KR101535154B1 - Gold nanoparticles and the preparation method - Google Patents

Gold nanoparticles and the preparation method Download PDF

Info

Publication number
KR101535154B1
KR101535154B1 KR1020140016465A KR20140016465A KR101535154B1 KR 101535154 B1 KR101535154 B1 KR 101535154B1 KR 1020140016465 A KR1020140016465 A KR 1020140016465A KR 20140016465 A KR20140016465 A KR 20140016465A KR 101535154 B1 KR101535154 B1 KR 101535154B1
Authority
KR
South Korea
Prior art keywords
gold
surfactant
mixed solution
reducing agent
nanoparticles
Prior art date
Application number
KR1020140016465A
Other languages
Korean (ko)
Inventor
유호진
이진아
Original Assignee
(주) 유천테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 유천테크 filed Critical (주) 유천테크
Priority to KR1020140016465A priority Critical patent/KR101535154B1/en
Application granted granted Critical
Publication of KR101535154B1 publication Critical patent/KR101535154B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles

Abstract

The present invention relates to a preparation method of gold nanoparticles comprising the steps of: (1) heating and mixing a mixed solution wherein a surfactant is placed into a gold precursor solution; (2) placing a reducing agent into the mixed solution and mixing the reducing agent with the mixed solution; (3) separating the gold particles reduced and generated in the mixed solution through centrifugation, and washing the gold particles with ethanol. According to the present invention, the present invention is capable of preparing gold particles having a size of 50 nm or less, and producing high yield using the preparation method of gold nanoparticles by adding the surfactant and an optimal concentration of the reducing agent, and a ratio through liquid reduction.

Description

금 나노입자 및 그의 제조 방법{GOLD NANOPARTICLES AND THE PREPARATION METHOD}TECHNICAL FIELD [0001] The present invention relates to gold nanoparticles and gold nanoparticles,

본 발명은 계면활성제를 이용하여 금 전구체로부터 금 나노입자를 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing gold nanoparticles from a gold precursor using a surfactant.

금은 지각을 구성하고 있는 물질 중 대략 1% 미만을 차지하고 있어 인류가 사용하고 있는 금속 중에 가장 최초로 사용된 금속 중의 하나로서 잘 알려져 있다. 오랫동안 금은 금화용, 장식용, 치과·의료용으로 사용되고 있을 뿐만 아니라 최근에는 전자, 인공위성, 핵발전소 산업 등에서 미세전선, 도금, 전기접점 등 특수용도로서 다양한 합금형태로 사용되고 있으며, 그 수요도 증가하고 있는 추세이다.Gold accounts for less than 1% of the materials that make up the crust, and is well known as one of the first metals used by mankind. In addition to being used for gold, gold, silver, gold, silver, gold, silver, gold, silver, gold, silver, gold, silver, gold, silver, gold, silver, gold, Trend.

나노기술이란 물질의 특성을 나노미터 수준에서 규명하고 제어하는 기술로서 원자 분자 수준에서 물질을 물리적 혹은 화학적으로 제어하여 유용한 구조와 기능을 발현시키며 이를 통해 종래와는 전혀 다른 원리의 디바이스 구축을 가능하게 하므로 활용 가능성이 무궁무진할 것으로 기대된다. 여기서 나노란 10억분의 1미터를 나타내는 단위로 1나노미터는 머리카락 굵기의 10만분의 1밖에 안 되는 초미세 단위다. 물질이 나노미터 크기로 작아지게 되는 경우 재미있는 현상은 나노물질의 경우 기존의 벌크 물질과는 전혀 다른 물리적 화학적 특성을 가지게 된다.Nanotechnology is a technology that identifies and controls the properties of materials at the nanometer level. It can physically or chemically control the material at the atomic molecule level to express useful structures and functions, thereby enabling the device to be built on a completely different principle. Therefore, it is expected that the possibility of utilization is unlimited. Here, the nano is a unit of a billionth of a meter, and a nanometer is an ultra-fine unit that is only one hundredth of the thickness of a hair. If the material becomes smaller in nanometer size, the interesting phenomenon is that nanomaterials have completely different physical and chemical properties than conventional bulk materials.

금 입자를 나노 크기로 제어하면 원재료에서 볼 수 없는 새로운 물리·화학적 성질이 나타난다. 이것은 결정의 크기가 작아지면 전체 원자에 대한 표면 원자의 비가 크게 증가하며 이러한 결과는 물질의 열역학적 성질에 큰 변화를 일으킨다. 일반적으로 고체 물질의 표면 원자들은 내부 원자들에 비해 자유 에너지에 큰 기여를 하는데 표면원자의 증가는 나노 결정의 녹는점 내림이나 상전이 같은 열역학적 성질을 변화시키고 전자기적, 광학적, 기계적, 열적 특성을 나타내기 때문에 트랜지스터, 발광소자, 센서, 태양전지 등 다양한 나노소자의 기초 물질이 되어 큰 주목을 받고 있다.Controlling gold particles at the nanoscale reveals new physico - chemical properties that can not be seen in raw materials. This leads to a large increase in the ratio of surface atoms to total atoms as the size of the crystals decreases, and this results in a large change in the thermodynamic properties of the material. In general, surface atoms of solid materials make a big contribution to free energy compared to internal atoms. The increase of surface atoms changes thermodynamic properties such as melting point and phase transition of nanocrystals, and exhibits electromagnetic, optical, mechanical and thermal properties And it has been attracting great attention because it becomes a basic material of various nano devices such as transistors, light emitting devices, sensors, and solar cells.

금속 나노 입자를 제조하는 방법은 화학적 합성방법, 기계적 제조방법, 전기적 제조방법이 있다. 기계적인 힘을 이용하여 분쇄하는 기계적 제조방법은 공정상 불순물의 혼입으로 고순도의 입자를 합성하기 어렵고 나노 크기의 균일한 입자의 형성이 불가능하다. 실제적인 방법으로서 레이저 어블레이션(laser ablation)법, 오븐빔(oven beam)법, 고에너지 볼 밀링(high energy ball milling)법 등이 사용되고 있다. 레이저 어블레이션 법은 진공에서 원재료에 레이저빔을 인가하여 발생되는 원자 또는 분자의 증기를 응축하여 나노입자를 제조하며 비교적 고가이고 열효율이 낮은 레이저를 이용하므로 생산량에 비해 생산비가 너무 큰 문제점이 있었고, 또한 진공 하에서 끊는 점이 낮은 물질을 녹여 발생되는 증기를 응축시켜 나노입자를 제조하는 오븐빔 법과 기계적으로 갈아내어 나노입자를 만드는 고에너지 볼 밀링법은 고도의 기술이 요구되고 제조과정이 매우 어려우며, 고가의 제조설비가 요구되는 문제점이 있다. 또 전기분해에 의한 전기적 제조방법의 경우 제조시간이 길고, 농도가 낮아 효율이 낮다는 단점이 있다.Methods for producing metal nanoparticles include chemical synthesis methods, mechanical production methods, and electrical production methods. Mechanical production methods using pulverized mechanical force are difficult to synthesize high-purity particles due to impurities in the process, and it is impossible to form nano-sized uniform particles. As a practical method, a laser ablation method, an oven beam method, a high energy ball milling method and the like are used. The laser ablation method has a problem that the production cost is too high as compared with the production amount because the laser beam is applied to the raw material in vacuum to condense vapors or molecules of vapor generated in the vacuum to produce nanoparticles and the laser is used at a relatively high cost and low thermal efficiency, In addition, the oven beam method for condensing the vapor generated by melting low-melting substances under vacuum and the high-energy ball milling method for mechanically grinding nanoparticles to produce nanoparticles requires a high technology, a manufacturing process is very difficult, There is a problem in that a manufacturing facility of Further, in the case of the electrolytic electrolytic manufacturing method, the manufacturing time is long and the concentration is low and the efficiency is low.

화학적 합성법에는 크게 기상법과 액상법(colloid법)이 있는데, 플라즈마나 기체 증발법을 사용하는 기상법의 경우 고가의 장비가 요구되며 과정이 복잡하여 효율이 떨어지는 단점 때문에 저비용과 간단한 제조 공정으로 균일한 입자의 합성이 가능한 액상법이 주로 사용되고 있다. 이 액상법에 의한 금속 나노 입자의 제조방법은 액상에서 금속 화합물을 해리 시킨 후 환원제나 계면활성제를 사용하여 히드로졸(hydrosol) 형태의 금속 나노입자를 제조하는 방법이 있다.The chemical synthesis method includes the vapor phase method and the liquid phase method (colloid method). In the vapor phase method using the plasma or gas evaporation method, expensive equipments are required. Since the process is complicated and the efficiency is low, A liquid phase method capable of synthesizing is mainly used. A method for preparing metal nanoparticles by the liquid phase method is a method of dissolving a metal compound in a liquid phase and then producing metal nanoparticles of hydrosol type using a reducing agent or a surfactant.

또한, 대한민국 공개특허 제 10-2005-0065514호, 대한민국 공개특허 제 10-2008-0098162호 등에서는 플라즈마법, 전기방사법을 개시 하였으나 액상환원법보다 소요 시간과 장치 비용이 많이 드는 단점이 있다.Korean Patent Laid-Open Nos. 10-2005-0065514 and 10-2008-0098162 disclose a plasma method and an electrospinning method, but they have a drawback in that the time and equipment cost are much higher than the liquid reduction method.

이상과 같은 이유로 액상환원법으로 간단하게 금 나노입자를 제조하여 산업에 유용하게 이용할 필요가 있다.For the above reasons, gold nanoparticles need to be easily produced by the liquid reduction method and usefully used in industry.

대한민국 특허출원 제10-2005-0065514호Korean Patent Application No. 10-2005-0065514 대한민국 특허출원 제10-2008-0098162호Korean Patent Application No. 10-2008-0098162

본 발명의 목적은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 액상환원법을 이용하여 최적의 계면활성제 농도와 환원제 비율 조건에서 간단하게 금 나노입자를 제조하는 방법을 제공하는 것이다.It is an object of the present invention to provide a method for simply preparing gold nanoparticles under optimum surfactant concentration and reducing agent ratio using a liquid reduction method to solve the problems of the prior art.

본 발명은, 하기 단계를 포함하는 금 나노입자 제조 방법을 제공한다:The present invention provides a method for producing gold nanoparticles comprising the steps of:

(1) 금 전구체 용액에 계면활성제를 넣은 혼합용액을 교반시키는 단계;(1) stirring a mixed solution containing a surfactant in a gold precursor solution;

(2) 상기 혼합용액에 환원제를 넣고 교반시키는 단계; 및(2) adding a reducing agent to the mixed solution and stirring the mixed solution; And

(3) 상기 혼합용액에서 환원되어 생성된 금 입자를 원심분리를 통하여 분리하고 에탄올로 씻어주는 단계.(3) separating the gold particles produced by reduction in the mixed solution through centrifugation and washing with ethanol.

본 발명의 일예에 의하면, 상기 (1) 단계가 상기 금 전구체와 계면활성제를 넣고 교반시키는 단계인 경우, 상기 금 전구체는 고순도 금을 왕수에 녹인 후 이 용액을 완전히 가열 증발시킨 후 질산을 제거하고 염산을 부어주어 염화금산을 만들어 사용하였고 상기 계면활성제는 세바케이트계인 것을 특징으로 한다.According to one embodiment of the present invention, in the step (1), when the gold precursor and the surfactant are mixed and stirred, the gold precursor is dissolved in the high-purity gold, and the solution is completely heated and evaporated, Hydrochloric acid was poured into chloroauric acid, and the surfactant was a sebacate-based surfactant.

본 발명의 또 다른 예에 의하면, 상기 계면활성제 농도는 10~25mM, 상기 환원제의 비율은 0.4~0.6, 상기 반응 온도는 25℃ 인 것을 특징으로 한다.According to another embodiment of the present invention, the concentration of the surfactant is 10 to 25 mM, the ratio of the reducing agent is 0.4 to 0.6, and the reaction temperature is 25 ° C.

본 발명에 따른 액상환원법에 의한 금 나노입자를 제조 방법을 이용하면, 과대하거나 복잡한 시설이나 고가의 약품을 많이 필요하지 않으면서 손쉽게 나노 입자를 제조할 수 있기 때문에 트랜지스터, 발광소자, 센서, 태양전지 등 다양한 산업화 소재로 활용이 용이할 것이다.By using the method of manufacturing gold nanoparticles by the liquid reduction method according to the present invention, it is possible to easily manufacture nanoparticles without requiring an excessive or complicated facility or a large amount of expensive chemicals. Therefore, a transistor, a light emitting element, It will be easy to use as a variety of industrial materials.

도 1은 실시예10에 대하여 25℃에서 제조한 금 나노입자를 주사전자현미경으로 관찰한 사진이다.FIG. 1 is a photograph of a gold nanoparticle prepared at 25 ° C. for Example 10 with a scanning electron microscope. FIG.

본 발명은, 액상환원법으로 계면활성제 농도에 따라 금 나노입자를 제조하는 방법에 대한 것이다. 본 발명은 금 전구체인 염화금산 용액에 계면활성제를 첨가하여 일정시간 교반시킨 후, 환원제인 수소화붕소나트륨을 넣어 금을 완전히 환원시켜 나노입자를 얻을 수 있다. 본 발명자는 상기 금 나노입자 제조시 금 입자가 안정되게 제조되는 계면활성제 최적 농도 조건과 금의 환원율이 우수한 환원제 비율 조건을 연구하여 본 발명을 완성하였다.
The present invention relates to a method for producing gold nanoparticles according to a surfactant concentration by a liquid phase reduction method. In the present invention, a surfactant is added to a chloroauric acid solution, which is a gold precursor, and stirred for a certain period of time. Then, sodium borohydride as a reducing agent is added to complete the reduction of gold to obtain nanoparticles. The inventors of the present invention completed the present invention by studying optimum conditions of the surfactant in which gold particles are stably prepared at the time of manufacturing the gold nanoparticles and a condition of the ratio of the reducing agent having an excellent reduction ratio of gold.

본 발명의 금 나노입자 제조 방법은 다음 단계를 포함한다:The gold nanoparticle manufacturing method of the present invention includes the following steps:

(1) 금 전구체 용액에 계면활성제를 넣은 혼합용액을 교반시키는 단계;(1) stirring a mixed solution containing a surfactant in a gold precursor solution;

(2) 상기 혼합용액에 환원제를 넣고 교반시키는 단계; 및(2) adding a reducing agent to the mixed solution and stirring the mixed solution; And

(3) 상기 혼합용액에서 환원되어 생성된 금 입자를 원심분리를 통하여 분리하고 에탄올로 씻어주는 단계.
(3) separating the gold particles produced by reduction in the mixed solution through centrifugation and washing with ethanol.

본 발명의 각 단계를 이하 상세히 설명한다.
Each step of the invention is described in detail below.

(1) 금 전구체 용액에 계면활성제를 넣은 혼합용액을 가열 (1) heating a mixed solution containing a surfactant in a gold precursor solution; 교반시키는Stirred 단계 step

본 단계는, 금 전구체인 염화금산 용액에 계면활성제를 넣고 교반하는 것을 포함하는 단계일 수 있다.This step may be a step including adding a surfactant to the chloroauric acid solution as a gold precursor and stirring the mixture.

상기 용액은, 염화금산 35ppm, 계면활성제 10mM을 포함하는 것이 바람직하고 반응 부피는 1부피:1부피 인 것이 바람직하며 교반 시간은 10분이 바람직하나, 이에 한정되는 것은 아니다. The solution preferably contains 35 ppm of chloroauric acid and 10 mM of a surfactant. The reaction volume is preferably 1 volume: 1 volume, and the stirring time is preferably 10 minutes, but is not limited thereto.

상기 계면활성제는 염화금산 용액의 금 이온과 결합하여 금 나노 입자를 형성하는 활성제 역할을 담당하며 금 나노입자를 둘러싸게 하여 입자의 크기를 제어하면서 분산성을 증대 시킨다. 이렇게 표면이 안정되어 상기 계면활성제가 상술한 범위로 포함되면 환원시킨 후 안정된 분산 형태의 금 나노입자를 얻을 수 있다. 상기 계면활성제는 디메틸세바케이트(dimethyl sebacate), 디에틸세바케이트(diethyl sebacate), 비즈(2-에틸-헥실)세바케이트(bis(2-ethyl-hexyl) sebacate)으로 구성된 군에서 선택된 하나 이상일 수 있다. The surfactant acts as an activator to form gold nanoparticles by binding to gold ions of the chloroauric acid solution, and surrounds the gold nanoparticles to increase the dispersibility while controlling the size of the particles. When the surface is stable and the surfactant is included in the above-mentioned range, it is possible to obtain gold nano-particles in a stable dispersion form after reduction. The surfactant may be at least one selected from the group consisting of dimethyl sebacate, diethyl sebacate and beads (2-ethyl-hexyl) sebacate. have.

본 단계는 25℃에서 수행하는 것이 바람직하다.
This step is preferably carried out at 25 ° C.

(2) 상기 혼합용액에 환원제를 넣고 (2) A reducing agent is added to the mixed solution 교반시키는Stirred 단계 step

구체적으로 본 단계는, 상기 혼합용액에 환원제인 수소화붕소나트륨을 넣어 금이온과 계면활성제가 결합되어있는 용액에서 금을 금속으로 환원시키는 단계일 수 있다.Specifically, this step may be a step of reducing gold to metal in a solution in which gold ions and a surfactant are combined by adding sodium borohydride as a reducing agent to the mixed solution.

상기 수소화붕소나트륨은 5mM을 포함하는 것이 바람직하고, 첨가하는 양은 상기 혼합용액과 부피 비율이0.1~0.7인 것이 바람직하며, 부피 비율이 0.4~0.6인 것이 더욱 바람직하다. 교반 시간은 10분이 바람직하나, 이에 한정되는 것은 아니다. The sodium borohydride preferably contains 5 mM, and the amount of the sodium borohydride to be added is preferably 0.1 to 0.7, and more preferably 0.4 to 0.6 in volume ratio with the mixed solution. The stirring time is preferably 10 minutes, but is not limited thereto.

상기 수소화붕소나트륨은 금속 수소화 착물 환원제이며, 금이 이온상태로 계면활성제와 결합되어있는 상태에서 금 금속으로 환원시킨다. 상기 혼합용액에 수소화붕소나트륨을 첨가하면 노란색을 띄던 용액이 자주색으로 바뀌게 된다.The sodium borohydride is a metal hydrogenated complex reducing agent and is reduced to gold metal in a state where gold is in an ionic state and bound to a surfactant. When sodium borohydride is added to the mixed solution, the yellowish solution turns purple.

본 단계는 25℃에서 수행하는 것이 바람직하다.
This step is preferably carried out at 25 ° C.

(3) 상기 혼합용액에서 환원되어 생성된 금 입자를 원심분리를 통하여 분리하고 에탄올로 씻어주는 단계(3) separating the gold particles produced by reduction in the mixed solution through centrifugation and washing with ethanol

구체적으로 본 단계는, 상기 혼합용액에 환원되어 생성된 금 나노입자를 원심분리기를 통해 분리하여 유기물(계면활성제)을 제거한 후 잔류 유기물을 제거하기 위하여 에탄올로 세척하고 건조하는 단계일 수 있다.Specifically, in this step, the gold nanoparticles reduced and produced in the mixed solution are separated through a centrifuge to remove an organic substance (surfactant), followed by washing with ethanol and drying to remove residual organic matter.

상기 세척하는 용매는 에탄올로 한정하는 것이 아니라, 메탄올 및 아세톤을 사용할 수 있다.
The solvent to be cleaned is not limited to ethanol, but methanol and acetone may be used.

본 발명에 따른 액상환원법을 통하여 최적 농도의 계면활성제와 최적 비율의 환원제를 첨가하여 금 나노입자 제조 방법을 이용하면 높은 수득률로 50nm이하 크기의 금 입자를 제조할 수 있다.
When gold nanoparticles are prepared by adding the optimum concentration of the surfactant and the reducing agent in the optimum ratio through the liquid reduction method according to the present invention, gold particles having a size of 50 nm or less can be produced with a high yield.

이하, 발명을 실시예 및 실험예를 통하여 더욱 상세하게 설명한다. 그러나 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로서 본 발명은 하기 실시예 에 의해 한정되지 않고 다양하게 수정 및 변경될 수 있다.
Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. However, the following examples and experimental examples are provided for illustrating the present invention, and the present invention is not limited by the following examples, and various modifications and changes may be made.

실시예Example 1 내지  1 to 실시예Example 6: 계면활성제 농도 변화에 따른 금 나노입자 제조 6: Fabrication of gold nanoparticles according to surfactant concentration

둥근 플라스크에 35ppm 염화금산 용액 5ml와 계면활성제인 디에틸세바케이트5mM(실시예1), 10mM(실시예2), 15mM(실시예3), 20mM(실시예4), 25mM(실시예5), 30mM(실시예6)를 각 5ml씩 첨가하여 25℃에서 10분 동안 교반하였다. 그 후 염화금산과 계면활성제 혼합용액에 대한 환원제(5mM 수소화붕소나트륨)를 0.1비율 만큼 넣고 10분 동안 교반하였다. 생성된 금 나노입자를 원심분리기를 이용하여 분리 한 후 남아있는 유기물(계면활성제)을 제거하기 위하여 에탄올로 세척한 다음 건조시켰다. 상기 생성된 금 나노입자는 전자주사현미경(SEM, scanning electron microscope)으로 크기와 모양을 확인하였고, 금 나노입자의 환원율은 유도결합플라즈마분광기(ICP, inductively coupled plasma spectrometry)를 이용하여 남아있는 금의 농도를 측정하여 계산하였다. 상기 계면활성제는, 디에틸세바케이트(diethyl sebacate) 이외에 디메틸세바케이트(dimethyl sebacate), 비즈(2-에틸-헥실)세바케이트(bis(2-ethyl-hexyl) sebacate)도 사용 가능하다. (Example 1), 10 mM (Example 2), 15 mM (Example 3), 20 mM (Example 4), and 25 mM (Example 5) were added to a round flask, and 5 ml of a 35 ppm chloroauric acid solution and 5 ml of a surfactant diethyl sebacate , 30 mM (Example 6) were added in an amount of 5 ml each, and the mixture was stirred at 25 DEG C for 10 minutes. Thereafter, a reducing agent (5 mM sodium borohydride) was added to the mixed solution of chloroauric acid and surfactant at a ratio of 0.1 and stirred for 10 minutes. The gold nanoparticles were separated using a centrifuge and washed with ethanol to remove any remaining organic matter (surfactant). The gold nanoparticles were identified by size and shape using a scanning electron microscope (SEM). The reduction rate of the gold nanoparticles was measured by inductively coupled plasma spectrometry (ICP) The concentration was measured and calculated. The surfactant may be dimethyl sebacate or bis (2-ethyl-hexyl) sebacate in addition to diethyl sebacate.

실시예1 내지 6에 대하여 각각 하기 표 1에 금 나노 입자의 분산 형태와 환원율을 기재하였다.
For each of Examples 1 to 6, the dispersion form of gold nanoparticles and the reduction ratio are shown in Table 1 below.

비교예Comparative Example 1 : 금 나노입자 제조 1: Manufacture of gold nanoparticles

계면활성제를 사용하지 않은 것을 제외하고, 상기 실시예 1과 동일하게 비교예 1을 실시하였다.
Comparative Example 1 was carried out in the same manner as in Example 1 except that no surfactant was used.

표 1에 기재된 금 입자의 분산 형태를 보면 계면활성제를 넣지 않은 경우와 5mM을 첨가한 경우 입자가 뭉쳐진 형태로 제조되었고 10mM~25mM은 분산이 잘 되었으며 30mM첨가한 경우 다시 입자가 뭉쳐서 제조되었다. 계면활성제의 농도가 5mM 미만이면 금 입자는 분산력이 떨어지고 뭉침 현상이 나타나고 10mM이상에서는 입자가 골고루 분산된 형태로 제조되며 30mM 이상이 되면서 다시 분산력이 떨어지고 뭉침 현상이 나타나는 것을 알 수 있어, 계면활성제의 농도가 입자 분산에 영향을 미치는 것을 알 수 있었다.The dispersed form of the gold particles shown in Table 1 was prepared in the case of no surfactant and in case of adding 5 mM of the particles. The particles were well dispersed in the range of 10 mM to 25 mM, and the particles were formed again when 30 mM was added. When the concentration of the surfactant is less than 5 mM, the gold particles have a low dispersing power and have a lump. When the surfactant concentration is more than 10 mM, the particles are uniformly dispersed. When the surfactant concentration is more than 30 mM, And the concentration had an influence on the particle dispersion.

금의 환원율을 보면 계면활성제를 넣지 않은 경우 28.4% 이며 계면활성제의 농도가 증가 할수록 조금씩 높아지지만 환원율이 대체적으로 낮았다.
The reduction rate of gold was 28.4% when no surfactant was added, and the reduction rate was generally lower as the concentration of surfactant increased.

실시예Example 7 내지  7 to 실시예Example 12: 환원제의 양에 따른 금 나노입자 제조 12: Preparation of gold nanoparticles according to the amount of reducing agent

계면활성제의 농도를 10mM로 고정하고 염화금산과 계면활성제 혼합용액에 대한 환원제 부피 비율을 각 0.2, 0.3, 0.4, 0.5, 0.6, 0.7로 변화시킨 것을 제외하고, 상기 실시예1과 동일하게 실시예7 내지 실시예12을 실시하였다.
The procedure of Example 1 was repeated except that the concentration of the surfactant was fixed to 10 mM and the volume ratio of the reducing agent to the mixed solution of chloroauric acid and surfactant was changed to 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 7 to 12 were carried out.

실시예7 내지 12에 대하여 각각 하기 표 1에 금의 환원율을 기재하였다.For Examples 7 to 12, the reduction ratios of gold are listed in the following Table 1, respectively.

표 1에 기재된 금의 환원율을 보면 환원제의 부피 비율이0.1일 때 44.4% 환원되었지만, 환원제 부피 비율이 증가할수록 환원율도 증가하는 것을 알 수 있었다.(실시예7~12) 환원제의 부피 비율이 증가할수록 환원율이 높아지다가 0.7일 때 98.4%로 감소하며, 환원제의 부피 비율이 0.4~0.6일 때 환원율이 99%이상으로 가장 바람직하고, 금 나노입자 제조에 있어서 환원제의 부피 비율이 환원율에 영향을 미치는 것을 알 수 있었다.
The reduction ratio of gold as shown in Table 1 was 44.4% when the volume ratio of the reducing agent was 0.1, but it was found that as the volume ratio of the reducing agent was increased, the reduction ratio also increased. Examples 7 to 12 The volume ratio of the reducing agent increased The reduction ratio is increased to be 98.4% at 0.7, the reduction ratio is most preferably at least 99% when the volume ratio of the reducing agent is 0.4 to 0.6, and the volume ratio of the reducing agent influences the reduction ratio .

금 나노 입자 제조시 입자 분산이 잘되고 환원율이 높은 조건인 실시예 10에 대한 전자주사현미경 사진을 도 1에 기재하였다. 도 1과 같이 제조된 금 나노입자의 크기는 대략 50nm이하이며 구형에 가까운 입자임을 알 수 있었다.A photomicrograph of the electron microscope for Example 10 in which the particles are well dispersed and the reduction ratio is high during the production of the gold nanoparticles is shown in FIG. The size of the gold nanoparticles prepared as shown in FIG. 1 was found to be approximately 50 nm or less and spherical.

계면활성제
농도(mM)
Surfactants
Concentration (mM)
환원제 부피
비율
Reducing agent volume
ratio
입자의
분산 형태
Particle
Distributed form

환원율(%)
gold
Reduction rate (%)
비교예1Comparative Example 1 00 0.10.1 뭉침Lump 28.428.4 실시예1Example 1 55 0.10.1 뭉침Lump 39.339.3 실시예2Example 2 1010 0.10.1 분산잘됨Distributed well 44.444.4 실시예3Example 3 1515 0.10.1 분산잘됨Distributed well 44.044.0 실시예4Example 4 2020 0.10.1 분산잘됨Distributed well 49.449.4 실시예5Example 5 2525 0.10.1 분산잘됨Distributed well 55.255.2 실시예6Example 6 3030 0.10.1 뭉침Lump 55.955.9 실시예7Example 7 1010 0.20.2 분산잘됨Distributed well 65.665.6 실시예8Example 8 1010 0.30.3 분산잘됨Distributed well 83.483.4 실시예8Example 8 1010 0.40.4 분산잘됨Distributed well 99.299.2 실시예10Example 10 1010 0.50.5 분산잘됨Distributed well 99.299.2 실시예11Example 11 1010 0.60.6 분산잘됨Distributed well 99.199.1 실시예12Example 12 1010 0.70.7 분산잘됨Distributed well 98.498.4

Claims (3)

(1) 금 전구체 용액에 세바케이트계 계면활성제를 넣은 혼합용액을 가열 교반시키는 단계;
(2) 상기 혼합용액에 환원제를 넣고 교반시키는 단계; 및
(3) 상기 혼합용액에서 환원되어 생성된 금 입자를 원심분리를 통하여 분리하고 에탄올로 씻어주는 단계;
를 포함하는 금 나노입자의 제조방법.
(1) heating and stirring a mixed solution containing a sebacate-based surfactant in a gold precursor solution;
(2) adding a reducing agent to the mixed solution and stirring the mixed solution; And
(3) separating the gold particles produced by reduction in the mixed solution through centrifugation and washing with ethanol;
Wherein the gold nanoparticles are prepared by a method comprising the steps of:
청구항 1에 있어서,
상기 세바케이트계 계면활성제는 디메틸세바케이트(dimethyl sebacate), 디에틸세바케이트(diethyl sebacate), 및 비즈(2-에틸-헥실)세바케이트(bis(2-ethyl-hexyl)sebacate)로 구성된 군에서 선택된 하나 이상인 것을 특징으로 하는 금 나노입자의 제조방법.
The method according to claim 1,
The sebacate surfactant may be selected from the group consisting of dimethyl sebacate, diethyl sebacate, and beads (2-ethyl-hexyl) sebacate. Wherein the gold nanoparticles are selected from at least one selected from the group consisting of gold and silver.
청구항 1에 있어서,
상기 계면활성제의 농도는 10 ~ 25 mM이고, 상기 혼합용액을 기준으로 환원제의 부피 비율은 0.4 ~ 0.6이고,, 교반 온도는 25℃ 인 것을 특징으로 하는 금 나노입자의 제조방법.
The method according to claim 1,
Wherein the concentration of the surfactant is 10 to 25 mM, the volume ratio of the reducing agent is 0.4 to 0.6 based on the mixed solution, and the stirring temperature is 25 < 0 > C.
KR1020140016465A 2014-02-13 2014-02-13 Gold nanoparticles and the preparation method KR101535154B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140016465A KR101535154B1 (en) 2014-02-13 2014-02-13 Gold nanoparticles and the preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140016465A KR101535154B1 (en) 2014-02-13 2014-02-13 Gold nanoparticles and the preparation method

Publications (1)

Publication Number Publication Date
KR101535154B1 true KR101535154B1 (en) 2015-07-16

Family

ID=53884911

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140016465A KR101535154B1 (en) 2014-02-13 2014-02-13 Gold nanoparticles and the preparation method

Country Status (1)

Country Link
KR (1) KR101535154B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540888A (en) * 2010-08-03 2013-11-07 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ Method for producing nanoparticles from precious metals and use of the produced nanoparticles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540888A (en) * 2010-08-03 2013-11-07 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ Method for producing nanoparticles from precious metals and use of the produced nanoparticles

Similar Documents

Publication Publication Date Title
Zhao et al. Size-controlled preparation of silver nanoparticles by a modified polyol method
Xu et al. Ln3+ (Ln= Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties
Su et al. Directly coat TiO 2 on hydrophobic NaYF 4: Yb, Tm nanoplates and regulate their photocatalytic activities with the core size
Anžlovar et al. Impact of inorganic hydroxides on ZnO nanoparticle formation and morphology
KR101346321B1 (en) Graphene-carbon nanotubes nanostructure and method of manufacturing the same
JP2008013846A (en) Method for producing metal nanoparticle, and metal nanoparticle
Liu Zinc Oxide Nano‐and Microfabrication from Coordination‐Polymer Templates
Nguyen et al. Two-phase synthesis of colloidal annular-shaped Ce x La1− x CO3OH nanoarchitectures assemblied from small particles and their thermal conversion to derived mixed oxides
Zhuo et al. Reduced carbon dots employed for synthesizing metal nanoclusters and nanoparticles
Shahmiri et al. Effect of pH on the synthesis of CuO nanosheets by quick precipitation method
Jianzhong et al. Morphology‐photocatalytic properties‐growth mechanism for ZnO nanostructures via microwave‐assisted hydrothermal synthesis
CN104028775A (en) Preparation method for monodisperse uniform-particle-size silver nanoparticles
JP5990565B2 (en) Method for producing silver nanofilament
Liu et al. Facile preparation of Ni2P/ZnO core/shell composites by a chemical method and its photocatalytic performance
Moiz et al. Enhancement of dye degradation by zinc oxide via transition-metal doping: a review
Liu et al. Largely enhanced photocatalytic hydrogen production rate of CdS/(Au–ReS 2) nanospheres by the dielectric–plasmon hybrid antenna effect
Surendran et al. From Self‐Assembly of Platinum Nanoparticles to Nanostructured Materials
Xu et al. New synthetic route and characterization of magnesium borate nanorods
KR101233447B1 (en) A method for preparing silver nanoparticles using ionic liquid
Chen et al. In2O3 Nanocrystals with a Tunable Size in the Range of 4− 10 nm: One-Step Synthesis, Characterization, and Optical Properties
Jia et al. Cotton fiber-biotemplated synthesis of Ag fibers: Catalytic reduction for 4-nitrophenol and SERS application
Xu et al. Uniform Ln (OH) 3 and Ln2O3 (Ln= Eu, Sm) submicrospindles: facile synthesis and characterization
Yu et al. Synthesis of porous gold nanoparticle/MoS 2 nanocomposites based on redox reactions
Zhou et al. Self-assembly and photoluminescence characterization of CaMoO4: Eu3+, Na+ superstructure via a facile surfactant-free hydrothermal method
dos Santos et al. Proof‐of‐Concept Studies Directed toward the Formation of Metallic Ag Nanostructures from Ag3PO4 Induced by Electron Beam and Femtosecond Laser

Legal Events

Date Code Title Description
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180627

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190701

Year of fee payment: 5