KR101593576B1 - Piezoelectric magnetorheological fluid base isolator - Google Patents

Piezoelectric magnetorheological fluid base isolator Download PDF

Info

Publication number
KR101593576B1
KR101593576B1 KR1020080134111A KR20080134111A KR101593576B1 KR 101593576 B1 KR101593576 B1 KR 101593576B1 KR 1020080134111 A KR1020080134111 A KR 1020080134111A KR 20080134111 A KR20080134111 A KR 20080134111A KR 101593576 B1 KR101593576 B1 KR 101593576B1
Authority
KR
South Korea
Prior art keywords
fluid
tube
coil
rubber layer
present
Prior art date
Application number
KR1020080134111A
Other languages
Korean (ko)
Other versions
KR20100076171A (en
Inventor
박규식
이종관
성택룡
이정휘
김기석
윤태양
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020080134111A priority Critical patent/KR101593576B1/en
Publication of KR20100076171A publication Critical patent/KR20100076171A/en
Application granted granted Critical
Publication of KR101593576B1 publication Critical patent/KR101593576B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/04Bearings; Hinges
    • E01D19/041Elastomeric bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
    • F16F13/30Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for varying fluid viscosity, e.g. of magnetic or electrorheological fluids
    • F16F13/305Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for varying fluid viscosity, e.g. of magnetic or electrorheological fluids magnetorheological
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Bridges Or Land Bridges (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

본 발명은 MR유체와 같은 가제어성 유변유체를 이용하여 진원으로부터 전달되는 진동을 효과적으로 제어 및 감쇠시킬 수 있는 면진받침을 제공한다. 본 발명은 상하 단부강판 사이로 고무층과 강판이 번갈아 적층되고, 상기 고무층과 강판을 수직 방향으로 관통하는 중공부를 형성한 1개 또는 그 이상의 튜브를 구비하며, 상하부 연결판 사이에 설치되는 면진받침에 있어서, 상기 튜브는 중공부에 MR유체가 충진되고, 외주면에 코일이 감겨있으며, 상기 코일이 감겨진 튜브를 압전소자로 피복한 것을 특징으로 하는 압전 MR유체 면진받침에 관한 것이다.The present invention provides an anti-vibration bearing capable of effectively controlling and attenuating vibration transmitted from a source using a gauged rheological fluid such as MR fluid. The present invention is characterized in that one or more tubes each having a rubber layer and a steel sheet laminated alternately between the upper and lower end steel plates and a hollow portion penetrating the rubber layer and the steel sheet in the vertical direction are formed, And the tube is filled with a MR fluid in a hollow portion, a coil is wound around an outer circumferential surface of the tube, and a tube in which the coil is wound is covered with a piezoelectric element.

MR유체, 면진받침, 압전소자, 코일, 자기장, 튜브 MR fluid, base plate, piezoelectric element, coil, magnetic field, tube

Description

압전 MR유체 면진받침{PIEZOELECTRIC MAGNETORHEOLOGICAL FLUID BASE ISOLATOR}[0001] PIEZOELECTRIC MAGNETORHEOLOGICAL FLUID BASE ISOLATOR [0002]

본 발명은 교량, 건축물 등과 같이 지반 혹은 하부구조 위에 시공되는 상부 구조물들을 지반 혹은 하부구조로부터 격리시키기 위하여 그 사이에 설치되는 면진받침에 관한 것으로서, 보다 상세하게는 MR유체와 같은 가제어성 유변유체를 이용하여 진원으로부터 전달되는 진동을 효과적으로 제어 및 감쇠시킬 수 있는 면진받침에 관한 것이다.The present invention relates to an anti-vibration bearing installed between a ground and a lower structure for isolating upper structures installed on the ground or a lower structure such as a bridge, a building, and the like, and more particularly, Which can effectively control and attenuate vibrations transmitted from a source.

도 1에 도시된 바와 같이, 일반적으로 납면진받침(Lead rubber bearing)(100)은 교량, 건축물, 대형 탱크 등과 같이, 지반 혹은 하부구조 위에 시공되는 상부 구조물을 지반 혹은 하부구조로부터 격리시키기 위하여 그 사이에 설치되는 것으로, 지진 등의 진동을 절연하고 진동 종료후 탄성 고무층이 갖고 있는 탄성 회복력으로 원래 위치로 복원하는 기능을 가지며, 상부구조물의 진동 가속도를 줄여주는 역할을 하게 된다. As shown in FIG. 1, a lead rubber bearing 100 is generally used to isolate an upper structure constructed on a ground or a lower structure from a ground or a lower structure, such as a bridge, a building, a large tank, And has a function of insulating the vibration such as an earthquake and restoring the elastic rubber layer to its original position by the resilient recovery force of the elastic rubber layer after the end of the vibration, thereby reducing the vibration acceleration of the upper structure.

도 2에 도시된 바와 같이, 종래의 면진받침은 고무층(1)과 상대적으로 얇은 강판(2)을 번갈아 적층시키고, 그 상하 끝단 쪽에는 상대적으로 두꺼운 단부강 판(3,4)을 각각 적층시킨 후 내부가 빈 중공부가 고무층(1) 또는 강판(2)의 평면에 수직한 방향으로 관통되도록 형성되면서 일체로 성형한 탄성체(5)와, 상기 탄성체(5)의 중공부에 압입된 납심(7)으로 구성되며, 연결볼트(11)에 의해 상, 하부 연결판(9,10) 사이에서 고정 설치되고, 상기 단부강판(3,4)과 상, 하부 연결판 (9,10)사이에는 수평방향으로의 하중전달을 위해 사용되는 전단키(12)를 포함하여 구성된다.As shown in Fig. 2, the conventional seismic counterpart is constructed by alternately laminating the rubber layer 1 and the relatively thin steel sheet 2, and relatively thicker end steel plates 3 and 4 are laminated on the upper and lower ends thereof And an elastic body 5 formed integrally with the inner hollow portion so as to penetrate the hollow hollow portion in a direction perpendicular to the plane of the rubber layer 1 or the steel sheet 2, And is fixed between the upper and lower connecting plates 9 and 10 by means of the connecting bolts 11 and horizontally between the upper and lower connecting plates 9 and 10, And a shear key 12 used for load transfer in the direction of the arrow.

이러한 납면진받침을 포함한 대형 구조물의 면진장치로 사용되는 면진받침(Seismic isolation device)의 기본적인 특성은 유연한 횡강성과 에너지 소산능력이며, 지진력에 의한 전단변형량뿐만 아니라, 상부 구조물의 온도변화에 따른 신축량을 포함한 전단변형을 허용할 수 있어야 한다. 유연한 횡강성이란 구조물의 고유주기를 증가시켜 외부에너지가 집중된 주파수 영역을 피하도록 하는 것이다. 그러나, 이러한 유연한 횡강성 때문에 면진받침이 설치된 구조물의 변위는 증가하게 되며, 이러한 변위의 증가로 인해 구조물의 붕괴나 낙교의 위험성이 크게 증가하게 된다. The basic characteristics of a seismic isolation device used as a seismic isolation device for large structures, including lead seismic bearings, are flexible lateral stiffness and energy dissipation capability, and not only the amount of shear deformation due to seismic forces, To allow for shear deformation, including Flexible transverse stiffness is to increase the natural period of the structure to avoid the frequency domain where the external energy is concentrated. However, due to the flexible lateral stiffness, the displacement of the structure with the seismic countermeasures increases, and the increase of such displacements greatly increases the risk of collapse or fall of the structure.

종래의 기술들은 특정 하중에 대한 최적화를 통해 최적의 진동제어 성능을 발휘하도록 설계되었기 때문에 특정 하중 이외의 하중이 구조물에 작용하게 되면 진동제어 성능은 떨어질 수 밖에 없다. 또한, 종래의 면진받침은 한번 설치가 끝나게 되면 차후에 특성을 변화시킬 수 없는 수동형이었기 때문에 다양한 하중에 대한 적응성이 떨어지는 문제가 있다.Conventional techniques are designed to exhibit optimal vibration control performance through optimization of a specific load. Therefore, when a load other than a specific load acts on the structure, the vibration control performance is inevitably lowered. In addition, since the conventional seat base is a passive type that can not change the characteristics after the installation is completed, there is a problem that the adaptability to various loads is low.

이러한 문제점을 해결하기 위하여 진동제어효과 및 적응성을 향상시킨 능동 형 또는 반능동형 기술이 제안되었으나, 추가적인 외부전력원 및 제어기를 필요로 하였고, 신뢰성이 수동형에 비해 떨어졌기 때문에 대형구조물에 직접적으로 적용되기 어려운 문제가 있다.In order to solve these problems, active or semi-active technologies have been proposed which improve the vibration control effect and adaptability. However, additional external power sources and controllers are required, and since the reliability is lower than that of the passive type, there is a problem.

따라서 기존의 면진받침의 신뢰성을 유지하면서도 다양한 하중에 대한 적응성 및 진동제어성능이 우수한 기술의 개발이 필요하다. 특히, 부가적인 외부전력원이나 제어기를 갖지 않는 적응형 면진받침의 개발은 건물이나 교량과 같은 대형구조물에 순간적으로 가해지는 하중에 대한 진동제어방법으로 효율적으로 사용될 수 있다.Therefore, it is necessary to develop a technology that has excellent adaptability to various loads and excellent vibration control performance while maintaining the reliability of the existing seat base. In particular, the development of an adaptive seismic restraint with no additional external power source or controller can be efficiently used as a vibration control method for instantaneous loading on large structures such as buildings or bridges.

본 발명은 부가적인 외부전력원이나 제어기의 사용없이, 진동에 의한 면진받침의 변형에 따라 압전소자에서 발생하는 전류를 이용해 자기장에 따라 특성이 변하는 MR유체를 사용하여 진동제어성능 및 다양한 하중에 대한 적응성을 향상시키고, 신뢰성이 우수한 면진받침을 제공하는 것을 그 목적으로 한다.The present invention uses MR fluid whose characteristics vary according to a magnetic field by using a current generated in a piezoelectric element according to a deformation of an eccentric bearing due to vibration without using an external power source or a controller, An object of the present invention is to provide an anti-vibration bearing which has improved adaptability and is excellent in reliability.

본 발명은 상하 단부강판 사이로 고무층과 강판이 번갈아 적층되고, 상기 고무층과 강판을 수직 방향으로 관통하는 중공부를 형성한 1개 또는 그 이상의 튜브를 구비하며, 상하부 연결판 사이에 설치되는 면진받침에 있어서, 상기 튜브는 중공부에 MR유체가 충진되고, 외주면에 코일이 감긴 것을 특징으로 하는 압전 MR유체 면진받침에 관한 것이다.The present invention is characterized in that one or more tubes each having a rubber layer and a steel sheet laminated alternately between the upper and lower end steel plates and a hollow portion penetrating the rubber layer and the steel sheet in the vertical direction are formed, The MR fluid is filled in the hollow portion of the tube, and the coil is wound on the outer circumferential surface of the tube.

본 발명은 상기 코일이 감진 튜브를 압전소자로 피복한 것을 특징으로 하는 압전 MR유체 면진받침을 제공한다.The present invention provides a piezoelectric MR fluid-based bearing, wherein the coil is covered with a piezoelectric element.

본 발명의 상기 튜브는 납으로 이루어지는 것을 특징으로 하는 압전 MR유체 면진받침을 제공한다.The tube of the present invention is made of lead.

본 발명은 압전소자에서 발생하는 전류를 이용해 자기장에 따라 특성이 변하는 MR유체를 사용하여 진동을 효과적으로 제어할 수 있고, 진동제어능력도 향상되며, 별도의 외부전력원이나 제어기의 사용없이도 다양한 하중에 대한 적응성이 우 수한 효과가 있다.The present invention can effectively control the vibration by using the MR fluid whose characteristics are changed according to the magnetic field by using the current generated from the piezoelectric element, and the vibration control ability is improved, and various loads There is a good effect on adaptability.

이하 본 발명에 대하여 첨부도면을 참고하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명에 의한 압전 MR유체 면진받침의 구성도, 도 4는 본 발명의 MR유체가 충진된 뷰브의 단면도, 도 5는 입력전압에 따른 MR유체의 제어력을 나타낸 그래프이다.FIG. 3 is a configuration diagram of a piezoelectric MR fluid-tightening bearing according to the present invention, FIG. 4 is a cross-sectional view of a viewframe filled with the MR fluid of the present invention, and FIG.

본 발명은 상하 단부강판 사이로 고무층과 강판이 번갈아 적층되고, 상기 고무층과 강판을 수직 방향으로 관통하는 중공부를 형성한 1개 또는 그 이상의 튜브를 구비하며, 상하부 연결판 사이에 설치되는 면진받침에 있어서, 상기 튜브는 중공부에 MR유체가 충진되고, 외주면에 코일이 감겨있으며, 상기 코일이 감겨진 튜브를 압전소자로 피복한 것을 특징으로 하는 압전 MR유체 면진받침에 관한 것이다.The present invention is characterized in that one or more tubes each having a rubber layer and a steel sheet laminated alternately between the upper and lower end steel plates and a hollow portion penetrating the rubber layer and the steel sheet in the vertical direction are formed, And the tube is filled with a MR fluid in a hollow portion, a coil is wound around an outer circumferential surface of the tube, and a tube in which the coil is wound is covered with a piezoelectric element.

도 3 및 도 4에 도시된 바와 같이, 본 발명의 튜브는 중공부에 종래의 납심 대신 MR유체가 충진된다. MR유체(Magnetorheological fluid)는 자기장 또는 전기장에 의해 경화되거나 형상이 변형되는 물질을 말하는 것으로, 근처에 자기장이나 전기장이 발생하면 그 구성성분이 한 방향으로 늘어서게 되고, 이에 따라 상기 MR유체를 포함하는 물질을 경화시켜 단단한 격자를 형성하는 것이다. 따라서 MR유체는 자기장의 변화에 따라 분자구조의 배열이 바뀌어 유체에서 고체화되면서 진동에 대한 감쇠능력이 증가하는 특성이 있다. 또한, 도 5에 도시된 바와 같이, 입력전압이 클수록 MR유체의 제어력이 증가함을 알 수 있다. As shown in FIGS. 3 and 4, in the tube of the present invention, the hollow portion is filled with the MR fluid instead of the conventional lead core. Magnetorheological fluid refers to a material that is hardened or deformed by a magnetic field or an electric field. When a magnetic field or an electric field is generated in the vicinity of the MR fluid, the constituent components are aligned in one direction, Curing the material to form a rigid lattice. Therefore, the MR fluid has the property of increasing the damping ability against the vibration as the molecular structure is changed according to the change of the magnetic field and solidified in the fluid. Also, as shown in FIG. 5, it can be seen that the control power of the MR fluid increases as the input voltage increases.

본 발명의 튜브에는 자기장 형성을 위해 그 외주면에 코일이 감겨있다. 상기 코일에 전류를 공급하면 그 코일에 의해 자기장이 발생되어 MR유체에 인가됨으로서 MR유체의 감쇠력이 가변됨으로 인해 진동을 감쇠시키는 것이다. In the tube of the present invention, a coil is wound around the outer circumferential surface thereof to form a magnetic field. When a current is supplied to the coil, a magnetic field is generated by the coil, and the MR fluid is applied to the MR fluid, thereby damping the vibration because the damping force of the MR fluid is varied.

본 발명은 코일이 감겨진 튜브에는 압전소자가 피복되어 있는데, 압전소자(Piezoelectric element)란기계적 힘을 주면 전기가 발생 또는 역으로 전기를 주면 기계적 힘이 발생하는 소자를 말한다. 상기 코일에 자기장이 발생되려면 외부에서 코일에 전류를 흘려줘야 하는데, 구조물의 진동이 큰 경우에는 면진받침의 상대변위가 크게 발생하며, 이 때 본 발명의 튜브의 변형량이 증가하게 되고, 상기 튜브를 피복한 압전소자가 변형되게 되며, 이러한 압전소자의 변형에 의해 전기에너지가 발생하게 된다. 이러한 압전소자의 변형에 따라 전류가 코일에 흐르면 그 내부의 MR유체에 자기장이 발생하여 MR유체의 감쇠능력이 증가하게 되어 진동제어 능력이 향상된다.In the present invention, a tube wound with a coil is covered with a piezoelectric element. The term " piezoelectric element " refers to a device that generates electricity when a mechanical force is applied or a mechanical force is generated when electricity is applied thereto. In order to generate a magnetic field in the coil, a current must be supplied from the outside to the coil. When the vibration of the structure is large, a relative displacement of the base is largely generated. In this case, The coated piezoelectric element is deformed, and electrical energy is generated by the deformation of the piezoelectric element. When a current flows in the coil due to the deformation of the piezoelectric element, a magnetic field is generated in the MR fluid therein, thereby increasing the damping capability of the MR fluid, thereby improving the vibration control ability.

한편, 본 발명의 상기 튜브는 탄성이 있는 납으로 이루어지는 것이 바람직하다. 지속적으로 발생되는 진동의 크기에 따라 대처해야 하기 때문이다.On the other hand, the tube of the present invention is preferably made of elastic lead. This is because it is necessary to cope with the magnitude of the continuously generated vibration.

도 1은 종래의 납면진받침을 사용한 건물(a)과 교량(b)의 사시도이다.1 is a perspective view of a building (a) and a bridge (b) using a conventional lead-free supporting base.

도 2는 종래의 납면진받침의 사시도(a), 구성도(b)이다.Fig. 2 is a perspective view (a) and a configuration view (b) of a conventional lead-free supporting base.

도 3은 본 발명에 의한 압전 MR유체 면진받침의 구성도이다.Fig. 3 is a block diagram of a piezoelectric MR fluid-based bearing according to the present invention.

도 4는 본 발명의 MR유체가 충진된 뷰브의 단면도이다.4 is a cross-sectional view of a viewframe filled with the MR fluid of the present invention.

도 5는 입력전압에 따른 MR유체의 제어력을 나타낸 그래프이다.5 is a graph showing the control power of the MR fluid according to the input voltage.

* 도면의 주요 부호에 대한 설명 *DESCRIPTION OF THE RELATED ART [0002]

1. 고무층 2. 강판1. Rubber layer 2. Steel plate

3. 상부단부강판 4. 하부단부강판3. Upper end steel plate 4. Lower end steel plate

5. 탄성체 7. 납심5. Elastomer 7. Mercedes

9. 상부 연결판 10. 하부 연결판9. Upper connecting plate 10. Lower connecting plate

11. 연결볼트 12. 전단키11. Connecting bolt 12. Shear key

100. 납면진받침 100. Lead bearing seat

200. 강판 210. 고무층200. Steel plate 210. Rubber layer

220. 튜브 230. 상부단부강판220. Tube 230. Upper end plate

240. 하부단부강판 250. 상부 연결판240. Lower end steel plate 250. Upper connecting plate

260. 하부 연결판 270. MR 유체260. Lower connecting plate 270. MR fluid

280. 코일 290. 압전소자280. Coil 290. Piezoelectric element

Claims (3)

상하 단부강판 사이로 고무층과 강판이 번갈아 적층되고, 상기 고무층과 강판을 수직 방향으로 관통하는 중공부를 형성한 1개 이상의 튜브를 구비하며, 상하부 연결판 사이에 설치되는 면진받침에 있어서,Wherein at least one tube having a rubber layer and a steel plate alternately stacked between upper and lower end steel plates and a hollow portion passing through the rubber layer and the steel plate in a vertical direction is formed, 상기 튜브는 중공부에 MR유체가 충진되고, 외주면에 코일이 감기며,Wherein the hollow tube is filled with the MR fluid, the coil is wound on the outer circumferential surface, 상기 코일이 감긴 튜브를 압전소자로 피복한 것을 특징으로 하는 압전 MR유체 면진받침.And the tube wound with the coil is covered with a piezoelectric element. 삭제delete 제1항에 있어서, The method according to claim 1, 상기 튜브는 납으로 이루어지는 것을 특징으로 하는 압전 MR유체 면진받침.Wherein the tube is made of lead.
KR1020080134111A 2008-12-26 2008-12-26 Piezoelectric magnetorheological fluid base isolator KR101593576B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080134111A KR101593576B1 (en) 2008-12-26 2008-12-26 Piezoelectric magnetorheological fluid base isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080134111A KR101593576B1 (en) 2008-12-26 2008-12-26 Piezoelectric magnetorheological fluid base isolator

Publications (2)

Publication Number Publication Date
KR20100076171A KR20100076171A (en) 2010-07-06
KR101593576B1 true KR101593576B1 (en) 2016-02-15

Family

ID=42637921

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080134111A KR101593576B1 (en) 2008-12-26 2008-12-26 Piezoelectric magnetorheological fluid base isolator

Country Status (1)

Country Link
KR (1) KR101593576B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102556423B1 (en) * 2022-06-07 2023-07-17 아이컨 주식회사 Lead-inserted seismic isolation bearing with improved negative reaction force

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966949B (en) * 2014-05-20 2015-10-07 上海市城市建设设计研究总院 High-damping shock isolating pedestal
KR101689466B1 (en) 2015-05-06 2016-12-23 금호타이어 주식회사 Variable Spring Ratio Pnuematic Tire adopted Magneto-Rheological Fluid and Piezo Element
CN105649210A (en) * 2016-04-09 2016-06-08 中国地震局工程力学研究所 Porous lead rubber bearing with high damping capacity and large bearing capacity
CN107165301B (en) * 2017-07-07 2019-02-05 西京学院 A kind of magnetorheological piezoelectricity vibration isolating suspension of controllable intellectualized
CN111705625A (en) * 2020-05-21 2020-09-25 中南大学 Lead core rubber support and viscous damper combined shock absorption and isolation multi-span continuous beam bridge
CN112342903B (en) * 2020-11-11 2022-07-22 长沙理工大学 Energy-consuming variable-rigidity anti-seismic bridge stop block based on magnetorheological body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343040A (en) 2000-06-01 2001-12-14 Oiles Ind Co Ltd Manufacturing method of laminated rubber supporting body with lead column and building structure base- isolated with laminated rubber supporting body produced by the same manufacturing method
JP2006275137A (en) * 2005-03-29 2006-10-12 Tokai Rubber Ind Ltd Vibration restraining device
KR100664578B1 (en) * 2005-10-27 2007-01-04 주식회사 모두테크놀로지 Vibration isolation apparatus and method using a magneto-rheological damper
JP2007211954A (en) * 2006-02-13 2007-08-23 Bridgestone Corp Method of manufacturing base isolation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343040A (en) 2000-06-01 2001-12-14 Oiles Ind Co Ltd Manufacturing method of laminated rubber supporting body with lead column and building structure base- isolated with laminated rubber supporting body produced by the same manufacturing method
JP2006275137A (en) * 2005-03-29 2006-10-12 Tokai Rubber Ind Ltd Vibration restraining device
KR100664578B1 (en) * 2005-10-27 2007-01-04 주식회사 모두테크놀로지 Vibration isolation apparatus and method using a magneto-rheological damper
JP2007211954A (en) * 2006-02-13 2007-08-23 Bridgestone Corp Method of manufacturing base isolation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102556423B1 (en) * 2022-06-07 2023-07-17 아이컨 주식회사 Lead-inserted seismic isolation bearing with improved negative reaction force

Also Published As

Publication number Publication date
KR20100076171A (en) 2010-07-06

Similar Documents

Publication Publication Date Title
KR101593576B1 (en) Piezoelectric magnetorheological fluid base isolator
WO2014053025A1 (en) Adaptive mre vibration isolation assembly and system
KR20070118758A (en) Bearing device for seismic control and control system having it
CN101586641A (en) The laminated intelligent shock-isolation bearing capable of self-adaptively regulating cutting performance
CN108240415B (en) Large-load high-damping vibration absorber of composite bending beam/plate negative-stiffness dynamic vibration absorber
WO2017074175A1 (en) A nonlinear spring bracing device
US8820492B1 (en) Soft matrix magnetorheological mounts for shock and vibration isolation
Ni et al. Magneto-rheological elastomer (MRE) based composite structures for micro-vibration control
CN108590301B (en) Electric eddy current type coupling beam damper
KR20090058430A (en) Semi active tuned mass damper with lead-rubber bearing and auto brake
US10830302B2 (en) Continuous framework for shock, vibration and thermal isolation and motion accommodation
JP2012042016A (en) Three-dimensional base isolation device
JP2018096513A (en) Vibration-isolating mechanism
JP2008248629A (en) Active damper for building structure
JP2006316954A (en) Composite base isolation supporting body
CN210034268U (en) Semi-active magnetorheological fluid-solid hybrid vibration isolator
Sohn et al. An active mount using an electromagnetic actuator for vibration control: Experimental investigation
KR20120035409A (en) Anti vibration device for construction
Behrooz et al. Modeling of a new magnetorheological elastomer-based isolator
Priya et al. A critical review on enhancing the seismic response of buildings with energy dissipation methods
KR20190023332A (en) Seismic equipment for mechanical structures
JP4687092B2 (en) Dynamic vibration absorber and dynamic vibration absorber using the same
KR20180079845A (en) Lead rubber bearing using magnetorheological damper and toggle brace
Pianese et al. High damping rubber isolators for low-rise masonry buildings
JP5095015B1 (en) Seismic isolation device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190201

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200203

Year of fee payment: 5