KR101578307B1 - FABRICATION OF POLY (ε-CAPROLACTONE)/SILICA COMPOSITE SCAFFOLD - Google Patents

FABRICATION OF POLY (ε-CAPROLACTONE)/SILICA COMPOSITE SCAFFOLD Download PDF

Info

Publication number
KR101578307B1
KR101578307B1 KR1020140177817A KR20140177817A KR101578307B1 KR 101578307 B1 KR101578307 B1 KR 101578307B1 KR 1020140177817 A KR1020140177817 A KR 1020140177817A KR 20140177817 A KR20140177817 A KR 20140177817A KR 101578307 B1 KR101578307 B1 KR 101578307B1
Authority
KR
South Korea
Prior art keywords
cell
silica
poly
scaffold
pcl
Prior art date
Application number
KR1020140177817A
Other languages
Korean (ko)
Inventor
황헌
김근형
이형진
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020140177817A priority Critical patent/KR101578307B1/en
Application granted granted Critical
Publication of KR101578307B1 publication Critical patent/KR101578307B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The present invention relates to a method for preparing a scaffold and a scaffold prepared by the same. According to the present invention, a scaffold having advantages of poly(ε-caprolactone) (PCL), or a biocompatible polymer and silica with bone-inducing properties is prepared to establish an environment beneficial to cell proliferation, thereby having excellent mechanical properties and initial cell attachment rate. In addition, the scaffold of the present invention has a stable three-dimensional structure, a big size of a pore, and high interconnectivity between pores to effectively supply oxygen and nutrients necessary for survival and growth of cells, thereby providing excellent efficiencies of cell survival, growth, and differentiation. Furthermore, silica can be coated in various concentrations to control growth and differentiation of cells, thereby enabling a user to prepare scaffolds suitable to conditions of various patients. Accordingly, the scaffold of the present invention can be useful in a field of regenerating bone tissues and various tissues.

Description

PCL/silica 세포지지체 제조 방법 및 이를 통해 제조된 PCL/silica 세포지지체{FABRICATION OF POLY (ε-CAPROLACTONE)/SILICA COMPOSITE SCAFFOLD}TECHNICAL FIELD [0001] The present invention relates to a method for producing a PCL / silica cell support, and a PCL /

본 발명은 PCL/silica 세포지지체 제조 방법 및 이를 통해 제조된 PCL/silica 세포지지체에 관한 것으로서, 보다 구체적으로는 기계적 물성, 세포 부착율, 및 골 조직 형성율이 향상된 PCL/silica 세포지지체 제조 방법 및 이를 통해 제조된 PCL/silica 세포지지체에 관한 것이다. The present invention relates to a method for producing PCL / silica cell scaffold and a PCL / silica cell scaffold prepared thereby, and more particularly, to a method for preparing a PCL / silica cell scaffold having improved mechanical properties, cell adhesion rate, And a PCL / silica cell support prepared thereby.

인간의 삶의 질이 향상되고 의학기술이 발달함에 따라 생체 조직공학 분야에서 인체의 손상된 조직 및 기관을 재생하려는 연구가 전 세계적으로 다양하게 이루어지고 있다. 생체 조직공학에서 조직을 재생하기 위한 중요한 요소로는 조직을 구성하는 세포(cell)와 세포외기질(extra cellularmatrix, ECM), 세포를 활성화시켜 조직 재생을 촉진시켜주는 성장인자(growth factor, GF), 그리고 손상된 조직 및 기관을 대신할 수 있는 세포지지체(scaffold)가 있다. 이중 세포지지체는 조직의 인공지지체로서 3차원 형상, 신체 내의 조직과 공존할 수 있는 생체 적합성, 및 세포의 성장과 함께 지지체가 세포로 교체될 수 있도록 하는 생분해성을 특징으로 하며, 인체에 이식 시 필요한 적절한 기계적 강도를 필요로 한다. 또한, 세포를 부착 및 성장시키고, 분화를 유도하여 조직 형성에 도움을 준다.[S.J. Hollister, Nat. Mater, 2005, 4, 518.]As the quality of human life improves and medical technology develops, there is a wide variety of research around the world to regenerate damaged tissues and organs in the biomedical engineering field. Important factors for tissue regeneration in tissue engineering are tissue and extra cellular matrix (ECM), growth factor (GF) promoting tissue regeneration by activating cells, , And cell scaffolds that can replace damaged tissues and organs. The double cell support is a scaffold of the tissue, which is characterized by a three-dimensional shape, biocompatibility capable of coexisting with the tissue in the body, biodegradability enabling the support to be replaced with cells along with growth of the cell, It requires the necessary mechanical strength necessary. In addition, it attaches and grows cells, induces differentiation, and helps in tissue formation. [S.J. Hollister, Nat. Mater, 2005, 4, 518.]

생체 조직공학에서 이러한 특성을 갖는 대표적인 세포지지체 제조 방법으로는 Gas forming, Salt leaching, Solvent-casting 공법 등이 있다. 그러나 이러한 제조 방법들로 제조된 세포지지체는 구조적 안정성 및 공극들 간 상호연결성 결여로 인해 조직 세포 이식 시 세포가 세포지지체 내부로 효율적으로 침투하지 못하기 때문에 조직을 재생하는데 한계가 있다는 단점이 있다. Examples of typical methods of producing cell supports having such characteristics in biomedical engineering include gas forming, salt leaching, and solvent casting methods. However, the cell scaffold prepared by these manufacturing methods has a disadvantage in that it can not regenerate the tissue because the cell scaffold can not effectively penetrate into the cell scaffold during the tissue grafting due to the structural stability and the lack of interconnectivity between the pores.

이러한 단점들을 극복하기 위해 생체 적합성 고분자인 폴리-ε-카프로락톤(polycarprolactone, PCL), 폴리락트산-글리콜산 공중합체(Poly(D,L-lactic-co-glycolic acid), PLGA)등을 재료로 하고, 자유 형상 제작 공정(solid freeform fabrication, SFF) 방법을 이용하여 3차원 세포지지체 제작에 관한 연구가 활발히 진행되고 있다. In order to overcome these drawbacks, it has been proposed to use biodegradable polymers such as poly-ε-caprolactone (PCL), polylactic acid-glycolic acid copolymer (Poly (D, L-lactic-co-glycolic acid) Dimensional cell support using solid freeform fabrication (SFF) method has been actively studied.

PCL은 가공성의 용이함과 높은 기계적 물성으로 인해 골 조직 재생에 사용되는 대표적인 생체적합성 고분자이다. 그러나 소수성(hydrophobic)의 낮은 표면 습윤성으로 인해 세포의 초기 부착, 성장, 및 분화에 한계가 있다. PCL is a representative biocompatible polymer used for bone tissue regeneration due to ease of processing and high mechanical properties. However, low surface wettability of hydrophobic limits cell adhesion, growth, and differentiation.

대부분의 골 조직 재생용 세포지지체는 주로 인체 내에서 생분해가 일어나는 물질인 PCL이나 PLGA로만 이루어져 있다. 하지만, PCL나 PLGA로만 이루어진 세포지지체는 생분해 시간 조절이 용이하지 않고, 물질의 강도가 낮아 원하는 형상을 유지하지 못한다는 단점이 있다. Most of the cell scaffolds for bone tissue regeneration consist mainly of PCL or PLGA, which is biodegradable in the human body. However, cell scaffolds composed of only PCL or PLGA have disadvantages in that the biodegradation time is not easily controlled and the strength of the material is low so that the desired shape can not be maintained.

이에, 최근에는 silica(SiO2), hydroxyapatite(HA)나 calcium phosphate, bioglass 등과 같은 골전도, 골유도 인자를 포함하는 생체활성 세라믹을 재료로 이용하여 세포지지체를 제작하고 있다.[A.J. Salinas, RSC adv., 2013, 3, 11116, K.C. Kavya, J. Biol. Macromol, 2013, 59, 255, K. Madhumathi, J. Biol. Macromol, 2009, 25, 289.]Recently, cell supports have been fabricated by using bioactive ceramics including bone conduction and bone induction factors such as silica (SiO 2 ), hydroxyapatite (HA), calcium phosphate, bioglass etc. [AJ Salinas, RSC Adv., 2013, 3, 11116, KC Kavya, J. Biol. Macromol, 2013, 59, 255, K. Madhumathi, J. Biol. Macromol, 2009, 25, 289.]

실리카(Silica, SiO₂)는 골유도 인자로써, 20~50 nm 크기의 공극을 가지는 다공성물질(mesoporous materials)중 하나이며, 약물전달, 조직재생, 및 유전자 transfection에 많이 사용되고 있다. 표면의 실란올(Si-OH)기로 인해 친수성(hydrophilicity)을 띄며, physical fluid에서 실란올 기의 H+과 H3O+의 이온교환으로 세포의 신진대사에 영향을 미치는 생활성 물질이다. 또한, 파이브로넥틴(fibronectin)같은 당단백질 혈청(glycoprotein serum)을 흡수하면서 세포의 초기 부착율을 증가시킬 수 있다. 하지만, silica나 하이드록시아파타이트 등을 포함하는 생체활성 세라믹으로 이루어진 세포지지체는 다결정 구조로 인해서 결정 모양을 따라 깨지는 취성 현상과 매우 낮은 인성을 가지는 특성이 있다. 따라서, 골이 재생되는 기간 동안 지지체가 적절한 강도를 유지하지 못하기 때문에 골 조직의 재생을 위한 지지체로 사용하기 어렵고, 낮은 가공성을 가지기 때문에 3차원 형상 제작이 매우 어렵다는 문제점이 있다. Silica (SiO2) is one of the mesoporous materials with porosity of 20-50 nm and is widely used for drug delivery, tissue regeneration, and gene transfection. It is hydrophilic due to the silanol (Si-OH) group on the surface. It is a bioactive substance that affects cell metabolism by ion exchange of H + and H3O + of silanol groups in the physical fluid. In addition, it can increase the initial cell attachment rate while absorbing glycoprotein serum such as fibronectin. However, cell supports made of bioactive ceramics including silica and hydroxyapatite have characteristics of being brittle and very low toughness due to the crystal structure due to the polycrystalline structure. Therefore, it is difficult to use the support as a support for the regeneration of bone tissue because the support does not maintain proper strength during the period during which the bone is regenerated, and it has a problem that it is very difficult to produce the three-dimensional shape because of low workability.

따라서, 종래기술의 낮은 기계적 강도 및 가공성을 극복하면서, 골 세포의 성장 및 분화에 효율적인 환경을 제공하는 세포지지체의 제조 방법 및 세포지지체의 개발이 요구되고 있다.Therefore, there is a need to develop a method of preparing a cell support and a cell support that provide an efficient environment for growth and differentiation of bone cells while overcoming the low mechanical strength and processability of the prior art.

본 발명은 구조적 안정성 및 공극들 간 상호연결성 결여, 세포의 초기 부착과 성장 및 분화의 한계, 낮은 기계적 강도 및 가공성과 같은 종래 기술상의 문제점을 보안하기 위해 안출된 것으로, 하기의 단계를 포함하는 세포지지체(scaffold) 제조 방법 및 이를 통해 제조된 세포지지체의 제공을 그 목적으로 한다.The present invention was conceived to secure prior art problems such as structural stability and lack of inter-pore interconnection, initial attachment and growth and differentiation of cells, low mechanical strength and processability, The present invention also provides a method for producing a scaffold and a cell scaffold prepared by the method.

(a)생체적합성 고분자를 포함하는 고분자 조성물을 용융하는 단계;(a) melting a polymer composition comprising a biocompatible polymer;

(b)상기 용융된 고분자 조성물로 오프셋(off-set) 형태의 3차원 세포지지체를 제조하는 단계; 및(b) preparing an off-set type three-dimensional cell scaffold with the molten polymer composition; And

(c)상기 세포지지체에 실리카(silica)를 코팅하는 단계.(c) coating silica on the cell support.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be solved by the present invention is not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the following description.

본 발명은 하기의 단계를 포함하는 세포지지체(scaffold) 제조 방법을 제공한다:The present invention provides a process for preparing a cell scaffold comprising the steps of:

(a)생체적합성 고분자를 포함하는 고분자 조성물을 용융하는 단계;(a) melting a polymer composition comprising a biocompatible polymer;

(b)상기 용융된 고분자 조성물로 오프셋(off-set) 형태의 3차원 세포지지체를 제조하는 단계; 및(b) preparing an off-set type three-dimensional cell scaffold with the molten polymer composition; And

(c)상기 세포지지체에 실리카(silica)를 코팅하는 단계.(c) coating silica on the cell support.

본 발명의 일 구현예에 있어서, 상기 생체적합성 고분자는 푸코이단, 콜라겐, 알지네이트, 키토산, 히알루론산, 실크, 폴리이미드(polyimides), 폴리아믹스 산(polyamix acid), 폴리-ε-카프로락톤(polycarprolactone, PCL), 폴리에테르이미드(polyetherimide), 나일론(nylon), 폴리아라미드(polyaramid), 폴리비닐알콜(polyvinyl alcohol), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리벤질글루타메이트(poly-benzyl-glutamate), 폴리페닐렌테레프탈아마이드(polyphenyleneterephthalamide), 폴리아닐린(polyaniline), 폴리아크릴로나이트릴(polyacrylonitrile), 폴리에틸렌옥사이드(polyethylene oxide), 폴리스티렌(polystyrene), 셀룰로오스(cellulose), 폴리아크릴레이트(polyacrylate), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리락산(polylactic acid, PLA), 폴리글리콜산(polyglycolic acid, PGA), 폴리락산과 폴리글리콜산의 공중합체(PLGA), 폴리{폴리(에틸렌옥사이드)테레프탈레이트-co-부틸렌테레프탈레이트}(PEOT/PBT), 폴리포스포에스터(polyphosphoester, PPE), 폴리포스파젠(PPA), 폴리안하이드라이드(Polyanhydride, PA), 폴리오르쏘에스터{poly(ortho ester), POE}, 폴리(프로필렌푸마레이트)-디아크릴레이트 {poly(propylene fumarate)-diacrylate, PPF-DA}, 및 폴리에틸렌글라이콜디아크릴레이트 {poly(ethylene glycol) diacrylate, PEG-DA}로 구성된 군으로부터 하나 이상 선택되는 것을 특징으로 한다.In one embodiment of the present invention, the biocompatible polymer is selected from the group consisting of fucoidan, collagen, alginate, chitosan, hyaluronic acid, silk, polyimides, polyamix acid, polycarprolactone, (PCL), polyetherimide, nylon, polyaramid, polyvinyl alcohol, polyvinylpyrrolidone, poly-benzyl-glutamate, poly Polyolefins such as polyethylene terephthalate, polyphenyleneterephthalamide, polyaniline, polyacrylonitrile, polyethylene oxide, polystyrene, cellulose, polyacrylate, polymethylmethacrylate, Polylactic acid (PLA), polyglycolic acid (PGA), copolymer of polylactic acid and polyglycolic acid (PLGA), polyglycolic acid , Poly {poly (ethylene oxide) terephthalate-co-butylene terephthalate} (PEOT / PBT), polyphosphoester (PPE), polyphosphazene (PPA), polyanhydride , Poly (ortho ester), POE}, poly (propylene fumarate) -diacrylate, PPF-DA}, and polyethylene glycol diacrylate {poly glycol diacrylate, PEG-DA}.

본 발명의 다른 구현예에 있어서, 상기 단계 (b)는 자유 형상 제작 공정(SFF, solid free-form fabrication)을 이용하는 것을 특징으로 한다.In another embodiment of the present invention, the step (b) is characterized by using solid free-form fabrication (SFF).

본 발명의 또 다른 구현예에 있어서, 상기 단계 (c)에서 상기 실리카를 1 내지 10 wt%의 농도로 코팅하는 것을 특징으로 한다.In another embodiment of the present invention, the silica is coated at a concentration of 1 to 10 wt% in the step (c).

본 발명의 또 다른 구현예에 있어서, 상기 세포는 골세포, 골아세포, 연골세포, 혈관세포, 또는 줄기세포인 것을 특징으로 한다.In another embodiment of the present invention, the cell is a bone cell, an osteoblast, a cartilage cell, a vascular cell, or a stem cell.

또한, 본 발명은 상기 방법에 의하여 제조되는, PCL/Silica 세포지지체를 제공한다.The present invention also provides a PCL / Silica cell support prepared by the above method.

본 발명에 따르면, SFF 공법을 이용하여 제작된 3차원 PCL 세포지지체에 각각 다른 농도(1.5 wt%, 3.7 wt%, 6.6 wt%)의 실리카를 코팅하여 실리카의 농도 조건에 따라 골 세포의 seeding 효율, 생존, 성장, 및 분화를 조절할 수 있고, coating process에 의해 silica를 생체적합성 표면에 간단하게 coating함으로써 골 조직 재생용 세포지지체를 빠르고 안정적이게 제조할 수 있으며, silica의 골유도 성질을 유지하면서 높은 기계적 강도, 가공성, 및 초기 세포부착율을 갖는 3차원 PCL/silica 세포지지체를 제공할 수 있다. According to the present invention, silica having a different concentration (1.5 wt%, 3.7 wt%, 6.6 wt%) is coated on the three-dimensional PCL cell scaffold prepared by the SFF method, and the seeding efficiency It is possible to regulate survival, growth and differentiation, and it is possible to quickly and stably produce a cell scaffold for bone tissue regeneration by simply coating silica on a biocompatible surface by a coating process, Dimensional PCL / silica cell support having mechanical strength, processability, and initial cell adhesion rate.

또한, 본 발명의 제조 방법으로 제조된 3차원 PCL/silica 세포지지체는 PCL과 Silica의 장점을 극대화 시킨 세포지지체로서, 수분 접촉각 및 수분 흡수율, 기계적 물성, 초기 세포 생존율, 세포접종 효율 및 성장률, 세포분화도에서 향상된 효과를 나타내므로, 이식된 세포를 증식시키기 위한 최적의 환경을 제공할 수 있고, 골 조직 재생 시 우수한 효과를 기대할 수 있다. In addition, the three-dimensional PCL / silica cell scaffold prepared by the method of the present invention is a cell scaffold which maximizes the advantages of PCL and silica, and has a water contact angle and moisture absorption rate, mechanical properties, initial cell survival rate, It exhibits an improved effect on the degree of differentiation, it can provide an optimal environment for proliferating the transplanted cells, and an excellent effect can be expected in bone tissue regeneration.

도 1은 본 발명에 따른 세포지지체 제조를 위한 장비 및 공정을 개략적으로 나타낸 것이다.
도 2는 세포지지체에 silica가 잘 코팅되었는지 확인하기 위한 SEM사진, EDS 분석, XPS 측정 결과를 나타낸 것이다.
도 3은 세포지지체의 친수성을 평가하기 위한 수분 접촉각 및 수분 흡수율 측정 결과를 나타낸 것이다.
도 4는 기계적 물성 분석을 위한 인장 테스트 결과를 나타낸 것이다.
도 5는 세포 생존율 분석을 위한 Live/Dead cells 형광현미경 관찰 결과를 나타낸 것이다.
도 6는 세포 접종 효율 및 성장률 분석을 위한 MTT assay 결과를 나타낸 것이다.
도 7은 세포 분화도 분석을 위한 ALP(Alkaline phosphatase) activity 및 bone mineralization 실험 결과를 나타낸 것이다.
1 schematically shows equipment and processes for preparing a cell support according to the present invention.
FIG. 2 shows SEM photographs, EDS analysis, and XPS measurement results to confirm whether or not silica is well coated on the cell support.
Fig. 3 shows the measurement results of the water contact angle and water absorption rate for evaluating the hydrophilicity of the cell support.
Figure 4 shows the tensile test results for mechanical properties analysis.
FIG. 5 shows fluorescence microscopy results of Live / Dead cells for cell survival analysis.
Figure 6 shows the results of MTT assay for cell inoculation efficiency and growth rate analysis.
FIG. 7 shows the results of ALP (Alkaline phosphatase) activity and bone mineralization test for cell differentiation analysis.

본 발명자들은 종래 세포지지체의 문제점을 보완하기 위하여 생체적합성고분자인 PCL(Poly(ε-caprolactone), Mn= 45,000)을 재료로 PCL 세포지지체를 제조한 후, 제조된 PCL 세포지지체에 골유도 성질을 가지는 silica를 코팅하여 간단한 방법으로 조직 재생에 효율적인 세포지지체(scaffold)를 제조하였다. 또한, 상기 세포지지체(scaffold) 제조 방법 및 세포지지체(scaffold)가 수분 접촉각 및 수분 흡수율, 기계적 물성, 초기 세포 생존율, 세포접종 효율 및 성장률, 세포분화의 효율을 높여 골 조직 재생에 효과적임을 확인하고 본 발명을 완성하였다.In order to overcome the problems of conventional cell scaffolds, the inventors of the present invention prepared a PCL cell support using a biocompatible polymer, PCL (poly (ε-caprolactone), Mn = 45,000) The scaffolds were fabricated by coating silica with a simple method to efficiently regenerate tissues. In addition, it has been confirmed that the method of manufacturing a scaffold and the cell scaffold are effective for regenerating bone tissue by increasing water contact angle and moisture absorption rate, mechanical properties, initial cell survival rate, cell seeding efficiency and growth rate, and cell differentiation efficiency Thus completing the present invention.

본 발명의 일실시예에서는 골 유도물성을 갖는 silica와 높은 기계적 물성과 생체적합성, 생분해성 물질인 PCL을 재료로 3차원 PCL/silica 세포지지체를 제조하였으며, 제조에는 바이오 플로터 장비와 SFF(solid free-form fabrication) 공정을 이용하였다. 일반적으로 제작되는 격자 구조의 PCL 세포지지체를 100% offset으로 가공 제작하여 cell seeding 효율을 증가시켰고, PCL 세포지지체에 silica를 다양한 농도(1.5, 3.7, 6.6 wt%)로 코팅하여 골 세포의 성장 및 분화를 조절할 수 있는 3차원 PCL/Silica 세포지지체를 제조하였다. 제조된 세포지지체를 실리카 코팅 농도에 따라, 1.5 wt%로 코팅한 세포지지체를 PS-1, 3.7 wt%로 코팅한 세포지지체를 PS-2, 6.6 wt%로 코팅한 세포지지체를 PS-3로 명명하였다.(실시예 1 참조).In one embodiment of the present invention, a three-dimensional PCL / silica cell support was prepared from silica having bone-induced physical properties, high mechanical properties, biocompatibility, and biodegradable material, PCL / -form fabrication process. The cell seeding efficiency was increased by fabricating PCL cell scaffolds with a 100% offset. The PCL cell scaffolds were coated with silica at various concentrations (1.5, 3.7, and 6.6 wt%), Three dimensional PCL / Silica cell scaffolds capable of differentiation were prepared. The prepared cell support was coated with 1.5 wt% of PS-1, 3.7 wt% of PS support coated with PS-2, 6.6 wt% of PS support with PS-3 (See Example 1).

또한, 다양한 농도의 실리카로 코팅된 3차원 PCL/silica 세포지지체에 조골세포를 이식하였고(실시예 2 참조), 수분 접촉각 및 수분 흡수율, 기계적 물성, 초기 세포 생존율, 세포접종 효율 및 성장률, 세포분화도를 측정하였다(실시예 3 참조). 그 결과, 3차원 PCL/silica 세포지지체가 세포 증식의 효율을 높일 수 있는 환경을 조성하여 골 조직 재생에 효과적일 수 있음을 확인하였다.In addition, osteoblast cells were transplanted into a three-dimensional PCL / silica cell support coated with various concentrations of silica (see Example 2), and water contact angle and moisture absorption rate, mechanical properties, initial cell survival rate, cell seeding efficiency and growth rate, (See Example 3). As a result, it was confirmed that the three - dimensional PCL / silica cell scaffold can be effective for the regeneration of bone tissue by establishing an environment for increasing cell proliferation efficiency.

따라서, 본 발명은 하기의 단계를 포함하는 세포지지체(scaffold) 제조 방법을 제공할 수 있다:Accordingly, the present invention can provide a method of producing a cell scaffold comprising the steps of:

(a)생체적합성 고분자를 포함하는 고분자 조성물을 용융하는 단계;(a) melting a polymer composition comprising a biocompatible polymer;

(b)상기 용융된 고분자 조성물로 오프셋(off-set) 형태의 3차원 세포지지체를 제조하는 단계; 및(b) preparing an off-set type three-dimensional cell scaffold with the molten polymer composition; And

(c)상기 세포지지체에 실리카(silica)를 코팅하는 단계.(c) coating silica on the cell support.

본 발명의 생체적합성 고분자는 푸코이단, 콜라겐, 알지네이트, 키토산, 히알루론산, 실크, 폴리이미드(polyimides), 폴리아믹스 산(polyamix acid), 폴리-ε-카프로락톤(polycarprolactone, PCL), 폴리에테르이미드(polyetherimide), 나일론(nylon), 폴리아라미드(polyaramid), 폴리비닐알콜(polyvinyl alcohol), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리벤질글루타메이트(poly-benzyl-glutamate), 폴리페닐렌테레프탈아마이드(polyphenyleneterephthalamide), 폴리아닐린(polyaniline), 폴리아크릴로나이트릴(polyacrylonitrile), 폴리에틸렌옥사이드(polyethylene oxide), 폴리스티렌(polystyrene), 셀룰로오스(cellulose), 폴리아크릴레이트(polyacrylate), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리락산(polylactic acid, PLA), 폴리글리콜산(polyglycolic acid, PGA), 폴리락산과 폴리글리콜산의 공중합체(PLGA), 폴리{폴리(에틸렌옥사이드)테레프탈레이트-co-부틸렌테레프탈레이트}(PEOT/PBT), 폴리포스포에스터(polyphosphoester, PPE), 폴리포스파젠(PPA), 폴리안하이드라이드(Polyanhydride, PA), 폴리오르쏘에스터{poly(ortho ester), POE}, 폴리(프로필렌푸마레이트)-디아크릴레이트 {poly(propylene fumarate)-diacrylate, PPF-DA}, 및 폴리에틸렌글라이콜디아크릴레이트 {poly(ethylene glycol) diacrylate, PEG-DA}로 구성된 군으로부터 하나 이상 선택되는 고분자일 수 있고, 가장 바람직하게는 폴리-ε-카프로락톤(polycarprolactone, PCL)일 수 있으나, 이에 제한되는 것은 아니다.The biocompatible polymer of the present invention may be selected from the group consisting of fucoidan, collagen, alginate, chitosan, hyaluronic acid, silk, polyimides, polyamix acid, polycaprolactone (PCL), polyetherimide polyetherimide, polyetherimide, nylon, polyaramid, polyvinyl alcohol, polyvinylpyrrolidone, poly-benzyl-glutamate, polyphenyleneterephthalamide, Polyaniline, polyacrylonitrile, polyethylene oxide, polystyrene, cellulose, polyacrylate, polymethylmethacrylate, polylactic acid, polyacrylic acid, polylactic acid (PLA), polyglycolic acid (PGA), copolymer of polylactic acid and polyglycolic acid (PLGA), poly {poly (ethylene oxide ) Terephthalate-co-butylene terephthalate} (PEOT / PBT), polyphosphoester (PPE), polyphosphazene (PPA), polyanhydride (PA), polyorthoesters {poly poly (ethylene glycol) diacrylate, PEG-DA (poly (propylene fumarate) -diacrylate, PPF-DA} , And most preferably, it may be, but is not limited to, poly-ε-caprolactone (PCL).

또한, 상기 단계 (b)는 이에 한정되는 것은 아니나 자유 형상 제작 공정(solid free-form fabrication, SFF)을 이용하여 수행될 수 있다. In addition, the step (b) may be performed using a solid free-form fabrication (SFF).

자유 형상 제작 공정(SFF)은, 귓바퀴 형태 등과 같이 상당히 복잡한 형상도 아주 잘 구현할 수 있을 만큼 원하는 3차원 형상을 자유로이 만들 수 있고, 세포지지체의 공극 크기(Pore size), 공극률(Porosity), 공극 간 상호연결성(Interconnectivity)을 높여 세포가 보다 쉽게 세포지지체 내부로 침투 가능하며, 영양분 순환이나 산소의 공급을 높일 수 있도록 할 수 있다는 장점이 있다. 대표적인 예로는 SLA(Stereo Lithography Apparatus), SLS(Selective Laser Sintering), FDM(Fused Deposition Modeling), 3차원 프린팅(3D printing), 3차원 플로팅(3D Plotting) 등이 있다. The free shape fabrication process (SFF) can freely make a desired three-dimensional shape so as to be able to realize a fairly complicated shape such as a pinna shape and the like. It is also possible to make the shape of the cell support pore size, porosity, It has the advantage of increasing the interconnection, allowing the cells to penetrate into the cell support more easily, and to increase the nutrient circulation and oxygen supply. Representative examples include SLA (Stereo Lithography Apparatus), SLS (Selective Laser Sintering), FDM (Fused Deposition Modeling), 3D printing, and 3D plotting.

이에 더하여, 상기 단계 (c)에서 상기 실리카를 1 내지 10 wt%의 농도로 코팅하여 silica의 농도 조건에 따라 골 세포의 seeding 효율, 생존, 성장, 및 분화를 조절할 수 있으나, 이에 제한되는 것은 아니다.In addition, in step (c), the seeding efficiency, survival, growth, and differentiation of osteocytes can be controlled by coating the silica at a concentration of 1 to 10 wt%, but the present invention is not limited thereto .

SFF 공법을 이용하여 3차원 PCL 세포지지체를 제조하고, 이렇게 제조한 세포지지체에 1 내지 10 wt% 농도의 silica를 coating process에 의해 표면에 간단하게 코팅하여 세포지지체를 빠르고 안정적으로 제조하는 방법을 제공할 수 있다. 이러한 방법으로 제조된 세포지지체는 추후 수술 과정에서 환자 상황에 맞는 세포지지체로의 제조가 가능하다.A 3D PCL cell support is prepared using the SFF method, and a silica support is coated on the surface in a coating process at a concentration of 1 to 10 wt% to easily prepare a cell support. can do. The cell scaffold prepared in this way can be manufactured into a cell scaffold suitable for the patient's situation in the future operation.

이에, 본 발명의 다른 양태로서, 상기 세포지지체(scaffold) 제조 방법에 의해 제조된 PCL/silica 세포지지체를 제공할 수 있다.Accordingly, as another embodiment of the present invention, a PCL / silica cell support prepared by the method for preparing a cell scaffold can be provided.

본 발명에서 "세포"라는 용어는 세포 또는 조직의 재생에 사용되는 세포를 의미하는 것으로서, 피부세포, 혈관세포, 골세포, 골아세포, 연골세포를 비롯한 다양한 성체세포 외에도 줄기세포, 단핵구세포와 같이 다양한 세포로 분화할 수 있는 세포도 포함하는 폭넓은 의미로 사용하였다.In the present invention, the term "cell" refers to a cell used for cell or tissue regeneration. It includes various adult cells including skin cells, vascular cells, osteoblasts, osteoblasts and chondrocytes, as well as stem cells and mononuclear cells Including cells capable of differentiating into various cells.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the following examples.

[실시예][Example]

실시예 1. 3차원 PCL/silica 세포지지체 제조Example 1. Preparation of 3D PCL / silica cell support

1-1. PCL/silica 세포지지체의 재료1-1. Material of PCL / silica cell support

본 연구에서는 3차원 PCL/silica 세포지지체를 제조하기 위한 재료로 생체적합성 고분자인 Poly(ε-caprolactone)(PCL, Mn= 45,000, Sigma-Aldrich, USA)을 사용하였고, PCL로 제조된 세포지지체를 코팅하기 위한 재료로는 성균관대학교 황헌 교수연구팀에서 제공받은 실리카(Silica, SiO₂)를 사용하였다.
Poly (ε-caprolactone) (PCL, Mn = 45,000, Sigma-Aldrich, USA), a biocompatible polymer, was used as a material for the preparation of 3D PCL / As a material for coating, silica (Silica, SiO2) provided by the research team of Professor Hwang, Hun-Hun of Sungkyunkwan University was used.

1-2. PCL/silica 세포지지체 제조1-2. Manufacture of PCL / silica cell support

도 1(a)에 나타낸 것과 같이, 세포지지체를 제조하기 위해 바이오 플로터 장비를 사용하였고, SFF(solid free-form fabrication) 공정을 이용하여 3차원 PCL/silica 세포지지체를 제조하였다. 바이오 플로터 장비의 구성요소는 플로터(3D Bio-Plotter, DTR3-2210-T-SG, DASA Robot, KOREA), 용융 배럴(Heat barrel), 온도 조절기(Heat barrel controller, TAEHA ENGINEERING, KOREA), 공압 장비(Air pressure conroller, EST A502D, EST, KOREA) 이다.As shown in FIG. 1 (a), a bio-plotter was used to prepare a cell scaffold, and a three-dimensional PCL / silica cell scaffold was prepared using a SFF (solid free-form fabrication) process. The components of the bio-plotter equipment include a plotter (3D Bio-Plotter, DTR3-2210-T-SG, DASA Robot, KOREA), a heat barrel, a heat barrel controller (TAEHA ENGINEERING, KOREA) (Air pressure conroller, EST A502D, EST, KOREA).

PCL 파우더를 용융 배럴(Heat barrel)에 주입하고 고온(100℃)으로 30분 동안 용융시킨 후, 정밀 노즐(직경 350㎛)을 이용하여 토출 압력 400 ± 17 kPa, 플로팅 속도 5 mm/s로 오프셋 형태(Off-set)의 3차원 세포지지체를 제조하였다. 3차원 세포지지체는 첫 번째 레이어를 제조한 다음 두 번째 레이어를 100 % off-set 형태로 제조하기 때문에 교차 레이어의 모양이며, 최종 제조된 PCL off-set 세포지지체의 크기는 4 x 4 x 1.5 mm3 였다. PCL powder was injected into a heat barrel and melted at a high temperature (100 ° C) for 30 minutes. Then, using a precision nozzle (diameter 350 μm), an offset pressure of 400 ± 17 kPa and a floating speed of 5 mm / Off-set three-dimensional cell scaffolds were prepared. The three-dimensional cell scaffold is a cross-shaped layer because the first layer is prepared and then the second layer is prepared in a 100% off-set form. The size of the final prepared PCL off-set cell support is 4 x 4 x 1.5 mm 3 .

또한, 도 1(b)에 나타낸 것과 같이, 상기 방법으로 제조된 세포지지체를 각각 다른 농도의 silica(1.5 wt%, 3.7 wt%, 6.6 wt%)로 코팅하였다. 코팅 방법으로는, 세포지지체를 각각 1.5, 3.7, 6.6 wt%농도의 평균 12nm 크기 실리카 용액에 2시간 동안 담근 후, 실리카에 포함되어있는 수분 제거 및 효과적 코팅을 위해 clean bench에서 자연 건조하는 방법을 이용하였다. 이러한 방법으로 PCL off-set 세포지지체에 silica가 코팅된 3차원 PCL/silica 세포지지체를 제조하였다. In addition, as shown in FIG. 1 (b), the cell support prepared by the above method was coated with silica (1.5 wt%, 3.7 wt%, 6.6 wt%) at different concentrations. As a coating method, the cell supports were immersed in an average size of 12 nm silica solution of 1.5, 3.7, and 6.6 wt% for 2 hours, followed by natural drying in a clean bench for water removal and effective coating Respectively. In this way, a three-dimensional PCL / silica cell support with silica-coated PCL off-set cell support was prepared.

제조된 3차원 PCL/silica 세포지지체를 광학 현미경으로 관찰한 결과는 도 1(C)에 나타내었다. 또한, 제조된 PCL/silica 세포지지체에 silica가 잘 코팅되었는지 확인하기 위해 전자주사현미경(SEM)을 이용하여 300배, 2000배에서 관찰하였고, 그 결과는 도 2(a)에 나타내었다. 도 2(b)와 도 2(c)에는 EDS 분석을 통해 제조된 PCL/silica 세포지지체의 silica 코팅을 분석한 결과를 나타내었다. EDS 분석 결과, 코팅된 silica의 농도가 증가할수록 EDS spectra의 silica(si) peak가 높아졌으며, mapping결과 역시 코팅된 silica의 농도가 증가할수록 붉은색(red color: si)농도가 올라감을 관찰할 수 있었다. 이에 더하여, XPS(X-ray photoelectron spectroscopy) 측정을 통하여 si의 코팅이 균일하게 잘 되었음을 확인하였고, 그 결과는 도 2(d)에 나타내었다. FIG. 1 (C) shows the result of observing the prepared three-dimensional PCL / silica cell support by an optical microscope. In order to confirm whether silica was coated well on the prepared PCL / silica cell support, it was observed at 300 times and 2000 times using a scanning electron microscope (SEM). The results are shown in FIG. 2 (a). FIGS. 2 (b) and 2 (c) show the results of analysis of the silica coating of the PCL / silica cell support prepared by EDS analysis. As a result of the EDS analysis, the silica (si) peak of the EDS spectra was increased with increasing the concentration of the coated silica, and the red color (si) concentration was increased with increasing the concentration of the coated silica there was. In addition, it was confirmed through X-ray photoelectron spectroscopy (XPS) measurement that the coating of si was uniformly uniform, and the result is shown in Fig. 2 (d).

제조된 세포지지체의 silica농도에 따른 코팅 효과를 분석한 결과는 도 3, 도 4, 도 5, 및 도 6에 나타내었다.
The results of analysis of the coating effect according to the silica concentration of the prepared cell scaffold are shown in FIG. 3, FIG. 4, FIG. 5, and FIG.

실시예 2. 3차원 PCL/silica 세포지지체에 조골세포 이식Example 2. Osteoblast transplantation on a 3-dimensional PCL / silica cell support

다양한 농도의 silica로 코팅된 3차원 PCL/silica 세포지지체에 이식한 세포는 쥐의 조골세포주(pre-osteoblast)인 MC3T3-E1을 사용하였다. 세포지지체에 조골세포 이식 실험은 하기와 같이 실시하였다. MC3T3-E1, a pre-osteoblast of rats, was used for transplanted cells in 3-dimensional PCL / silica cell supports coated with various concentrations of silica. The osteoblast transplantation experiment on the cell supporter was carried out as follows.

24-well plate에 4 x 4 x 1.5 mm3크기의 세포지지체를 넣고 70% 에탄올에 침전시킨 후, 자외선(Ultraviolet light)으로 멸균 처리하였다. 멸균된 세포지지체 위에 세포지지체 당 1 × 105개의 세포수가 되도록 seeding한 후, 10% FBS(Fetal bovin serum)와 1%(v/v) penicillin-streptomycin(P/S)이 포함된 α-MEM(alpha-minimum essential medium) 배지를 준비하였다. 세포 분화를 유도하기 위해 α-MEM 배지에 50㎍/ml Ascorbic acid와 10mM β-glycerophosphate를 첨가한 후, 37℃, 5% CO2 인큐베이터에서 실험 설계에 따라 최대 14일 동안 배양하였다. 주어진 배양 기간 동안 새로운 동일한 배지로 3일마다 교환해주었다.
A 4 x 4 x 1.5 mm 3 cell support was placed in a 24-well plate and precipitated in 70% ethanol and sterilized with ultraviolet light. The seeds were seeded on a sterilized cell support so as to have a cell number of 1 × 10 5 per cell support. Then, α-MEM containing 10% FBS (Fetal bovin serum) and 1% (v / v) penicillin-streptomycin (P / S) (alpha-minimum essential medium). To induce cell differentiation, 50 μg / ml Ascorbic acid and 10 mM β-glycerophosphate were added to α-MEM medium and incubated at 37 ° C in a 5% CO 2 incubator for up to 14 days according to the experimental design. During the given incubation period, they were exchanged every 3 days with the same new medium.

실시예 3. 3차원 PCL/silica 세포지지체의 골 조직 재생 효율 분석Example 3. Analysis of Bone Tissue Regeneration Efficiency of 3-Dimensional PCL / silica Cell Support

3-1. 수분 접촉각 및 수분 흡수율 분석3-1. Analysis of water contact angle and water absorption

상기 실시예 1 및 실시예 2를 통해 제조된 세포지지체의 친수성 특성을 평가하기 위해, 수분 접촉각(water contact angle) 및 수분 흡수율(water absorption) 측정 실험을 실시하였다. 세포지지체에 있어 수분 접촉각 및 수분 흡수율은 필수적인 요소이다. 수분 접촉각은 세포지지체의 세포 초기접착에 영향을 주고, 수분 흡수율은 세포지지체 내에서 세포들에게 필요한 영양분 및 대사 물질들의 원활한 공급에 영향을 미치기 때문이다. Water contact angle and water absorption measurement experiments were performed to evaluate the hydrophilic characteristics of the cell supports prepared in Examples 1 and 2. The water contact angle and water uptake rate are essential for cell supports. The water contact angle affects the initial adhesion of cell supports to cells, and the water absorption rate affects the smooth supply of nutrients and metabolites necessary for cells in the cell support.

수분 접촉각은, Rhodamin B(Sigma-Aldrich, USA)를 3차 증류수에 용해한 후, 상기 실시예 1에서 제조한 각각의 PCL/silica 세포지지체에 10㎕씩 떨어뜨려 시간대별로 측정하였다. The water contact angle was measured by dropping Rhodamin B (Sigma-Aldrich, USA) into tertiary distilled water, and then dropping 10 μl of each solution onto each PCL / silica cell support prepared in Example 1.

수분 흡수율은, 1상기 실시예 1에서 제조한 각각의 PCL/silica 세포지지체에 증류수 2 ml을 떨어뜨린 후, 2시간 전후의 세포지지체 무게량을 측정하였다. 수분 흡수율 측정은 X,Y,Li의 실험방법을 참조하였고, 수분 흡수율을 계산하는 공식은 하기 표 1에 나타낸 바와 같았다. 수분 흡수율 공식에서 Wo는 세포지지체의 무게량, W2h는 증류수를 떨어뜨리고 2시간 경과 후 흡수된 세포지지체의 무게량을 나타내었다. Water absorption rate was as follows: 1 2 ml of distilled water was dropped on each PCL / silica cell support prepared in Example 1, and the weight of the cell support was measured about 2 hours before and after. The water absorption rate was measured by X, Y and Li, and the formula for calculating the water absorption rate was as shown in Table 1 below. In the water absorption rate formula, W o represents the weight of the cell support, and W 2h represents the weight of the cell support absorbed after 2 hours with distilled water dropping.

Figure 112014120283061-pat00001
Figure 112014120283061-pat00001

그 결과, 도 3에 나타낸 바와 같이, Pure PCL인 control은 소수성 특성 때문에 낮은 수분 흡수율을 나타내었다. 반면, silica로 코팅된 세포지지체들은 친수성의 특성을 띄고, control에 비해 높은 수분 흡수가 이뤄지는 것을 확인할 수 있었다. 단, 1.5 wt%의 silica로 코팅된 PCL/silica 세포지지체를 3.7 wt%, 6.6 wt%와 비교했을 때 흡수율이 감소된 것으로 보아 silica의 농도에 따라 수분 접촉각 및 수분 흡수율이 차이나는 것을 보여준다.
As a result, as shown in Fig. 3, the control which is Pure PCL showed a low water absorption rate because of its hydrophobic property. On the other hand, the silica - coated cell scaffolds showed hydrophilic characteristics and showed higher water absorption than the control. However, when the PCL / silica cell support coated with 1.5 wt% silica was compared with 3.7 wt% and 6.6 wt%, it showed that the water absorption rate was decreased and that water contact angle and water absorption rate were different according to silica concentration.

3-2. 기계적 물성 분석3-2. Mechanical Properties Analysis

상기 실시예 1 및 실시예 2를 통해 제조된 세포지지체의 기계적 물성을 평가하기 위해, 인장 테스트를(tensile test) 실시하였다. 인장 테스트를 실시하기 위한 세포지지체는 세포지지체의 silica 코팅 농도에 따라 각각 10 x 20 mm로 동일하게 제작하였으며, 인장 테스트는 tensile test machine(Top-tech 2000)을 통해 0.5 mm/s의 인장 속도로 진행하였다. In order to evaluate the mechanical properties of the cell supports prepared in Examples 1 and 2, a tensile test was conducted. The tensile test was carried out using a tensile test machine (Top-tech 2000) at a tensile rate of 0.5 mm / s. .

그 결과, 도 4에 나타낸 바와 같이, 순수 PCL 세포지지체보다 silica를 코팅한 PCL/silica세포지지체의 초기 강도(Young's modulus, 인장탄성율)가 0.8 ~ 1.1 MPa 증가하였다. 따라서, silica를 코팅함으로써 기계적 물성이 증가하였음을 확인할 수 있었다.
As a result, as shown in Fig. 4, the initial strength (Young's modulus, tensile elastic modulus) of silica-coated PCL / silica cell support increased from 0.8 to 1.1 MPa more than pure PCL cell support. Therefore, it was confirmed that the mechanical properties were increased by coating the silica.

3-3. 세포 생존율 분석3-3. Cell survival analysis

상기 실시예 1 및 실시예 2를 통해 제조된 세포지지체의 세포 생존율 분석을 위해, Live/Dead stain실험을 실시하였고, 세포가 배양된 세포지지체의 세포 생존율을 1, 3, 7일차마다 분석하였다. 0.15 mM calcein AM과 2 mM ethidium homodimer-1을 혼합한 다음, 세포가 배양된 세포지지체에 첨가하여 45분간 인큐베이터에서 반응시켰고, 형광현미경을 이용하여 분석 및 관찰하였다. For the cell survival analysis of the cell scaffolds prepared in Examples 1 and 2, Live / Dead stain experiments were performed and the cell viability of the cell scaffolds cultured was analyzed every 1, 3, and 7 days. After mixing 0.15 mM calcein AM and 2 mM ethidium homodimer-1, the cells were added to the cultured cell supernatant, incubated for 45 minutes in an incubator, and analyzed by fluorescence microscopy.

PCL세포지지체와 각각의 농도(1.5 wt%, 3.7 wt%, 6.6 wt%)로 silica를 코팅한 PCL/silica세포지지체에 세포를 배양한 후 배양 시간에 따라 비교해본 결과, 도 5에 나타낸 바와 같이, silica의 농도가 증가할수록 Live cells도 증가함을 알 수 있고, 이로부터 silica의 농도가 증가함에 따라 초기세포 부착률이 증가했음을 확인할 수 있었다. 또한, 3일차와 7일차 결과에서, 배양 시간이 증가함에 따라 silica의 농도가 증가할수록 세포의 증식 및 생존율이 활발하다는 것을 확인할 수 있었다. As shown in FIG. 5, when cells were cultured on a PCL / silica cell support coated with silica with PCL cell supernatant (1.5 wt%, 3.7 wt%, 6.6 wt%) at each concentration, As the silica concentration increased, the Live cells also increased. From this, it was confirmed that the initial cell adhesion rate was increased as the silica concentration increased. In addition, from the results of day 3 and day 7, it was confirmed that as the incubation time increases, the cell proliferation and survival rate become more active as the silica concentration increases.

따라서, silica가 코팅된 세포지지체는 세포의 증식이 잘되는 생물학적 환경을 가지고 있다는 것을 확인하였다.
Therefore, it has been confirmed that the silica-coated cell scaffold has a favorable biological environment for cell proliferation.

3-4. 세포 접종 효율 및 성장률 분석3-4. Cell Inoculation Efficiency and Growth Rate Analysis

상기 실시예 1 및 실시예 2를 통해 제조된 세포지지체의 세포 접종 효율 및 성장률 비교 분석을 위해, MTT([3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay(Cell Proliferation Kit I; Boehringer Mannheim, Mannheim, Germany) 시험을 실시하였다. 측정 시간에 따라 각각의 세포지지체에 MTT kit-1 시약을 200㎕씩 첨가하여 37℃ 인큐베이터에서 4시간 동안 반응 시켰다. 그 후, 세포의 미토콘드리아에 보라색 formazan crystals이 생성 되면 MTT kit 2차 시약을 각각 세포지지체가 담긴 well에 200㎕씩 넣고, overnight시킨 다음 용해하였다. 용해된 용액을 96-well plate에 100㎕씩 옮겼고, 분광분석기(microplate reader, model EL800, Bio-Tek Instruments, Winoosli. VT, U.S.A.)를 이용하여 570nm의 파장으로 흡광도를 측정하였다.(MTT ([3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide] for the cell inoculation efficiency and growth rate of the cell scaffold prepared in Example 1 and Example 2, 200 [mu] l of MTT kit-1 reagent was added to each cell supernatant according to the measurement time, and incubated for 4 hours in an incubator at 37 [deg.] C. After purple formazan crystals were formed in the mitochondria of the cells, 200 μl of the MTT kit secondary reagent was added to each well of the cell supernatant, followed by overnight incubation and dissolution. 100 μl of the dissolved solution was transferred to a 96-well plate, Absorbance was measured at a wavelength of 570 nm using a spectrophotometer (model EL800, Bio-Tek Instruments, Winoosli, VT, USA).

그 결과, 도 6(a)에 나타낸 세포 접종 효율과 같이, control은 소수성의 특성으로 인해 세포지지체의 세포 접종 효율이 낮은 반면 silica가 코팅된 세포지지체는 코팅농도가 증가할수록 친수성으로 인해 세포 접종 효율이 증가함을 확인할 수 있었다. 또한, 그래프 도 6(b)에 나타낸 세포 성장률 결과와 같이, 세포배양 시 코팅된 silica의 농도가 증가할수록 세포 성장률 또한 증가함을 확인할 수 있었다. 또한, 도 6(c)에 나타낸 바와 같이, silica의 농도가 증가 할수록 세포 증식 속도 역시 증가함을 확인할 수 있었다.
As a result, as shown in Fig. 6 (a), the cell inoculation efficiency of the cell supporter is low due to the hydrophobic nature of the control, whereas the cell supporter coated with silica exhibits the cell inoculation efficiency Of the total number of patients. In addition, as shown in the graph of FIG. 6 (b), it was confirmed that as the concentration of the coated silica increases, the cell growth rate also increases during cell culture. Also, as shown in FIG. 6 (c), it was confirmed that as the silica concentration increases, the cell proliferation rate also increases.

3-5. 세포 분화도 분석3-5. Cell differentiation analysis

상기 실시예 1 및 실시예 2를 통해 세포지지체의 세포 분화도 분석을 위해, ALP(Alkaline phosphatase) activity 및 Alizarin red S 염색을 통한 bone mineralization 실험을 실시하였다. ALP는 조골세포의 분화과정동안 발현되며, 세포지지체에서 조골세포분화의 활성화를 알 수 있는 척도가 된다. Alizarin red S는 금속 이온과 결합하는 성질이 있어 칼슘염 심착부를 염색하므로, bone mineralization를 식별하기 위해 사용된다.In order to analyze the cell differentiation degree of the cell supporter through Examples 1 and 2, bone mineralization experiments were performed by ALP (Alkaline phosphatase) activity and Alizarin red S staining. ALP is expressed during the differentiation process of osteoblasts and is a measure of the activation of osteoblast differentiation in cell scaffolds. Alizarin red S binds to metal ions and is used to identify bone mineralization because it stains calcium salt deposits.

ALP activity를 측정하기 위해, 배양 후 측정시간에 따라 각각의 세포지지체에 0.1% Triton X-100이 첨가된 10 mM sodium carbonate buffer(pH 7.5)를 200㎕씩 넣어주어 10분간 반응시켰다. 그 후, p-NPP(para-nitrophenyl phosphate) 1x 가 들어있는 250mM sodium carbonate buffer(pH 10)를 200㎕씩 추가하여 1시간동안 반응시켰다. 반응이 완료된 용액을 96-well plate에 100㎕씩 옮긴 다음, 분광 분석기를 이용하여 405 nm의 파장으로 흡광도를 측정하였다.To measure ALP activity, 200 μl of 10 mM sodium carbonate buffer (pH 7.5) containing 0.1% Triton X-100 was added to each cell support according to the measurement time after incubation for 10 minutes. Thereafter, 200 μl of 250 mM sodium carbonate buffer (pH 10) containing 1 × para-nitrophenyl phosphate ( p- NPP) was added thereto, followed by reaction for 1 hour. After the reaction was completed, 100 μl of the solution was transferred to a 96-well plate, and the absorbance was measured using a spectrophotometer at a wavelength of 405 nm.

또한, Alizarin red S 염색을 통한 세포 분화도 측정을 위해, 각각의 세포지지체에 4℃의 70% 에탄올을 500㎕씩 넣은 후 30분 동안 세포를 고정시켰고, 40 mM alizarin red S(pH 4.2)를 500㎕씩 넣고 상온에서 1시간 동안 염색하였다. 염색된 세포지지체를 3차 증류수로 2번 세척한 후, 10 mM sodium phosphate buffer(pH 7.0)에 용해시킨 10% cetylprydium chloride 용액을 각각의 세포지지체에 500㎕씩 넣었다. 15분 후 100㎕씩 96-well plate에 옮긴 다음, 분광 분석기를 이용하여 562 nm의 파장으로 흡광도를 측정하였다.In order to measure cell differentiation through Alizarin red S staining, 500 μl of 70% ethanol at 4 ° C was added to each cell supernatant, and cells were fixed for 30 minutes. 40 mM alizarin red S (pH 4.2) Mu] l each, and stained at room temperature for 1 hour. The stained cell supernatant was washed twice with tertiary distilled water, and then a solution of 10% cetylprydium chloride dissolved in 10 mM sodium phosphate buffer (pH 7.0) was added to each cell support. After 15 minutes, 100 μl of the solution was transferred to a 96-well plate and the absorbance was measured at a wavelength of 562 nm using a spectrophotometer.

그 결과, 7일차, 14일차 ALP activity를 나타낸 도 7(a)와 같이, silica의 코팅 농도가 높아질수록 ALP값이 증가하는 것을 확인하였으며, bone mineralization 분석을 나타낸 도 7(b)와 같이, 세포지지체에서의 칼슘농도가 증가함을 확인할 수 있었다. 또한, Alizarin red S 염색 결과를 나타낸 도 7(c) 및 도 7(d)와 같이, 세포지지체의 silica 코팅 농도가 증가할수록 더 많은 칼슘이 생성됨을 확인할 수 있었다.As a result, as shown in FIG. 7 (a) showing 7th day and 14th ALP activity, it was confirmed that ALP value increases with increasing silica coating concentration. As shown in FIG. 7 (b) It was confirmed that the calcium concentration in the support increased. As shown in FIGS. 7 (c) and 7 (d) showing the result of Alizarin red S staining, it was confirmed that more calcium was produced as the silica coating concentration of the cell support increased.

상기 실시예로부터 본 발명의 제조방법에 의해 제조된 세포지지체는 골 조직 재생 효율이 증가하였음을 확인하였다.
From the above examples, it was confirmed that the cell scaffold prepared by the production method of the present invention had an increased bone tissue regeneration efficiency.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야 한다.It will be understood by those skilled in the art that the foregoing description of the present invention is for illustrative purposes only and that those of ordinary skill in the art can readily understand that various changes and modifications may be made without departing from the spirit or essential characteristics of the present invention. will be. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.

Claims (6)

(a) 생체적합성 고분자를 포함하는 고분자 조성물을 용융하는 단계;
(b) 상기 용융된 고분자 조성물로 오프셋(off-set) 형태의 3차원 세포지지체를 제조하는 단계; 및
(c) 상기 세포지지체에 실리카(silica)를 코팅하는 단계를 포함하는, 골조직 재생용 세포지지체(scaffold) 제조방법으로서,
상기 단계 (b)는 임의 형상 제작 공정(SFF, solid free-form fabrication)을 이용하고,
상기 단계 (c)에서 실리카는 상기 용융된 고분자 조성물에 대하여 1.5wt%, 3.7wt% 또는 6.6wt%의 농도로 코팅하는 것을 특징으로 하는 제조방법.
(a) melting a polymer composition comprising a biocompatible polymer;
(b) preparing an off-set type three-dimensional cell scaffold with the molten polymer composition; And
(c) coating silica on the cell support, the method comprising the steps of:
The step (b) uses solid free-form fabrication (SFF)
Wherein the silica is coated at a concentration of 1.5 wt%, 3.7 wt% or 6.6 wt% with respect to the molten polymer composition in the step (c).
제1항에 있어서,
상기 생체적합성 고분자는 푸코이단, 콜라겐, 알지네이트, 키토산, 히알루론산, 실크, 폴리이미드(polyimides), 폴리아믹스 산(polyamix acid), 폴리-ε-카프로락톤(polycarprolactone, PCL), 폴리에테르이미드(polyetherimide), 나일론(nylon), 폴리아라미드(polyaramid), 폴리비닐알콜(polyvinyl alcohol), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리벤질글루타메이트(poly-benzyl-glutamate), 폴리페닐렌테레프탈아마이드(polyphenyleneterephthalamide), 폴리아닐린(polyaniline), 폴리아크릴로나이트릴(polyacrylonitrile), 폴리에틸렌옥사이드(polyethylene oxide), 폴리스티렌(polystyrene), 셀룰로오스(cellulose), 폴리아크릴레이트(polyacrylate), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리락산(polylactic acid, PLA), 폴리글리콜산(polyglycolic acid, PGA), 폴리락산과 폴리글리콜산의 공중합체(PLGA), 폴리{폴리(에틸렌옥사이드)테레프탈레이트-co-부틸렌테레프탈레이트}(PEOT/PBT), 폴리포스포에스터(polyphosphoester, PPE), 폴리포스파젠(PPA), 폴리안하이드라이드(Polyanhydride, PA), 폴리오르쏘에스터{poly(ortho ester), POE}, 폴리(프로필렌푸마레이트)-디아크릴레이트 {poly(propylene fumarate)-diacrylate, PPF-DA}, 및 폴리에틸렌글라이콜디아크릴레이트 {poly(ethylene glycol) diacrylate, PEG-DA}로 구성된 군으로부터 하나 이상 선택되는 것을 특징으로 하는, 방법.
The method according to claim 1,
The biocompatible polymer may be selected from the group consisting of fucoidan, collagen, alginate, chitosan, hyaluronic acid, silk, polyimides, polyamix acid, polycaprolactone (PCL), polyetherimide, Nylon, polyaramid, polyvinyl alcohol, polyvinylpyrrolidone, poly-benzyl-glutamate, polyphenyleneterephthalamide, polyaniline, polyaniline, polyacrylonitrile, polyethylene oxide, polystyrene, cellulose, polyacrylate, polymethylmethacrylate, polylactic acid, polyacrylic acid, (PLGA), polyglycolic acid (PGA), copolymers of polylactic acid and polyglycolic acid (PLGA), poly {poly (ethylene oxide) Phthalate-co-butylene terephthalate} (PEOT / PBT), polyphosphoester (PPE), polyphosphazene (PPA), polyanhydride (PA), polyorthoester ester, POE, poly (propylene fumarate) -diacrylate, PPF-DA, and poly (ethylene glycol) diacrylate (PEG-DA) ≪ / RTI > selected from the group consisting of:
삭제delete 삭제delete 제1항에 있어서,
상기 세포는 골세포, 골아세포 또는 연골세포인 것을 특징으로 하는, 방법.
The method according to claim 1,
Wherein said cells are bone cells, osteoblasts or chondrocytes.
제1항, 제2항 또는 제5항 중 어느 한 항의 방법에 의하여 제조되는, 골조직 재생용 세포지지체.
A cell support for bone regeneration, which is produced by the method of any one of claims 1, 2 or 5.
KR1020140177817A 2014-12-10 2014-12-10 FABRICATION OF POLY (ε-CAPROLACTONE)/SILICA COMPOSITE SCAFFOLD KR101578307B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140177817A KR101578307B1 (en) 2014-12-10 2014-12-10 FABRICATION OF POLY (ε-CAPROLACTONE)/SILICA COMPOSITE SCAFFOLD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140177817A KR101578307B1 (en) 2014-12-10 2014-12-10 FABRICATION OF POLY (ε-CAPROLACTONE)/SILICA COMPOSITE SCAFFOLD

Publications (1)

Publication Number Publication Date
KR101578307B1 true KR101578307B1 (en) 2015-12-16

Family

ID=55080823

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140177817A KR101578307B1 (en) 2014-12-10 2014-12-10 FABRICATION OF POLY (ε-CAPROLACTONE)/SILICA COMPOSITE SCAFFOLD

Country Status (1)

Country Link
KR (1) KR101578307B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200071285A (en) * 2018-12-11 2020-06-19 한국산업기술대학교산학협력단 Stem cell carrier for deposition, proliferation and differentiation into osteoblasts and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090044858A (en) * 2007-11-01 2009-05-07 재단법인서울대학교산학협력재단 Silica xerogel physiologically active organic substance hybrid composites and preparation method thereof
KR101130239B1 (en) * 2011-02-24 2012-03-26 홍국선 Grid type cell culture scaffold and forming method for the same
JP5548968B2 (en) * 1998-12-05 2014-07-16 ワーウィック エネルギー アイピー リミテッド Microcellular polyhype polymer framework manufacturing method and microcellular polyhype polymer framework

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5548968B2 (en) * 1998-12-05 2014-07-16 ワーウィック エネルギー アイピー リミテッド Microcellular polyhype polymer framework manufacturing method and microcellular polyhype polymer framework
KR20090044858A (en) * 2007-11-01 2009-05-07 재단법인서울대학교산학협력재단 Silica xerogel physiologically active organic substance hybrid composites and preparation method thereof
KR101130239B1 (en) * 2011-02-24 2012-03-26 홍국선 Grid type cell culture scaffold and forming method for the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, Q. et al., Chapter 6 Tissue Engineering Scaffolds from Bioactive Glass and Composite Materials, Topics in Tissue Engineering, Vol.4, Eds. N Ashammakhi, R Reis, & F Chiellini(2008)*
CHEN, Q. et al., Chapter 6 Tissue Engineering Scaffolds from Bioactive Glass and Composite Materials, Topics in Tissue Engineering, Vol.4, Eds. N Ashammakhi, R Reis, & F Chiellini(2008)* *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200071285A (en) * 2018-12-11 2020-06-19 한국산업기술대학교산학협력단 Stem cell carrier for deposition, proliferation and differentiation into osteoblasts and method for producing same
KR102170909B1 (en) * 2018-12-11 2020-10-28 한국산업기술대학교산학협력단 Stem cell carrier for deposition, proliferation and differentiation into osteoblasts and method for producing same

Similar Documents

Publication Publication Date Title
Touri et al. 3D–printed biphasic calcium phosphate scaffolds coated with an oxygen generating system for enhancing engineered tissue survival
Guo et al. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering
Ni et al. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering
Luo et al. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering
Newby et al. Ag-doped 45S5 Bioglass®-based bone scaffolds by molten salt ion exchange: processing and characterisation
Zhang et al. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds
CN101288780B (en) Degradable dynamics enhancement type bioglass base porous composite material and preparation method thereof
Kim et al. Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system
CN105311673B (en) The bioceramic scaffold and its preparation method and application that 3D printing mesopore bioactive glass is modified
Yang et al. Mesoporous bioactive glass doped-poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds with 3-dimensionally hierarchical pore networks for bone regeneration
JP2014158952A (en) Organ made of silk based on tissue engineering
CN103585677B (en) A kind of HA micro-nano whisker reinforcement calcium phosphate ceramic material and its preparation method and application
CN104368047B (en) High-intensitive multi-stage micro-nano structure silicon substrate bone renovating bracket material, preparation method and application
Sánchez-Salcedo et al. Preventing bacterial adhesion on scaffolds for bone tissue engineering
CN114452439B (en) Hydroxyapatite/whitlockite bioactive ceramic scaffold consisting of bionic natural bone minerals and preparation method thereof
Ye et al. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis
CN106267374A (en) The 3 D-printing of a kind of biological absorbable is containing strontium mesoporous bioglass support and preparation method thereof
He et al. Tissue engineering scaffolds of mesoporous magnesium silicate and poly (ε-caprolactone)–poly (ethylene glycol)–poly (ε-caprolactone) composite
Jadidi et al. Mechanical strength and biocompatibility of bredigite (Ca7MgSi4O16) tissue-engineering scaffolds modified by aliphatic polyester coatings
KR20120017225A (en) The coated scaffold for regeneration of hard tissue with hydroxyapatite and/or collagen containing mesoporous bioactive glass and the method thereof
CN109675103A (en) A kind of bone-cartilage two-way function bracket and preparation method thereof based on cell 3D printing
Gómez-Cerezo et al. In vitro colonization of stratified bioactive scaffolds by pre-osteoblast cells
Lee et al. Laser sintered porous polycaprolacone scaffolds loaded with hyaluronic acid and gelatin-grafted thermoresponsive hydrogel for cartilage tissue engineering
Tong et al. Construction and in vitro characterization of three-dimensional silk fibroinchitosan scaffolds
He et al. Novel extrusion-microdrilling approach to fabricate calcium phosphate-based bioceramic scaffolds enabling fast bone regeneration

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180917

Year of fee payment: 4