structure even if the depth is deepened. Unlike a fixed wind turbine, this type of floating wind turbine is characterized in that the rotation speed of the blade is controlled relatively slowly so that stability can be achieved in terms of power production.

그 이유는 고정식 풍력발전기의 경우 공진 주파수를 피하면서 바람이 갖고 있는 에너지를 충분히 회수할 수 있도록 약 1rad/s(0.16Hz) 주기로 작동하는데, 이러한 제어주기를 그대로 유지한 채로 부유식 풍력발전기에 적용하면 도 1에 도시된 바와 같이 부유식 풍력발전기가 바람이 불어오는 방향으로 크게 흔들리게 되어 풍력발전기에 작용하는 하중이 크게 증가하거나 심지어 좌초까지 될 우려가 있기 때문이다. The reason for this is that a stationary wind turbine operates at a frequency of about 1 rad / s (0.16 Hz) so as to sufficiently recover the energy possessed by the wind while avoiding the resonance frequency, and is applied to a floating wind turbine As shown in FIG. 1, the floating wind turbine is greatly shaken in the direction of wind blowing, so that the load acting on the wind turbine may significantly increase, or even stranded.

그렇다고 블레이드를 막연히 느리게 회전시키게 되면 도 2에 도시된 바와 같이, 바람의 변화를 정상적으로 인지하지 못하게 되어 풍력발전기의 효율이 저하되는 문제가 있다. However, if the blades are rotated slowly and slowly, as shown in FIG. 2, there is a problem in that the efficiency of the wind turbine is deteriorated because the wind can not be perceived normally.

등록특허공보 10-2012-0038707(2012.04.24 공개)Patent Registration No. 10-2012-0038707 (published Apr. 24, 2012)

본 발명의 과제는 풍속의 크기에 따라 로터의 제어주기를 가변해 주어 풍력발전기가 전후 방향으로 흔들리는 것을 방지해 줌으로써 제품의 수명이 향상된 부유식 풍력발전기의 제어 시스템을 제공함에 있다. The present invention provides a control system for a floating wind power generator in which the control period of the rotor is varied according to the magnitude of the wind speed to prevent the wind power generator from shaking in the forward and backward directions, thereby improving the life of the wind power generator.

상기의 과제를 달성하기 위한 본 발명에 따른 부유식 풍력발전기의 제어 시스템은 부유 구조물 상에 설치된 것으로, 둘레를 따라 복수의 블레이드가 장착된 로터; 상기 로터의 회전에 의해 발전하는 발전기를 구비한 나셀; 상기 로터에 가해지는 풍속의 크기를 측정하는 풍속 측정부; 및 상기 풍속 측정부로부터 측정된 풍속의 크기가 일정 값 이상이면 상기 발전기의 출력량을 증가시키도록 가압 토크값을 변경하여 출력하는 제어부;를 포함한다. According to an aspect of the present invention, there is provided a control system for a floating wind turbine, comprising: a rotor mounted on a floating structure, the rotor having a plurality of blades mounted along the periphery thereof; A nacelle having a generator that generates power by rotation of the rotor; A wind speed measuring unit for measuring a magnitude of a wind speed applied to the rotor; And a control unit for changing and outputting the pressing torque value to increase the output amount of the generator when the wind speed measured from the wind speed measuring unit is greater than a predetermined value.

본 발명에 따르면, 풍속 측정부로부터 측정된 풍속의 크기에 따라 발전기의 가압 토크 값을 변경해 줌에 따라, 나셀과, 블레이드, 및 타워에 작용하는 풍하중을 감소시킬 수 있게 되어 부유식 풍력발전기의 수명을 증대시킬 수 있게 된다.According to the present invention, as the pressing torque value of the generator is changed according to the magnitude of the wind speed measured from the wind speed measuring unit, the wind load acting on the nacelle, the blade, and the tower can be reduced, . ≪ / RTI >

또한, 풍속의 크기가 일정 값 이상일 경우 발전기의 출력량이 증가되므로, 종래와 같이 풍속의 크기와 상관없이 일정한 출력량을 발생시키는 부유식 풍력발전기보다 발전 효울이 증가하게 된다. Also, since the output of the generator is increased when the wind speed is greater than a predetermined value, the power generation efficiency is increased as compared with the floating wind power generator generating a constant output regardless of the wind speed.

도 1은 종래 기술에 따른 고정식 풍력발전기의 로터 및 타워가 받는 풍하중을 도시한 도면.
도 2는 종래 기술에 따른 부유식 풍력발전기의 제어시스템에 있어서, 풍속의 크기에 따라 나셀, 블레이드, 타워가 받는 풍하중을 도시한 표.
도 3은 본 발명의 일 실시예에 따른 부유식 풍력발전기의 사시도.
도 4는 도 3에 도시된 부유식 풍력발전기의 제어 시스템의 구성도.
도 5는 종래 기술에 따른 부유식 풍력발전기의 제어시스템과 본 발명의 일 실시예에 따른 부유식 풍력발전기의 제어시스템을 통해 측정된 나셀, 블레이드, 타워가 받는 풍하중을 비교하여 도시한 표.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a wind load received by a rotor and a tower of a stationary wind power generator according to the prior art; FIG.
FIG. 2 is a table showing a wind load received by a nacelle, a blade, and a tower according to the magnitude of wind speed in a control system of a floating wind turbine according to the related art.
3 is a perspective view of a floating wind power generator according to an embodiment of the present invention.
4 is a configuration diagram of a control system of the floating wind power generator shown in Fig. 3;
5 is a chart comparing the wind loads received by the nacelle, the blade and the tower measured through the control system of the floating wind turbine according to the prior art and the control system of the floating wind turbine according to the embodiment of the present invention.

이하 첨부된 도면을 참조하여, 바람직한 실시예에 따른 부유식 풍력발전기의 제어 시스템에 대해 상세히 설명하면 다음과 같다. 여기서, 동일한 구성에 대해서는 동일부호를 사용하며, 반복되는 설명, 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 발명의 실시형태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a control system of a floating wind power generator according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. Here, the same reference numerals are used for the same components, and repeated descriptions and known functions and configurations that may obscure the gist of the present invention will not be described in detail. Embodiments of the invention are provided to more fully describe the present invention to those skilled in the art. Accordingly, the shapes and sizes of the elements in the drawings and the like can be exaggerated for clarity.

도 3은 본 발명의 일 실시예에 따른 부유식 풍력발전기의 사시도이고, 도 4는 도 3에 도시된 부유식 풍력발전기의 제어 시스템의 구성도이다. 여기서, 부유식 풍력발전기(100)는 해수면 위에 부유 구조물(10)을 띄우고 그 부유 구조물(10) 위에 풍력발전기를 설치하는 방식이다. FIG. 3 is a perspective view of a floating wind turbine according to an embodiment of the present invention, and FIG. 4 is a configuration diagram of a control system of the floating wind turbine shown in FIG. Here, the floating wind power generator 100 is a system in which the floating structure 10 is floated on the sea surface and the wind power generator is installed on the floating structure 10.

도 3 및 도 4에 도시된 바와 같이, 부유식 풍력발전기의 제어 시스템(100)은 로터(110)와, 나셀(120)과, 풍속 측정부(130), 및 제어부(140)를 포함한다.3 and 4, a control system 100 of a floating wind power generator includes a rotor 110, a nacelle 120, a wind speed measuring unit 130, and a control unit 140. [

로터(110)는 일측에 회전축이 형성된 허브(111)와, 허브(111)의 둘레를 따라 연결된 적어도 하나의 블레이드(112)를 포함한다. 여기서, 블레이드(112)의 형상 및 개수는 한정되지 않으며, 실시자의 필요에 따라 달라질 수 있다. The rotor 110 includes a hub 111 on one side of which a rotating shaft is formed and at least one blade 112 connected along the periphery of the hub 111. Here, the shape and the number of the blades 112 are not limited and can be changed according to the needs of the practitioner.

나셀(120)은 타워(20)의 상측에 결합되어 로터(110)를 회전 가능하게 지지하는 것으로, 내부에 로터(110)의 회전에 의해 발전하는 발전기(121)를 구비한다. 이때, 발전기(121)는 로터(110)의 회전 축에 연결될 수 있다. 이에 따라, 로터(110)가 바람에 의해 회전하게 되면 발전기(121) 또한 함께 회전하게 되어 전력을 생산할 수 있게 된다. The nacelle 120 is coupled to an upper side of the tower 20 to rotatably support the rotor 110 and includes a generator 121 that generates power by rotation of the rotor 110. At this time, the generator 121 may be connected to the rotation axis of the rotor 110. Accordingly, when the rotor 110 is rotated by the wind, the generator 121 is also rotated together to produce electric power.

풍속 측정부(130)는 로터(110)에 가해지는 풍속의 크기를 측정한다. 여기서, 풍속 측정부(130)는 풍속 추정기를 통해 로터(110)에 가해지는 풍속을 측정할 수도 있으나, 발전기(121)의 토크와 블레이드(112)의 피치각을 통해 로터(110)에 가해지는 풍속의 크기를 측정하는 것이 바람직하다. The wind speed measuring unit 130 measures the magnitude of the wind speed applied to the rotor 110. Here, the wind speed measuring unit 130 may measure the wind speed applied to the rotor 110 through the wind speed estimator. However, the wind speed measuring unit 130 may measure the wind speed applied to the rotor 110 through the torque of the generator 121 and the pitch angle of the blade 112 It is preferable to measure the magnitude of the wind speed.

이때, 풍력발전기(100)는 내부에 설치된 룩업 테이블(Lookup Table)을 통해 바람에 대해 회전하는 로터(110)의 회전속도를 측정하고 풍력발전기(100)가 최대 효율을 갖고 작동할 수 있도록 발전기(121)의 토크와 블레이드(112)의 피치각을 제어하게 된다. 따라서, 역으로 현재 측정된 발전기(121)의 토크와 블레이드(112)의 피치각을 이용하면 로터(110)에 가해지는 풍속의 크기를 측정할 수 있게 된다. At this time, the wind turbine generator 100 measures the rotational speed of the rotor 110 rotating with respect to the wind through a lookup table installed therein, and controls the generator 100 121 and the pitch angle of the blade 112 are controlled. Therefore, by using the torque of the generator 121 and the pitch angle of the blade 112, the magnitude of the wind speed applied to the rotor 110 can be measured.

제어부(140)는 풍속 측정부(130)로부터 측정된 풍속의 크기가 일정 값 이상이면 발전기(121)의 출력량을 증가시키도록 가압 토크값을 변경하여 출력한다. 여기서, 가압 토크는 바람에 의해 로터(110)가 회전하기 시작한 이후에 로터(110)의 회전속도가 점차 증가하게 되면서 풍력 발전기(121)의 구동 최적화에 해당하는 정격속도에 도달했을 때, 정격속도를 유지하기 위한 최소의 토크 값을 의미한다. The control unit 140 changes the pressure torque value to increase the output of the generator 121 when the measured wind speed is greater than a predetermined value. Here, when the rated speed corresponding to the optimization of the driving of the wind power generator 121 is reached while the rotational speed of the rotor 110 gradually increases after the rotor 110 starts to rotate by the wind, Quot; minimum torque "

예를 들어, 풍속 측정부(130)에 의해 측정된 풍속 값이 비교적 낮은 13 ~ 16m/s일 경우 제어부(140)는 발전기(121)의 제어주기를 0.2 rad/s로 유지하도록 하고, 풍속 값이 비교적 높은 17 ~ 25m/s일 경우 제어부(140)는 발전기(121)의 제어주기를 1.0 rad/s로 증가시키도록 가압 토크 값을 변경한다. 이때, 일반적으로 로터(110)가 구동하기 시작하는 풍속이 13m/s이고, 로터(110)가 구동을 멈추는 풍속이 25m/s이므로, 13~25m/s 내에서만 가압 토크 값을 변경하도록 한다. For example, when the wind speed measured by the wind speed measuring unit 130 is relatively low, 13 to 16 m / s, the control unit 140 maintains the control period of the generator 121 at 0.2 rad / s, The control unit 140 changes the pressing torque value to increase the control period of the generator 121 to 1.0 rad / s. At this time, since the wind speed at which the rotor 110 starts to be driven is 13 m / s and the wind speed at which the rotor 110 stops driving is 25 m / s, the pressing torque value is changed only within 13 to 25 m / s.

이처럼 풍속의 크기에 따라 발전기(121)의 가압 토크 값을 변화시키는 이유는 도 2를 참조하면 알 수 있다. 즉, 도 2에 도시된 바와 같이, 부유식 풍력발전기의 경우 상대적으로 풍속이 낮은 구간(13 ~ 16m/s)에서는 로터(110)가 1.0 rad/s보다 느리게 회전하고, 상대적으로 풍속이 높은 구간(17 ~ 25 m/s)에서는 로터(110)가 1.0 rad/s로 회전할 경우 나셀(120), 블레이드(112), 타워(20)가 받는 풍하중이 감소하기 때문이다. The reason why the pressing torque value of the generator 121 is changed according to the magnitude of the wind speed can be seen with reference to FIG. 2, in the case of the floating wind turbine, the rotor 110 rotates slower than 1.0 rad / s in the relatively low wind speed range (13 to 16 m / s), and the relatively high wind speed section The wind load received by the nacelle 120, the blade 112, and the tower 20 decreases when the rotor 110 rotates at 1.0 rad / s in the range of 17 to 25 m / s.

따라서, 풍속 측정부(130)로부터 측정된 풍속의 크기에 따라 발전기(121)의 가압 토크 값을 변경해 주게 되면, 도 5에 도시된 바와 같이 종래의 부유식 풍력발전기보다 나셀(120)과, 블레이드(112), 및 타워(20)에 작용하는 풍하중을 감소시킬 수 있게 되어 부유식 풍력발전기(100)의 수명을 증대시킬 수 있게 된다. Therefore, if the pressing torque value of the generator 121 is changed according to the magnitude of the wind speed measured from the wind speed measuring unit 130, as shown in FIG. 5, the nacelle 120, It is possible to reduce the wind load acting on the wind turbine 112, the tower 20, and the lifetime of the floating wind power generator 100.

한편, 부유식 풍력발전기의 제어 시스템(100)은 피치 제어부(150)를 더 포함할 수 있다.On the other hand, the control system 100 of the floating wind power generator may further include a pitch control unit 150.

피치 제어부(150)는 가압 토크값에 대응하여 증가되는 로터(110)의 회전속도를 일정 속도로 유지하기 위해 블레이드(112)들의 피치각도를 변경한다. 즉, 피치 제어부(150)는 로터(110)가 정해진 범위 내의 회전속도로 회전할 수 있도록 로터(110)의 회전속도에 근거하여 블레이드(112)들의 피치각을 조절하는 것이다. 이에 따라, 로터(110)를 일정한 속도로 회전시킬 수 있게 되어 부유식 풍력발전기에 작용하는 풍하중을 일정하게 유지할 수 있게 된다. The pitch control unit 150 changes the pitch angle of the blades 112 to maintain the rotational speed of the rotor 110 increased corresponding to the pressing torque value at a constant speed. That is, the pitch control unit 150 adjusts the pitch angle of the blades 112 based on the rotational speed of the rotor 110 so that the rotor 110 can rotate at a rotational speed within a predetermined range. Accordingly, the rotor 110 can be rotated at a constant speed, so that the wind load acting on the floating wind power generator can be kept constant.

전술한 바와 같이, 부유식 풍력발전기의 제어 시스템(100)은 풍속 측정부(130)로부터 측정된 풍속의 크기에 따라 발전기(121)의 가압 토크 값을 변경해 줌에 따라, 나셀(120)과, 블레이드(112), 및 타워(20)에 작용하는 풍하중을 감소시킬 수 있게 되어 부유식 풍력발전기의 수명을 증대시킬 수 있게 된다.As described above, the control system 100 of the floating wind power generator changes the pressing torque value of the generator 121 according to the magnitude of the wind speed measured from the wind speed measuring unit 130, so that the nacelle 120, It is possible to reduce the wind load acting on the blade (112) and the tower (20), so that the lifetime of the floating wind power generator can be increased.

또한, 풍속의 크기가 일정 값 이상일 경우 발전기(121)의 출력량이 증가되므로, 종래와 같이 풍속의 크기와 상관없이 일정한 출력량을 발생시키는 부유식 풍력발전기보다 발전 효울이 증가하게 된다. Also, since the output of the generator 121 is increased when the wind speed is greater than a predetermined value, the power generation efficiency is increased as compared with a floating wind power generator that generates a constant output power regardless of the wind speed.

본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation and that those skilled in the art will recognize that various modifications and equivalent arrangements may be made therein. It will be possible. Accordingly, the true scope of protection of the present invention should be determined only by the appended claims.

10.. 부유 구조물
20.. 타워
110.. 로터
111.. 허브
112.. 블레이드
120.. 나셀
121.. 발전기
130.. 풍속 측정부
140.. 제어부
150.. 피치 제어부
10. Floating structures
20 .. Towers
110 .. Rotor
111 .. Hub
112 .. Blade
120 .. Nacelle
121 .. Generator
130.
140.
150. Pitch controller

Claims (3)

부유 구조물 상에 설치된 부유식 풍력발전기의 제어 시스템에 있어서,
둘레를 따라 복수의 블레이드가 장착된 로터;
상기 로터의 회전에 의해 발전하는 발전기를 구비한 나셀;
상기 로터에 가해지는 풍속의 크기를 측정하는 풍속 측정부; 및
상기 로터의 회전속도에 따라 상기 발전기의 토크와 블레이드의 피치각을 제어하며, 상기 풍속 측정부로부터 측정된 풍속의 크기가 17~25m/s이면 발전기의 제어주기를 증가시키며, 측정된 풍속의 크기가 13~16m/s이면 발전기의 제어주기를 일정하게 유지하는 제어부;
를 포함하는 부유식 풍력발전기의 제어 시스템.
A control system for a floating wind power generator installed on a floating structure,
A rotor having a plurality of blades mounted along a circumference thereof;
A nacelle having a generator that generates power by rotation of the rotor;
A wind speed measuring unit for measuring a magnitude of a wind speed applied to the rotor; And
The controller controls the torque of the generator and the pitch angle of the blades according to the rotation speed of the rotor and increases the control period of the generator when the wind speed measured from the wind speed measuring unit is 17 to 25 m / Is 13 to 16 m / s, the controller maintains the control period of the generator at a constant level.
And a control system for the wind turbine.
제1항에 있어서,
상기 풍속 측정부는 상기 발전기의 토크와 상기 블레이드의 피치각을 통해 상기 로터에 가해지는 풍속의 크기를 측정하는 것을 특징으로 하는 부유식 풍력발전기의 제어 시스템.
The method according to claim 1,
Wherein the wind speed measuring unit measures a magnitude of a wind speed applied to the rotor through a torque of the generator and a pitch angle of the blade.
제1항에 있어서,
상기 로터의 회전속도를 일정 속도로 유지하기 위해 상기 블레이드들의 피치각도를 변경하는 피치 제어부를 포함하는 것을 특징으로 하는 부유식 풍력발전기의 제어 시스템.
The method according to claim 1,
And a pitch controller for changing a pitch angle of the blades to maintain the rotation speed of the rotor at a constant speed.
KR1020150128474A 2015-09-10 2015-09-10 Control system of floating wind power generator KR101634712B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150128474A KR101634712B1 (en) 2015-09-10 2015-09-10 Control system of floating wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150128474A KR101634712B1 (en) 2015-09-10 2015-09-10 Control system of floating wind power generator

Publications (1)

Publication Number Publication Date
KR101634712B1 true KR101634712B1 (en) 2016-06-29

Family

ID=56365999

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150128474A KR101634712B1 (en) 2015-09-10 2015-09-10 Control system of floating wind power generator

Country Status (1)

Country Link
KR (1) KR101634712B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220022933A (en) * 2020-08-19 2022-03-02 새한테크놀로지(주) Water quality improvement system using wind power and control method of water quality improvement system using wind power
KR20220022938A (en) * 2020-08-19 2022-03-02 새한테크놀로지(주) Water quality improvement system and control method of water quality improvement system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120038707A (en) 2010-10-14 2012-04-24 재단법인 포항산업과학연구원 Floating offshore wind power generation plant
KR20120103966A (en) * 2011-03-11 2012-09-20 삼성중공업 주식회사 Variable speed wind turbine system
KR20130017018A (en) * 2011-08-09 2013-02-19 삼성중공업 주식회사 Driving control system and driving control method of wind power generator
KR20150060979A (en) * 2012-10-01 2015-06-03 아이에프피 에너지스 누벨 Method for controlling a wind turbine by means of an estimation of the incident wind speed

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120038707A (en) 2010-10-14 2012-04-24 재단법인 포항산업과학연구원 Floating offshore wind power generation plant
KR20120103966A (en) * 2011-03-11 2012-09-20 삼성중공업 주식회사 Variable speed wind turbine system
KR20130017018A (en) * 2011-08-09 2013-02-19 삼성중공업 주식회사 Driving control system and driving control method of wind power generator
KR20150060979A (en) * 2012-10-01 2015-06-03 아이에프피 에너지스 누벨 Method for controlling a wind turbine by means of an estimation of the incident wind speed

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220022933A (en) * 2020-08-19 2022-03-02 새한테크놀로지(주) Water quality improvement system using wind power and control method of water quality improvement system using wind power
KR20220022938A (en) * 2020-08-19 2022-03-02 새한테크놀로지(주) Water quality improvement system and control method of water quality improvement system
KR102377520B1 (en) 2020-08-19 2022-03-23 새한테크놀로지(주) Water quality improvement system and control method of water quality improvement system
KR102458959B1 (en) 2020-08-19 2022-10-26 새한테크놀로지(주) Water quality improvement system using wind power and control method of water quality improvement system using wind power

Similar Documents

Publication Publication Date Title
EP3034388B1 (en) Wind power generation system
EP2400153B1 (en) Methods and systems for operating a wind turbine
US7772713B2 (en) Method and system for controlling a wind turbine
ES2880615T3 (en) Procedures and apparatus for operating a wind turbine
EP3179097A1 (en) Wind power generating system and method for controlling wind power generating system
AU2012203245B2 (en) Method, park controller and program element for controlling a wind farm
US9732730B2 (en) Partial pitch wind turbine with floating foundation
EP2461028A2 (en) A floating offshore wind farm, a floating offshore wind turbine and a method for positioning a floating offshore wind turbine
US20140044541A1 (en) Installation and method for exploiting wind energy
US20100045038A1 (en) Method for the Damping of Tower Oscillations in Wind Power Installations
ES2909661T3 (en) Procedures and systems for shutting down a wind turbine
EP2522853B1 (en) Wind turbine torque-speed control
US20150167631A1 (en) High efficiency wind turbine
KR101591864B1 (en) Floating offshore power generation plant
US20120256423A1 (en) Device of floating wind turbine capable of counterbalancing torques therein
KR101634712B1 (en) Control system of floating wind power generator
ES2659827T3 (en) Wind power plant and method for controlling a wind turbine generator in a wind power plant
CN101639039B (en) Pulsed torque control of wind turbine pitch systems
KR101656478B1 (en) Wind turbine generator
KR20130107959A (en) Method for controlling a generator of wind turbine generator
Kallesoe et al. Aero-hydro-elastic response of a floating platform supporting several wind turbines
JP2006090246A (en) Wind turbine generator
JP2017180153A (en) Wind power generation device or wind farm
KR101591866B1 (en) Floating offshore power generation plant
KR20220097484A (en) Enhanced Wind Turbine Wake Mixing

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190321

Year of fee payment: 4