KR101587540B1 - 엘이디 장치 - Google Patents

엘이디 장치 Download PDF

Info

Publication number
KR101587540B1
KR101587540B1 KR1020140077129A KR20140077129A KR101587540B1 KR 101587540 B1 KR101587540 B1 KR 101587540B1 KR 1020140077129 A KR1020140077129 A KR 1020140077129A KR 20140077129 A KR20140077129 A KR 20140077129A KR 101587540 B1 KR101587540 B1 KR 101587540B1
Authority
KR
South Korea
Prior art keywords
voltage
led
leds
switching
rectified voltage
Prior art date
Application number
KR1020140077129A
Other languages
English (en)
Other versions
KR20160000493A (ko
Inventor
채수용
정학근
정진우
한수빈
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020140077129A priority Critical patent/KR101587540B1/ko
Publication of KR20160000493A publication Critical patent/KR20160000493A/ko
Application granted granted Critical
Publication of KR101587540B1 publication Critical patent/KR101587540B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

본 발명은, 교류전압을 정류하여 정류전압을 공급하는 정류부, 적어도 하나의 엘이디(LED)를 포함하는 모듈로서 서로 직렬로 연결되는 N(N은 2이상의 자연수)개의 엘이디모듈들, 엘이디모듈들 중 하나의 엘이디모듈과 병렬로 연결되는 스위칭소자로서 서로 직렬로 연결되는 M(M은 2이상의 자연수)개의 스위칭소자들 및 교류전압의 반주기 구간 중 제1구간에서 정류전압의 크기에 따라 엘이디모듈들 중 비점등 엘이디모듈을 선택하고 비점등 엘이디모듈과 병렬로 연결된 스위칭소자를 턴온하며, 반주기 구간 중 제2구간에서 그라운드와 연결된 제1스위칭소자부터 순차적으로 스위칭소자들 중 일부 혹은 전부를 턴온하는 제어부를 포함하는 엘이디 장치를 제공한다.

Description

엘이디 장치{LIGHT EMITTING DIODE APPARATUS}
본 발명은 엘이디장치에 관한 것이다. 더욱 상세하게는 서로 직렬로 연결되는 복수의 엘이디를 구동하는 기술에 관한 것이다.
엘이디(LED)는 발광다이오드(Light Emitting Diode, LED)의 다른 표현으로 화합물(예를 들어, 갈륨비소)에 전류를 흘려 빛을 발산하는 반도체소자를 의미한다. 최근에는 유기발광다이오드(Organic Light Emitting Diode, OLED)라고 하여, 형광성 유기화합물에 전류가 흐르면 빛을 내는 전계 발광현상을 이용하는 반도체소자도 개발되었는데, 이러한 유기발광다이오드(OLED)도 엘이디(LED)의 일종으로 볼 수 있다.
엘이디(LED)는 전기에너지를 빛에너지로 전환하는 효율이 높기 때문에 최고 90%까지 에너지를 절감할 수 있다. 이에 따라, 에너지 효율이 5% 정도밖에 되지 않는 백열등ㆍ형광등을 대체할 수 있는 차세대 광원으로 주목되고 있다.
한편, 엘이디(LED)를 구동하기 위해서는 드라이버가 엘이디(LED)에 문턱전압(VTH) 이상의 전압을 공급해 주어야 하는데, 종래에는 이러한 전압을 직류(Direct Current, DC)로 공급했다.
이에 따라, 엘이디(LED) 구동장치에는 별도의 전력변환회로가 필요하게 되었다.
예를 들어, 교류 형태를 가지는 상용 전원으로부터 엘이디(LED) 구동을 위한 전압을 생성하는 종래의 엘이디(LED) 구동장치의 경우, PFC(Power Correction Circuit) 및 DC/DC 컨버터가 필수적으로 사용되었다.
여기서, PFC는 교류전압을 정류하는 기능과 역률을 일정한 범위 내로 유지하는 기능을 수행하고, DC/DC 컨버터는 PFC에서 생성되는 고압의 DC 전압을 엘이디(LED)에 적합한 전압으로 변환하는 기능을 수행하였다.
친환경적인 에너지 소비를 위해 종래의 백열등ㆍ형광등은 엘이디(LED) 장치로 대체되고 있다. 그런데, 종래의 엘이디(LED) 장치는 전술한 바와 같이 별도의 전력변환장치, 예를 들어, PFC 및 DC/DC 컨버터가 필요하여 비용적인 측면에서 문제가 되고 있다.
이러한 배경에서, 본 발명의 목적은, 일 측면으로, 부품 수를 줄이기 위해 교류 전압을 직접 사용하여 엘이디(LED)를 구동하는 장치에 관한 기술을 제공하는 것이다.
다른 측면에서, 본 발명은 서로 직렬 연결되는 복수의 엘이디(LED)를 구동하는데, 이러한 측면에서, 본 발명의 목적은 서로 직렬 연결되는 복수의 엘이디(LED)를 구동함에 있어서, 하이사이드 게이트드라이버(High Side Gate Driver)의 게이트 구동전압을 형성하는 기술을 제공하는 것이다.
전술한 목적을 달성하기 위하여, 일 측면에서, 본 발명은, 교류전압을 정류하여 정류전압을 공급하는 정류부, 적어도 하나의 엘이디(LED)를 포함하는 모듈로서 서로 직렬로 연결되는 N(N은 2이상의 자연수)개의 엘이디모듈들, 상기 엘이디모듈들 중 하나의 엘이디모듈과 병렬로 연결되는 스위칭소자로서 서로 직렬로 연결되는 M(M은 2이상의 자연수)개의 스위칭소자들 및 상기 교류전압의 반주기 구간 중 제1구간에서 상기 정류전압의 크기에 따라 상기 엘이디모듈들 중 비점등 엘이디모듈을 선택하고 상기 비점등 엘이디모듈과 병렬로 연결된 스위칭소자를 턴온하며, 상기 반주기 구간 중 제2구간에서 그라운드와 연결된 제1스위칭소자부터 순차적으로 상기 스위칭소자들 중 일부 혹은 전부를 턴온하는 제어부를 포함하는 엘이디 장치를 제공한다.
다른 측면에서, 본 발명은, 교류전압을 정류하여 정류전압을 공급하는 정류부, 서로 직렬로 연결되는 복수의 엘이디들(LEDs), 상기 엘이디들 중 적어도 하나 이상의 엘이디와 병렬로 연결되며 서로 직렬로 연결되는 복수의 스위칭소자들 및 상기 교류전압의 반주기 구간 중 상기 정류전압의 크기가 제1전압 이상인 구간에서 상기 정류전압의 크기에 따라 상기 엘이디들 중 비점등 엘이디를 선택하고 상기 비점등 엘이들과 병렬로 연결된 스위칭소자를 턴온하며, 상기 반주기 구간 중 상기 정류전압의 크기가 제1전압보다 작은 구간에서 그라운드와 연결된 스위칭소자부터 순차적으로 상기 스위칭소자들 중 일부 혹은 전부를 턴온하는 제어부를 포함하는 엘이디 장치를 제공한다.
이상에서 설명한 바와 같이 본 발명에 의하면, 엘이디(LED) 구동을 위해 교류 전압을 직접 사용함으로써 부품 수를 줄이고 비용을 절감할 수 있는 효과가 있다. 또한, 본 발명에 의하면, 서로 직렬 연결되는 복수의 엘이디(LED)를 구동함에 있어서, 하이사이드 게이트드라이버의 게이트 구동전압을 효율적으로 생성할 수 있는 효과가 있다.
도 1은 일 실시예에 따른 엘이디장치의 구성을 나타낸다.
도 2는 도 1의 엘이디모듈에 포함되는 엘이디의 구성을 나타낸다.
도 3은 도 1의 엘이디모듈들을 점등 제어하는 방법의 흐름도이다.
도 4는 도 3의 점등 제어 방법에 따라 점등되는 엘이디모듈의 개수를 설명하기 위한 도면이다.
도 5는 도 1의 제어부의 상세 구성을 설명하기 위한 도면이다.
도 6은 도 5의 하이사이드 게이트드라이버에 대한 상세 구성을 설명하기 위한 도면이다.
도 7은 일 실시예에서 점등 제어 구간과 충전 제어 구간을 나타내는 도면이다.
도 8은 충전 제어 구간에서 스위칭소자들의 턴온 순서를 설명하기 위한 도면이다.
도 9는 충전 제어 구간의 정류전압에 대해 설명하기 위한 도면이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 1은 일 실시예에 따른 엘이디장치의 구성을 나타낸다.
도 1을 참조하면, 엘이디장치(100)는 교류전원(110)과 연결되어 있다. 교류전원(110)은 상용전력망일 수 있으나 이로 제한되는 것은 아니며 교류 전압을 발생시키는 발전기일 수 있다.
엘이디장치(100)는 정류부(120), 제어부(130), 복수의 스위칭소자들(SW_1, SW_2, ... , SW_m) 및 복수의 엘이디모듈들(LEDM_1, LEDM_2, ... , LEDM_n)을 포함할 수 있다.
정류부(120)는 교류전원(110)으로부터 공급되는 교류 전압을 정류하여 정류전압(VR)을 형성한다.
정류부(120)는 다이오드를 이용하여 교류 전압을 정류할 수 있다. 이때, 정류부(120)가 하나의 다이오드를 포함하고 있는 경우 반주기에 해당되는 교류 전압이 정류전압(VR)으로 형성되고, 나머지 반주기에서는 영전압(0V)이 정류전압(VR)으로 형성된다. 그리고, 정류부(120)가 4개의 다이오드를 포함하고 있는 경우 반주기에 해당되는 교류 전압이 정류전압(VR)으로 형성되는데, 나머지 반주기에도 같은 정류전압(VR)이 반복된다.
엘이디장치(100)는 서로 직렬로 연결되는 복수의 엘이디모듈들(LEDM_1, LEDM_2, ... , LEDM_n)을 포함할 수 있다.
아래에서는 설명의 편의를 위해 엘이디장치(100)는 N(N은 2이상의 자연수)개의 엘이디모듈들(LEDM_1, LEDM_2, ... , LEDM_n)을 포함하는 것으로 설명한다. 여기서, 엘이디모듈들(LEDM_1, LEDM_2, ... , LEDM_n)에 공통적으로 적용될 수 있는 예시를 설명할 때는 참조기호 LEDM을 사용하고, 각각의 엘이디모듈에 개별적으로 적용될 수 있는 예시를 설명할 때는 도 1에 도시된 각각의 참조기호를 사용하여 설명한다.
복수의 엘이디모듈들(LEDM_1, LEDM_2, ... , LEDM_n)은 서로 직렬로 연결되는데, 이 중 최상단에 위치하는 제N엘이디모듈(LEDM_n)은 일측이 정류부(120)의 고전압단(정류전압(VR)을 형성하는 단)과 연결되고 다른 일측은 제N-1엘이디모듈(LEDM_n-1)과 연결된다. 또한, 엘이디모듈들(LEDM_1, LEDM_2, ... , LEDM_n) 중 최하단에 위치하는 제1엘이디모듈(LEDM_1)은 일측이 제2엘이디모듈(LEDM_2)과 연결되고, 다른 일측은 그라운드와 연결된다.
엘이디모듈(LEDM)은 복수의 엘이디(LED)를 포함하고, 이러한 복수의 엘이디(LED)는 서로 직렬 연결되거나 서로 병렬 연결될 수 있다.
엘이디모듈(LEDM)에 포함되는 엘이디(LED)의 구성을 살펴보기 위해 도 2를 참조한다.
도 2는 도 1의 엘이디모듈에 포함되는 엘이디의 구성을 나타낸다.
도 2의 (a)를 참조하면, 엘이디모듈(LEDM)은 하나의 엘이디(LED)만 포함할 수 있다. 이 경우, 엘이디모듈(LEDM)과 엘이디(LED)는 실질적으로 동일한 것으로 이해될 수 있다.
도 2의 (b)를 참조하면, 엘이디모듈(LEDM)은 서로 직렬로 연결되는 복수의 엘이디(LED)를 포함하고 있다.
도 2의 (c)를 참조하면, 엘이디모듈(LEDM)은 서로 병렬로 연결되는 복수의 엘이디(LED)를 포함하고 있다.
도 2를 참조하여 살펴본 바와 같이 엘이디모듈(LEDM)은 하나 혹은 복수의 엘이디(LED)가 서로 직렬 혹은 병렬로 연결될 수 있다. 또한, 도 2에 도시되지 않았지만, 복수의 엘이디(LED)는 서로 직렬 연결되기도 하고 서로 병렬 연결되기도 할 수 있다.
다시 도 1을 참조하면, 엘이디장치(100)는 복수의 스위칭소자들(SW_1, SW_2, ... , SW_m)을 포함할 수 있다.
아래에서는 설명의 편의를 위해 엘이디장치(100)는 M(M은 2이상의 자연수)개의 스위칭소자들(SW_1, SW_2, ... , SW_m)을 포함하는 것으로 설명한다. 여기서, 스위칭소자들(SW_1, SW_2, ... , SW_m)에 공통적으로 적용될 수 있는 예시를 설명할 때는 참조기호 SW를 사용하고, 각각의 스위칭소자에 개별적으로 적용될 수 있는 예시를 설명할 때는 도 1에 도시된 각각의 참조기호를 사용하여 설명한다.
스위칭소자(SW)는 엘이디모듈(LEDM)과 병렬로 연결되고 스위칭소자(SW) 서로 간에는 직렬로 연결된다. 복수의 스위칭소자들(SW_1, SW_2, ... , SW_m) 중 최하단에 위치하는 제1스위칭소자(SW_1)은 일측이 제2스위칭소자(SW_2)와 연결되고, 다른 일측은 그라운드와 연결된다.
한편, 도 1에서 스위칭소자들(SW_1, SW_2, ... , SW_m)은 모두 엘이디모듈들(LEDM_1, LEDM_2, ... , LEDM_n)과 일대일로 대응되는 것으로 도시되어 있다. 이 경우, 스위칭소자들(SW_1, SW_2, ... , SW_m)의 개수 M은 엘이디모듈들(LEDM_1, LEDM_2, ... , LEDM_n)의 N과 같아진다. 그리고, 스위칭소자들(SW_1, SW_2, ... , SW_m) 중 최상단에 위치하는 제M스위치소자(SW_m)은 일측이 정류부(120)의 고전압단(정류전압(VR)을 형성하는 단)과 연결되고 다른 일측은 제M-1스위칭소자(SW_m-1)와 연결된다.
그런데, 스위칭소자들(SW_1, SW_2, ... , SW_m)의 개수 M과 엘이디모듈들(LEDM_1, LEDM_2, ... , LEDM_n)의 개수 N은 항상 같은 것은 아니며, 실시예에 따라, M과 N은 다른 값을 가질 수 있다.
예를 들어, M=N-1로서 M이 N보다 하나 작을 수 있다. 이때, 엘이디장치(100)는 정류부(120)의 고전압단(VR)과 연결되는 제N엘이디모듈(LEDM_n)과 병렬로 연결되는 스위칭소자를 포함하지 않을 수 있다.
스위칭소자(SW)는 BJT(Bipolar Junction Transistor)일 수 있는데, BJT는 전류량의 한계가 있기 때문에 큰 전력을 필요로 하는 고휘도 엘이디(LED)나 많은 수의 병렬 엘이디(LED)에 대한 이용이 제한적일 수 있다.
한편, 스위칭소자(SW)는 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)일 수 있는데, 스위칭소자(SW)가 MOSFET인 경우 큰 전력의 엘이디(LED)를 구동할 수 있게 된다. 아래에서는 설명의 편의를 위해 스위칭소자(SW)가 MOSFET인 실시예를 설명한다. 하지만, 본 발명이 이로 제한되는 것은 아니며, 스위칭소자(SW)로는 온오프 제어가 가능한 반도체소자가 모두 적용될 수 있다.
제어부(130)는 스위칭소자(SW)를 턴온 혹은 턴오프 제어함으로써 스위칭소자(SW)와 병렬로 연결된 엘이디모듈(LEDM)을 온오프 제어한다. 스위칭소자(SW)와 엘이디모듈(LEDM)은 서로 병렬 연결되어 있음으로, 제어부(130)가 스위칭소자(SW)를 턴온 제어하는 경우, 엘이디모듈(LEDM)로는 전력을 공급되지 않아 해당 엘이디모듈(LEDM)은 오프된다. 반면에, 제어부(130)가 스위칭소자(SW)를 턴오프 제어하는 경우, 엘이디모듈(LEDM) 양단에는 구동전압이 공급되어 해당 엘이디모듈(LEDM)이 온된다. 물론, 이 경우, 엘이디모듈(LEDM) 양단에 공급되는 구동전압의 크기는 엘이디모듈(LEDM)의 문턱전압(VTH)보다 커야한다.
제어부(130)는 정류전압(VR)의 크기에 따라 엘이디모듈들(LEDM_1, LEDM_2, ... , LEDM_n) 중 비점등 엘이디모듈을 선택하고 이러한 비점등 엘이디모듈과 병렬로 연결된 스위칭소자를 턴온할 수 있다.
도 3은 도 1의 엘이디모듈들을 점등 제어하는 방법의 흐름도이다.
제어부(130)는 먼저 정류전압(VR)을 측정한다(S310). 이때, 제어부(310)는 정류전압(VR)을 측정하기 위해 정류부(120)의 고전압단 혹은 제N엘이디모듈(LEDM_n)의 고압측 전압을 센싱하는 센싱 라인을 더 포함할 수 있다.
그리고, 제어부(130)는 정류전압(VR)의 크기에 따라 엘이디모듈들(LEDM_1, LEDM_2, ... , LEDM_n) 중 비점등 엘이디모듈의 개수를 결정하고 또한, 비점등 엘이디모듈도 선택한다(S320). 비점등 엘이디모듈의 개수를 결정한다는 것은 점등 엘이디모듈의 개수를 결정한다는 것과 같은 것으로 이해할 수 있다. 이에 따라 아래에서는 제어부(130)가 비점등 엘이디모듈의 개수를 결정하거나 점등 엘이디모듈의 개수를 결정하는 것을 혼용해서 설명할 수 있는데, 이러한 두 가지는 같은 것으로 이해하면 된다.
제어부(130)는 정류전압(VR)이 높을수록 점등 엘이디모듈의 개수를 증가시키고 비점등 엘이디모듈의 개수는 감소시킬 수 있다. 예를 들어, 제어부(130)는 정류전압(VR)이 최대의 크기를 나타낼 때 엘이디모듈들(LEDM_1, LEDM_2, ... , LEDM_n) 전부가 점등되도록 제어하고 정류전압(VR)이 최대의 크기에서 점점 작아질수록 점등되는 엘이디모듈의 개수가 작아지도록 제어할 수 있다.
이렇게 제어부(130)가 정류전압(VR)이 높을수록 점등 엘이디모듈의 개수를 증가시키면 높은 정류전압(VR)에서 높은 전력이 소비되어 역률이 개선되는 효과가 발생한다. 따라서, 엘이디장치(100)가 이러한 방식의 제어방법을 이용하면 PFC없이도 역률을 일정한 값 이상으로 유지할 수 있게 된다.
제어부(130)는 정류전압(VR)을 양자화하고 각각의 양자화구간에 따라 점등되는 엘이디모듈의 개수를 다르게 제어할 수 있다.
도 4는 도 3의 점등 제어 방법에 따라 점등되는 엘이디모듈의 개수를 설명하기 위한 도면이다.
도 4를 참조하면, 제어부(130)는 tk에서 tk +1까지의 구간[tk tk +1]에서 j개의 엘이디모듈을 점등 제어하고 tk +1에서 tk +2까지의 구간[tk +1 tk +2]에서 j+1개의 엘이디모듈을 점등 제어하고 있다.
이때, tk에서의 정류전압(VR)과 tk +1에서의 정류전압(VR)의 차이는 엘이디모듈(LEDM) 하나의 문턱전압(VTH)과 같을 수 있다.
한편, 점등되는 엘이디모듈의 개수가 결정되면 비점등되는 엘이디모듈도 결정되는 것으로서, 제어부(130)는 전술한 과정을 통해 비점등 엘이디모듈의 개술를 결정하고, 또한 비점등 엘이디모듈도 선택한다. 엘이디(LED)의 수명은 점등되는 시간에 비례할 수 있는데, 이에 따라, 제어부(130)는 점등되는 시간이 비슷하게 유지되도록 비점등 엘이디모듈을 선택할 수 있다.
다시 도 3을 참조하면, 제어부(130)는 비점등 엘이디모듈을 선택한 후 해당 엘이디모듈과 병렬로 연결된 스위칭소자를 턴온 제어한다(S330).
여기서, 제어부(130)는 스위칭소자들(SW_1, SW_2, ... , SW_m)을 각각 제어하기 위해 복수의 게이트드라이버를 포함할 수 있다.
도 5는 도 1의 제어부의 상세 구성을 설명하기 위한 도면이다.
도 5를 참조하면, 제어부(130)는 각각의 스위칭소자들(SW_1, SW_2, ... , SW_m)에 대응되는 M개의 게이트드라이버 및 이러한 M개의 게이트드라이버로 제어신호를 전송하는 제어기(510)를 포함할 수 있다.
M개의 게이트드라이버 중 제1스위칭소자(SW_1)와 연결되는 게이트드라이버는 로우사이드 게이트드라이버(Low Side Gate Driver)이고, 제2스위칭소자(SW_2) 내지 제M스위칭소자(SW_m)와 연결되는 게이트드라이버들은 하이사이드 게이트드라이버(High Side Gate Driver)일 수 있다.
로우사이드 게이트드라이버(이하, LSGD)는 연결되는 스위칭소자의 소스단이 그라운드와 연결되어 있다. 이에 따라, LSGD는 LSGD로 연결되는 직류전원전압(VDD)을 직접 이용하여 스위칭소자를 구동시킬 수 있다. 여기서, 직류전원전압(VDD)은 제어부(130)의 작동을 위해 사용되는 직류 전압으로서 외부에서 공급될 수도 있고, 자체에서 생성될 수도 있다. 직류전원전압(VDD)을 자체에서 생성하기 위해 제어부(130)는 정류부(120)의 고전압단과 연결되는 라인을 포함하고 이러한 라인을 통해 공급되는 정류전압(VR)을 이용하여 직류전원전압(VDD)을 생성하는 전력변환회로(예를 들어, DC/DC 컨버터 혹은 레귤레이터 회로)를 더 포함할 수 있다.
한편, 하이사이드 게이트드라이버(이하, HSGD)는 연결되는 스위칭소자의 소스단이 그라운드단과 직접 연결되어 있지 않다. 이에 따라, HSGD는 플로팅 상태에서 스위칭소자로 게이트 구동전압을 공급하도록 캐패시터에 일정 전기 에너지를 저장할 수 있다.
도 6은 도 5의 하이사이드 게이트드라이버에 대한 상세 구성을 설명하기 위한 도면이다.
도 6을 참조하면, HSGD는 구동회로(610), 캐패시터(620) 및 다이오드(630)를 포함할 수 있다.
구동회로(610)의 1번 핀은 직류전원전압(VDD)과 연결되고 2번 핀은 그라운드와 연결되다. 또한, 3번핀으로는 캐패시터(620)의 일측이 연결되고, 4번핀으로는 스위칭소자(SW)의 게이트단이 연결되며, 5번핀으로는 캐패시터(620)의 다른 일측 및 스위칭소자(SW)의 소스단이 연결된다.
구동회로(610)는 제어기(510)와 연결되는 신호핀(미도시)을 더 포함할 수 있는데, 구동회로(610)는 직류전원전압(VDD)을 이용하여 신호핀(미도시)으로 수신되는 신호를 처리하고 이러한 처리 결과에 따라 스위칭소자(SW)의 게이트단으로 게이트 구동전압을 출력하게 된다.
다이오드(630)는 직류전원전압(VDD) 라인과 캐패시터(620)의 일측과 연결되는데, 이때, 직류전원전압(VDD)이 캐패시터(620)의 일측 전압(VC1)보다 크면 다이오드(630)가 도통되어 직류전원전압(VDD)이 캐패시터(620)를 충전하게 된다.
캐패시터(620)의 일측 전압(VC1)은 캐패시터의 다른 일측 전압(VC2)과 캐패시터(620)의 충전 전압(VC)의 합으로 결정된다. VC1 = VC2 + VC. 이때, VC2 전압이 플로팅되어 있거나 높은 전압을 형성하고 있는 경우, VDD가 VC1보다 작게 되어 캐패시터(620)가 충전되지 않게 된다.
실질적으로 VC2가 그라운드와 연결될 때, 캐패시터(620)가 충전될 수 있다. VC2는 스위칭소자(SW)의 소스 전압(VS)와 동일함으로 실질적으로 HSGD의 캐패시터(620)를 충전하기 위해서는 스위칭소자(SW)의 소스단을 그라운드와 일정 시간동안(예를 들어, 캐패시터(620)의 충전 시간동안) 연결시켜 주는 것이 필요하다.
한편, 일 실시예와 같이 정류부(120)에 의해 정류된 교류 전압을 직접 이용하게 되면 교류 전압의 특성상 일부 구간에서는 전압이 낮아 엘이디(LED)를 구동할 수 없거나 실질적으로 하나의 엘이디(LED)만 구동할 수 있게 된다. 일 실시예에 따른 제어부(130)는 이러한 구간에서 HSGD의 캐패시터(620)를 충전하는 제어를 실시할 수 있다.
이에 따라, 제어부(130)는 엘이디모듈들(LEDM_1, LEDM_2, ... , LEDM_n)을 점등 제어하는 구간(제1구간)과 HSGD를 충전 제어하는 구간(제2구간)을 구분하여 제어한다.
도 7은 일 실시예에서 점등 제어 구간과 충전 제어 구간을 나타내는 도면이다.
도 7을 참조하면, 제어부(130)는 교류전압의 반주기 구간에서 정류전압(VR)의 크기가 기준 전압(VA) 이상인 구간을 점등 제어를 위한 제1구간으로 설정하고 반주기 구간에서 정류전압(VR)의 크기가 기준 전압(VA) 보다 작은 구간을 충전 제어를 위한 제2구간으로 설정할 수 있다.
하나의 반주기 구간에서 정류전압(VR)의 크기가 기준 전압(VA) 보다 작은 구간은 두 번 나타날 수 있는데, 도 7에 도시된 것과 같이 제어부(130)는 이 두 구간을 모두 제2구간으로 설정할 수도 있고, 어느 일측 구간, 예를 들어, 정류전압(VR)이 하강하는 구간만 제2구간으로 설정할 수도 있다.
이러한 제2구간에서, 제어부(130)는 그라운드와 연결된 제1스위칭소자(SW_1)부터 순차적으로 스위칭소자들(SW_1, SW_2, ... , SW_m) 중 일부 혹은 전부를 턴온할 수 있다. 예를 들어, 스위칭소자들(SW_1, SW_2, ... , SW_m)의 개수 M과 엘이디모듈들(LEDM_1, LEDM_2, ... , LEDM_n)의 개수 N이 같은 경우, 제어부(130)는 제M스위칭소자(SW_m)을 제외하고 나머지 스위칭소자들에 대하여 제1스위칭소자(SW_1)부터 순차적으로 턴온제어할 수 있다. 다른 예로서, 스위칭소자들(SW_1, SW_2, ... , SW_m)의 개수 M이 엘이디모듈들(LEDM_1, LEDM_2, ... , LEDM_n)의 개수 N보다 작은 경우, 제어부(130)는 전부의 스위칭소자들(SW_1, SW_2, ... , SW_m)에 대하여 제1스위칭소자(SW_1)부터 순차적으로 턴온제어할 수 있다.
도 8은 충전 제어 구간에서 스위칭소자들의 턴온 순서를 설명하기 위한 도면이다.
도 8을 참조하면, 제어부(130)는 제2구간에서 제일 먼저, 그라운드와 연결된 제1스위칭소자(SW_1)를 턴온 제어한다. 이렇게 제1스위칭소자(SW_1)를 턴온시키면 제1스위칭소자(SW_1)와 연결된 제2스위칭소자(SW_2)의 소스 전압(VS_2)은 그라운드 전압이 된다. 이때, 제2스위칭소자(SW_2)의 소스 전압(VS_2)은 그라운드 전압이 되기 때문에 제2스위칭소자(SW_2)와 연결된 HSGD의 캐패시터(620)가 충전되게 된다.
제어부(130)는 도 8에 도시된 ON 방향에 따라 순차적으로 상위단에 위치하는 스위칭소자를 턴온하게 되는데, 예를 들어, K번째 스위칭소자(SW_k)를 턴온한 후에는 다음 차례로 K+1번째 스위칭소자(SW_k+1)를 턴온하게 된다.
이때, K번째 스위칭소자(SW_k)를 턴온할 때, K-1번째 이하의 스위칭소자는 모두 턴온 상태에 있지만 K+1번째 이상의 스위칭소자 중 일부는 턴오프 상태에 있다.
순차적 턴온에 따라 M-1번째 스위칭소자(SW_m-1)가 턴온된 후에는 M번째 스위칭소자(SW_m)는 턴온할 수도 있고, 턴온하지 않을 수도 있다. M-1번째 스위칭소자(SW_m-1)의 턴온에 따라 M번째 스위칭소자(SW_m)의 소스 전압(VS_m)은 그라운드 전압이 되기 때문에 M번째 스위칭소자(SW_m)는 턴온시킬 필요는 없다.
한편, HSGD에서 캐패시터(620)는 직류전원전압(VDD)이 VC1보다 커야 충전을 시작하게 되는데, 이때, 직류전원전압(VDD)이 외부 전원으로부터 공급되지 않고 정류전압(VR)을 이용하여 생성되는 것일 경우, 제2구간에서의 정류전압(VR)은 일정 크기 이상을 유지할 필요가 있다.
도 9는 충전 제어 구간의 정류전압에 대해 설명하기 위한 도면이다.
도 9를 참조하면, 제어부(130)는 충전 제어 구간으로서의 제2구간을 정류전압(VR)이 제1정류전압(VB1) 보다 작고 제2정류전압(VB2) 보다 큰 범위 내에 있는 구간으로 한정하고 있다.
이때, 제2정류전압(VB2)은 직류전원전압(VDD)의 크기보다 클 수 있다. 전술한 바와 같이 제어부(130)가 정류전압(VR)을 이용하여 직류전원전압(VDD)을 생성하는 경우, 정류전압(VR)이 직류전원전압(VDD)보다 커야 제어부(130)가 정상적으로 직류전원전압(VDD)을 생성할 수 있게 된다. 이렇게 직류전원전압(VDD)이 정상적으로 생성되어야 또한, 충전 제어 구간에서 HSGD의 캐패시터(620)가 정상적으로 충전될 수 있다.
한편, 캐패시터(620)에 대한 충전 제어는 한 개의 엘이디모듈(LEDM)도 켜지지 않는 구간에서만 수행될 수 있다. 이에 따라, 제어부(130)는 제2구간에서의 정류전압의 최고 전압(VB1)은 한 개의 엘이디모듈에 대한 문턱전압(VTH)보다 작고, 직류전원전압(VDD)보다는 클 수 있다.
엘이디모듈(LEDM)이 하나의 엘이디 혹은 직렬 연결된 복수의 엘이디를 포함하는 경우, 제2구간에서의 정류전압의 최고 전압(VB1)은 엘이디(LED)의 문턱전압 혹은 직렬 연결된 복수의 엘이디(LED)의 문턱전압의 합보다 작고 직류전원전압(VDD)보다 클 수 있다.
다른 한편, 캐패시터(620)에 대한 충전 제어 구간(제2구간)은 하나의 엘이디모듈(LEDM)이 온되는 구간을 포함할 수 있는데, 이때, 제2구간에서의 정류전압의 최고 전압(VB1)은 한 개의 엘이디모듈에 대한 문턱전압(VTH)보다 크고 두 개의 엘이디모듈의 문턱전압(2·VTH)보다 작을 수 있다.
이상에서 본 발명의 실시예에 따른 엘이디장치(100)에 대해 살펴보았다. 이러한 실시예들에 의하면, 엘이디(LED) 구동을 위해 교류 전압을 직접 사용함으로써 부품 수를 줄이고 비용을 절감할 수 있는 효과가 있다. 또한, 이러한 실시예들에 의하면, 서로 직렬 연결되는 복수의 엘이디(LED)를 구동함에 있어서, HSGD의 캐패시터(620)를 비점등 구간에서 효율적으로 충전할 수 있는 효과가 있다.
이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (13)

  1. 교류전압을 정류하여 정류전압을 공급하는 정류부;
    적어도 하나의 엘이디(LED)를 포함하는 모듈로서 서로 직렬로 연결되는 N(N은 2이상의 자연수)개의 엘이디모듈들;
    상기 엘이디모듈들 중 하나의 엘이디모듈과 병렬로 연결되는 스위칭소자로서 서로 직렬로 연결되는 M(M은 2이상의 자연수)개의 스위칭소자들; 및
    상기 교류전압의 반주기 구간 중 제1구간에서 상기 정류전압의 크기에 따라 상기 엘이디모듈들 중 비점등 엘이디모듈을 선택하고 상기 비점등 엘이디모듈과 병렬로 연결된 스위칭소자를 턴온하며, 상기 반주기 구간 중 제2구간에서 그라운드와 연결된 제1스위칭소자부터 순차적으로 상기 스위칭소자들 중 일부 혹은 전부를 턴온하는 제어부를 포함하되,
    상기 제어부는,
    M개의 게이트드라이버를 포함하고,
    상기 제1스위칭소자와 연결되는 게이트드라이버는 로우사이드 게이트드라이버(Low Side Gate Driver)이고,
    제2스위칭소자 내지 제M스위칭소자와 연결되는 게이트드라이버들은 하이사이드 게이트드라이버(High Side Gate Driver)이며,
    상기 하이사이드 게이트드라이버는,
    직류전원전압(VDD) 및 그라운드와 연결되고, 상기 직류전원전압과 연결되는 다이오드 및 상기 다이오드와 연결되는 캐패시터를 더 포함하며, 상기 캐패시터에 충전되는 전압을 이용하여 상기 스위칭소자들 중 하나의 스위칭소자를 턴온시키는 것을 특징으로 하는 엘이디 장치.
  2. 제1항에 있어서,
    상기 엘이디모듈들 각각은 둘 이상의 엘이디를 포함하고,
    둘 이상의 엘이디는 서로 직렬로 연결되거나 서로 병렬로 연결되는 것을 특징으로 하는 엘이디 장치.
  3. 제1항에 있어서,
    상기 제어부는,
    상기 정류전압이 최대의 크기를 나타낼 때 상기 엘이디모듈들 전부를 점등하고 상기 정류전압의 크기가 작아질수록 점등되는 엘이디모듈의 개수가 작아지도록 상기 스위칭소자들을 제어하는 것을 특징으로 하는 엘이디 장치.
  4. 제1항에 있어서,
    상기 스위칭소자들의 개수(M)는 상기 엘이디모듈의 개수(N)보다 작고, 상기 정류부의 고전압단과 연결되는 제N엘이디모듈과 병렬로 연결되는 스위칭소자가 없는 것을 특징으로 하는 엘이디 장치.
  5. 제1항에 있어서,
    상기 스위칭소자들의 개수(M)는 상기 엘이디모듈의 개수(N)와 같고,
    상기 제어부는,
    상기 제2구간에서 상기 정류부의 고전압단과 연결되는 제M스위칭소자를 제외한 스위칭소자를 상기 제1스위칭소자부터 순차적으로 턴온하는 것을 특징으로 하는 엘이디 장치.
  6. 삭제
  7. 삭제
  8. 제1항에 있어서,
    상기 제2구간에서의 상기 정류전압의 크기는 상기 직류전원전압의 크기보다 큰 것을 특징으로 하는 엘이디 장치.
  9. 제1항에 있어서,
    상기 제2구간에서의 상기 정류전압의 최고 전압은 한 개의 엘이디모듈에 대한 문턱전압(VTH)보다 작고, 상기 직류전원전압보다 큰 것을 특징으로 하는 엘이디 장치.
  10. 제1항에 있어서,
    상기 제2구간에서의 상기 정류전압의 최고 전압은 한 개의 엘이디모듈에 대한 문턱전압(VTH)보다 크고 두 개의 엘이디모듈의 문턱전압(2·VTH)보다 작은 것을 특징으로 하는 엘이디 장치.
  11. 교류전압을 정류하여 정류전압을 공급하는 정류부;
    서로 직렬로 연결되는 복수의 엘이디들(LEDs);
    상기 엘이디들 중 적어도 하나 이상의 엘이디와 병렬로 연결되며 서로 직렬로 연결되는 복수의 스위칭소자들; 및
    상기 교류전압의 반주기 구간 중 상기 정류전압의 크기가 제1전압 이상인 구간에서 상기 정류전압의 크기에 따라 상기 엘이디들 중 비점등 엘이디를 선택하고 상기 비점등 엘이디들과 병렬로 연결된 스위칭소자를 턴온하며, 상기 반주기 구간 중 상기 정류전압의 크기가 제1전압보다 작은 구간에서 그라운드와 연결된 스위칭소자부터 순차적으로 상기 스위칭소자들 중 일부 혹은 전부를 턴온하는 제어부를 포함하되,
    상기 제어부는 직류전원전압(VDD) 및 그라운드와 연결되고,
    상기 제1전압은 하나의 스위칭소자와 병렬로 연결된 엘이디의 문턱전압 혹은 하나의 스위치소자와 병렬로 연결된 엘이디들의 문턱전압의 합보다 작고, 상기 직류전원전압보다 큰 것을 특징으로 하는 엘이디 장치.
  12. 제11항에 있어서,
    상기 제어부는,
    상기 정류전압이 최대의 크기를 나타낼 때 상기 엘이디들 전부를 점등하고 상기 정류전압의 크기가 작아질수록 점등되는 엘이디의 개수가 작아지도록 상기 스위칭소자들을 제어하는 것을 특징으로 하는 엘이디 장치.
  13. 삭제
KR1020140077129A 2014-06-24 2014-06-24 엘이디 장치 KR101587540B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140077129A KR101587540B1 (ko) 2014-06-24 2014-06-24 엘이디 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140077129A KR101587540B1 (ko) 2014-06-24 2014-06-24 엘이디 장치

Publications (2)

Publication Number Publication Date
KR20160000493A KR20160000493A (ko) 2016-01-05
KR101587540B1 true KR101587540B1 (ko) 2016-02-03

Family

ID=55164469

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140077129A KR101587540B1 (ko) 2014-06-24 2014-06-24 엘이디 장치

Country Status (1)

Country Link
KR (1) KR101587540B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115547246B (zh) * 2022-11-30 2023-03-21 惠科股份有限公司 背光模组及显示装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100942234B1 (ko) * 2009-07-23 2010-02-12 (주)로그인디지탈 발광다이오드 조명장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130003388A (ko) * 2011-06-30 2013-01-09 서울반도체 주식회사 Led 조명 장치
KR20130117133A (ko) * 2012-04-17 2013-10-25 이동원 밝기편차가 개선된 엘이디 조명장치
KR101510310B1 (ko) * 2012-10-08 2015-04-10 정연문 Led 조명용 통합 전원 집적 회로

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100942234B1 (ko) * 2009-07-23 2010-02-12 (주)로그인디지탈 발광다이오드 조명장치

Also Published As

Publication number Publication date
KR20160000493A (ko) 2016-01-05

Similar Documents

Publication Publication Date Title
US8638043B2 (en) Two-terminal current controller and related LED lighting device
US9301353B2 (en) Light emitting diode driving apparatus
JP5747656B2 (ja) 発光ダイオード駆動装置
TWI477190B (zh) 發光二極體驅動裝置
US8288960B2 (en) Two-terminal current controller and related LED lighting device
US9426855B2 (en) Multi-stage LED lighting systems
US20150002037A1 (en) Light emitting diode driving apparatus
US20120007510A1 (en) Control module with power supply detection and lamp utilizing the same
US8669709B2 (en) Solid state lighting driver with THDi bypass circuit
JP2010056314A (ja) 発光ダイオードの駆動回路、それを用いた発光装置および照明装置
KR101536108B1 (ko) 발광 다이오드 조명 장치의 제어 회로 및 전압 생성 방법
CN104797037B (zh) 具备多级驱动阶段和低频闪的发光二极管照明装置
JP6174647B2 (ja) 低フリッカーの発光ダイオード照明機器
KR101587540B1 (ko) 엘이디 장치
KR101451498B1 (ko) 발광 소자 구동 장치 및 발광 소자 구동 방법
KR101942494B1 (ko) 하이브리드 제어 타입의 교류 직접 구동 엘이디 장치
KR101807103B1 (ko) 교류 직접 구동 엘이디 장치
KR20140132215A (ko) 발광다이오드 구동 회로
US8674609B2 (en) Two-terminal current controller and related LED lighting device
KR101371247B1 (ko) 전압 보충 방식의 엘이디 조명 장치
JP2013229217A (ja) Led照明装置及び二端子電流コントローラ
KR100907993B1 (ko) 엘이디 구동 회로
KR101382708B1 (ko) 전원공급회로
KR20170131058A (ko) 엘이디모듈의 에너지를 균형제어하는 엘이디장치
KR20150050145A (ko) 발광 다이오드 구동 장치 및 이의 제어 방법

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20181211

Year of fee payment: 4