KR101575448B1 - Manufacturing Method of Black Tea Extract Having Anti-thrombus Effect - Google Patents

Manufacturing Method of Black Tea Extract Having Anti-thrombus Effect Download PDF

Info

Publication number
KR101575448B1
KR101575448B1 KR1020140013631A KR20140013631A KR101575448B1 KR 101575448 B1 KR101575448 B1 KR 101575448B1 KR 1020140013631 A KR1020140013631 A KR 1020140013631A KR 20140013631 A KR20140013631 A KR 20140013631A KR 101575448 B1 KR101575448 B1 KR 101575448B1
Authority
KR
South Korea
Prior art keywords
black tea
supernatant
minutes
bte
drying
Prior art date
Application number
KR1020140013631A
Other languages
Korean (ko)
Other versions
KR20150092961A (en
Inventor
조현정
노주예
류진협
Original Assignee
건양대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건양대학교산학협력단 filed Critical 건양대학교산학협력단
Priority to KR1020140013631A priority Critical patent/KR101575448B1/en
Publication of KR20150092961A publication Critical patent/KR20150092961A/en
Application granted granted Critical
Publication of KR101575448B1 publication Critical patent/KR101575448B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/82Theaceae (Tea family), e.g. camellia

Landscapes

  • Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

본 발명에 따른 홍차 추출물의 제조방법은, 홍차 잎을 세척 후 건조하는 건조단계; 상기 홍차 잎과 에탄올을 1 : 19 ∼ 21 중량비로 혼합한 홍차 혼합물을 4 ∼ 6시간 중탕하는 중탕단계; 중탕한 홍차 혼합물을 시험관 혼합기(vortex mixer)로 20 ∼ 40분간 진탕하는 진탕단계; 진탕한 홍차 혼합물을 8 ∼ 12분간 원심분리하여 상층액을 1차 분리하는 제1분리단계; 상층 분리된 홍차 혼합물과 증류수를 1 : 8 ∼ 12 중량비로 혼합하고 8 ∼ 12분간 진탕하여 상층액을 2차 분리하는 제2분리단계; 및 1차 및 2차로 분리된 상층액을 진공 동결건조하는 동결건조단계;를 포함한다.The method for preparing a black tea extract according to the present invention comprises: a step of washing and drying black tea leaves; A black tea mixture prepared by mixing the black tea leaves and ethanol in a weight ratio of 1: 19 ~ 21, for 4 to 6 hours; A shaking step in which the hot tea mixture is shaken in a vortex mixer for 20 to 40 minutes; A first separation step of separating the supernatant by centrifuging the shaken black tea mixture for 8 to 12 minutes; A second separation step in which the upper layer separated black tea mixture and distilled water are mixed at a weight ratio of 1: 8 to 12 and shaken for 8 to 12 minutes to secondarily separate the supernatant; And a freeze-drying step of vacuum-freeze-drying the first and second separated supernatants.

Description

항혈전 효과를 갖는 홍차 추출물의 제조방법{Manufacturing Method of Black Tea Extract Having Anti-thrombus Effect}Technical Field [0001] The present invention relates to a method for producing a black tea extract having an anti-

본 발명은 항혈전 효과를 갖는 홍차 추출물의 제조방법에 관한 것으로, 보다 상세하게는, 홍차로부터 세포독성이 없으면서 항혈전 효능을 나타내는 추출물을 생성할 수 있는 항혈전 효과를 갖는 홍차 추출물의 제조방법에 관한 것이다.The present invention relates to a method for producing a black tea extract having antithrombotic effect, and more particularly, to a method for producing an black tea extract having antithrombotic effect capable of producing an extract exhibiting antithrombotic effect without cytotoxicity from black tea .

최근에 식생활이 서구화됨에 따라 고혈압, 동맥경화, 심혈관 질환들의 순환기계 질병이 증가되고 있다. 최근 선진국의 조사에 의하면 혈관 순환기계 질환이 현대인의 사망 원인의 1위를 차지하고 있으며, 우리 나라의 경우에도 통계청의 보고에 의하면 2000년 기준으로 암(21.4%), 뇌혈관 질환(16%), 심장병(8.3%)의 순위로 나타나고 있어 심혈관계 질환으로 인한 사망률의 합계가 암에 의한 사망률을 상회하고 있는 실정이다. Recently, the westernization of dietary habits has increased the circulatory disease of hypertension, arteriosclerosis and cardiovascular diseases. According to a recent survey by advanced countries, vascular circulatory disease is the leading cause of death in modern people. According to the National Statistical Office (NSO), cancer (21.4%), cerebrovascular disease (16%), And heart disease (8.3%). Therefore, the total mortality rate due to cardiovascular disease exceeds the mortality rate due to cancer.

이러한 순환기계 질병의 원인은 혈관 손상 부위에서의 혈전의 형성인데, 이러한 현상은 ① 혈관 (vascular compartments) 손상, ② 혈소판 응집(platelet aggregation), ③ 혈장 응고 인자 (plasma coagulation factor)에 의한 혈액 응고가 동일한 영역에서 일어나는 병리 현상이다. The cause of this circulatory system disease is the formation of thrombus at the site of vascular injury, which is caused by vascular compartments damage, platelet aggregation, and blood coagulation due to plasma coagulation factor It is a pathological phenomenon that occurs in the same area.

이와 같은 혈전을 예방하고 치료하기 위하여 현재 많은 약물들이 개발되었으나 혈관 손상 부위에서의 출혈 시간의 연장과 위장 점막에서의 내출혈 또는 전신성 출혈 등의 부작용으로 인하여 장기 치료의 목적에는 적합하지 못하다. 그러므로 좀 더 안전하고 효과적인 항혈소판제의 개발을 위해 많은 연구가 집중되고 있으며, 여러 가지 부작용을 일으키는 의약품과는 달리 반복해서 장기간 섭취하기 때문에 유효 성분이 미량이거나 그 활성이 매우 적은 경우라 하더라도 항상 공급됨으로서 중요한 영향을 줄 수 있는 식품으로부터 그 성분을 찾는 것이 필요하며, 그 중에서 peptide는 구조 및 활성이 다양하고, protease류에 의해 분리되며 유전 공학 기술에 의한 생산 및 개조가 가능하고 높은 안전성을 기대할 수 있다는 장점이 있어 이에 대한 연구가 진행되고 있다Many drugs have been developed to prevent and treat these thromboses, but they are not suitable for long-term treatment because of the prolonged bleeding time at the site of vascular injury and side effects such as hemorrhage in the gastric mucosa or systemic hemorrhage. Therefore, much research has been focused on the development of safer and more effective antiplatelet agents, and unlike drugs that cause various side effects, they are repeatedly consumed for a long period of time. Therefore, even when the active ingredient is very small or its activity is very small, It is necessary to find the components from foods that can have a significant effect. Among them, peptides are various in structure and activity, can be separated by protease, can be produced and modified by genetic engineering technology, There is a merit in this study.

한편, 홍차는 폴리페놀 성분과 불소성분이 풍부하게 함유되어 있어 노화를 방지하고 충치를 예방해주는 효능을 가지고 있어 찻잎을 발효(醱酵)시켜서 마시는 대표적인 차로 유명하다. 또한, 홍차는 혈액순환을 원활하게 해주어 신진대사를 활발하게 해줄 뿐 아니라 이뇨를 촉진시켜 젖산과 체내 노폐물의 배설을 촉진시켜 피로회복에 좋다고 알려져 있다. 아울러 홍차에 함유된 폴리페놀 성분이 중금속을 흡착하여 침전 및 분해시켜 주고, 홍차를 꾸준히 섭취하면 뼈 세포를 파괴하는 물질의 활성화를 억제시켜 주어 골다공증을 예방할 수 있으며, 저칼로리에 필수 영양소가 풍부하게 함유되어 있어 다이어트 음료로도 각광받고 있다.On the other hand, tea is rich in polyphenols and fluorine components, preventing aging and preventing tooth decay. It is famous as a representative tea to ferment tea leaves. In addition, tea is not only active in the blood circulation to stimulate metabolism, but also promotes diuretic, lactic acid and body waste to promote the excretion of fatigue is said to be good for recovery. In addition, polyphenols contained in black tea adsorbs heavy metals to precipitate and decompose them, and steadily ingesting black tea can inhibit osteoporosis by inhibiting activation of substances that destroy bone cells. It is rich in essential nutrients in low calorie It is also popular as a diet drink.

이와 같이 홍차의 유효성분을 활용하기 위한 특허로는, 한국공개특허 제10-2012-0089407호(홍차 추출물을 유효성분으로 포함하는 피부 상태 개선용 조성물), 한국공개특허 제10-2006-0044130호(건강 음료용 액상 홍차 조성물 및 그 제조방법), 한국등록특허 제10-0530875호(홍차버섯 종균을 이용한 유기산의 생산방법), 한국등록특허 제10-0532556호(솔잎, 녹차 및 홍차 추출물을 유효성분으로 함유하는 비만 및 변비 치료용 조성물), 한국공개특허 제10-2004-0023151호(홍차 추출물을 유효성분으로 함유하는 비만, 당뇨병, 고지혈증, 지방간 및 변비 치료용 조성물) 등이 있다.As such a patent for utilizing the active ingredient of black tea, Korean Patent Laid-Open No. 10-2012-0089407 (composition for improving skin condition containing black tea extract as an active ingredient), Korean Patent Laid-open No. 10-2006-0044130 (Liquid tea black tea composition for health beverage and its production method), Korean Patent No. 10-0530875 (production method of organic acid using black tea mushroom), Korean Patent No. 10-0532556 (pine needles, green tea and black tea extract are effective Korean Patent Laid-Open No. 10-2004-0023151 (a composition for treating obesity, diabetes, hyperlipidemia, fatty liver and constipation containing an extract of black tea as an active ingredient), and the like.

그러나 아직까지 홍차를 이용하여 항혈전에 효능을 나타내는 조성물은 개발되지 않고 있다.However, a composition that shows antitumor activity by using black tea has not yet been developed.

본 발명은 상기와 같은 문제점을 해결하기 위하여 창출된 것으로, 본 발명의 목적은, 홍차로부터 항혈전 효능을 나타내는 추출물을 생성하기 위한 홍차 추출물의 제조방법을 제공하는 데 있다.The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a method for producing a black tea extract for producing an extract exhibiting antithrombotic effect from black tea.

상기와 같은 목적을 위해 본 발명에 따른 홍차 추출물의 제조방법은, 홍차 잎을 세척 후 건조하는 건조단계; 상기 홍차 잎과 에탄올을 1 : 19 ∼ 21 중량비로 혼합한 홍차 혼합물을 4 ∼ 6시간 중탕하는 중탕단계; 중탕한 홍차 혼합물을 시험관 혼합기(vortex mixer)로 20 ∼ 40분간 진탕하는 진탕단계; 진탕한 홍차 혼합물을 8 ∼ 12분간 원심분리하여 상층액을 1차 분리하는 제1분리단계; 상층 분리된 홍차 혼합물과 증류수를 1 : 8 ∼ 12 중량비로 혼합하고 8 ∼ 12분간 진탕하여 상층액을 2차 분리하는 제2분리단계; 및 1차 및 2차로 분리된 상층액을 진공 동결건조하는 동결건조단계;를 포함한다.In order to accomplish the above object, the present invention provides a method for preparing a black tea extract comprising: drying tea leaves after drying; A black tea mixture prepared by mixing the black tea leaves and ethanol in a weight ratio of 1: 19 ~ 21, for 4 to 6 hours; A shaking step in which the hot tea mixture is shaken in a vortex mixer for 20 to 40 minutes; A first separation step of separating the supernatant by centrifuging the shaken black tea mixture for 8 to 12 minutes; A second separation step in which the upper layer separated black tea mixture and distilled water are mixed at a weight ratio of 1: 8 to 12 and shaken for 8 to 12 minutes to secondarily separate the supernatant; And a freeze-drying step of vacuum-freeze-drying the first and second separated supernatants.

그리고, 상기 제2분리단계를 4 ∼ 6회 반복하여 상층액을 분리하는 단계를 더 포함할 수 있고, 이에 추가하여 진공 동결건조한 상층액에 물을 첨가하여 1 ∼ 50%(w/v) 농도로 재구성하는 단계를 더 포함할 수 있다.The second separation step may be repeated 4 to 6 times to separate the supernatant. In addition, water may be added to the vacuum freeze-dried supernatant to prepare a 1 to 50% (w / v) concentration As shown in FIG.

또한 상기 제1분리단계에서 1800×g로 원심분리하고, 상기 동결건조단계에서 상기 진공 동결건조는 -75 ∼ -65℃의 온도로 이루어지는 것이 바람직하다.In addition, it is preferable that centrifugal separation is performed at 1800 x g in the first separation step, and the vacuum freeze drying in the freeze-drying step is performed at a temperature of -75 to -65 ° C.

본 발명에 따른 홍차 추출물의 제조방법에 의하면, 홍차로부터 세포독성 없으면서 항혈전 효능을 나타내는 추출물을 생성할 수 있는 효과가 있다.According to the method for producing a black tea extract according to the present invention, there is an effect that an extract showing antithrombotic effect without cytotoxicity from black tea can be produced.

도 1은 본 발명에 따른 홍차 추출물의 제조방법을 도시한 순서도,
도 2는 Collagen으로 응집을 유도한 혈소판에서 홍차 추출물의 효과를 나타낸 그래프,
도 3은 Collagen으로 응집을 유도한 혈소판에서 홍차 추출물의 TXA2 생성 억제 효과를 나타낸 그래프,
도 4는 Collagen으로 응집을 유도한 혈소판에서 홍차 추출물의 [Ca2 +]i 억제 효과를 나타낸 그래프,
도 5는 혈소판에서 홍차 추출물의 Thromboxane A2 synthase(TXAS) activity 억제 효과를 나타낸 그래프,
도 6은 혈소판에서 홍차 추출물의 Cyclooxygenase (COX)-1 activity 억제 효과를 나타낸 그래프,
도 7은 Collagen으로 응집을 유도한 혈소판에서 홍차 추출물의 cAMP 상승 효과를 나타낸 그래프,
도 8은 혈소판에서 홍차 추출물의 세포 독성을 나타낸 그래프이다.
1 is a flowchart showing a method for producing a black tea extract according to the present invention,
Figure 2 is a graph showing the effect of black tea extract on platelets induced by aggregation with collagen,
FIG. 3 is a graph showing inhibitory effect of black tea extract on platelet aggregation induced collagen-induced TXA 2 production,
FIG. 4 is a graph showing the inhibitory effect of [Ca 2 + ] i on the platelets induced by agglutination with collagen,
FIG. 5 is a graph showing inhibitory effect of thromboxane A 2 synthase (TXAS) activity of black tea extract on platelets,
FIG. 6 is a graph showing the effect of inhibiting cyclooxygenase (COX) -1 activity of black tea extract on platelets,
FIG. 7 is a graph showing the effect of cAMP on the platelet aggregation induced by collagen,
8 is a graph showing cytotoxicity of black tea extract on platelets.

이하, 첨부된 도면을 참조하여 본 발명에 따른 홍차 추출물의 제조방법의 구성을 자세히 설명한다.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method of manufacturing a black tea extract according to the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 홍차 추출물의 제조방법을 도시한 순서도이다.1 is a flow chart showing a method for producing a black tea extract according to the present invention.

도시된 바와 같이, 본 발명에 따른 홍차 추출물의 제조방법은 크게 여섯 가지 단계로 이루어지는데, 이는 건조단계(S10), 중탕단계(S20), 진탕단계(S30), 제1분리단계(S40), 제2분리단계(S50) 및 동결건조단계(S60)이다.As shown in the figure, the method of preparing the black tea extract according to the present invention comprises six steps, namely, a drying step S10, a soaking step S20, a shaking step S30, a first separation step S40, A second separation step (S50) and a freeze-drying step (S60).

상기 건조단계(S10)는 홍차 잎을 세척 후 건조하는 단계이다.The drying step (S10) is a step of washing and drying the tea leaves.

상기 중탕단계(S20)는 상기 홍차 잎과 에탄올을 1 : 19 ∼ 21 중량비로 혼합한 홍차 혼합물을 4 ∼ 6시간 중탕하는 단계이다. 이때, 사용되는 에탄올은 70% 수용액인 것을 사용한다.The soaking step (S20) is a step of soaking the black tea mixture in which the black tea leaves and ethanol are mixed at a weight ratio of 1:19 to 21, for 4 to 6 hours. At this time, the ethanol used is a 70% aqueous solution.

상기 진탕단계(S30)는 중탕한 홍차 혼합물을 시험관 혼합기(vortex mixer)로 20 ∼ 40분간 진탕하는 단계이다. 여기서 진탕(shaking)이란 시료로부터 분석성분을 추출하기 위하여 일정한 속도로 흔들리게 하는 것을 의미한다.The shaking step (S30) is a step of shaking the mixed tea mixture with a vortex mixer for 20 to 40 minutes. Here, shaking means shaking at a constant rate to extract analytes from the sample.

상기 제1분리단계(S40)는 진탕한 홍차 혼합물을 1800×g에서 8 ∼ 12분간 원심분리하여 상층액을 1차 분리하는 단계이다.In the first separation step (S40), the shaken black tea mixture is centrifuged at 1800 x g for 8 to 12 minutes to separate the supernatant first.

상기 제2분리단계(S50)는 상층 분리된 홍차 혼합물과 증류수를 1 : 8 ∼ 12 중량비로 혼합하고 8 ∼ 12분간 진탕하여 상층액을 2차 분리하는 단계이다.In the second separation step (S50), the upper layer separated black tea mixture and distilled water are mixed at a weight ratio of 1: 8 to 12, and the mixture is shaken for 8 to 12 minutes to separate the supernatant.

상기 홍차 추출물의 제조방법은 상기 제2분리단계(S50)를 4 ∼ 6회 반복하여 상층액을 분리하는 단계(S51)를 더 포함할 수 있다. 이때, 6회를 초과하면 희석이 과도하게 되어 효과를 발휘하기 어렵고 오히려 이전에 분리된 상층액을 희석시키기 때문에 바람직하지 않다.The method for preparing the black tea extract may further include separating the supernatant (S51) by repeating the second separation step (S50) four to six times. At this time, if it exceeds 6 times, dilution becomes excessive and it is difficult to exert the effect, and it is rather undesirable because it dilutes the previously separated supernatant.

상기 동결건조단계(S60)는 1차 및 2차로 분리된 상층액을 진공 동결건조하는 단계이다. 이때, 상기 동결건조단계(S60)에서 상기 진공 동결건조는 Freeze Dryer(Ilshin Biobase)를 이용하여 -75 ∼ -65℃의 온도로 이루어질 수 있다.The freeze-drying step (S60) is a step of vacuum freeze-drying the supernatant separated into the primary and the secondary. At this time, the vacuum freeze drying in the freeze-drying step (S60) may be performed at a temperature of -75 to -65 ° C using a Freeze Dryer (Ilshin Biobase).

이때, 상기 홍차 추출물의 제조방법은 진공 동결건조된 상층액에 물을 첨가하여 원하는 농도로 재구성하는 재구성단계(S70)를 더 포함할 수 있다. 적정 농도는, 이하의 실험예에서 알 수 있듯이 대략 1 ∼ 50%(w/v) 범위인 것이 바람직하다.At this time, the method for preparing the black tea extract may further include a reconstitution step (S70) in which water is added to the vacuum lyophilized supernatant and reconstituted to a desired concentration. The appropriate concentration is preferably in the range of approximately 1 to 50% (w / v), as will be seen in the following experimental examples.

이와 같은 과정을 통해 생성되는 홍차 추출물(Black Tea Extract, 이하 "BTE"라 함)의 수득률은 33.8 ± 5.8% 정도이다.
The yield of black tea extract (hereinafter referred to as "BTE") produced through this process is about 33.8 ± 5.8%.

다음으로 본 발명에 따른 BTE에 대한 효과를 검증하기 위한 실험방법과 결과를 설명한다.
Next, experimental results and results for verifying the effect on the BTE according to the present invention will be described.

A. A. CollagenCollagen 으로 응집을 유도한 혈소판에서 In platelets that induced coagulation BTEBTE 의 효과Effect of

(1) 실험방법
(1) Experimental method

1) Washed rat platelet 제조1) Washed rat platelet production

대한바이오링크(대한민국 충북)에서 구입한 SD Rat(8 week-old, male)의 전혈을 분리하여 180×g, 25℃에서 10분 동안 원심분리하고 적혈구를 침전시켜 순수한 PRP(Platelet-Rich Plasma)를 얻었다. 이것을 다시 1800×g, 25℃에서 10분 동안 원심분리하여 PPP(Platelet-Poor Plasma)와 혈소판(PLTs)으로 분리하였다.Whole blood of SD Rat (8 week-old, male) purchased from Korea BioLink (Chungbuk, Republic of Korea) was separated and centrifuged at 180 xg at 25 캜 for 10 minutes and red blood cells were precipitated to obtain pure PRP (Platelet-Rich Plasma) . This was centrifuged again at 1800 × g at 25 ° C. for 10 minutes and separated into PPP (Platelet-Poor Plasma) and platelets (PLTs).

분리된 혈소판은 Washing buffer(128 mM NaCl, 2.7 mM KCl, 0.36 mM NaH2PO4, 12 mM NaHCO3, 5.5 mM Glucose, 1 mM EDTA, pH 6.9)를 이용하여 washing하고 1800×g, 25℃에서 10분 동안 원심분리하는 과정을 2회 반복하였다. Washing buffer에서 분리된 혈소판을 suspending buffer(128 mM NaCl, 2.7 mM KCl, 0.36 mM NaH2PO4, 12 mM NaHCO3, 5.5 mM Glucose, 0.49 mM MgCl2, pH 7.4) 적당량을 PLTs에 조심스럽게 첨가하여 pipette으로 cell suspension을 실시하였다. Cell counting을 하기 위해서 이 중 일부를 취하여 여분의 suspending buffer로 20배 희석한 후, UV/visible spectrophotometer를 이용하여 660㎚에서 흡광도를 측정하였다. 660㎚m에서 흡광도값이 1.1일 때 1×108개의 PLTs를 의미하므로, 원하는 cell 수, 5×108 platelets/㎖가 되도록 suspending buffer를 첨가하여 조정하였다.
The separated platelets were washed with Washing buffer (128 mM NaCl, 2.7 mM KCl, 0.36 mM NaH 2 PO 4 , 12 mM NaHCO 3 , 5.5 mM Glucose, 1 mM EDTA, pH 6.9) The process of centrifugation for 10 minutes was repeated twice. The platelets isolated from the washing buffer were added to the PLTs in an appropriate amount in a suspending buffer (128 mM NaCl, 2.7 mM KCl, 0.36 mM NaH 2 PO 4 , 12 mM NaHCO 3 , 5.5 mM Glucose, 0.49 mM MgCl 2 , pH 7.4) cell suspension was performed with a pipette. In order to perform cell counting, a portion of this was diluted 20 times with an extra suspending buffer, and the absorbance was measured at 660 nm using a UV / visible spectrophotometer. When the absorbance value at 660 nm was 1.1, it means 1 × 10 8 PLTs. Therefore, it was adjusted by adding a suspending buffer to a desired cell number of 5 × 10 8 platelets / ml.

2) 혈소판 응집반응 관찰2) Platelet aggregation reaction observation

모든 platelets aggregation은 AGGREGOMETER(Chrono-Log Co.)를 이용하여 37℃에서 light transmission의 변화를 측정하였다. In vitro에서 반응계를 250㎕로 하여 washed PLTs에 CaCl2 2mM를 첨가하여 3분간 preincubation하고, collagen(10㎍/㎖)으로 자극하여 혈소판 응집 반응을 측정한 것을 controls로 하였다. 그리고 같은 조건에, 검토하고자 하는 시료(BTE)를 함께 첨가한 후 collagen(10㎍/㎖)으로 자극하여 혈소판 응집 반응을 측정하여 시료의 영향을 알아보았다.
All platelets aggregation was measured at 37 ° C using AGGREGOMETER (Chrono-Log Co.). In vitro, 250 μl of the reaction system was added, washed platelets were preincubated with 2 mM CaCl 2 for 3 minutes, stimulated with collagen (10 μg / ml), and the platelet aggregation response was measured as controls. After adding the sample to be examined (BTE) to the same conditions, the platelet aggregation reaction was measured by stimulation with collagen (10 μg / ml).

(2) 실험결과
(2) Experimental results

BTE에 의한 혈소판 응집 억제효과를 측정하였다. 도 2에 도시된 바와 같이, Collagen(10㎍/㎖)으로 응집을 유도하였을 때, 응집률은 82.0 ± 2.0 %로 증가하였으나 BTE를 다양한 농도로 처리하였을 때(10, 100, 500㎍/㎖), 유의성을 가지고 농도 의존적으로 혈소판 응집이 감소되었으며(각각 67.8 ± 5.2, 30.3 ± 6.3, 4.3 ± 1.2 %) 억제율이 농도 의존적으로 증가하였다. 따라서 BTE가 혈소판 응집 억제 효과를 가짐을 알 수 있다.
The inhibition of platelet aggregation by BTE was measured. As shown in FIG. 2, when aggregation was induced by collagen (10 μg / ml), the aggregation rate increased to 82.0 ± 2.0%, but when BTE was treated at various concentrations (10, 100, 500 μg / , Platelet aggregation was decreased in a dose dependent manner (67.8 ± 5.2, 30.3 ± 6.3, 4.3 ± 1.2%, respectively), and the inhibition rate was increased in a dose dependent manner. Therefore, it can be seen that BTE has a platelet aggregation inhibitory effect.

C. C. CollagenCollagen 으로 응집을 유도한 혈소판에서 In platelets that induced coagulation BTEBTE of TXATXA 22 생성 억제 효과 Production inhibitory effect

(1) 실험방법
(1) Experimental method

BTE의 TXB2 생성 억제능을 측정하기 위하여 "A"에서 기술한 방식으로 8분간 혈소판 응집반응을 시행한 후, ice-cold EDTA(5mM) and indomethacin (0.2mM)를 첨가하여 반응을 정지시켰다. TXA2의 안정한 상태인 TXB2의 양을 TXB2 EIA kit(Cayman Chemical)를 이용하여 측정하였으며 세부적인 방법은 제조사의 설명서를 참조하였다.
In order to determine the inhibitory effect of BTE on TXB 2 production, the platelet aggregation reaction was performed for 8 minutes in the manner described in "A", and then the reaction was stopped by adding ice-cold EDTA (5 mM) and indomethacin (0.2 mM). A stable state of the amount of TXB 2 of TXA 2 EIA kit TXB 2 (Cayman Chemical) were measured using a detailed method by reference to the manufacturer's instructions.

(2) 실험결과
(2) Experimental results

TXA2는 혈소판에서 강력한 혈소판 응집 요소로 작용한다. BTE가 TXB2(안정한 형태의 TXA2)의 생성에 관여하는지 알아보고자 TXB2 생성을 측정하였다. 도 3에 도시된 바와 같이, Collagen으로 응집을 유도하였을 때, TXB2의 양이 76.8 ± 6.1 ng/108 platelets로 증가하였으나 BTE를 농도별로 처리하였을 때(10, 100, 500㎍/㎖), 유의성을 가지고 농도 의존적으로 TXB2 생성이 억제되었다(57.4 ± 7.3, 47.8 ± 4.9, 23.7 ± 2.6 ng/108 platelets). 따라서 BTE는 TXA2를 억제하여 항혈소판 효과를 갖는다.
TXA 2 acts as a powerful platelet aggregation factor in platelets. TXB 2 production was measured to determine if BTE was involved in the generation of TXB 2 (stable form of TXA 2 ). As shown in FIG. 3, when the collagen was induced by collagen, the amount of TXB 2 increased to 76.8 ± 6.1 ng / 10 8 platelets, but when treated with BTE (10, 100, 500 μg / TXB 2 production was inhibited in a concentration-dependent manner (57.4 ± 7.3, 47.8 ± 4.9, 23.7 ± 2.6 ng / 10 8 platelets). Therefore, BTE inhibits TXA 2 and has an anti-platelet effect.

C. C. CollagenCollagen 으로 응집을 유도한 혈소판에서 In platelets that induced coagulation BTEBTE 의 [Of [ CaCa 22 ++ ]] ii 억제 효과 Inhibitory effect

(1) 실험방법
(1) Experimental method

Concentrated PRP를 만드는 과정 가운데 washing buffer와 혈소판(PLTs)으로 분리되면 상층의 washing buffer를 조심스럽게 덜어낸 후 PLTs에 다시 suspending buffer 10㎖를 첨가했다. 여기에 1mM의 Fura 2/AM을 50㎕를 넣어서 final 농도가 5μM이 되도록 첨가했다. 이것을 부드럽게 inversion한 후 37℃에서 60분간 incubation하고, incubation이 끝나면 1800×g, 25℃에서 10분 동안 원심시켜 상층의 suspending buffer 층과 Fura 2/AM이 loading된 PLTs층으로 분리했다. 하층의 PLTs suspending buffer를 첨가하여 2회 세척 후, suspending buffer를 첨가하여 cell suspension하였고 cell counting하여 5×108 Fura 2/AM loaded platelets/㎖로 조정하였다. 빛을 차단하기 위해 aluminum foil로 wrapping하여 위의 과정을 수행하였다. Fura 2/AM이 loading된 혈소판을 이용하여 fluorescence의 변화를 SPF 25 fluorimeter(Kontron)를 이용하여 측정하였다. Excitation 340㎚, emission 510㎚로 setting하여 37℃에서 8분간 time drive를 시행하였는데 3분되는 지점에 collagen(10㎍/㎖)을 첨가하여 세포질 내 Ca2 +의 양을 측정하였다. 실제 [Ca2 +]c은 relative fluorescence(rf)로 나타나기 때문에 Fmax와 Fmin을 각각 측정한 후 이들 값과 Fura 2/AM의 분해정수(Kd=224nM)를 아래의 [수학식 1]에 대입하여 혈소판 내부의 [Ca2 +]c 계산하였다.When washing concentrate PRP was separated into washing buffer and platelets (PLTs), the upper washing buffer was carefully removed and 10 ml of suspending buffer was added to PLTs again. 50 mu l of 1mM Fura2 / AM was added thereto, and the final concentration was adjusted to 5 mu M. After incubating at 37 ° C for 60 min, the plate was centrifuged at 1800 × g at 25 ° C for 10 min. The plate was then separated into a suspended layer of the upper layer and a layer of PLTs loaded with Fura 2 / AM. After the cells were washed twice with PLTs suspending buffer, cells were suspended by adding suspending buffer, and cell counting was performed to adjust 5 × 10 8 Fura 2 / AM loaded platelets / ㎖. The above procedure was performed by wrapping with aluminum foil to block the light. Fura 2 / AM-loaded platelets were used to measure changes in fluorescence using a SPF 25 fluorimeter (Kontron). Excitation 340㎚, the amount of Ca 2 + in the cytoplasm was determined by the setting in emission 510㎚ were performed eight minutes time at 37 ℃ drive the addition of collagen (10㎍ / ㎖) at the connection point between three minutes. Actual [Ca 2 +] c is a relative fluorescence (rf) it were a F max and F After measuring min each below these values with Fura 2 / AM decomposition constants (K d = 224nM) in Equation 1 To calculate [Ca 2 + ] c in platelets.

[수학식 1][Equation 1]

[Ca2 +]c= Kd×(Fo-Fmin)/(Fmax-Fo)[Ca 2 + ] c = K d × (F o -F min ) / (F max -F o )

Fo는 자극 전의 fluorescence이다. 또 Fmin는 최소 fluorescence로서, CaCl2를 첨가하지 않은 상태에서 10% triton X-100과 2M tris-300mM EGTA를 첨가하여 측정하였고, Fmax는 최대 fluorescence로서, 충분한 CaCl2가 존재하는 상태에서 10% triton X-100을 첨가하여 측정하였다.
F o is the fluorescence before stimulation. In F min is a minimum fluorescence, it was measured by adding 10% triton X-100 and 2M tris-300mM EGTA when no addition of CaCl 2, F max is in a state in which a maximum fluorescence, is sufficient CaCl 2 present 10 % triton X-100.

(2) 실험결과(2) Experimental results

칼슘은 강력한 혈소판 응집 촉진 물질로 작용한다. 따라서 BTE가 세포질내 칼슘동원([Ca2 +]i)에 미치는 영향을 측정하였다. 도 4에 도시된 바와 같이, 안정한 상태의 혈소판에서 Collagen으로 응집을 유도하였을 때 [Ca2 +]i이 69.9 ± 9.8에서 808.6 ± 34.8nM로 증가하였으며, BTE를 농도별로 처리하였을 때(10, 100, 500㎍/㎖), 유의성을 가지고 농도 의존적으로 [Ca2 +]i 이 억제되었다(각각 545.2 ± 91.1, 215.3 ± 42.9, 110.3 ± 11.0nM). 따라서 BTE는 [Ca2 +]i을 억제하여 항혈소판 효과를 나타낸다.
Calcium acts as a powerful platelet aggregation promoting substance. Therefore, the effect of BTE on cytoplasmic Ca mobilization ([Ca 2 + ] i ) was measured. As shown in FIG. 4, when [Ca 2 + ] i was increased from 69.9 ± 9.8 to 808.6 ± 34.8 nM when coagulation was induced from collagen in stable platelets, when BTE was treated by concentration (10, 100 , 500㎍ / ㎖), have a significant dose-dependently [Ca 2 +] i was inhibited (respectively 545.2 ± 91.1, 215.3 ± 42.9, 110.3 ± 11.0nM). Accordingly BTE shows an anti-platelet effect by inhibiting the [Ca 2 +] i.

D. 혈소판에서 D. In platelets BTEBTE of ThromboxaneThromboxane A A 22 synthasesynthase ( ( TXASTXAS ) ) activityactivity 억제 효과 Inhibitory effect

(1) 실험방법
(1) Experimental method

혈소판에서 TXAS activity를 측정하고자 1%의 protease inhibitor가 함유된 혈소판 부유액을 Sonicator를 이용하여 Platelet lysates를 제조하였다. Platelet lysates(10㎍-protein)은 BTE(10, 100 ㎍/㎖) 및 TXAS activity를 선택적으로 억제한다고 알려진 ozagrel(11nM)를 처리하여 37℃에서 5분간 preincubation 하였다. 반응은 PGH2를 기질로 첨가하여 37℃에서 1분간 유도하였으며, 1M citric acid를 이용하여 반응을 정지시키고 1N NaOH를 첨가하여 중화하였다. 생성된 TXB2의 양을 TXB2 EIA kit(Cayman Chemical)를 이용하여 측정하였으며 세부적인 방법은 제조사의 설명서를 참조하였다.
To measure TXAS activity in platelets, platelet lysates were prepared using a sonicator with a platelet suspension containing 1% protease inhibitor. Platelet lysates (10 μg-protein) were preincubated at 37 ° C for 5 min with BTE (10, 100 μg / ml) and ozagrel (11 nM), a selective inhibitor of TXAS activity. Reaction was induced by adding PGH 2 as a substrate at 37 ° C for 1 min. The reaction was stopped with 1M citric acid and neutralized by the addition of 1N NaOH. The amount of the generated TXB 2 TXB 2 EIA kit (Cayman Chemical) were measured using a detailed method by reference to the manufacturer's instructions.

(2) 실험결과
(2) Experimental results

TXA2 생성이 억제됨에 따라, Prostaglandin이 TXA2로 합성되는 과정에서 thromboxane synthase(TXAS) activity를 필요로 하기 때문에 BTE의 TXAS activity의 억제 효과를 측정하였다. 도 5에 도시된 바와 같이, BTE를 농도별로 처리하였을 때(10, 100㎍/㎖), Control(112.7 ± 16.8ng/min/mg-protein)과 비교하여 TXAS activity 억제 효과를 보이지 않았다. 이러한 결과는 BTE가 TXAS activity에 영향을 미치지 않고 TXA2 생성을 억제하거나 또 다른 기전을 이용하여 항혈소판 효과를 가짐을 의미한다. Positive control로는 TXAS activity를 선택적으로 억제하는 Ozagrel(IC50 on 11nM)을 이용하였으며 유의적으로 감소하였다.(95.5 ± 5.9ng/min/mg-protein)
As TXA 2 production was inhibited, the inhibitory effect of TXA activity on BTE was measured because prostaglandin required thromboxane synthase (TXAS) activity in the synthesis of TXA 2 . As shown in FIG. 5, when BTE was treated by concentration (10, 100 μg / ml), TXAS activity inhibition was not observed compared with Control (112.7 ± 16.8 ng / min / mg-protein). These results indicate that BTE inhibits TXA 2 production without affecting TXAS activity, or has anti-platelet effect using another mechanism. Positive controls were significantly reduced (95.5 ± 5.9 ng / min / mg-protein) using Ozagrel (IC 50 on 11 nM), which selectively suppresses TXAS activity.

E. 혈소판에서 E. Platelets BTEBTE of CyclooxygenaseCyclooxygenase (( COXCOX )-1 )-One activityactivity 억제 효과 Inhibitory effect

(1) 실험방법
(1) Experimental method

1%의 protease inhibitor가 함유된 혈소판 부유액을 Sonicator를 이용하여 Platelets lysate를 제조하였다. Platelet lysates(10㎍-protein)은 BTE(10, 100 ㎍/㎖) 및 COX-1 activity를 선택적으로 억제한다고 알려진 SC-560(330nM)과 aspirin(500μM)를 처리하여 37℃에서 30분간 preincubation하였다. 반응은 arachidonic acid를 기질로 첨가하여 37℃에서 1분간 유도하였으며, COX-1 activity fluorescent assay(Cayman Chemical)를 이용하여 synergy HT multi-model micro plate reader(BioTek Instruments, Winooski, VT., USA) 로 측정하였다. 세부적인 방법은 제조사의 설명서를 참조하였다.
Platelets lysate was prepared by using a sonicator for platelet suspension containing 1% protease inhibitor. Platelet lysates (10 μg-protein) were treated with BTE (10, 100 μg / ml) and SC-560 (330 nM) and aspirin (500 μM), which are known to selectively inhibit COX-1 activity and preincubated for 30 min at 37 ° C . The reaction was induced by adding arachidonic acid as a substrate and incubated at 37 ° C for 1 min. Using a synergy HT multi-model microplate reader (BioTek Instruments, Winooski, VT. USA) using a COX-1 activity fluorescent assay (Cayman Chemical) Respectively. Refer to the manufacturer's instructions for details.

(2) 실험결과
(2) Experimental results

Arachidonic acid(20:4)가 prostaglandin으로 합성되는 과정에서 COX-1 activity을 필요로 하기 때문에 BTE가 COX-1 activity에 미치는 영향을 측정하였다. 도 6에 도시된 바와 같이, BTE를 농도별로 처리하였을 때(10, 100㎍/㎖), Control(2.6 ± 0.1nM/min/mg-protein)과 비교하여 농도 의존적으로 TXAS activity를 감소시켰다(각각 1.7 ± 0.1, 1.1 ± 0.1 nmol/min/mg-protein). Positive control로는 COX-1 activity를 선택적으로 억제하는 Aspirin(500μM)과 SC-560(330nM)을 사용하였다. BTE는 COX-1 activity를 억제하여 TXA2 생성을 방해하며 특히, BTE의 IC50값의 근사치인 100㎍/㎖에서는 약 57.7%의 억제율을 보였으며, Aspirin(IC50 = 500μM)에서 19.2%의 억제율을 보인 결과와 비교하여 BTE가 약 3배 더 강한 억제효과를 나타냈다. 이는 BTE가 기존약물을 대체할 수 있는 가능성이 높음을 시사한다.
The effect of BTE on COX-1 activity was measured because arachidonic acid (20: 4) required COX-1 activity in the synthesis of prostaglandin. As shown in FIG. 6, when the BTE was treated by concentration (10, 100 μg / ml), TXAS activity was decreased in a concentration-dependent manner compared to Control (2.6 ± 0.1 nM / min / mg-protein) 1.7 ± 0.1, 1.1 ± 0.1 nmol / min / mg-protein). Aspin (500 μM) and SC-560 (330 nM) were used to selectively inhibit COX-1 activity as a positive control. BTE is the approximation of 100㎍ / ㎖ of IC 50 value of the BTE In particular, interfere with the TXA 2 generation by inhibiting COX-1 activity showed a percent inhibition of approximately 57.7%, 19.2% of Aspirin (= IC 50 500μM) Compared with the inhibition rate, BTE showed about 3 times more inhibitory effect. This suggests that BTE is more likely to replace existing drugs.

F. F. CollagenCollagen 으로 응집을 유도한 혈소판에서 In platelets that induced coagulation BTEBTE of cAMPcAMP 상승 효과 Synergistic effect

(1) 실험방법
(1) Experimental method

cAMP와 cGMP를 측정하기 위하여 "A"에서 기술한 방식으로 혈소판 응집반응을 유도한 뒤, 8분이 되는 시점에서 80% ice-cold ethanol을 첨가하여 반응을 정지시켰으며, cAMP와 cGMP값은 각각 cAMP와 cGMP EIA kits(BioVision)을 이용하여 측정하였으며 세부적인 방법은 제조사의 설명서를 참고하였다.
In order to measure cAMP and cGMP, the platelet aggregation reaction was induced by the method described in "A". After 8 minutes, the reaction was stopped by adding 80% ice-cold ethanol. The cAMP and cGMP values were cAMP And cGMP EIA kits (BioVision). The details of the method were described in the manufacturer 's manual.

(2) 실험결과
(2) Experimental results

Cyclic adenosine monophosphate(cAMP)와 Cyclic guanosine monophosphate(cGMP)는 혈소판 응집 억제하는 second messenger로 작용한다. ATP와 GTP가 각각 cAMP와 cGMP로 전환되어, 각각에 의존적인 Kinase activity가 상승되어 특정 단백질이 phosphorylastion되면서 항혈소판 효과를 갖는 것으로 알려져 있다. 따라서 cAMP 또는 cGMP에 있어서 BTE의 효과를 측정하였다. 도 7에 도시된 바와 같이, Collagen으로 유도된 혈소판에서 안정된 상태의 cAMP(36 ± 5.1 pmol/108 platelets)와 비교하여 감소하였다가 (24.8 ± 6.0 pmol/108 platelets), BTE를 농도별로 처리하였을 때(10, 100, 500㎍/㎖), cAMP가 유의성을 가지고 농도 의존적으로 상승되었다(각각 34.6 ± 3.5, 37.4 ± 4.2, 56.5 ± 6.5 pmol/108 platelets, 도 7A 참조). 그러나, BTE는 cGMP를 상승시키지 않았다(도 7B 참조). 이러한 결과는 BTE가 cGMP가 아닌 cAMP를 상승시켜 항혈소판 효과를 나타냄을 의미한다.
Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) act as second messengers inhibiting platelet aggregation. It is known that ATP and GTP are converted to cAMP and cGMP, respectively, and the kinase activity, which is dependent on each other, is elevated to phosphorylastion specific anti-platelet effects. Therefore, the effect of BTE on cAMP or cGMP was measured. (24.8 ± 6.0 pmol / 10 8 platelets) compared to the steady state cAMP (36 ± 5.1 pmol / 10 8 platelets) in collagen-induced platelets, as shown in Figure 7, (34.6 ± 3.5, 37.4 ± 4.2, 56.5 ± 6.5 pmol / 10 8 platelets, see FIG. 7A, respectively) when cAMP levels were increased (10, 100, 500 μg / However, BTE did not elevate cGMP (see FIG. 7B). These results indicate that BTE elevates cAMP, but not cGMP, to exhibit anti-platelet effects.

G. 혈소판에서 G. In platelets BTEBTE 의 세포 독성Cytotoxicity

(1) 실험방법
(1) Experimental method

혈소판에서 BTE의 세포독성을 알아보기 위하여 LDH 방출을 측정하였다. Washed platelets (108 platelets/ml)은 혈소판 응집반응과 같은 방법으로 preincubation한 뒤, 상층액을 LDH assay kit (Cayman Chemical)를 이용하여 측정하였다. 세부적인 실험 방법은 제조사의 설명서를 참고하였다.
LDH release was measured to determine the cytotoxicity of BTE in platelets. Washed platelets (10 8 platelets / ml) were preincubated in the same manner as the platelet aggregation reaction, and the supernatant was measured using the LDH assay kit (Cayman Chemical). For details of the test method, refer to the manufacturer's manual.

(2) 실험결과
(2) Experimental results

LDH는 세포 손상에 의한 독성여부를 측정하는 지표로 사용된다. BTE의 혈소판 세포독성 여부를 측정하기 위하여 LDH release를 확인하였다. 도 8에 도시된 바와 같이, BTE를 농도별로 처리하였을 때(10, 100, 500㎍/㎖) Control과 비교하여 LDH release에 영향을 미치지 않았다. 이는 BTE의 뛰어난 항혈소판 효과가 본 실험에서 사용된 농도 범위 안에서 세포 독성 없이 이루어졌음을 의미하며, 약물 개발에 있어서 가장 중요한 독성 문제를 해결하여 향후 BTE의 항혈소판 제제로의 개발 가능성을 제시한다.
LDH is used as an indicator of toxicity due to cell damage. LDH release was determined to determine platelet cytotoxicity of BTE. As shown in FIG. 8, when the BTE was treated by concentration (10, 100, 500 占 퐂 / ml), LDH release was not affected compared with Control. This means that the excellent antiplatelet effect of BTE was achieved without cytotoxicity within the concentration range used in this experiment. It solves the most important toxicity problem in drug development and suggests the possibility of future development of BTE as antiplatelet agent.

본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.It is to be understood that the invention is not limited to the disclosed embodiment, but is capable of many modifications and variations within the scope of the appended claims. It is self-evident.

Claims (5)

홍차 잎을 세척 후 건조하는 건조단계;
상기 홍차 잎과 에탄올을 1 : 19 ∼ 21 중량비로 혼합한 홍차 혼합물을 4 ∼ 6시간 중탕하는 중탕단계;
중탕한 홍차 혼합물을 시험관 혼합기(vortex mixer)로 20 ∼ 40분간 진탕하는 진탕단계;
진탕한 홍차 혼합물을 8 ∼ 12분간 원심분리하여 상층액을 1차 분리하는 제1분리단계;
상층 분리된 홍차 혼합물과 증류수를 1 : 8 ∼ 12 중량비로 혼합하고 8 ∼ 12분간 진탕하여 상층액을 2차 분리하는 제2분리단계; 및
1차 및 2차로 분리된 상층액을 진공 동결건조하는 동결건조단계;를 포함하는 것을 특징으로 하는 항혈전 효과를 갖는 홍차 추출물의 제조방법.
Drying step of washing tea leaves and drying;
A black tea mixture prepared by mixing the black tea leaves and ethanol in a weight ratio of 1: 19 ~ 21, for 4 to 6 hours;
A shaking step in which the hot tea mixture is shaken in a vortex mixer for 20 to 40 minutes;
A first separation step of separating the supernatant by centrifuging the shaken black tea mixture for 8 to 12 minutes;
A second separation step in which the upper layer separated black tea mixture and distilled water are mixed at a weight ratio of 1: 8 to 12 and shaken for 8 to 12 minutes to secondarily separate the supernatant; And
And a freeze-drying step of vacuum-freeze-drying the first and second separated supernatant liquids.
제1항에 있어서,
상기 제2분리단계를 4 ∼ 6회 반복하여 상층액을 분리하는 단계를 더 포함하는 것을 특징으로 하는 항혈전 효과를 갖는 홍차 추출물의 제조방법.
The method according to claim 1,
And separating the supernatant liquid by repeating the second separation step 4 to 6 times.
제1항 또는 제2항에 있어서,
진공 동결건조한 상층액에 물을 첨가하여 1 ∼ 50%(w/v) 농도로 재구성하는 단계를 더 포함하는 것을 특징으로 하는 항혈전 효과를 갖는 홍차 추출물의 제조방법.
3. The method according to claim 1 or 2,
Further comprising the step of adding water to the vacuum lyophilized supernatant to reconstitute the concentrate to a concentration of 1 to 50% (w / v).
제1항에 있어서,
상기 제1분리단계에서 1800×g로 원심분리하는 것을 특징으로 하는 항혈전 효과를 갖는 홍차 추출물의 제조방법.
The method according to claim 1,
And centrifuging at 1800 x g in the first separation step.
제1항에 있어서,
상기 동결건조단계에서 상기 진공 동결건조는 -75 ∼ -65℃의 온도로 이루어지는 것을 특징으로 하는 항혈전 효과를 갖는 홍차 추출물의 제조방법.
The method according to claim 1,
Wherein the vacuum lyophilization in the lyophilization step is performed at a temperature of -75 to -65 ° C.
KR1020140013631A 2014-02-06 2014-02-06 Manufacturing Method of Black Tea Extract Having Anti-thrombus Effect KR101575448B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140013631A KR101575448B1 (en) 2014-02-06 2014-02-06 Manufacturing Method of Black Tea Extract Having Anti-thrombus Effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140013631A KR101575448B1 (en) 2014-02-06 2014-02-06 Manufacturing Method of Black Tea Extract Having Anti-thrombus Effect

Publications (2)

Publication Number Publication Date
KR20150092961A KR20150092961A (en) 2015-08-17
KR101575448B1 true KR101575448B1 (en) 2015-12-09

Family

ID=54057076

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140013631A KR101575448B1 (en) 2014-02-06 2014-02-06 Manufacturing Method of Black Tea Extract Having Anti-thrombus Effect

Country Status (1)

Country Link
KR (1) KR101575448B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101866809B1 (en) 2017-10-20 2018-07-23 권휘 Manufacturing method of black tea having pine scent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101991434B1 (en) * 2018-01-29 2019-06-20 건양대학교 산학협력단 Manufacturing method of korean red ginseng extract for improving alcoholic dementia

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100319397B1 (en) 1999-07-12 2002-01-05 남 승 우 Anti-Thrombotic and Anti-Hypercholestemic Composition Which Comprises Plant Extracts as an Active Ingredient

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100319397B1 (en) 1999-07-12 2002-01-05 남 승 우 Anti-Thrombotic and Anti-Hypercholestemic Composition Which Comprises Plant Extracts as an Active Ingredient

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101866809B1 (en) 2017-10-20 2018-07-23 권휘 Manufacturing method of black tea having pine scent

Also Published As

Publication number Publication date
KR20150092961A (en) 2015-08-17

Similar Documents

Publication Publication Date Title
Santhakumar et al. A review of the mechanisms and effectiveness of dietary polyphenols in reducing oxidative stress and thrombotic risk
Si et al. The flavonoid luteolin induces nitric oxide production and arterial relaxation
Taub et al. Beneficial effects of dark chocolate on exercise capacity in sedentary subjects: underlying mechanisms. A double blind, randomized, placebo controlled trial
JP6903594B2 (en) Phytocomplex with multiple synergistic antioxidant activities useful in foods, dietary supplements, cosmetics and pharmaceuticals
AU2018204108A1 (en) Compositions and methods for improving mitochondrial function and treating neurodegenerative diseases and cognitive disorders
Oh et al. Salvianolic acid A suppress lipopolysaccharide-induced NF-κB signaling pathway by targeting IKKβ
Ferri et al. Cocoa, blood pressure, and cardiovascular health
Chen et al. Effects of Welsh onion extracts on human platelet function in vitro
Song et al. Suppression of Src and Syk in the NF-κB signaling pathway by Olea europaea methanol extract is leading to its anti-inflammatory effects
EP1328268B1 (en) Combination of catechin and quercetin for pharmaceutical or dietary use
Luzak et al. Extract from spent hop (Humulus lupulus L.) reduces blood platelet aggregation and improves anticoagulant activity of human endothelial cells in vitro
KR101575448B1 (en) Manufacturing Method of Black Tea Extract Having Anti-thrombus Effect
AU2002220617A1 (en) Combination of catechin and quercetin for pharmaceutical or dietary use
EP3701961A1 (en) Antithrombotic composition containing polygonum cuspidatum sieb. et zucc. and cinnamomum cassia blume
Kim et al. Anti-platelet and anti-thrombotic effect of a traditional herbal medicine Kyung-Ok-Ko
KR101110061B1 (en) Extract of Ulva prolifera and Its Use as Anti-inflammatory Medicine
KR20110056684A (en) Anti-inflammatory composition using a extract of ficus erecta leaf
KR20120100859A (en) Anti-inflammatory composition using a extract of ficus erecta leaf
Hariharan et al. An evaluation of antioxidant potential of flavonoid eriodictyol in isoproterenol-induced myocardial infarction in rats
KR101610458B1 (en) Manufacturing Method of Onion Peel Extract Having Anti-thrombus Effect
KR20150092960A (en) Manufacturing Method of Cudrania Tricuspidata Root Extract Having Anti-thrombus Effect
Thirunavukkarasu et al. Enhanced cardiovascular function and energy level by a novel chromium (III)-supplement
Jeon et al. Astilbe chinensis modulates platelet function via impaired MAPK and PLCγ2 expression
KR101784084B1 (en) Manufacturing Method of Apple mint Extract Having Anti-thrombus Effect
JP2014015429A (en) Satellite cell differentiation promoter

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181115

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191022

Year of fee payment: 5