KR101561980B1 - Manufacturing method of bioepoxy resin without environmental hormone releasing - Google Patents

Manufacturing method of bioepoxy resin without environmental hormone releasing Download PDF

Info

Publication number
KR101561980B1
KR101561980B1 KR1020140000536A KR20140000536A KR101561980B1 KR 101561980 B1 KR101561980 B1 KR 101561980B1 KR 1020140000536 A KR1020140000536 A KR 1020140000536A KR 20140000536 A KR20140000536 A KR 20140000536A KR 101561980 B1 KR101561980 B1 KR 101561980B1
Authority
KR
South Korea
Prior art keywords
weight
parts
diisocyanate
added
oil
Prior art date
Application number
KR1020140000536A
Other languages
Korean (ko)
Other versions
KR20150081003A (en
Inventor
김규린
김인경
김말남
전현정
윤진산
임거혁
고재홍
이상신
박은수
Original Assignee
주식회사 에스아이켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스아이켐 filed Critical 주식회사 에스아이켐
Priority to KR1020140000536A priority Critical patent/KR101561980B1/en
Publication of KR20150081003A publication Critical patent/KR20150081003A/en
Application granted granted Critical
Publication of KR101561980B1 publication Critical patent/KR101561980B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • C08G59/502Polyalkylene polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

온도계(thermometer)와 교반기(mechanical stirrer), 응축콘덴서(reflux condenser)를 장착한 반응기(reactor)에 테트로히드로퓨란(tetrahydrofuran)이나 톨루엔(toluene)과 같은 반응성용매(reactive solvent) 400~600중량부, 에틸렌디아민(ethylenediamine)이나, 프로필렌디아민(propylenediamine), 부틸렌디아민(butylenediamine), 헥사메틸렌디아민(hexamethylendiamine) 등과 같은 디아민 60~117중량부와, 1,4-페닐렌 디이소시아네이트(1,4-phenylene diisocyanate)나, 4,4'-디이소시아네토디씨크로헥실 메탄(4,4'-diisocyanatodi cyclohexyl methane), 톨리엔 디이소시아네이트(tolylene diisocyanate), 메틸렌디페닐 디이소시아네이트(Methylene diphenyl diisocyanate) 등의 디이소시아네이트 160~250중량부 및 디부틸 틴 디라울레이트(dibutyl tin dilaurate)나, 디부틸 틴 말레이트(dibutyl tin maleate), 1,4-디아조바이시크로[2,2,2] 옥탄[1,4-diazabicyclo [2,2,2] octane] 등의 축합촉매(condensation catalyst) 0.01~0.05중량부를 가하고 6~24시간 반응 한 다음, 반응성용매를 감압 하에서 증발시켜서 220.01~367.05중량부의 아민과 디이소시아네이트를 말단에 갖는 이관능체 제조단계와;
온도계와 교반기, 응축콘덴서를 장착한 반응기에 400~600중량부의 피마자유와, 상기 아민과 디이소시아네이트를 말단에 갖는 이관능체 제조단계에서 제조된 220.01~367.05중량부의 아민과 디이소시아네이트를 말단에 갖는 이관능체에, 0.01~0.05중량부의 축합촉매를 첨가하고, 6~24시간 반응하여 620.02~967.1중량부의 피마자유변성 경화제(curing agent) 제조단계와;
온도계와 교반기, 응축콘덴서를 장착한 반응기에 대두유나, 피마자유, 유채유 및 해바라기유 등의 식물성오일 400~600중량부와, 포름산(formic acid)이나 초산(acetic acid) 등의 유기산(organic acid) 50~200중량부를 넣고, 400~600RPM의 속도로 교반하면서 반응기 온도를 40~60℃로 상승시키고, 여기에 과산화수소수나 퍼아세틱 액시드(peracetic acid), 메타-클로로퍼벤조익 액시드(m-chloroperbenzoic acid) 등의 산화제(oxidizer) 50~200중량부를 4~6시간 동안 적가한 다음, 40~60℃의 온도를 유지시키면서 4~6시간 동안 반응을 더 지속시켜서, 반응이 끝나면 500~1000중량부의 증류수를 가하여 반응물을 중화시키고, 여기에 에틸아세테이트(ethyl acetate)나 디에틸에테르(diethyl ether) 등의 저비점 유기용매 500~1000중량부를 첨가하여 상분리(phase separation)를 유도한 후, 물 층(water layer)을 제거하여 400~600 중량부의 에폭시화 식물성오일 제조단계와;
온도계 및 교반기를 장착한 반응기에 상기 에폭시화 식물성오일 제조단계에서 제조된 400~600중량부의 에폭시화 식물성오일에, 상기 피마자유변성 경화제 제조단계에서 제조된 620.02~967.1중량부의 피마자유변성 경화제를 첨가하여 1~4시간 동안 500~1000RPM의 속도로 교반하는 바이오에폭시 배합단계를 거쳐서 620.02~967.1중량부의 피마자유변성 경화제 및 400~600중량부의 에폭시화 식물성오일로 조성되는 환경호르몬을 배출하지 않는 바이오에폭시 수지제조방법이다.
A reactor equipped with a thermometer, a mechanical stirrer and a reflux condenser is charged with 400 to 600 parts by weight of a reactive solvent such as tetrahydrofuran or toluene, 60 to 117 parts by weight of a diamine such as ethylenediamine, propylenediamine, butylenediamine or hexamethylenediamine, and 1,4-phenylene diisocyanate (1,4- phenylene diisocyanate, 4,4'-diisocyanatodi cyclohexyl methane, tolylene diisocyanate, and methylene diphenyl diisocyanate, and the like. 160 to 250 parts by weight of a diisocyanate, and dibutyl tin dilaurate, dibutyl tin maleate, 1,4-diazobisiclo [2,2,2] octane [ 1,4-diazabicyclo [2.2.2] octa ne], and reacting the mixture for 6 to 24 hours. The reaction mixture is then evaporated under reduced pressure to obtain 220.01 to 367.05 parts by weight of an amine and a diisocyanate at the terminal thereof.
A reactor equipped with a thermometer, a stirrer and a condenser condenser was charged with 400 to 600 parts by weight of castor oil and 220.01 to 367.05 parts by weight of an amine and diisocyanate prepared at the terminal of the amine and diisocyanate, 0.01 to 0.05 part by weight of a condensation catalyst is added to the catalyst and reacted for 6 to 24 hours to prepare 620.02 to 967.1 parts by weight of a castor oil modified curing agent;
400 to 600 parts by weight of a vegetable oil such as soybean oil, castor oil, rapeseed oil and sunflower oil and an organic acid such as formic acid or acetic acid are added to a reactor equipped with a thermometer, a stirrer and a condenser, And 50 to 200 parts by weight of a polymerization initiator were added to the reactor and the temperature of the reactor was raised to 40 to 60 ° C with stirring at a rate of 400 to 600 RPM. To the reactor was added hydrogen peroxide, peracetic acid, meta-chloroperbenzoic acid 50 to 200 parts by weight of an oxidizing agent such as chloroperbenzoic acid is added dropwise for 4 to 6 hours and then the reaction is continued for 4 to 6 hours while maintaining the temperature at 40 to 60 ° C. When the reaction is completed, And 500-1000 parts by weight of a low boiling point organic solvent such as ethyl acetate or diethyl ether is added thereto to induce phase separation, (water layer) was removed to obtain 400 ~ 6 00 parts by weight of an epoxidized vegetable oil;
In a reactor equipped with a thermometer and a stirrer, 400 to 600 parts by weight of epoxidized vegetable oil prepared in the step of preparing the epoxidized vegetable oil were added to 620.02 to 967.1 parts by weight of a castor oil-modified curing agent prepared in the step of preparing the castor oil- The mixture is stirred for 1 to 4 hours at a speed of 500 to 1000 RPM to form a mixture of 620.02 to 967.1 parts by weight of castor oil modified curing agent and 400 to 600 parts by weight of epoxidized vegetable oil, Resin.

Description

환경호르몬을 배출하지 않는 바이오에폭시 수지의 제조방법{Manufacturing method of bioepoxy resin without environmental hormone releasing} BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a bioepoxy resin,

본 발명은 비스페놀 A(bisphenol A)를 사용하지 않아 환경호르몬을 배출하지 않는 바이오에폭시 수지의 제조방법에 관한 것이다. The present invention relates to a process for producing a bio-epoxy resin which does not use bisphenol A and does not release an environmental hormone.

환경보전이 전 인류적인 화두로 등장하면서 생활 곳곳에서 많은 화석원료 기반의 소재를 환경 친화적인 바이오소재(biomaterial)로 바꾸어 나가려는 노력이 활발해지고 있다. Environmental preservation has become a global issue, and efforts to convert many fossil material-based materials into environmentally friendly biomaterials have become active in many parts of life.

환경과 건강을 생각하는 바이오소재에 대해 선진국에서는 이미 일상생활과 밀접한 관계를 유지하고 있으며, 국내에서도 여러 분야에서 친환경적인 바이오제품을 개발 중인데, 최근 자동차 산업에도 바이오기술(biotechnology)을 이용한 환경친화형 내장재를 개발하여 적용하는 사례가 늘어나고 있다.In the developed countries, biotechnology that considers environment and health has already been closely related to daily life. In Korea, bio-products are being developed in various fields. In recent years, the automobile industry has also been using environmentally friendly biotechnology There are more cases of developing and applying interior materials.

이에 따라, 친환경적인 원료를 사용하여 바이오에폭시(bioepoxy)를 제조할 수 있는 방법이 개발되고 있다. Accordingly, a method for manufacturing bioepoxy using environmentally friendly raw materials has been developed.

에폭시 수지는 접착성 및 인성이 뛰어나고 기계적 강도가 크며 내약품성·전기적 특성이 뛰어나다. Epoxy resins are excellent in adhesiveness and toughness, have high mechanical strength, and are excellent in chemical resistance and electrical properties.

그 종류는 매우 다양하지만 비스페놀-A(bisphenol-A)와 에피크로로히드린(epichlorohydrin)을 알카리 촉매 하에서 반응하여 얻어지는 비스페놀-A형 에폭시 수지(bisphenol-A type epoxy resin)가 대부분을 차지하고, 그 외에도 비스페놀-F형, 페놀-노블락형(phenol-novolac type), 올소 크레졸 노블락형(ortho cresol novolac type) 및 환형(cycloaliphatic type) 에폭시 등이 있다.The bisphenol-A type epoxy resin obtained by reacting bisphenol-A and epichlorohydrin under an alkaline catalyst is the most widely used type, and most of the bisphenol- Phenol-novolac type, ortho cresol novolac type, and cycloaliphatic type epoxy are also available.

비스페놀 A는 강력한 세제를 사용하거나 산성 또는 고온의 액체 속에 비스페놀 A로 만들어진 플라스틱을 넣으면 적은 양이 녹아 나올 수 있다. Bisphenol A can be dissolved in small quantities by using strong detergents or by putting plastic made of bisphenol A in an acidic or hot liquid.

이렇게 해서 나온 비스페놀 A는 에스트로겐과 비슷한 작용을 한다. 1930년대에 난소가 없는 쥐에 비스페놀 A를 주사한 실험을 통해 비스페놀 A가 합성 에스트로겐으로 작용할 수 있다는 사실이 처음 밝혀졌다. The resulting bisphenol A acts similarly to estrogen. In the 1930s, an experiment in which bisphenol A was injected into an ovarian mouse showed that bisphenol A could act as a synthetic estrogen.

이후 세포를 이용한 실험을 통해 매우 낮은 농도에서 내분비계교란물질로 작용할 수 있다는 것이 알려졌다. It has been shown through cell-based experiments that endocrine glands can act as substances at very low concentrations.

때문에 인간에게도 정자 수의 감소나 여성화 같은 건강 문제가 나타날 수 있다. 플라스틱을 만드는 업자들은 오랜 시간 동안 비스페놀 A의 안전성에 대해서 주장해 왔다. Therefore, human health problems such as decrease in the number of sperm and feminization may appear. Plastics makers have long argued for the safety of bisphenol A.

그러나 최근의 연구에 따르면 플라스틱 제조업체에서 11건의 안전한 연구결과를 내놓았으나 104건에 걸친 독립적인 연구에서는 90% 이상 위험성이 나타났다고 한다. However, recent studies have shown that plastic manufacturers have published 11 safety studies, but more than 90% of the 104 independent studies have shown a risk.

또한 아주 적은 양에서도 비스페놀A가 신경 발달에 문제를 일으킨다는 연구 결과도 발표되었다. 때문에 아직까지 비스페놀A를 사용하는 것에 대해서 논란이 끊이지 않고 있다.Studies have also been published that bisphenol A causes neurological development problems in very small amounts. So, there is still a lot of controversy about using bisphenol A.

비스페놀A는 대부분의 에폭시의 제1 구성요소이며 음식물이나 캔음료, 그리고 가공 원목제품 등에도 들어가 있다. Bisphenol A is the first component of most epoxies and is also found in food, canned drinks, and processed wood products.

하지만 이 물질은 잠재적으로 내분비 교란 등에 영향을 미칠 수 있기 때문에 지속적인 정밀 조사 중에 있는 물질이다. However, it is a substance that is under constant scrutiny because it can potentially affect endocrine disruption.

이러한 이유로 화학들은 이전에 이미 식물성오일(vegetable oil)을 이용하여 에폭시수지를 만드는 시도를 했었지만 대부분이 에폭시화 아마인유(epoxidized linseed oil)를 이용한 것이었는데, 그 이유는 이 물질이 음식에 적용이 가능하게 미국후생성(FDA)의 승인을 이미 받은 상태이기 때문이다.For this reason, chemists have already attempted to make epoxy resins using vegetable oils, but most have used epoxidized linseed oil because they can be applied to food Because it has already been approved by the US Department of Health and Human Services.

따라서 에폭시 수지의 이런 단점들을 개선하기 위해 원재료로 식물성오일을 이용한 연구가 많이 진행되고 있다.Therefore, many researches using vegetable oil as a raw material have been carried out to improve these disadvantages of epoxy resin.

프랑스의 몽펠리에 II 대학(University of Montpellier II)의 Mylene Stemmelen, Vincent Lapinte과 동료 연구자들은 에폭시화 아마인유 대신 시스테아민(cysteamine)과 포도씨유(grape-seed oil)로부터 만든 폴리아민을 이용했다. Mylene Stemmelen and Vincent Lapinte of the University of Montpellier II in France and colleagues used polyamines made from cysteamine and grape-seed oil instead of epoxidized linseed oil.

그들은 식물성 에폭시 레진을 만들기 위해 아민을 가지고 에폭시화 아마인유를 가열해 이들을 서로 뒤엉키게 만들었다. They heated the epoxidized linseed oil with amines to make vegetable epoxy resin, which entangled them together.

여기서 본 발명과 연관하여 선행기술 특허문헌을 살펴보면 다음과 같다. Hereinafter, the prior art patent literature related to the present invention will be described.

국제공개특허 WO2008/151286에서는 촉매 존재 하에서, 하이드록실 반응성 아크릴레이트(hydroxyl reactive acrylate) 및 하이드록실 반응성 메타크릴레이트(hydroxyl reactive methacrylate)중 하나 이상과 에폭시화 식물성오일의 반응으로부터 제조되는 에폭시화 식물성오일 올리고머가 포함된 방사선 경화성 코팅 조성물의 다양한 제조방법이 개시되어있다.WO2008 / 151286 discloses an epoxidized vegetable oil prepared from the reaction of an epoxidized vegetable oil with at least one of a hydroxyl reactive acrylate and a hydroxyl reactive methacrylate in the presence of a catalyst. Various methods of making oligomer-containing radiation curable coating compositions are disclosed. 국제공개특허 WO2007/062158에서는 레불린산 에스테르와 에폭시화 불포화 지방산 에스테르의 반응으로부터 생성되는 화합물의 제조 방법이 공지되어 있다.WO 2007/062158 discloses a process for preparing a compound resulting from the reaction of levulinic acid esters with epoxidized unsaturated fatty acid esters. 이들 화합물은 다양한 고분자에 대한 재생 가능한 바이오매스(biomass)계 가소제로서(plasticizer) 이용 가능하다.These compounds are available as biomass-based plasticizers for various polymers. 또한 레불린산의 알킬 에스테르(alkyl ester)와 식물성오일 유래의 에폭시화 불포화 지방산 에스테르 간의 반응으로 형성되는 단일(mono-), 이중(di-) 및 삼중(tri-) 케탈(ketal) 부가중합체(addition polymer)가 개시되어 있다.Mono-, di-, and tri-ketal adduct polymers formed by the reaction between an alkyl ester of levulinic acid and an epoxidized unsaturated fatty acid ester derived from vegetable oil addition polymer is disclosed. 또한 이들 에폭시 수지는 분해성(degradation)이 없어 자연환경에 방치되거나 매립처리 후에도 토양에 그대로 남아있으며, 소각할 경우에도 연소열이 높고, 연소 가스는 환경공해를 유발하기 때문에 통상의 소각장치 만으로 문제를 해결하는 것은 어렵다.These epoxy resins have no degradation and are left in the natural environment or remain in the soil even after landfilling. Also, since incineration heat is high and combustion gas causes environmental pollution, the problem is solved only by a general incineration device It is difficult to do. 재활용이 점차 널리 보급되지만, 에폭시 수지의 응용분야의 상당히 큰 부분은, 재활용에 본질적으로 부적당하다.While recycling is becoming more and more widespread, a significant portion of the application of epoxy resins is inherently inadequate for recycling. 공지된 이들 단순 변성방법(simple modification method)이나 식물성 에폭시화오일 혼합형태의 에폭시 수지로는 까다로운 특성을 요구하는 자동차나 기계 부품 및 산업용 접착제 수지를 대체하기에는 한계가 있다.There is a limit to replacing automobile or machine parts and industrial adhesive resins which require difficult characteristics with these known simple modification methods or mixed with vegetable epoxidized oil epoxy resin.

따라서 본 발명은 현재 석유화학에 기반을 두고 있는 에폭시 재료를 변성된 식물성오일를 주원료로 하여 환경호르몬을 배출하지 않는 바이오에폭시 수지의 제조방법을 제공하는 것을 목적으로 한다. Accordingly, it is an object of the present invention to provide a method for producing a bio-epoxy resin which does not discharge an environmental hormone by using a modified petroleum-based epoxy material as a main raw material of a modified vegetable oil.

식물성오일은 주로 다양한 불포화도(degree of unsaturation)를 가진 글리세롤(glyceride)과 지방산(fatty acid)의 삼중에스테르(tri-ester)인 글리세라이드 를 함유한다. Vegetable oils mainly contain glycerides, which are tri-esters of glycerides and fatty acids with varying degrees of unsaturation.

즉 2개 이상의 이중결합(double bond, -C=C-)과 함께 탄소 원자 12~24개의 알킬사슬(alkyl chain)을 가진 지방산과 글리세롤(glycerol)의 에스테르와 같은 불포화 지방산 트리글리세라이드(triglyceride)이다. Unsaturated fatty acid triglycerides such as esters of glycerol with fatty acids having an alkyl chain of 12 to 24 carbon atoms with two or more double bonds (-C = C-) .

이들 불포화 식물성오일의 이중결합을 에폭시화 하기 위해서 퍼옥시산 (peroxy acid)을 이용한 공정에 의해 일부 또는 전부가 에폭시화 될 수 있다. In order to epoxidize the double bonds of these unsaturated vegetable oils, some or all of them may be epoxidized by a process using peroxy acid.

식물성오일의 에폭시화를 통해 합성된 에폭시화 식물성오일은 기존의 석유화학 제품에서 얻어지는 에폭시 화합물에 비해 낮은 에너지를 사용하여 생산 가능하며, 생분해(biodegradation)가 가능하여 친환경적이고, 향후 재생이 가능하다.Epoxidized vegetable oils synthesized through the epoxidation of vegetable oils can be produced using lower energy than epoxy compounds obtained from conventional petrochemical products, biodegradable, environmentally friendly, and can be regenerated in the future.

다양한 식물유 중에서 산업적으로 널리 쓰이고 있는 식물유 중의 하나는 피마자유(castor oil) 이다. Among the various vegetable oils, one of the vegetable oils widely used in industry is castor oil.

피마자유는 피마자 (아주까리) 열매를 짠 기름으로 녹는점 -10∼-17℃, 비중 0.950∼0.975, 비누화값 176∼187, 요오드값 81∼91(불건성유)이다. The castor oil has a melting point of 10 to 17 ° C, a specific gravity of 0.950 to 0.975, a saponification value of 176 to 187, and an iodine value of 81 to 91 (non-drying oil).

피마자씨의 함유율은 35∼57%이고, 주성분은 리시놀레산(linoleic acid) 이다. The content of castor seed is 35 to 57%, and the main ingredient is linoleic acid.

리시놀레산은 히드록시기를 가진 탄소수 18의 불포화지방산이며 85∼90%를 차지한다. Ricinoleic acid is an unsaturated fatty acid having 18 carbon atoms with a hydroxyl group, and it accounts for 85 to 90%.

피마자유는 여러 식물유가 가지고 있는 트리글리세라이드(tri-glyceride)와 이중결합뿐만 아니라 여러 개의 수산기를 가지고 있어 다양한 개질의 가능성을 가지고 있다.The castor oil has a variety of modification possibilities because it has multiple hydroxyl groups as well as tri-glyceride and double bonds of various vegetable oils.

피마자유의 구조                          Castor oil structure

Figure 112014000472608-pat00001
Figure 112014000472608-pat00001

온도계(thermometer)와 교반기(mechanical stirrer), 응축콘덴서(reflux condenser)를 장착한 반응기(reactor)에 테트로히드로퓨란(tetrahydrofuran)이나 톨루엔(toluene)과 같은 반응성용매(reactive solvent) 400~600중량부, 에틸렌디아민(ethylenediamine)이나, 프로필렌디아민(propylenediamine), 부틸렌디아민(butylenediamine), 헥사메틸렌디아민(hexamethylendiamine) 등과 같은 디아민 60~117중량부와, 1,4-페닐렌 디이소시아네이트(1,4-phenylene diisocyanate)나, 4,4'-디이소시아네토디씨크로헥실 메탄(4,4'-diisocyanatodi cyclohexyl methane), 톨리엔 디이소시아네이트(tolylene diisocyanate), 메틸렌디페닐 디이소시아네이트(Methylene diphenyl diisocyanate) 등의 디이소시아네이트 160~250중량부 및 디부틸 틴 디라울레이트(dibutyl tin dilaurate)나, 디부틸 틴 말레이트(dibutyl tin maleate), 1,4-디아조바이시크로[2,2,2] 옥탄[1,4-diazabicyclo [2,2,2] octane] 등의 축합촉매(condensation catalyst) 0.01~0.05중량부를 가하고 6~24시간 반응 한 다음, 반응성용매를 감압 하에서 증발시켜서 220.01~367.05중량부의 아민과 디이소시아네이트를 말단에 갖는 이관능체 제조단계와; A reactor equipped with a thermometer, a mechanical stirrer and a reflux condenser is charged with 400 to 600 parts by weight of a reactive solvent such as tetrahydrofuran or toluene, 60 to 117 parts by weight of a diamine such as ethylenediamine, propylenediamine, butylenediamine or hexamethylenediamine, and 1,4-phenylene diisocyanate (1,4- phenylene diisocyanate, 4,4'-diisocyanatodicyclohexyl methane, tolylene diisocyanate, and methylene diphenyl diisocyanate, and the like. 160 to 250 parts by weight of a diisocyanate, and dibutyl tin dilaurate, dibutyl tin maleate, 1,4-diazobisiclo [2,2,2] octane [ 1,4-diazabicyclo [2.2.2] octa ne], and reacting the mixture for 6 to 24 hours. The reaction mixture is then evaporated under reduced pressure to obtain 220.01 to 367.05 parts by weight of an amine and a diisocyanate at the terminal thereof.

온도계와 교반기, 응축콘덴서를 장착한 반응기에 400~600중량부의 피마자유와, 상기 아민과 디이소시아네이트를 말단에 갖는 이관능체 제조단계에서 제조된 220.01~367.05중량부의 아민과 디이소시아네이트를 말단에 갖는 이관능체에, 0.01~0.05중량부의 축합촉매를 첨가하고, 6~24시간 반응하여 620.02~967.1중량부의 피마자유변성 경화제(curing agent) 제조단계와;A reactor equipped with a thermometer, a stirrer and a condenser condenser was charged with 400 to 600 parts by weight of castor oil and 220.01 to 367.05 parts by weight of an amine and diisocyanate prepared at the terminal of the amine and diisocyanate, 0.01 to 0.05 part by weight of a condensation catalyst is added to the catalyst and reacted for 6 to 24 hours to prepare 620.02 to 967.1 parts by weight of a castor oil modified curing agent;

온도계와 교반기, 응축콘덴서를 장착한 반응기에 대두유나, 피마자유, 유채유 및 해바라기유 등의 식물성오일 400~600중량부와, 포름산(formic acid)이나 초산(acetic acid) 등의 유기산(organic acid) 50~200중량부를 넣고, 400~600RPM의 속도로 교반하면서 반응기 온도를 40~60℃로 상승시키고, 여기에 과산화수소수나 퍼아세틱 액시드(peracetic acid), 메타-클로로퍼벤조익 액시드(m-chloroperbenzoic acid) 등의 산화제(oxidizer) 50~200중량부를 4~6시간 동안 적가한 다음, 40~60℃의 온도를 유지시키면서 4~6시간 동안 반응을 더 지속시켜서, 반응이 끝나면 500~1000중량부의 증류수를 가하여 반응물을 중화시키고, 여기에 에틸아세테이트(ethyl acetate)나 디에틸에테르(diethyl ether) 등의 저비점 유기용매 500~1000중량부를 첨가하여 상분리(phase separation)를 유도한 후, 물 층(water layer)을 제거하여 400~600 중량부의 에폭시화 식물성오일 제조단계와;400 to 600 parts by weight of a vegetable oil such as soybean oil, castor oil, rapeseed oil and sunflower oil and an organic acid such as formic acid or acetic acid are added to a reactor equipped with a thermometer, a stirrer and a condenser, And 50 to 200 parts by weight of a polymerization initiator were added to the reactor and the temperature of the reactor was raised to 40 to 60 ° C with stirring at a rate of 400 to 600 RPM. To the reactor was added hydrogen peroxide, peracetic acid, meta-chloroperbenzoic acid 50 to 200 parts by weight of an oxidizing agent such as chloroperbenzoic acid is added dropwise for 4 to 6 hours and then the reaction is continued for 4 to 6 hours while maintaining the temperature at 40 to 60 ° C. When the reaction is completed, And 500-1000 parts by weight of a low boiling point organic solvent such as ethyl acetate or diethyl ether is added thereto to induce phase separation, (water layer) was removed to obtain 400 ~ 6 00 parts by weight of an epoxidized vegetable oil;

온도계 및 교반기를 장착한 반응기에 상기 에폭시화 식물성오일 제조단계에서 제조된 400~600중량부의 에폭시화 식물성오일에, 상기 피마자유변성 경화제 제조단계에서 제조된 620.02~967.1중량부의 피마자유변성 경화제를 첨가하여 1~4시간 동안 500~1000RPM의 속도로 교반하는 바이오에폭시 배합단계를 거쳐서 620.02~967.1중량부의 피마자유변성 경화제 및 400~600중량부의 에폭시화 식물성오일로 조성되는 환경호르몬을 배출하지 않는 바이오에폭시 수지의 제조를 완성하였다. In a reactor equipped with a thermometer and a stirrer, 400 to 600 parts by weight of epoxidized vegetable oil prepared in the step of preparing the epoxidized vegetable oil were added to 620.02 to 967.1 parts by weight of a castor oil-modified curing agent prepared in the step of preparing the castor oil- The mixture is stirred for 1 to 4 hours at a speed of 500 to 1000 RPM to form a mixture of 620.02 to 967.1 parts by weight of castor oil modified curing agent and 400 to 600 parts by weight of epoxidized vegetable oil, To prepare a resin.

이상에서 설명한 바와 같이 본 발명 환경호르몬을 배출하지 않는 바이오에폭시 수지의 제조방법은 완전 경화되어 미반응 화합물질이 발생하지 않으며, 기계적 물성 및 내후성이 뛰어나 자동차용 부품소재나 기계부품, 접착제 용도의 바이오에폭시 수지를 용이하게 제조할 수 있다. INDUSTRIAL APPLICABILITY As described above, the process for producing bio-epoxy resin which does not discharge the environmental hormone according to the present invention is completely cured and does not generate unreacted compound material, and has excellent mechanical properties and weatherability. An epoxy resin can be easily produced.

도1은 본 발명의 실시단계 예시도.
도2는 본 발명의 에폭시화의 모식도.
도3은 본 발명의 실시예의 반응기 예시도.
BRIEF DESCRIPTION OF THE DRAWINGS Fig.
2 is a schematic view of the epoxidation of the present invention.
3 is an illustration of a reactor of an embodiment of the present invention.

본 발명에 따른 환경호르몬을 배출하지 않는 바이오에폭시 수지의 제조방법을 보다 상세하게 살펴보고, 그에 따른 실시예를 서술하면 다음과 같다. The method for producing a bio-epoxy resin that does not emit an environmental hormone according to the present invention will be described in more detail, and its embodiments will be described as follows.

온도계(thermometer)와 교반기(mechanical stirrer), 응축콘덴서(reflux condenser)를 장착한 반응기(reactor)에 테트로히드로퓨란(tetrahydrofuran)이나 톨루엔(toluene)과 같은 반응성용매(reactive solvent) 400~600중량부, 에틸렌디아민(ethylenediamine)이나, 프로필렌디아민(propylenediamine), 부틸렌디아민(butylenediamine), 헥사메틸렌디아민(hexamethylendiamine) 등과 같은 디아민 60~117중량부와, 1,4-페닐렌 디이소시아네이트(1,4-phenylene diisocyanate)나, 4,4'-디이소시아네토디씨크로헥실 메탄(4,4'-diisocyanatodi cyclohexyl methane), 톨리엔 디이소시아네이트(tolylene diisocyanate), 메틸렌디페닐 디이소시아네이트(Methylene diphenyl diisocyanate) 등의 디이소시아네이트 160~250중량부 및 디부틸 틴 디라울레이트(dibutyl tin dilaurate)나, 디부틸 틴 말레이트(dibutyl tin maleate), 1,4-디아조바이시크로[2,2,2] 옥탄[1,4-diazabicyclo [2,2,2] octane] 등의 축합촉매(condensation catalyst) 0.01~0.05중량부를 가하고 6~24시간 반응 한 다음, 반응성용매를 감압 하에서 증발시켜서 220.01~367.05중량부의 아민과 디이소시아네이트를 말단에 갖는 이관능체 제조단계를 완성한다. A reactor equipped with a thermometer, a mechanical stirrer and a reflux condenser is charged with 400 to 600 parts by weight of a reactive solvent such as tetrahydrofuran or toluene, 60 to 117 parts by weight of a diamine such as ethylenediamine, propylenediamine, butylenediamine or hexamethylenediamine, and 1,4-phenylene diisocyanate (1,4- phenylene diisocyanate, 4,4'-diisocyanatodicyclohexyl methane, tolylene diisocyanate, and methylene diphenyl diisocyanate, and the like. 160 to 250 parts by weight of a diisocyanate, and dibutyl tin dilaurate, dibutyl tin maleate, 1,4-diazobisiclo [2,2,2] octane [ 1,4-diazabicyclo [2.2.2] octa ne], and the mixture was reacted for 6 to 24 hours. Then, the reactive solvent was evaporated under reduced pressure to complete the process for preparing a diazabicylic ester having 220.01 to 367.05 parts by weight of an amine and a diisocyanate at the terminal thereof do.

온도계와 교반기, 응축콘덴서를 장착한 반응기에 400~600중량부의 피마자유와, 상기 아민과 디이소시아네이트를 말단에 갖는 이관능체 제조단계에서 제조된 220.01~367.05중량부의 아민과 디이소시아네이트를 말단에 갖는 이관능체에, 0.01~0.05중량부의 축합촉매를 첨가하고, 6~24시간 반응하여 620.02~967.1중량부의 피마자유변성 경화제(curing agent) 제조단계를 완성한다. A reactor equipped with a thermometer, a stirrer and a condenser condenser was charged with 400 to 600 parts by weight of castor oil and 220.01 to 367.05 parts by weight of an amine and diisocyanate prepared at the terminal of the amine and diisocyanate, 0.01 to 0.05 parts by weight of a condensation catalyst is added to the catalyst and reacted for 6 to 24 hours to complete the step of preparing 620.02 to 967.1 parts by weight of a castor oil-modified curing agent.

온도계와 교반기, 응축콘덴서를 장착한 반응기에 대두유나, 피마자유, 유채유 및 해바라기유 등의 식물성오일 400~600중량부와, 포름산(formic acid)이나 초산(acetic acid) 등의 유기산(organic acid) 50~200중량부를 넣고, 400~600RPM의 속도로 교반하면서 반응기 온도를 40~60℃로 상승시킨다.400 to 600 parts by weight of a vegetable oil such as soybean oil, castor oil, rapeseed oil and sunflower oil and an organic acid such as formic acid or acetic acid are added to a reactor equipped with a thermometer, a stirrer and a condenser, 50 to 200 parts by weight, and the temperature of the reactor is raised to 40 to 60 DEG C with stirring at a speed of 400 to 600 RPM.

여기에 과산화수소수나 퍼아세틱 액시드(peracetic acid), 메타-클로로퍼벤조익 액시드(m-chloroperbenzoic acid) 등의 산화제(oxidizer) 50~200중량부를 4~6시간 동안 적가한 다음, 40~60℃의 온도를 유지시키면서 4~6시간 동안 반응을 더 지속시킨다. 50 to 200 parts by weight of an oxidizer such as hydrogen peroxide water, peracetic acid and m-chloroperbenzoic acid are added dropwise for 4 to 6 hours, The reaction is continued for 4 to 6 hours while maintaining the temperature at 60 ° C.

반응이 끝나면 500~1000중량부의 증류수를 가하여 반응물을 중화시키고, 여기에 에틸아세테이트(ethyl acetate)나 디에틸에테르(diethyl ether) 등의 저비점 유기용매 500~1000중량부를 첨가하여 상분리(phase separation)를 유도한 후, 물 층(water layer)을 제거하여 400~600 중량부의 에폭시화 식물성오일 제조단계와;When the reaction is completed, 500-1000 parts by weight of distilled water is added to neutralize the reaction product, and 500-1000 parts by weight of a low-boiling organic solvent such as ethyl acetate or diethyl ether is added to perform phase separation. Followed by removal of the water layer to produce 400 to 600 parts by weight of an epoxidized vegetable oil;

온도계 및 교반기를 장착한 반응기에 상기 에폭시화 식물성오일 제조단계에서 제조된 400~600중량부의 에폭시화 식물성오일에, 상기 피마자유변성 경화제 제조단계에서 제조된 620.02~967.1중량부의 피마자유변성 경화제를 가하여 1~4시간 동안 500~1000RPM의 속도로 교반하는 바이오에폭시 배합단계를 거쳐서 620.02~967.1중량부의 피마자유변성 경화제 및 400~600중량부의 에폭시화 식물성오일로 조성되는 환경호르몬을 배출하지 않는 바이오에폭시 수지의 제조를 완성하였다. A thermometer and a stirrer were charged with 400 to 600 parts by weight of epoxidized vegetable oil prepared in the step of preparing the epoxidized vegetable oil and 620.02 to 967.1 parts by weight of a castor oil modified curing agent prepared in the step of preparing the castor oil modified curing agent The mixture is stirred for 1 to 4 hours at a speed of 500 to 1000 RPM to form a mixture of 620.02 to 967.1 parts by weight of a castor oil modified curing agent and 400 to 600 parts by weight of an epoxidized vegetable oil, .

상기 유기용매는 반응 매개체(reaction medium)로 반응효율을 높이기 위해 헥산(hexane) 등의 지환족류나 톨루엔 등의 방향족류나, 테트라하이드로퓨란 등의 퓨란류, 메틸에틸케톤(methyl ethyl ketone) 등의 케톤류 등을 사용하는 것이 바람직하나, 유기용매의 선정에는 그 제약이 없다.The organic solvent may be an alicyclic group such as hexane or an aromatic group such as toluene, furans such as tetrahydrofuran, ketones such as methyl ethyl ketone or the like such as hexane to increase the reaction efficiency with a reaction medium. And the like, but there is no restriction in the selection of the organic solvent.

상기 식물성오일은 대두나, 유채씨, 아몬드, 살구씨, 옥수수, 목화씨유, 포도씨, 해바라기씨, 피마자 등의 식물 씨앗에서 통상의 압축법이나 용매추출법에서 추출된 오일이 사용가능하며 그 선정에는 사실상 제약이 없다.The vegetable oil may be oil extracted from a plant seed such as soybean, rapeseed, almond, apricot, corn, cottonseed, grape seed, sunflower seed, castor, etc. by a conventional compression method or solvent extraction method. There are no restrictions.

상기 산화제는 식물성오일을 산화시켜 에폭시기를 생성시키는 화합물로 과산화수소수나 퍼아세틱 액시드, 메타-클로로퍼벤조익 액시드 등이 사용가능하다.The oxidizing agent is a compound which oxidizes the vegetable oil to produce an epoxy group, and hydrogen peroxide, peracetic acid, meta-chloroperbenzoic acid and the like can be used.

이때 산화제 함량이 50중량부 이하일 경우 에폭시화 반응이 일어나지 않으며 200중량부 이상일 경우 반응성 조절이 어렵다. At this time, when the oxidizing agent content is 50 parts by weight or less, the epoxidation reaction does not occur. When the oxidizing agent content is 200 parts by weight or more, it is difficult to control the reactivity.

상기 과산화수소수는 100중량부의 증류수에 50~100중량부의 과산화수소가 혼합된 것이 바람직하다.It is preferable that the hydrogen peroxide solution is mixed with 100 parts by weight of distilled water and 50 to 100 parts by weight of hydrogen peroxide.

상기 식물성 에폭시화오일은 최종 바이오에폭시 수지에 생분해성을 부여하며 400~600중량부가 사용된다.The vegetable epoxidized oil imparts biodegradability to the final bio-epoxy resin and is used in an amount of 400 to 600 parts by weight.

이때 식물성 에폭시화오일 함량이 400중량부 미만일 경우 생분해성이 떨어지고 600중량부 이상일 경우 바이오에폭시 수지의 기계적 강도가 떨어진다.At this time, if the content of the vegetable epoxidized oil is less than 400 parts by weight, the biodegradability is poor, and if the amount is more than 600 parts by weight, the mechanical strength of the bio-epoxy resin is lowered.

상기 피마자유변성 경화제는 620.02~967.1중량부가 사용되며 식물성 에폭시화오일을 경화시킨다. 620.02 to 967.1 parts by weight of the castor oil-modified curing agent is used to cure the vegetable epoxidized oil.

이때 피마자유변성 경화제 함량이 620.02중량부 이하일 경우 경화된 바이오에폭시 수지의 내후성이 떨어지고 967.1중량부 이상일 경우 취기가 저하된다. At this time, when the content of the castor oil-modified curing agent is less than 620.02 parts by weight, the weather resistance of the cured bio-epoxy resin is lowered, and when the content is 967.1 parts by weight or more,

이하 실시예를 통하여 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to examples.

단 본 발명의 범위가 예시한 실시예만으로 한정되는 것은 아니다.However, the scope of the present invention is not limited to the illustrated embodiments.

<표 1>에 기재된 성분을 각각의 배합비로 아래와 같은 공정의 제조방법으로 혼합하여 제조하였다. The ingredients listed in Table 1 were mixed at the respective blending ratios by the following production process.

Figure 112014000472608-pat00002
Figure 112014000472608-pat00002

대두를 분쇄한 후에 착유기로 추출된 550g의 대두유를 교반기 및 응축콘덴서가 장착된 반응기 넣고 120g의 포름산을 가하여 400RPM으로 교반하면서 혼합하고 반응기 온도를 50℃로 상승시킨다. After pulverizing soybeans, 550 g of soybean oil extracted with a milking machine was charged into a reactor equipped with a stirrer and a condenser, 120 g of formic acid was added thereto, and the mixture was stirred at 400 RPM while stirring.

120g의 과산화수소수를 반응기에 5시간 동안 서서히 적가한 다음, 50℃에서 5시간 동안 반응을 더 지속시킨다. 120 g of hydrogen peroxide water was slowly added dropwise to the reactor for 5 hours, and the reaction was further continued at 50 &lt; 0 &gt; C for 5 hours.

반응이 끝나면 500g의 증류수를 가하여 반응계를 중화시키고 여기에 500g의 에틸아세테이트를 가하여 상분리를 유도하고 물층을 제거한 다음 에폭시화 대두유를 제조한다.At the end of the reaction, 500 g of distilled water was added to neutralize the reaction system, 500 g of ethyl acetate was added thereto to induce phase separation, and the water layer was removed to prepare epoxidized soybean oil.

온도계와 교반기, 응축콘덴서를 장착한 반응기에 400g의 테트로히드로퓨란, 60g의 에틸렌디아민 160g의 1,4-페닐렌 디이소시아네이트 및 0.01g의 디부틸 틴 디라울레이트를 가하고 8시간 반응 한 다음 테트로히드로퓨란를 감압 하에서 증발시켜서 아민과 디이소시아네이트를 말단에 갖는 이관능체를 제조한다.To the reactor equipped with a thermometer, a stirrer and a condenser condenser, 400 g of tetrohydrofuran, 160 g of 1,4-phenylene diisocyanate with 60 g of ethylenediamine and 0.01 g of dibutyltin dilaurate were added and reacted for 8 hours, The hydrochlorofuran is evaporated under reduced pressure to prepare a dihydrotensifϊer having an amine and a diisocyanate at the end.

온도계와 교반기, 응축콘덴서를 장착한 반응기에 400g의 피마자유와 220.01g의 아민과 디이소시아네이트를 말단에 갖는 이관능체 및 0.01g의 디부틸 틴 디라울레이트를 가하고 6시간 반응하여 피마자유변성 경화제를 제조한다.In a reactor equipped with a thermometer, a stirrer and a condenser condenser, 400 g of castor oil, 220.01 g of a dianhydride having an amine and a diisocyanate at the terminal thereof and 0.01 g of dibutyltin dilaurate were added and reacted for 6 hours to obtain a castor oil-modified curing agent .

온도계 및 교반기를 장착한 반응기에 400g의 에폭시화 대두유 및 620.02g의 피마자유변성 경화제를 가하여 2시간 동안 1000RPM의 속도로 교반하여 바이오에폭시 제조를 완성한다.400 g of epoxidized soybean oil and 620.02 g of castor oil-modified curing agent were added to a reactor equipped with a stirrer, a thermometer and a stirrer and stirred at a rate of 1000RPM for 2 hours to complete the bio-epoxy production.

상기 실시예 (1) 내지 (4)의 평가 결과는 하기 <표 2>에 나타내었다.The evaluation results of Examples (1) to (4) are shown in Table 2 below.

실시예에 따라 제조된 환경호르몬을 배출하지 않는 바이오에폭시 수지의 성능은 30g의 조성물을 200 mm x 200 mm x 1 mm의 용적의 몰드에 넣어 120℃에서 3시간 동안 선경화(pre-cure) 하고 180℃에서 2시간 동안 후경화(post-cure)한 시트를 제작하여 하기의 각종 기능성 시험방법에 따라 평가하였다. The performance of the bio-epoxy resin produced according to the example was evaluated by pre-curing 30 g of the composition in a mold having a volume of 200 mm x 200 mm x 1 mm at 120 ° C for 3 hours The sheet was post-cured at 180 DEG C for 2 hours and evaluated according to the following various functional test methods.

(1) 생분해도 (1) Biodegradability

합성된 바이오에폭시 수지의 생분해도는 ASTM D5209-91을 변형한 변형 스텀법(modified sturm test)으로 측정한다. The biodegradability of the synthesized bio-epoxy resin is measured by a modified sturm test which is a modification of ASTM D5209-91.

균주배양에 사용하는 스톡용액(stock solution)은 100㎖씩 유리병에 분주하여 121℃에서 15분간 고압증기로 멸균한다. The stock solution used for culturing the strain is dispensed in a glass bottle in a volume of 100 ml and sterilized by high pressure steam at 121 ° C for 15 minutes.

스톡용액은 4㎖의 페릭 클로라이드(ferric chloride)[FeCl3 6H2O (0.25g)/증류수 1L], 1㎖의 마그네슘 설페이트(magnesium sulfate)[MgSO4 7H2O (2.5g)/증류수 1L], 1㎖의 칼슘 클로라이드(calcium chloride)[CaCl (227.5g)/증류수 1L], 2㎖의 인산완충용액(phosphate buffer)[KH2PO4 (8.5g), K2HPO4 (21.75g), NH4Cl (1.7g), NaHPO4 H2O (33.4g)/증류수 1L), 1㎖의 암모니움 설페이트(ammonium sulfate)[(NH4)2SO4 (40g)/증류수 1L]를 증류수 991 ㎖에 혼합하여 제조한다. The stock solution was mixed with 4 ml of ferric chloride [FeCl 3 6H 2 O (0.25 g) / 1 L of distilled water], 1 mL of magnesium sulfate [MgSO 4 7H 2 O (2.5g) / distilled water 1L], calcium chloride 1㎖ of (calcium chloride) [CaCl (227.5g) / distilled water 1L], a phosphate buffer solution of 2㎖ (phosphate buffer) [KH 2 PO 4 (8.5g ), K 2 HPO 4 (21.75 g), NH 4 Cl (1.7 g), NaHPO 4 H 2 O (33.4 g) / distilled water 1 L), 1 ml of ammonium sulfate [(NH 4 ) 2 SO 4 (40 g) / distilled water 1 L] was mixed with 991 ml of distilled water.

공기펌프(air pump)에서 생성되는 공기 내의 이산화탄소(CO2)를 제거하기 위한 시약은 10N의 수산화나트륨(NaOH)와 0.025N 수산화바륨[Ba(OH)2]을 사용한다. Reagent for removing carbon dioxide (CO 2) in the air produced by the air pump (air pump) uses sodium hydroxide 10N (NaOH) and 0.025N barium hydroxide [Ba (OH) 2].

균주를 1 x 109 cfu/ml 만큼 접종하여 쉐이킹 배양기(shaking incubator)에서 30℃의 온에서 120RPM으로 하루 동안 배양한 뒤 시료 1.5(vol%/vol%) 만큼 넣어준다.The strain is inoculated at 1 × 10 9 cfu / ml and incubated in a shaking incubator at 30 ° C on 120RPM for one day and then added as sample 1.5 (vol% / vol%).

시료가 분해되어 발생하는 이산화탄소를 포집하기 위해 삼각플라스크에 0.025N 수산화바륨 250㎖을 넣어 연결한다. To collect the carbon dioxide generated by the decomposition of the sample, add 250 ml of 0.025N barium hydroxide to the Erlenmeyer flask.

이때 공기의 유량은 50cc/min으로 고정한다. At this time, the air flow rate is fixed at 50 cc / min.

30℃, 120RPM의 조건으로 배양하고, 3일에 한 번씩 포집된 이산화탄소를 0.1% 페놀프탈레인과 0.05N 염산을 사용하여 적정하여 포집된 이산화탄소의 양을 측정하고 생분해도를 계산한다.30 ° C and 120 RPM. Titrate the carbon dioxide collected every 3 days with 0.1% phenolphthalein and 0.05 N hydrochloric acid to determine the amount of carbon dioxide captured and calculate the biodegradability.

(2) 인장특성 및 굽힘강도 측정(2) Measurement of tensile properties and bending strength

시편의 인장강도(tensile strength), 인장신율(tensile elongation) 및 굽힘강도(flexural strength)는 만능재료시험기(universal testing machine)를 사용하여 3회 반복 측정하여 평균값을 산출하였다. The tensile strength, tensile elongation, and flexural strength of the specimens were measured three times using a universal testing machine to calculate the average value.

(3) 절연파괴강도(3) Insulation breaking strength

고전압시험기를 이용하여 전압을 0V에서 0.1kV/초 단위로 상승시키면서 절연파괴가 일어날 때의 전압을 측정하였다. Voltage was measured at 0 V and 0.1 kV / sec using a high-voltage tester while dielectric breakdown occurred.

Figure 112014000472608-pat00003
Figure 112014000472608-pat00003

상기 <표 2>에 나타낸 실험결과에 따라, 본 발명의 실시예 1 내지 4는 인장신율은 감소하고 생분해도, 인장강도, 굽힘강도, 절연파괴강도가 비교예 보다 크게 향상됨을 알 수 있다. According to the results shown in Table 2, Examples 1 to 4 of the present invention show that the tensile elongation is decreased and the biodegradability, tensile strength, bending strength and dielectric breakdown strength are greatly improved as compared with Comparative Examples.

본 발명에 의한 환경호르몬을 배출하지 않는 바이오에폭시 수지는 내후성, 기계적 물성이 우수한 특성을 보유하여 자동차 부품 및 접착제용 수지로 널리 실시할 수 있는 등 산업상 이용가치가 대단하다 할 것이다. The bio-epoxy resin which does not discharge the environmental hormone according to the present invention has excellent weather resistance and mechanical properties, and can be widely used as a resin for automobile parts and adhesives.

본 발명은 중소기업청에서 시행한 중소기업 기술개발지원사업 미래선도 과제인 "부품소재 및 접착제용 바이오 폴리우레탄/에폭시 수지 및 나노복합체 개발" 연구결과로 출원되었다.The present invention was filed as a result of a study on the development of bio-polyurethane / epoxy resin and nanocomposite for parts and adhesives, which is a future task of SME technology development support project implemented by the Small and Medium Business Administration.

Claims (1)

온도계(thermometer)와 교반기(mechanical stirrer), 응축콘덴서(reflux condenser)를 장착한 반응기(reactor)에 테트로히드로퓨란(tetrahydrofuran)이나 톨루엔(toluene)인 반응성용매(reactive solvent) 400~600중량부, 에틸렌디아민(ethylenediamine)이나, 프로필렌디아민(propylenediamine), 부틸렌디아민(butylenediamine), 헥사메틸렌디아민(hexamethylendiamine) 중 하나인 디아민 60~117중량부와, 1,4-페닐렌 디이소시아네이트(1,4-phenylene diisocyanate)나, 4,4'-디이소시아네토디씨크로헥실 메탄(4,4'-diisocyanatodi cyclohexyl methane), 톨리엔 디이소시아네이트(tolylene diisocyanate), 메틸렌디페닐 디이소시아네이트(Methylene diphenyl diisocyanate) 중 하나인 디이소시아네이트 160~250중량부 및 디부틸 틴 디라울레이트(dibutyl tin dilaurate)나, 디부틸 틴 말레이트(dibutyl tin maleate), 1,4-디아조바이시크로[2,2,2] 옥탄[1,4-diazabicyclo [2,2,2] octane] 중 하나인 축합촉매(condensation catalyst) 0.01~0.05중량부를 가하고 6~24시간 반응 한 다음, 반응성용매를 감압 하에서 증발시켜서 220.01~367.05중량부의 아민과 디이소시아네이트를 말단에 갖도록 이관능체 제조하고, 온도계와 교반기, 응축콘덴서를 장착한 반응기에 400~600중량부의 피마자유와, 상기 아민과 디이소시아네이트를 말단에 갖는 이관능체 220.01~367.05중량부에, 0.01~0.05중량부의 축합촉매를 첨가하고, 6~24시간 반응하여 620.02~967.1중량부의 피마자유변성 경화제(curing agent) 제조하여, 온도계와 교반기, 응축콘덴서를 장착한 반응기에 대두유나, 피마자유, 유채유 및 해바라기유 중 하나인 식물성오일 400~600중량부와, 포름산(formic acid)이나 초산(acetic acid) 중 하나인 유기산(organic acid) 50~200중량부를 넣고, 400~600RPM의 속도로 교반하면서 반응기 온도를 40~60℃로 상승시키고, 여기에 과산화수소수나 퍼아세틱 액시드(peracetic acid), 메타-클로로퍼벤조익 액시드(m-chloroperbenzoic acid) 중 하나인 산화제(oxidizer) 50~200중량부를 4~6시간 동안 적가한 다음, 40~60℃의 온도를 유지시키면서 4~6시간 동안 반응을 더 지속시켜서, 반응이 끝나면 500~1000중량부의 증류수를 가하여 반응물을 중화시키고, 여기에 에틸아세테이트(ethyl acetate)나 디에틸에테르(diethyl ether) 중 하나인 저비점 유기용매 500~1000중량부를 첨가하여 상분리(phase separation)를 유도한 후, 물 층(water layer)을 제거하여 400~600 중량부의 에폭시화 식물성오일 제조하여서, 온도계 및 교반기를 장착한 반응기에 에폭시화 식물성오일 400~600중량부를 넣고, 피마자유변성 경화제 620.02~967.1중량부를 첨가하여 1~4시간 동안 500~1000RPM의 속도로 교반하는 바이오에폭시 배합하여서 620.02~967.1중량부의 피마자유변성 경화제 및 400~600중량부의 에폭시화 식물성오일로 조성하는 것을 특징으로 하는 환경호르몬을 배출하지 않는 바이오에폭시 수지의 제조방법.400-600 parts by weight of a reactive solvent such as tetrahydrofuran or toluene is added to a reactor equipped with a thermometer, a mechanical stirrer and a reflux condenser, 60 to 117 parts by weight of a diamine, which is one of ethylenediamine, propylenediamine, butylenediamine and hexamethylendiamine, 1,4-phenylene diisocyanate (1,4- phenylene diisocyanate, 4,4'-diisocyanatodi cyclohexyl methane, tolylene diisocyanate, and Methylene diphenyl diisocyanate. 160 to 250 parts by weight of diisocyanate and dibutyl tin dilaurate, dibutyl tin maleate, 1,4-diazobisiclo [2,2,2] octane, [1,4-diazabicyclo [2.2.2] octa ne], and the mixture was reacted for 6 to 24 hours. Then, the reactive solvent was evaporated under reduced pressure to prepare a dielctic ester having 220.01 to 367.05 parts by weight of an amine and a diisocyanate at the terminal, 0.01 to 0.05 part by weight of a condensation catalyst was added to 220.01 to 367.05 parts by weight of a conjugated catalyst having 400 to 600 parts by weight of castor oil and an amine and a diisocyanate at the terminal thereof in a reactor equipped with a thermometer, a stirrer and a condenser, To 24 hours to prepare a casting agent of 620.02 to 967.1 parts by weight. A reactor equipped with a thermometer, a stirrer and a condenser was charged with 400 to 600 parts of vegetable oil such as soybean oil, castor oil, rape seed oil and sunflower oil And 50 to 200 parts by weight of an organic acid which is one of formic acid and acetic acid are put into a reactor and stirred at a speed of 400 to 600 RPM to adjust the reactor temperature to 40 to 60 ° C And 50 to 200 parts by weight of an oxidizer, which is one of peracetic acid and m-chloroperbenzoic acid, is added dropwise thereto for 4 to 6 hours, Then, the reaction is continued for 4 to 6 hours while maintaining the temperature at 40 to 60 ° C. When the reaction is completed, 500 to 1000 parts by weight of distilled water is added to neutralize the reaction product, and ethyl acetate or diethyl ether 500 to 1000 parts by weight of a low boiling point organic solvent selected from diethyl ether were added to induce phase separation and then the water layer was removed to prepare 400 to 600 parts by weight of epoxidized vegetable oil. 400 to 600 parts by weight of an epoxidized vegetable oil was added to a reactor equipped with a stirrer, 620.02 to 967.1 parts by weight of a castor oil-modified curing agent was added, and the mixture was stirred at a speed of 500 to 1000 RPM for 1 to 4 hours to form a bio-epoxy. 02 to 967.1 parts by weight of a castor oil-modified curing agent, and 400 to 600 parts by weight of an epoxidized vegetable oil.
KR1020140000536A 2014-01-03 2014-01-03 Manufacturing method of bioepoxy resin without environmental hormone releasing KR101561980B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140000536A KR101561980B1 (en) 2014-01-03 2014-01-03 Manufacturing method of bioepoxy resin without environmental hormone releasing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140000536A KR101561980B1 (en) 2014-01-03 2014-01-03 Manufacturing method of bioepoxy resin without environmental hormone releasing

Publications (2)

Publication Number Publication Date
KR20150081003A KR20150081003A (en) 2015-07-13
KR101561980B1 true KR101561980B1 (en) 2015-10-20

Family

ID=53792848

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140000536A KR101561980B1 (en) 2014-01-03 2014-01-03 Manufacturing method of bioepoxy resin without environmental hormone releasing

Country Status (1)

Country Link
KR (1) KR101561980B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019245169A1 (en) * 2018-06-22 2019-12-26 국도화학 주식회사 Furfuryl alcohol-derived bifunctional furan epoxy and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026483A (en) * 2009-07-28 2011-02-10 Hitachi Ltd Biomass-derived epoxy resin composition
KR101124449B1 (en) * 2003-01-08 2012-03-21 텍사스 테크 유니버시티 Castor oil/epoxidized soybean oil based elastomeric compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101124449B1 (en) * 2003-01-08 2012-03-21 텍사스 테크 유니버시티 Castor oil/epoxidized soybean oil based elastomeric compositions
JP2011026483A (en) * 2009-07-28 2011-02-10 Hitachi Ltd Biomass-derived epoxy resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019245169A1 (en) * 2018-06-22 2019-12-26 국도화학 주식회사 Furfuryl alcohol-derived bifunctional furan epoxy and method for producing same
EP3812382A4 (en) * 2018-06-22 2022-03-30 Kukdo Chemical Co., Ltd. Furfuryl alcohol-derived bifunctional furan epoxy and method for producing same
US11566099B2 (en) 2018-06-22 2023-01-31 Kuk Do Chemical Co., Ltd Furfuryl alcohol-derived bifunctional furan epoxy and method for producing same

Also Published As

Publication number Publication date
KR20150081003A (en) 2015-07-13

Similar Documents

Publication Publication Date Title
Zhang et al. Recent advances in vegetable oil-based polymers and their composites
Lligadas et al. Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art
Kumar et al. Recent development of biobased epoxy resins: a review
Desroches et al. From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products
Voirin et al. Functionalization of cardanol: towards biobased polymers and additives
Meier et al. Plant oil renewable resources as green alternatives in polymer science
Ronda et al. A renewable approach to thermosetting resins
Fernandes et al. Epoxy resin blends and composites from waste vegetable oil
Chen et al. Synthesis and application of polyepoxide cardanol glycidyl ether as biobased polyepoxide reactive diluent for epoxy resin
Dotan Biobased thermosets
Raquez et al. Thermosetting (bio) materials derived from renewable resources: A critical review
Alagi et al. Vegetable oil-based polyols for sustainable polyurethanes
Xia et al. Bio-based thermosetting polymers from vegetable oils
Belgacem et al. Materials from vegetable oils: major sources, properties and applications
Hu et al. Synthesis and properties of UV-curable polyfunctional polyurethane acrylate resins from cardanol
WO2006012344A1 (en) Modified vegetable oil-based polyols
de Kruijff et al. Biobased epoxy resin by electrochemical modification of tall oil fatty acids
CN108299341B (en) Castor oil-based epoxy resin and preparation method thereof
KR20140076026A (en) Manufacturing method of bioepoxy nanocomposite compound with enhanced mechanical properties and environmental resistance
Khanderay et al. Vegetable oil-based polyurethane coatings: recent developments in India
Stavila et al. Recent advances in synthesis of polymers based on palm oil and its fatty acids
KR101561980B1 (en) Manufacturing method of bioepoxy resin without environmental hormone releasing
WO2017020124A1 (en) Synthesis of polyols suitable for castor oil replacement
de Souza et al. Polyols from Sustainable Resources
JP6255345B2 (en) Method for obtaining polyol from palm oil, polyol obtained by the method, product using the polyol, and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20181011

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191010

Year of fee payment: 5