KR101564404B1 - Hydrocracking method of a Fischer-Tropsch wax using the platinum Al-SBA-15 catalyst - Google Patents

Hydrocracking method of a Fischer-Tropsch wax using the platinum Al-SBA-15 catalyst Download PDF

Info

Publication number
KR101564404B1
KR101564404B1 KR1020140050459A KR20140050459A KR101564404B1 KR 101564404 B1 KR101564404 B1 KR 101564404B1 KR 1020140050459 A KR1020140050459 A KR 1020140050459A KR 20140050459 A KR20140050459 A KR 20140050459A KR 101564404 B1 KR101564404 B1 KR 101564404B1
Authority
KR
South Korea
Prior art keywords
sba
catalyst
fischer
platinum
tropsch wax
Prior art date
Application number
KR1020140050459A
Other languages
Korean (ko)
Inventor
문동주
이관영
서명기
이용희
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020140050459A priority Critical patent/KR101564404B1/en
Application granted granted Critical
Publication of KR101564404B1 publication Critical patent/KR101564404B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/333Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the platinum-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a hydrocracking method of Fischer-Tropsch wax using platinum/Al-SBA-15 catalyst and, more specifically, to a hydrocracking method of Fischer-Tropsch wax using platinum/Al-SBA-15 catalyst, supported with platinum (Pt) as an active ingredient in an Al-SBA-15 carrier having a large specific surface area and one pore size, and representing an acid site. According to the present invention, the method is capable of producing gasoline and diesel which are high-value-added liquid fuels at a high yield.

Description

백금/Al-SBA-15 촉매를 이용한 피셔-트롭쉬 왁스의 수소첨가 분해방법{Hydrocracking method of a Fischer-Tropsch wax using the platinum Al-SBA-15 catalyst}Hydrocracking method of a Fischer-Tropsch wax using the platinum / Al-SBA-15 catalyst [

본 발명은 백금/Al-SBA-15 촉매를 이용한 피셔-트롭쉬 왁스의 수소첨가 분해방법에 관한 것으로서, 더욱 상세하게는 넓은 비표면적과 단일 기공크기를 가지며 산점을 띄는 Al-SBA-15 담체에 백금(Pt)이 활성성분으로 담지된 백금/Al-SBA-15 촉매를 이용하여 피셔-트롭쉬 왁스를 수소첨가 분해하여 액체연료를 효율적으로 생산하는 방법에 관한 것이다.
The present invention relates to a method for hydrocracking a Fischer-Tropsch wax using a platinum / Al-SBA-15 catalyst. More particularly, the present invention relates to a method for hydrocracking a Fischer- The present invention relates to a method for efficiently producing a liquid fuel by hydrocracking a Fischer-Tropsch wax using a platinum / Al-SBA-15 catalyst in which platinum (Pt) is supported as an active ingredient.

피셔-트롭쉬(Fischer-Tropsch) 합성반응은 다양한 경로로부터 얻어진 합성가스(CO + H2)로부터 탄화수소를 합성하는 반응으로, 비교적 오래전부터 연구가 진행되어 왔다. 이에 피셔-트롭쉬 합성반응은 '탄화수소 합성반응'으로 부르기도 하고, 피셔-트롭쉬 합성반응에 의한 생성된 탄화수소 왁스는 '피셔-트롭쉬 왁스'로 부르기도 한다. 피셔-트롭쉬 왁스는 석유 왁스(원유)와는 다르게 황, 질소, 방향족 화합물과 같은 불순물이 포함되어 있지 않는 청정한 연료이고, 또한 직쇄상의 파라핀 함량이 많아 세탄가가 높은 연료 특성을 나타낸다. 다만, 피셔-트롭쉬 왁스는 일부 환경에서 부식을 야기시킬 수 있는 올레핀, 산화물(예를 들면, 알코올, 산, 에스테르)이 포함되어 있으므로, 피셔-트롭쉬 반응이후에 수소처리를 통한 후처리 과정을 거치게 된다. The Fischer-Tropsch synthesis reaction is a synthesis of hydrocarbons from syngas (CO + H 2 ) obtained from various routes and has been studied for a relatively long time. The Fischer-Tropsch synthesis reaction may be referred to as a 'hydrocarbon synthesis reaction', and the hydrocarbon wax produced by the Fischer-Tropsch synthesis reaction may be referred to as a 'Fischer-Tropsch wax'. Unlike petroleum wax (crude oil), Fischer-Tropsch wax is a clean fuel that does not contain impurities such as sulfur, nitrogen, and aromatic compounds, and also has a high direct-chain paraffin content and high cetane number. However, since the Fischer-Tropsch wax contains olefins, oxides (for example, alcohols, acids, esters) which can cause corrosion in some environments, the Fischer- .

피셔-트롭쉬 왁스를 수소 처리하는 후처리방법으로서, 고온 및 고압 조건에서 탄소-탄소의 결합을 끊어 원료 물질을 저분자화 하는 수소첨가 분해 hydrocracking) 방법이 있다.As a post-treatment method for hydrotreating Fischer-Tropsch wax, there is a hydrocracking hydrocracking method in which the carbon-carbon bonds are broken at high temperature and high pressure to reduce the molecular weight of the raw material.

수소첨가 분해방법은 피셔-트롭쉬 왁스를 탈수소화하여 보다 반응 활성이 좋은 올레핀으로 전환시킨 후에, 상기 올레핀을 분해하는 과정으로 이루어진다. 이에, 효율적인 수소첨가 분해를 위해서는 상기한 탈수소화 및 분해 과정에서 동시에 촉매활성을 가지는 이원 기능 촉매(bi-functional catalysts)를 사용한다. 상기 이원 기능 촉매는 활성성분으로서 백금(Pt), 팔라듐(Pd), 니켈(Ni), 몰리브데늄(Mo), 코발트(Co) 및 텅스텐(W) 중에서 선택된 단일금속 산화물 또는 2종 이상의 복합금속이 사용되고 있다. [R. F. Sullivan, J. W. Scott, Am. Soc. Symp. Ser., 293권, 222쪽 (1983년)] 그리고, 상기 활성성분을 담지하는 담체로는 제올라이트(zeolite), 무결정 실리카-알루미나(SiO2-Al2O3), 무결정 실리카-티타니아(SiO2-TiO2), 텅스텐-지르코니아(WO3-ZrO2) 등의 산성 담체가 적용되고 있다. [미국등록특허 제5,834,522] The hydrocracking method comprises a step of dehydrogenating the Fischer-Tropsch wax to convert it into an olefin having better reaction activity, and then decomposing the olefin. Thus, for efficient hydrogenolysis, bi-functional catalysts having simultaneous catalytic activity in the dehydrogenation and decomposition processes described above are used. The bifunctional catalyst may comprise a single metal oxide selected from platinum (Pt), palladium (Pd), nickel (Ni), molybdenum (Mo), cobalt (Co) and tungsten (W) Has been used. [RF Sullivan, JW Scott, Am. Soc. Symp. . Ser, 293 Issues, p. 222 (1983)] and, as a carrier for supporting the active component is a zeolite (zeolite), amorphous silica-alumina (SiO 2 -Al 2 O 3) , amorphous silica-titania ( SiO 2 -TiO 2 ), and tungsten-zirconia (WO 3 -ZrO 2 ). [U.S. Patent No. 5,834,522]

그러나 종래의 이원 기능 촉매는 피셔-트롭쉬 왁스의 수소첨가 분해에 적용되어 액체연료의 수율이 낮다는 단점이 지적되어 왔다.
However, conventional dual function catalysts have been pointed out to be disadvantageous in that they are applied to hydrogenolysis of Fischer-Tropsch wax, resulting in a low yield of liquid fuel.

이에, 본 발명자들은 상기와 같은 종래기술의 문제점을 해결할 수 있는 피셔-트롭쉬 왁스의 수소첨가 분해용 신규 촉매를 개발하고자 오랫동안 연구하였다. 그 결과 넓은 비표면적과 단일 기공크기를 가지며 산점을 띄는 Al-SBA-15 담체에, 백금(Pt)이 활성성분으로 담지된 백금/Al-SBA-15 촉매가 피셔-트롭쉬 왁스의 수소첨가 분해에 적용되어 우수한 촉매 활성을 나타냄을 확인함으로써 본 발명을 완성하게 되었다.Accordingly, the present inventors have studied for a long time to develop a novel catalyst for hydrogenolysis of Fischer-Tropsch wax which can overcome the problems of the prior art as described above. As a result, a platinum / Al-SBA-15 catalyst carrying platinum (Pt) as an active ingredient was added to an Al-SBA-15 carrier having a large specific surface area and a single pore size, To show excellent catalytic activity, thereby completing the present invention.

따라서, 본 발명은 피셔-트롭쉬 왁스의 수소첨가 분해반응을 통해 고품질의 액체연료(휘발유, 경유)를 효율적으로 생산하는 방법을 제공하는 것으로 목적으로 한다. Accordingly, it is an object of the present invention to provide a method for efficiently producing high-quality liquid fuel (gasoline, diesel) through hydrogenolysis of Fischer-Tropsch wax.

즉, 본 발명에서는 액체연료(휘발유, 경유)의 수율을 향상시키며, 특히 휘발유의 선택도와 수율을 높일 수 있는 피셔-트롭쉬 왁스의 수소첨가 분해방법을 제공하는 것을 목적으로 한다.
That is, an object of the present invention is to provide a hydrogenolysis method of Fischer-Tropsch wax which improves the yield of liquid fuel (gasoline, light oil), and in particular, improves the selectivity and yield of gasoline.

상기한 과제 해결을 위하여, 본 발명은 백금/Al-SBA-15 촉매를 이용한 피셔-트롭쉬 왁스의 수소첨가 분해방법을 그 특징으로 한다.
In order to solve the above problems, the present invention is characterized by a hydrogenolysis method of Fischer-Tropsch wax using a platinum / Al-SBA-15 catalyst.

본 발명의 방법에 의하면, 피셔-트롭쉬 왁스를 부가가치가 높고, 저장 및 운반이 용이한 액체연료(휘발유, 경유)로 쉽게 전환이 가능한 효과가 있다.According to the method of the present invention, it is possible to easily convert Fischer-Tropsch wax into a liquid fuel (gasoline, light oil) having high added value and easy storage and transportation.

본 발명의 방법에 의하면, 피셔-트롭쉬 왁스의 전환율 100 중량%, C6-20의 액체연료의 수율 89 중량%, 액체연료 중에서도 특히 휘발유의 수율이 69.3 중량%에 이르는 각별한 효과가 있다.According to the method of the present invention, there is a remarkable effect that the conversion of Fischer-Tropsch wax is 100% by weight, the yield of liquid fuel of C 6-20 is 89% by weight, and the yield of gasoline especially in liquid fuel is 69.3% by weight.

본 발명의 방법에 의하면, 피셔-트롭쉬 왁스를 원료물질로 사용하므로 생성된 액체연료는 황, 질소 및 방향족 물질을 거의 포함하지 않는 청정연료를 얻는 효과가 있다.According to the method of the present invention, since the Fischer-Tropsch wax is used as a raw material, the produced liquid fuel has an effect of obtaining a clean fuel containing substantially no sulfur, nitrogen and aromatic substances.

본 발명의 방법에 의하면, 수소첨가 분해반응 온도가 250 내지 450℃ 범위로 피셔-트롭쉬 반응온도와 유사한 범위에서 진행되므로, GTL공정에서 피셔-트롭쉬 반응과 수소첨가 분해반응을 연속 공정으로 진행하여 에너지 효율을 극대화하는 효과가 있다.
According to the process of the present invention, since the hydrocracking reaction temperature is in a range of 250 to 450 ° C, which is similar to the Fischer-Tropsch reaction temperature, the Fischer-Tropsch reaction and the hydrogenolysis reaction are continuously conducted in the GTL process Thereby maximizing the energy efficiency.

도 1은 철 촉매 또는 코발트 촉매 하에서의 피셔-트롭쉬 반응을 수행하여 생성된 탄화수소의 분포도를 나타낸 그래프이다.
도 2는 Al-SBA-15(5) 담체의 기공크기 분포를 나타낸 그래프이다.
도 3은 합성한 Al-SBA-15 담체의 TEM 사진이다.
도 4는 각 촉매하에서의 수소첨가 분해반응을 수행한 결과로서 노르말 파라핀 왁스의 전환율과 생성물의 수율을 비교한 그래프이다.
도 5는 각 촉매하에서의 수소첨가 분해반응을 수행한 결과로서 반응 생성물의 선택도를 비교한 그래프이다.
도 6은 Al-SBA-15 담체에 담지되는 백금(Pt)의 담지량에 따른 노르말 파라핀 왁스의 전환율과 액체연료의 수율을 비교한 그래프이다.
1 is a graph showing the distribution of hydrocarbons produced by performing the Fischer-Tropsch reaction under an iron catalyst or a cobalt catalyst.
2 is a graph showing the pore size distribution of the Al-SBA-15 (5) carrier.
3 is a TEM photograph of the synthesized Al-SBA-15 carrier.
FIG. 4 is a graph comparing the conversion of normal paraffin wax and the yield of the product as a result of hydrocracking under each catalyst.
5 is a graph comparing selectivities of reaction products as a result of hydrocracking under each catalyst.
6 is a graph comparing the conversion of normal paraffin wax and the yield of liquid fuel according to the loading amount of platinum (Pt) carried on an Al-SBA-15 carrier.

본 발명은 Al-SBA-15 담체에 백금이 담지된 '백금/Al-SBA-15'담지촉매를 사용하는 피셔-트롭쉬 왁스의 수소첨가 분해방법에 관한 것이다. 즉, 본 발명은 기존의 산성 담체가 아닌 산점이 조절된 Al-SBA-15 담체를 사용하여 피셔-트롭쉬 왁스로부터 액체연료(휘발유+경유)로 변환시키는 방법에 관한 것이다. The present invention relates to a method for hydrocracking a Fischer-Tropsch wax using a platinum / Al-SBA-15 supported catalyst having platinum supported on an Al-SBA-15 support. That is, the present invention relates to a method for converting a Fischer-Tropsch wax to a liquid fuel (gasoline + light oil) by using an Al-SBA-15 carrier whose acid sites are not a conventional acid carrier.

피셔-트롭쉬 왁스의 수소첨가 분해반응은 촉매에 의해 영향을 받으며, 특히 촉매의 산 특성에 의해 크게 영향을 받는다. 예컨대, 촉매가 산점의 양이 너무 적거나 산의 세기가 약할 경우는 피셔-트롭쉬 왁스의 분해가 많이 일어나지 않을 수 있다. 반면에, 촉매가 산점이 많거나 산의 세기가 강할 경우는 피셔-트롭쉬 왁스의 수소첨가 분해반응에서 생성된 액체연료가 다시 분해되어 기체 상태의 생성물이 생성될 수 있다. 따라서 목적하는 생성물에 적합하도록 산점의 양과 산 세기가 조절된 촉매를 선택하여 사용할 필요가 있다. 즉, 촉매의 산 특성을 조절하여 생성물 중 액체연료의 비율을 증가시키는 것이 필요하다. The hydrocracking reaction of the Fischer-Tropsch wax is affected by the catalyst, especially by the acid character of the catalyst. For example, when the amount of the acid sites of the catalyst is too small or the acid strength is weak, the Fischer-Tropsch wax may not decompose much. On the other hand, when the catalyst has high acid sites or strong acidity, the liquid fuel produced in the hydrogenolysis reaction of the Fischer-Tropsch wax may be decomposed again to produce gaseous products. Therefore, it is necessary to select and use a catalyst in which the amount of acid sites and the acid strength are adjusted so as to be suitable for the desired product. That is, it is necessary to control the acid property of the catalyst to increase the proportion of the liquid fuel in the product.

본 발명에서는 수소첨가 분해를 위한 이원반응용 촉매로서 백금/Al-SBA-15의담지촉매를 사용한다. 다시 말하면, 본 발명에서 백금 활성성분을 담지시키는 담체로 Al-SBA-15를 사용하여 촉매의 산 특성을 조절한다.In the present invention, a platinum / Al-SBA-15 barium catalyst is used as a catalyst for two-way reaction for hydrogenolysis. In other words, in the present invention, the acid property of the catalyst is controlled by using Al-SBA-15 as a carrier to support the platinum active component.

Al-SBA-15 담체는 실리카-알루미나 복합체로서, Si/Al의 비율을 조절함에 촉매의 산 특성을 조정하는 것이 가능하다. 예를 들면, SBA-15 제조 과정시에 알루미늄 전구체를 포함시켜 담체내의 Si/Al 비율을 조절함으로써 촉매의 산 특성을 조절하는 것이 가능하다. 그 결과, 백금/Al-SBA-15 촉매는 피셔-트롭쉬 왁스의 수소첨가 분해반응에 적용되어서는 액체연료의 수율을 현저히 향상시킬 수 있었고, 액체연료 중에서도 특히 휘발유의 선택도와 수율을 높이는 획기적인 효과를 얻을 수 있었다. The Al-SBA-15 support is a silica-alumina composite, and it is possible to adjust the acid property of the catalyst in controlling the ratio of Si / Al. For example, it is possible to control the acid properties of the catalyst by incorporating an aluminum precursor in the SBA-15 preparation process to control the Si / Al ratio in the support. As a result, the platinum / Al-SBA-15 catalyst was applied to the hydrogenolysis of Fischer-Tropsch wax to significantly improve the yield of the liquid fuel, and remarkably improved the selectivity and yield of gasoline among liquid fuels .

이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail.

본 발명의 수소첨가 분해반응에 사용되는 반응물은 피셔-트롭쉬 왁스이다. 피셔-트롭쉬 합성반응에 의해 생성된 탄화수소는 반응조건에 따라 특히, 촉매조건에 따라 탄화수소 화합물의 분포가 달라질 수 있다. 도 1에는 철 촉매 또는 코발트 촉매 조건하에서의 피셔-트롭쉬 반응을 수행하여 생성된 탄화수소의 분포를 대표적으로 예시하였다. 본 발명이 반응물로 사용하는 피셔-트롭쉬 왁스는 대부분이 C20 이상인 탄화수소이다. 이처럼 반응물로 사용된 피셔-트롭쉬 왁스는 C20 이상의 탄화수소가 고함량으로 포함된 고분자 물질이므로, 반응물이 촉매와 보다 원활하게 접촉될 수 있도록 촉매의 기공 크기는 충분이 커야할 필요성이 있다. 또한 수소첨가 분해반응의 특성상 촉매의 표면에서 반응이 진행되기 때문에 비표면적이 넓을수록 반응이 일어나는 작용기의 숫자가 증가하여 반응에 유리하다. 이러한 점들까지도 고려하여, 본 발명에서는 기공의 크기가 비교적 크고, 비표면적이 넓은 Al-SBA-15를 담체로 사용한다.The reactant used in the hydrocracking reaction of the present invention is Fischer-Tropsch wax. The hydrocarbons produced by the Fischer-Tropsch synthesis reaction may vary in hydrocarbon compound distribution depending on the reaction conditions, especially depending on the catalyst conditions. FIG. 1 exemplarily shows the distribution of hydrocarbons produced by performing a Fischer-Tropsch reaction under an iron catalyst or a cobalt catalyst. The Fischer-Tropsch waxes used as reactants in the present invention are hydrocarbons, most of which are C 20 or more. Since the Fischer-Tropsch wax used as the reactant is a polymer material containing a high content of hydrocarbons of C 20 or more, it is necessary that the pore size of the catalyst is sufficiently large so that the reactant can contact with the catalyst more smoothly. Also, since the reaction proceeds on the surface of the catalyst due to the nature of the hydrogenolysis reaction, the larger the specific surface area, the more the number of functional groups in the reaction increases, which is advantageous for the reaction. Considering these points, Al-SBA-15 having a relatively large pore size and a large specific surface area is used as a carrier in the present invention.

본 발명에 따른 피셔-트롭쉬 왁스의 수소첨가 분해반응용 촉매담체로서 Al-SBA-15는 더욱 바람직하기로는 균일한 기공크기를 갖으며, 기공 크기가 8 ∼ 10 nm이며, 비표면적이 500 내지 900 ㎡/g이며, Si/Al의 몰수비가 5 내지 40 인 것이 좋다. Al-SBA-15 담체에 있어, Al의 양이 증가할수록 산점이 증가하여 수소첨가 분해반응에서 촉매활성이 증가할 수 있겠으나, Al의 양이 너무 많으면 Al-SBA-15의 구조 형성을 방해하여 원하는 기공 크기 및 비표면적을 가지는 담체를 얻을 수 없게 된다.As the catalyst support for the hydrogenolysis reaction of the Fischer-Tropsch wax according to the present invention, Al-SBA-15 preferably has a uniform pore size, a pore size of 8 to 10 nm, a specific surface area of 500 to 500 nm, 900 m < 2 > / g, and the molar ratio of Si / Al is preferably 5 to 40. In the Al-SBA-15 support, as the amount of Al increases, the acid sites increase and the catalytic activity increases in the hydrocracking reaction. However, when the amount of Al is too large, the formation of Al-SBA- A carrier having a desired pore size and specific surface area can not be obtained.

본 발명이 담체로 사용하는 Al-SBA-15는 촉매 제조분야에서 담체로 사용되어온 공지 물질이며, 이의 제조방법 역시 공지되어 있다. [Catalysis Today 68 pp. 3∼9(2001); J. Porous Mater 13: pp. 187∼193(2006)] 다만, 본 발명은 Al-SBA-15를 피셔-트롭쉬 왁스의 수소첨가 분해반응용 촉매담체로 적용한 발명이라는 점에 그 특징이 있다. Al-SBA-15 used as a carrier of the present invention is a known substance used as a carrier in the field of catalyst production, and its production method is also known. [ Catalysis Today 68 pp. 3-9 (2001); J. Porous Mater 13 : pp. However, the present invention is characterized in that Al-SBA-15 is used as a catalyst support for hydrocracking reaction of Fischer-Tropsch wax.

본 발명에서는 Al-SBA-15 담체를 제조함에 있어, 통상의 실리카 전구체와 알루미늄 전구체를 사용하여, 공지된 방법으로 하나의 배치에서 바로 Al-SBA-15를 합성하였다. 알루미늄 전구체로서는 일반적으로 사용하는 알루미늄 나이트레이트[Al(NO3)3], 알루미늄 이소프로폭사이드[Al(O-CH(CH3)2)3]와 같이 알루미늄만 존재하는 전구체가 아닌 알루미늄과 실리카의 Al-O-Si 분자구조를 형성하고 있는 부톡시알루미노옥시트리에톡시실란(Di-s-Butoxyaluminoxytriethoxysilane)를 알루미늄 전구체로 사용하여 Al-SBA-15를 합성하였다. Al-SBA-15의 산 특성은 알루미늄 전구체의 함량 조절을 통해 조절이 가능한 바, 바람직하기로는 Si/Al의 몰비가 5∼40, 더욱 바람직하기로는 5∼20, 특히 바람직하기로는 5∼15로 조절되는 것이다. In the present invention, Al-SBA-15 was synthesized directly in one batch using a conventional silica precursor and an aluminum precursor in the production of Al-SBA-15 carrier by a known method. Aluminum precursor as typically aluminum nitrate was used as [Al (NO 3) 3] , aluminum isopropoxide [Al (O-CH (CH 3) 2) 3] and aluminum and silica than the precursors that there is only aluminum as Al-SBA-15 was synthesized by using Di-s-Butoxyaluminoxytriethoxysilane, which forms an Al-O-Si molecular structure, as an aluminum precursor. The acid property of Al-SBA-15 can be controlled by adjusting the content of aluminum precursor, preferably the molar ratio of Si / Al is 5 to 40, more preferably 5 to 20, particularly preferably 5 to 15 It is regulated.

실리카-알루미나 복합체 구조를 가지는 촉매담체로서 'SBA-15'가 있다. SBA-15는 산점을 갖고 있지 않기 때문에 본 발명에 따른 피셔-트롭쉬 왁스의 수소첨가 분해반응용 촉매의 담체로 사용할 경우 충분한 촉매활성을 기대할 수 없다. 이에 반하여, Al-SBA-15는 산점을 가지고 있으므로 피셔-트롭쉬 왁스의 수소첨가 분해반응용 촉매의 담체로 유용하다.SBA-15 'as a catalyst support having a silica-alumina composite structure. Since SBA-15 has no acid sites, sufficient catalytic activity can not be expected when it is used as a carrier of the catalyst for hydrocracking reaction of Fischer-Tropsch wax according to the present invention. On the other hand, Al-SBA-15 is useful as a carrier for a catalyst for hydrocracking reaction of Fischer-Tropsch wax because it has an acid site.

한편, 본 발명에서는 피셔-트롭쉬 왁스의 수소첨가 분해반응용 촉매의 활성성분으로서 백금(Pt)을 담지시킨다. 그 밖에도 수소첨가 분해를 위한 이원 반응에서 사용되어 온 금속으로서 팔라듐(Pd), 니켈(Ni), 몰리브데늄(Mo), 코발트(Co) 및 텅스텐(W) 중에서 선택된 단일 금속산화물 또는 2종 이상의 복합 금속산화물이 추가로 더 포함될 수도 있다. 본 발명의 실시예에서는 활성금속으로 백금(Pt)이 담지된 Pt/Al-SBA-15를 대표적으로 예시하고 있지만, 본 발명의 촉매에 담지된 활성금속이 백금(Pt)으로 한정되는 것은 결코 아니다.
On the other hand, in the present invention, platinum (Pt) is supported as an active component of a catalyst for hydrocracking reaction of Fischer-Tropsch wax. In addition, a single metal oxide selected from palladium (Pd), nickel (Ni), molybdenum (Mo), cobalt (Co) and tungsten (W) A composite metal oxide may further be included. In the examples of the present invention, Pt / Al-SBA-15 in which platinum (Pt) is supported as an active metal is exemplarily represented, but the active metal supported on the catalyst of the present invention is not limited to platinum (Pt) .

이상에서 설명한 바와 같은 본 발명은 하기의 실시예 및 실험예에 의거하여 더욱 상세히 설명하겠는 바, 이는 본 발명을 보다 상세하게 설명하기 위한 것으로 본 발명의 권리 범위가 이들에 의해 한정되는 것은 아니다.
The present invention will now be described in more detail with reference to the following Examples and Experimental Examples. It is to be understood that the scope of the present invention is not limited by these Examples.

[제조예] [Manufacturing Example]

제조예 1∼3. Al-SBA-15 담체 제조Production Examples 1-3. Preparation of Al-SBA-15 carrier

Al-SBA-15 담체의 제조방법은 Q. Yang의 그룹의 제조 방법을 참고하였다. [J Porous Mater 13, 187 (2006)] The manufacturing method of the Al-SBA-15 carrier is referred to the production method of Q. Yang group. [ J Porous Mater 13 , 187 (2006)]

구체적으로 설명하면, pH 1.5의 염산 수용액 375 mL에 계면활성제로서 P123 (Pluroic 123, Sigma-Aldrich) 10 g을 녹인 다음, 알루미늄 전구체로서 부톡시알루미노옥시트리에톡시실란(Di-s-Butoxyaluminoxytriethoxysilane)과 실란 전구체로서 테트라에틸올소실리케이트(Tetraethyl orthosilicate)을 넣고 40℃에서 20시간 혼합한 뒤 100℃에서 24시간 숙성(aging)하였다. 이때, 알루미늄 전구체와 실란 전구체의 함량비를 조절하여 Si/Al의 몰비율가 각각 5, 10, 20 되도록 하였다. 숙성이 완료되면, 3차 증류수로 세척하여 계면활성제를 제거한 후 60℃에서 24시간 건조하고, 500℃에서 10시간 소성하여 분말상의 Al-SBA-15 담체를 제조하였다. 제조된 담체는 Si/Al의 몰비율에 따라 'Al-SBA-15(5)', 'Al-SBA-15(10)', 'Al-SBA-15(20)'로 표시하였다.Specifically, 10 g of P 123 (Pluroic 123, Sigma-Aldrich) as a surface active agent was dissolved in 375 mL of an aqueous hydrochloric acid solution having a pH of 1.5, and then, Di-s-Butoxyaluminoxytriethoxysilane was added as an aluminum precursor. And tetraethyl orthosilicate as a silane precursor. The mixture was mixed at 40 ° C for 20 hours and then aged at 100 ° C for 24 hours. At this time, the molar ratios of Si / Al were adjusted to 5, 10, and 20 by controlling the content ratio of the aluminum precursor and the silane precursor. When the aging was completed, the surfactant was removed by washing with a third distilled water, followed by drying at 60 ° C for 24 hours and calcining at 500 ° C for 10 hours to prepare a powdered Al-SBA-15 carrier. The prepared carrier was labeled 'Al-SBA-15 (5)', 'Al-SBA-15 (10)' and 'Al-SBA-15 (20)' depending on the molar ratio of Si / Al.

상기 제조예에서 제조된 Al-SBA-15 담체의 Si/Al의 몰비율, 표면적, 기공크기, 기공부피를 측정한 결과는 하기 표 1에 나타내었다. 또한, Al-SBA-15 담체와의 비교를 위하여 ZSM-5를 각 비교 제조예 1로 예시하며, 이의 물리적 특성을 하기 표 1에 함께 정리하여 나타내었다.The molar ratio, surface area, pore size, and pore volume of Si / Al of the Al-SBA-15 carrier prepared in the above Preparation Example are shown in Table 1 below. For comparison with the Al-SBA-15 carrier, ZSM-5 is exemplified by Comparative Production Example 1, and physical properties thereof are summarized together in Table 1 below.

구 분division Si/Al 비
(ICP-AES)
Si / Al ratio
(ICP-AES)
비표면적
(㎡/g)
Specific surface area
(M < 2 > / g)
기공크기
(nm)
Pore size
(nm)
기공부피
(mL/g)
Pore volume
(mL / g)
제조예 1 Production Example 1 Al-SBA-15(5)Al-SBA-15 (5) 6.26.2 505505 9.8a) 9.8 a) 1.081.08 제조예 2 Production Example 2 Al-SBA-15(10)Al-SBA-15 (10) 14.514.5 509509 8.8a) 8.8 a) 1.031.03 제조예 3 Production Example 3 Al-SBA-15(20)Al-SBA-15 (20) 37.537.5 856856 8.1a) 8.1 a) 1.001.00 비교제조예 1 Comparative Preparation Example 1 ZSM-5ZSM-5 19.519.5 400400 0.5∼0.60.5 to 0.6 -- a)기공크기: 질소등온탈착 곡선에서 BJH 방법에 의해 계산됨 a) Pore size: calculated by the BJH method on the nitrogen isothermal desorption curve

상기 표 1에 의하면, Al-SBA-15 담체는 제올라이트 담체에 비교하여 기공크기, 비표면적이 월등하게 크다는 것을 확인할 수 있다. 또한, 도 2에는 상기 제조예 1에서 제조한 Al-SBA-15(5) 담체의 기공크기 분포도를 도시하였다. According to Table 1, it can be seen that the pore size and specific surface area of the Al-SBA-15 carrier are significantly larger than those of the zeolite carrier. FIG. 2 shows a pore size distribution diagram of the Al-SBA-15 (5) carrier prepared in Preparation Example 1. FIG.

또한, 상기 제조예 1∼3에서 제조한 Al-SBA-15 담체에 대한 TEM 사진을 도 3으로 첨부하였다. 도 3의 TEM 사진에 의하면, 합성된 Al-SBA-15의 구조가 규칙적인 벌집 모양의 구조를 형성하고 있으며, 기공의 크기가 대략 10 nm 부근임을 알 수 있다.
Further, TEM photographs of the Al-SBA-15 carrier prepared in Production Examples 1 to 3 are shown in FIG. The TEM photograph of FIG. 3 shows that the structure of the synthesized Al-SBA-15 forms a regular honeycomb structure, and the pore size is about 10 nm.

[실시예][Example]

실시예 1∼3 및 비교예 1. 촉매의 제조Examples 1 to 3 and Comparative Example 1. Preparation of Catalyst

상기 제조예 1∼3 및 비교제조예 1의 담체의 중량 대비하여, 백금(Pt)이 0.5 중량% 담지된 촉매를 제조하였다.A catalyst in which 0.5 wt% of platinum (Pt) was supported was prepared with respect to the weight of the supports of Production Examples 1 to 3 and Comparative Production Example 1.

구체적으로 설명하면, 초기 함침법 (Incipient wetness method)를 사용하여 합성한 Al-SBA-15 담체위에 백금을 담지하였다. 이때, 백금 전구체로서 테트라아민플라티넘 나이트레이트(Tetraammineplatinum nitrate)를 기공 부피에 해당하는 양을 용해시켜 백금 수용액을 제조한 후에, 각각의 담체에 소량씩 흩뿌려 퍼트려 주었다. 모세관 현상에 의해 기공의 안으로 전구체 수용액이 흡수되며, 모든 기공을 가득 채울 때까지 진행 되었다. 100℃에서 24시간 건조한 후 500℃에서 6시간 소성하여 분말상의 촉매를 제조하였다. 제조한 촉매는 수소 분위기에서 2시간동안 환원처리한 후에 수소첨가 분해반응에 사용하였다.
Specifically, platinum was supported on an Al-SBA-15 support synthesized using an incipient wetness method. At this time, tetraammineplatinum nitrate (tetraammineplatinum nitrate) as a platinum precursor was dissolved in an amount corresponding to the pore volume to prepare a platinum aqueous solution, and then a small amount of a platinum aqueous solution was dispersed in each carrier. The precursor solution was absorbed into the pores by capillary action and proceeded until all the pores were filled. Dried at 100 DEG C for 24 hours, and then calcined at 500 DEG C for 6 hours to prepare a powdery catalyst. The prepared catalyst was subjected to reduction treatment in hydrogen atmosphere for 2 hours and then used for hydrogenolysis.

[실험예][Experimental Example]

실험예 1. 수소첨가 분해반응Experimental Example 1. Hydrogenolysis

상기 실시예 1∼4 및 비교예 1∼2에서 제조된 백금 촉매를 사용하여, 수소첨가 분해반응을 수행하였다.Hydrogenolysis was carried out using the platinum catalysts prepared in Examples 1 to 4 and Comparative Examples 1 and 2.

구체적으로 설명하면, 회분식 반응기에 각 촉매 0.6 g을 충전하고 반응물로 노르말 파라핀 왁스 18 g을 사용하였으며, 반응 온도는 380℃, 전체기압은 수소기체를 충전하여 6 MPa을 유지하였으며, 총 반응시간은 60분으로 고정하였다. 상기 n-파라핀 왁스의 수소첨가 분해반응을 수행한 결과는 하여 액체연료를 수득하였다. Specifically, 0.6 g of each catalyst was charged into a batch reactor, and 18 g of normal paraffin wax was used as a reactant. The reaction temperature was 380 ° C., the total pressure was maintained at 6 MPa by filling with hydrogen gas, And fixed at 60 minutes. The hydrocracking reaction of the n-paraffin wax was carried out to obtain a liquid fuel.

또한, 수소첨가 분해반응에 반응물로 사용된 노르말 파라핀 왁스의 전환율과 액체연료(휘발유 또는 경유)의 선택도는 각각 하기 수학식 1 내지 3에 의해 계산하였으며, 그 결과는 하기 표 2에 정리하여 나타내었다. 또한, 도 4 내지 도 6에는 노르말 파라핀 왁스의 전환율과 액체연료(휘발유 또는 경유)의 선택도를 비교하여 그래프로 도시하였다.The conversion of the normal paraffin wax used as a reactant in the hydrocracking reaction and the selectivity of the liquid fuel (gasoline or light oil) were calculated by the following equations (1) to (3) . 4 to 6, the conversion of normal paraffin wax and the selectivity of liquid fuel (gasoline or light oil) are compared and shown in a graph.

[수학식 1][Equation 1]

Figure 112014040174904-pat00001
Figure 112014040174904-pat00001

[수학식 2]&Quot; (2) "

Figure 112014040174904-pat00002
Figure 112014040174904-pat00002

[수학식 3]&Quot; (3) "

Figure 112014040174904-pat00003
Figure 112014040174904-pat00003

촉매catalyst 전환율
(중량%)
Conversion Rate
(weight%)
반응 생성물 분포 (중량%)Reaction product distribution (% by weight)
C1-5 C 1-5 C6-9 C 6-9 C10-20 C 10-20 잔유Residue 0.5Pt/Al-SBA-15(5)0.5Pt / Al-SBA-15 (5) 97.497.4 13.413.4 70.870.8 13.113.1 2.62.6 0.5Pt/Al-SBA-15(10)0.5Pt / Al-SBA-15 (10) 100100 12.812.8 72.872.8 14.414.4 00 0.5Pt/Al-SBA-15(20)0.5Pt / Al-SBA-15 (20) 75.175.1 9.29.2 38.938.9 27.027.0 24.924.9 1Pt/Al-SBA-15(5)1Pt / Al-SBA-15 (5) 100100 10.710.7 69.369.3 20.020.0 00 1Pt/Al-SBA-15(10)1Pt / Al-SBA-15 (10) 100100 14.114.1 60.860.8 25.125.1 00 0.5Pt/ZSM-50.5Pt / ZSM-5 100100 48.048.0 34.434.4 17.617.6 00

상기 표 2와 도 4∼6의 결과에 의하면, Al-SBA-15를 담체로 사용한 촉매의 경우는 제올라이트(ZSM-5) 담체를 사용한 촉매에 비교하여 기상 연료(C1-5)의 수율이 적은 반면에, 액체연료(C6-20)의 수율이 훨씬 높음을 알 수 있다.
According to the results shown in Table 2 and Figs. 4 to 6, in the case of the catalyst using Al-SBA-15 as the carrier, the yield of the vapor fuel (C 1-5 ) was higher than that of the catalyst using zeolite (ZSM- , While the yield of liquid fuel (C 6-20 ) is much higher.

실험예 2. Al-SBA-15 담체의 암모니아 탈착 실험Experimental Example 2. Ammonia desorption experiment of Al-SBA-15 carrier

하기 표 3에 나타낸 각각의 담체 0.06 g을 헬륨 분위기(50 mL/min의 조건)에서 400℃ 온도로 2시간동안 전처리하였다. 그런 다음, 50℃에서 암모니아 분위기(50 mL/min의 조건)에서 30분간 암모니아를 흡착시켰다. 물리적으로 흡착된 암모니아를 제거하기 위해서 150℃에서 2시간동안 헬륨을 흘려주었다. 그 후 50℃에서 분당 2.5℃의 속도로 800℃까지 승온시켜 암모니아의 탈착량을 측정하였다. 그 결과는 하기 표 3에 나타내었다.0.06 g of each of the supports shown in Table 3 below was pretreated for 2 hours at a temperature of 400 DEG C in a helium atmosphere (condition of 50 mL / min). Then, ammonia was adsorbed for 30 minutes in an ammonia atmosphere (condition of 50 mL / min) at 50 占 폚. Helium was flowed at 150 ° C for 2 hours to remove physically adsorbed ammonia. Thereafter, the temperature was elevated to 800 ° C at a rate of 2.5 ° C per minute at 50 ° C to determine the desorption amount of ammonia. The results are shown in Table 3 below.

촉매catalyst 산 밀도
(mmol-NH3/g-cat.)
Acid density
(mmol-NH 3 / g-cat.)
Pt/Al-SBA-15(5)Pt / Al-SBA-15 (5) 1.941.94 Pt/Al-SBA-15(10)Pt / Al-SBA-15 (10) 1.851.85 Pt/Al-SBA-15(20)Pt / Al-SBA-15 (20) 1.651.65 Pt/ZSM-5 (19.5)Pt / ZSM-5 (19.5) 3.503.50

상기 표 3의 암모니아 탈착 분석실험 결과, 본 발명의 백금/Al-SBA-15 촉매는 산 밀도(Total acid density)가 1.5 내지 2 mmol NH3/g-cat. 이었다. 반면에 백금/ZSM-5 촉매는 산 밀도가 3.50 mmol NH3/g-cat. 이었으며, 백금/Al-SBA-15 담촉매에 비교하여 1.8 내지 2.1배 높았다. 이로써 백금/ZSM-5 촉매는 Pt/Al-SBA-15 촉매 보다 산점이 월등히 많기 때문에 피셔트롭쉬 왁스의 수소첨가 분해반응용 촉매로 사용되어서는 생성물 중 기체연료의 수율이 높고, 액체 연료의 수율이 낮아지는 결과를 얻고 있다. As a result of ammonia desorption analysis of Table 3, the platinum / Al-SBA-15 catalyst of the present invention had a total acid density of 1.5 to 2 mmol NH 3 / g-cat. . On the other hand, the platinum / ZSM-5 catalyst has an acid density of 3.50 mmol NH 3 / g-cat. And was 1.8 to 2.1 times higher than that of the platinum / Al-SBA-15 dipped catalyst. As a result, the platinum / ZSM-5 catalyst has a much higher acid point than the Pt / Al-SBA-15 catalyst, so that it can be used as a catalyst for hydrogenolysis of Fischer Tropsch wax, Is getting lower.

Claims (6)

Si/Al의 몰 비율 5 내지 15이고, 기공의 크기가 5 내지 10 nm이고, 비표면적이 500 내지 900 ㎡/g인 Al-SBA-15 담체에 담지되어 있는 백금/Al-SBA-15 촉매를 이용하여, 피셔-트롭쉬 왁스로부터 탄소수 6∼9의 액체연료를 제조하는 것을 특징으로 하는 피셔-트롭쉬 왁스의 수소첨가 분해방법.
Al / SBA-15 catalyst supported on an Al-SBA-15 carrier having a Si / Al molar ratio of 5 to 15, a pore size of 5 to 10 nm and a specific surface area of 500 to 900 m & To produce a liquid fuel having a carbon number of 6 to 9 from a Fischer-Tropsch wax.
제 1 항에 있어서,
상기 백금/Al-SBA-15 촉매는 Al-SBA-15 담체의 중량 대비하여 백금(Pt)의 담지량이 0.1 내지 1 중량%인 것을 특징으로 하는 피셔-트롭쉬 왁스의 수소첨가 분해방법.
The method according to claim 1,
Wherein the platinum / Al-SBA-15 catalyst has a platinum (Pt) loading of 0.1 to 1% by weight relative to the weight of the Al-SBA-15 carrier.
제 1 항에 있어서,
상기 백금/Al-SBA-15 촉매는 팔라듐(Pd), 니켈(Ni), 몰리브데늄(Mo), 코발트(Co) 및 텅스텐(W) 중에서 선택된 1종 이상이 활성금속으로서 더 포함된 것을 특징으로 하는 피셔-트롭쉬 왁스의 수소첨가 분해방법.
The method according to claim 1,
The platinum / Al-SBA-15 catalyst is characterized in that at least one selected from palladium (Pd), nickel (Ni), molybdenum (Mo), cobalt (Co) and tungsten By weight based on the total weight of the Fischer-Tropsch wax.
삭제delete 제 1 항에 있어서,
상기 백금/Al-SBA-15 촉매는 암모니아 탈착 분석 시 1.5 내지 2 mmol NH3/g-cat.을 특징으로 하는 피셔-트롭쉬 왁스의 수소첨가 분해방법.
The method according to claim 1,
Wherein the platinum / Al-SBA-15 catalyst is characterized by 1.5 to 2 mmol NH 3 / g-cat. Upon ammonia desorption analysis.
제 1 항에 있어서,
상기 수소첨가 분해는 250 내지 450℃의 온도, 수소기체 5 내지 100 기압 조건에서 수행하는 것을 특징으로 하는 피셔-트롭쉬 왁스의 수소첨가 분해방법.
The method according to claim 1,
Wherein the hydrocracking is carried out at a temperature of 250 to 450 DEG C and a hydrogen gas of 5 to 100 atm.
KR1020140050459A 2014-04-28 2014-04-28 Hydrocracking method of a Fischer-Tropsch wax using the platinum Al-SBA-15 catalyst KR101564404B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140050459A KR101564404B1 (en) 2014-04-28 2014-04-28 Hydrocracking method of a Fischer-Tropsch wax using the platinum Al-SBA-15 catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140050459A KR101564404B1 (en) 2014-04-28 2014-04-28 Hydrocracking method of a Fischer-Tropsch wax using the platinum Al-SBA-15 catalyst

Publications (1)

Publication Number Publication Date
KR101564404B1 true KR101564404B1 (en) 2015-10-30

Family

ID=54431106

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140050459A KR101564404B1 (en) 2014-04-28 2014-04-28 Hydrocracking method of a Fischer-Tropsch wax using the platinum Al-SBA-15 catalyst

Country Status (1)

Country Link
KR (1) KR101564404B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021129760A1 (en) * 2019-12-25 2021-07-01 中国石油化工股份有限公司 Dlm-1 molecular sieve, manufacturing method therefor, and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021129760A1 (en) * 2019-12-25 2021-07-01 中国石油化工股份有限公司 Dlm-1 molecular sieve, manufacturing method therefor, and use thereof

Similar Documents

Publication Publication Date Title
KR101840378B1 (en) Catalyst for olefin metathesis and method for preparing thereof
US7323100B2 (en) Combination of amorphous materials for hydrocracking catalysts
EP3363878A1 (en) Hydroprocessing catalyst and method of making the same
AU2013357970B2 (en) Process for preparing Fisher-Tropsch catalyst
US20050107479A1 (en) Silica-alumina catalyst support with bimodal pore distribution, catalysts, methods of making and using same
KR101595181B1 (en) Process for the preparation of fisher-tropsch catalysts having improved activity and life time
KR101589140B1 (en) Ordered mesoporous-silica based catalysts for the production of 1,3-butadiene and production method of 1,3-butadiene using thereof
KR101829917B1 (en) Mesoporous main framework of cobalt based catalyst for Fischer-Tropsch synthesis and a preparation method thereof
Yakovenko et al. Preliminary evaluation of a commercially viable Co-based hybrid catalyst system in Fischer–Tropsch synthesis combined with hydroprocessing
RU2626397C1 (en) Crude hydrocarbons hydro-cracking method
CN108187735B (en) Catalyst and method for preparing high-octane gasoline by using coal-based light oil
KR101922614B1 (en) Hydrocracking Catalyst Based on Hierarchically Porous Beta Zeolite and Method of Preparing the Same and Method of Preparing Bio-Jet Fuel from Triglyceride-Containing Biomass Using the Same
US20220356404A1 (en) Catalyst and process for deoxygenation and conversion of bio-derived feedstocks
CN106902867B (en) Beta zeolite catalyst for preparing BTEX (benzene, toluene, ethylbenzene and xylene) mixture from polyaromatic hydrocarbon and preparation method thereof
KR101732121B1 (en) A Noble Catalyst Of Aqueous Phase Reforming Reaction, Using Mesoporous Carbon Carrier And Multi-Component Metal, And Manufacturing Method Of The Same
US10428280B2 (en) Method for manufacturing of multi-level pore zeolite and utilization as catalyst for hydroisomerization of normal paraffins of multi-level pore zeolite prepared thereby
JP2010042344A (en) Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst
KR101564404B1 (en) Hydrocracking method of a Fischer-Tropsch wax using the platinum Al-SBA-15 catalyst
Pandya et al. Influence of catalyst reduction temperature on autogenous glycerol hydrogenolysis over NiAl catalyst
KR101621290B1 (en) HY zeolite catalyst for the synthesis of mixture of benzene, toluene, ethylbenzene, xylene (BTEX) and middle distillate from poly aromatic hydrocarbons and Its preparation method
KR101621307B1 (en) Zeolite catalyst for the synthesis of mixture of benzene, toluene, ethylbenzene, xylene (BTEX)and middle distillate from poly aromatic hydrocarbons and Its preparation method
KR101468377B1 (en) Ordered mesoporous carbon based catalysts for the production of oxygenated carbon compound and production method of oxygenated carbon compound using thereof
KR102114538B1 (en) Cobalt-Iron Hybrid Catalyst Having Ordered Mesoporous Channels As a Main Framework for Fischer-Tropsch Synthesis, a Method for Preparing the Same, and a Method for Preparing Hydrocarbons Using the Same
KR20160104546A (en) Cesium promoter-containing iron-carbide/carbon composite catalyst for Fischer-Tropsch synthesis, preparation method thereof, and preparation method of liquid or soild hydrocarbon using the catalyst
KR101578459B1 (en) Silica-alumina supported platinum catalyst for selective synthesis of bio-jet fuel hydrocarbons from plant oil

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181002

Year of fee payment: 4