KR101528154B1 - 콜레스테롤 측정장치 및 이를 이용한 측정방법 - Google Patents

콜레스테롤 측정장치 및 이를 이용한 측정방법 Download PDF

Info

Publication number
KR101528154B1
KR101528154B1 KR1020100067308A KR20100067308A KR101528154B1 KR 101528154 B1 KR101528154 B1 KR 101528154B1 KR 1020100067308 A KR1020100067308 A KR 1020100067308A KR 20100067308 A KR20100067308 A KR 20100067308A KR 101528154 B1 KR101528154 B1 KR 101528154B1
Authority
KR
South Korea
Prior art keywords
chamber
binder
hdl
capture
cholesterol
Prior art date
Application number
KR1020100067308A
Other languages
English (en)
Other versions
KR20120006697A (ko
Inventor
김인욱
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to KR1020100067308A priority Critical patent/KR101528154B1/ko
Priority to PCT/KR2011/004972 priority patent/WO2012008709A2/en
Priority to US13/179,013 priority patent/US8481326B2/en
Publication of KR20120006697A publication Critical patent/KR20120006697A/ko
Application granted granted Critical
Publication of KR101528154B1 publication Critical patent/KR101528154B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • G01N15/042Investigating sedimentation of particle suspensions by centrifuging and investigating centrifugates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • G01N15/05Investigating sedimentation of particle suspensions in blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N35/00069Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides whereby the sample substrate is of the bio-disk type, i.e. having the format of an optical disk
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/111666Utilizing a centrifuge or compartmented rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25125Digestion or removing interfering materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Endocrinology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 콜레스테롤 측정장치 및 이를 이용한 측정방법에 관한 것으로, 혈액 내 지단백질과 특이적으로 결합하는 바인더를 통해, 콜레스테롤 측정의 정확도를 향상시킬 수 있다.

Description

콜레스테롤 측정장치 및 이를 이용한 측정방법{Apparatus for Measuring Cholesterol and Method thereof}
본 발명은 콜레스테롤 측정장치 및 이를 이용한 측정방법에 관한 것으로, 더 상세하게는 혈액 내 지단백질과 특이적으로 결합하는 바인더를 이용하여 혈액 내 콜레스테롤의 농도를 측정하는 측정장치 및 이를 이용한 측정방법에 관한 것이다.
미세유동장치는 소량의 유체를 조작하여 생물학적 또는 화학적인 반응을 수행하는데 사용되는 장치이다.
일반적으로 미세유동장치에서 하나의 독립적인 기능을 수행하는 미세유동구조물은 유체를 가두어 둘 수 있는 챔버와, 유체가 흐를 수 있는 채널 및 유체의 흐름을 조절할 수 있는 밸브를 포함하고, 이들의 다양한 조합에 의해 만들어질 수 있다. 소형의 칩(chip) 상에서 생물학적 또는 화학적인 반응을 포함한 시험을 수행할 수 있도록 칩 형태의 기판에 이러한 미세유동 구조물을 배치하고 여러 단계의 처리 및 조작을 수행할 수 있도록 제작된 장치를 랩온어칩(lab-on-a chip)이라 한다. 미세유동구조물 내에서 유체를 이송하기 위해서는 구동 압력이 필요한데, 구동 압력으로서 모세관압이 이용되기도 하고, 별도의 펌프에 의한 압력이 이용되기도 한다. 최근에는 디스크 형상의 플랫폼에 미세유동 구조물을 배치하고 원심력을 이용하여 유체를 이동시키며 일련의 작업을 수행하는 디스크형 미세유동장치들이 제안되고 있다.
콜레스테롤 같은 혈액 내의 지질들은 아포 단백질(Apo-Protein)이라는 혈장 단백질과 결합하여 지단백질(Lipoprotein)을 형성하고 있다. 이런 지단백질은 그 밀도에 따라 킬로미크론(Chylomicron), 초저밀도 지단백질(VLDL: Very Low Density Lipoprotein), 저밀도 지단백질(LDL: Low Density Lipoprotein) 및 고밀도 지단백질(HDL: High Density Lipoprotein)로 구분된다. 종래의 혈중 HDL콜레스테롤 측정방법들은 HDL콜레스테롤을 다른 non-HDL콜레스테롤과 분리하지 않은 상태에서 측정 하여 정확도가 떨어지고, non-HDL콜레스테롤을 측정하기 위해서 같은 과정을 다시 반복해야하는 문제점이 있었다.  
본 발명은 HDL콜레스테롤 및 non-HDL콜레스테롤을 동시에 측정할 수 있는 콜레스테롤 측정장치 및 측정방법을 제공한다.
본 발명의 일 측면에 따르면, 챔버, 챔버를 연결하는 채널를 구비한 미세유동장치로서, 혈액 내의 지단백질(Lipoprotein)과 결합할 수 있도록 아포 단백질(Apo Protein)과 특이적으로 결합하는 포획 바인더를 수용하는 반응챔버; 반응챔버와 연결되며, 용출버퍼(elution buffer)를 수용하는 버퍼챔버 및 반응챔버와 연결되며, 콜레스테롤(Cholesterol) 측정시약을 수용하는 하나 이상의 검출챔버를 포함하는 콜레스테롤 측정장치를 제공한다.
챔버 사이의 유체 이송이 밸브에 의해 조절될 수 있다.
밸브는 상전이 물질과 발열유체의 혼합물로 이루어질 수 있다.
상전이 물질은 왁스, 겔 및 열가소성 수지로 이루어진 군에서 선택된 어느 하나일 수 있다.
발열유체는 캐리어 오일과 캐리어 오일에 분산된 다수의 미세 발열입자를 포함하고, 미세발열입자는 미세 금속 산화물입자일 수 있다.
콜레스테롤 측정장치는 밸브에 에너지를 공급하기 위한 외부 에너지원을 구비할 수 있다.
외부 에너지원은 레이저 광원일 수 있다.
포획 바인더는 항체, 항원, 리셉터, 리간드, 올리고뉴클레오타이드, 합텐(hapten) 및 압타머(aptamer)로 이루어진 군에서 선택되는 어느 하나일 수 있다.
포획 바인더는 고밀도 지단백질(HDL: High Density Lipoprotein) 이외의 지단백질(non-HDL)을 포획할 수 있도록 Apo-B 단백질과 특이적으로 결합할 수 있다.
포획 바인더는 아가로스 겔(Agarose gel)과 폴리머 비드(Polymer bead)중 어느 하나의 고체상에 결합된 형태일 수 있으나 이에 한정되는 것은 아니다.
반응챔버는 포획 바인더를 고정 배치할 수 있는 검출영역을 포함할 수 있다.
검출영역은 다공성 멤브레인, 마이크로 포어(micro-pore) 및 마이크로 필러(micro-pillar)로 이루어진 군에서 선택되는 어느 하나로 형성될 수 있다.
본 발명의 다른 측면에 따르면, 회전체, 챔버, 챔버를 연결하는 채널를 구비한 미세유동장치로서, 혈액 내의 지단백질(Lipoprotein)과 결합할 수 있도록 아포 단백질(Apo Protein)과 특이적으로 결합하는 포획 바인더를 수용하는 반응챔버; 반응챔버와 연결되며, 용출버퍼(elution buffer)를 수용하는 버퍼챔버 및 반응챔버와 연결되며, 콜레스테롤(Cholesterol) 측정시약을 수용하는 하나 이상의 검출챔버를 포함하며, 포획 바인더는 고밀도 지단백질(HDL: High Density Lipoprotein) 이외의 지단백질(non-HDL)을 포획할 수 있도록 Apo-B 단백질과 특이적으로 결합하는 원심력 기반의 콜레스테롤 측정장치를 제공한다.
챔버 사이의 유체 이송이 밸브에 의해 조절될 수 있다.
밸브는 상전이 물질과 발열유체의 혼합물로 이루어질 수 있다.
상전이 물질은 왁스, 겔 및 열가소성 수지로 이루어진 군에서 선택된 어느 하나일 수 있다.
발열유체는 캐리어 오일과 상기 캐리어 오일에 분산된 다수의 미세 발열입자를 포함하고, 미세발열입자는 미세 금속 산화물입자일 수 있다.
콜레스테롤 측정장치는 밸브에 에너지를 공급하기 위한 외부 에너지원을 구비할 수 있다.
외부 에너지원은 레이저 광원일 수 있다.
포획 바인더는 항체, 항원, 리셉터, 리간드, 올리고뉴클레오타이드, 합텐(hapten) 및 압타머(aptamer)로 이루어진 군에서 선택되는 어느 하나일 수 있다.
포획 바인더는 아가로스 겔(Agarose gel)과 폴리머 비드(Polymer bead)중 어느 하나의 고체상에 결합된 형태일 수 있으나 이에 한정되는 것은 아니다.
반응챔버는, 다공성 멤브레인, 마이크로 포어(micro-pore) 및 마이크로 필러(micro-pillar)로 이루어진 군에서 선택되는 어느 하나로 형성되고 포획 바인더를 고정 배치할 수 있는 검출영역을 포함할 수 있다.
본 발명의 또 다른 측면에 따르면, 혈액을 분석장치에 주입하고, 시료분리부로부터 얻어진 상청액을 혈액 내의 non-HDL과 결합하는 포획 바인더가 수용된 반응챔버로 이송하고, 상청액 내의 non-HDL과 포획 바인더를 결합시키며, 포획 바인더와 결합하지 않은 HDL을 제1 검출챔버로 이송하고, 버퍼챔버로부터 이송된 용출버퍼에 의해 포획 바인더로부터 해리된 non-HDL을 제2 검출챔버로 이송하고, 제1 검출챔버와 제2 검출챔버 내에 수용된 콜레스테롤 측정용 시약과 검출챔버로 이송된 지단백질의 반응을 통해 혈중 콜레스테롤의 농도를 측정하는 콜레스테롤 측정방법을 제공한다.
포획 바인더는 항체, 항원, 리셉터, 리간드, 올리고뉴클레오타이드, 합텐(hapten) 및 압타머(aptamer)로 이루어진 군에서 선택되는 어느 하나일 수 있다.
포획 바인더는 non-HDL을 포획할 수 있도록 Apo B 단백질과 특이적으로 결합할 수 있다.
포획 바인더는 아가로스 겔(Agarose gel)과 폴리머 비드(Polymer bead)중 어느 하나의 고체상에 결합된 형태일 수 있으나 이에 한정되는 것은 아니다.
반응챔버는 포획 바인더를 고정 배치할 수 있는 검출영역을 포함할 수 있다.
검출영역은 다공성 멤브레인, 마이크로 포어(micro-pore) 및 마이크로 필러(micro-pillar)로 이루어진 군에서 선택되는 어느 하나로 형성될 수 있다.
본 발명의 일 구체예에 따른 콜레스테롤 장치 및 이를 이용한 측정방법은 HDL콜레스테롤 측정의 정확도를 향상시킬 수 있으며, HDL콜레스테롤 뿐만 아니라 non-HDL콜레스테롤 및 전체 콜레스테롤 농도까지 동시에 측정할 수 있다. 따라서 혈액 내 콜레스테롤을 측정하는데 소요되는 시간 및 절차를 줄일 수 있다.
도 1은 본 발명의 일 구체예에 의한 콜레스테롤 측정장치의 구조를 개략적으로 도시한 개략도
도 2는 본 발명의 일 구체예에 의한 반응챔버의 형태 및 구조를 나타낸  개념도
도 3는 본 발명의 일 구체예에 의한 콜레스테롤 측정방법의 순서도
이하, 본 발명의 이점들과 특징들 및 이를 수행하는 방법들이 하기 바람직한 예시적 구체예들에 대한 상세한 설명 및 첨부된 도면들을 참조함으로써 더욱 용이하게 이해될 수 있을 것이다. 하지만, 본 발명의 하나 이상의 예시적 구체예들은 많은 다양한 형태로 실시될 수 있으며, 여기서 언급한 예시적 구체예들로만 한정되어 구성되는 것은 아니다.
 
본 발명의 일 구체예에 따르면, 다수의 챔버, 챔버를 연결하는 채널 및 채널의 개폐를 위한 밸브를 포함하는 하나 이상의 미세유동 구조물 및 검출부를 포함하는 미세유동장치로서, 혈액 내의 지단백질(Lipoprotein)과 결합할 수 있도록 아포 단백질과 특이적으로 결합하는 포획 바인더를 수용하는 반응챔버, 반응챔버와 연결되며, 용출버퍼(elution buffer)를 수용하는 버퍼챔버 및 반응챔버와 연결되며, 콜레스테롤(Cholesterol)측정시약을 수용하는 복수의 검출챔버를 포함하며, 챔버 사이의 유체 이송이 밸브에 의해 조절되는 콜레스테롤 측정장치를 제공한다.
 
도 1은 본 발명의 일 측면에 따른 콜레스테롤 측정장치의 구조를 개략적으로 도시한 개략도이다.
도면에서 동일한 도면 부호는 동일한 구성 요소를 나타낸다. 도시된 챔버 및 채널 등의 구조물은 그 형상이 단순화되고, 그 크기의 비가 실제와 달리 확대되거나 축소된 것일 수 있다. 미세유동장치(microfluidic device), 미세 입자(micro-particle) 등의 표현에서 '마이크로(micro-)'는 매크로(macro-)에 대비되는 의미로 사용된 것일 뿐 크기 단위로서 한정적으로 해석되어서는 안 될 것이다.
 
본 발명의 일 구체예에 따른 콜레스테롤 측정장치는 플랫폼(platform), 플랫폼 상에 배치된 다수의 챔버, 챔버를 연결하는 채널 및 채널의 개폐를 위한 밸브를 포함하는 하나 이상의 미세유동 구조물 및 검출부(미도시)를 포함하는 미세유동장치이다. 
본 발명의 일 구체예에서 사용된 플랫폼은 원형의 디스크 형상의 플랫폼을 포함할 수 있다. 그러나 플랫폼은 디스크 형상을 가지는 것으로 한정되는 것은 아니다. 플랫폼은 성형이 용이하고, 그 표면이 생물학적으로 비활성인 아크릴 등의 플라스틱 소재로 만들어질 수 있다. 다만, 이에 한정되는 것은 아니고, 화학적, 생물학적 안정성과 광학적 투명성 그리고 기계적 가공성을 가지는 소재이면 족하다. 즉, 플랫폼은 플라스틱, PMMA(Polymethylmethacrylate), 유리, 운모, 실리카, 실리콘 웨이퍼의 재료, 플라스틱 등의 다양한 재료로부터 선택될 수 있다. 경제성, 가공의 용이성 때문에 플라스틱을 사용할 수 있다. 사용 가능한 플라스틱 재료의 예로서, 폴리프로필렌, 폴리아크릴레이트, 폴리비닐알콜, 폴리에틸렌, 폴리메틸메타크릴레이트, 폴리카보네이트 등을 들 수 있다.
또한 플랫폼은 여러 층의 판으로 이루어질 수 있다. 판과 판이 서로 마주보는 면에 챔버나 채널 등에 해당하는 음각 구조물을 만들고 이들을 접합함으로써 플랫폼 내부에 공간과 채널을 제공할 수 있다. 판과 판의 접합은 접착제나 양면 접착 테이프를 이용한 접착이나 초음파 융착 등 다양한 방법으로 이루어질 수 있다.
플랫폼에는 하나 또는 다수의 미세유동 구조물이 마련될 수 있다. 예를 들면, 플랫폼을 수 개의 영역으로 나누고 각 영역마다 서로 독립적으로 작동되는 미세유동 구조물이 마련될 수 있다.
'미세유동구조물'이란, 특정한 형태의 구조물을 지칭하는 것이 아니라, 다수의 챔버와 채널 그리고 밸브로 이루어져 유체 유동을 수반하는 구조물을 포괄적으로 지칭한다. 따라서, '미세유동구조물'은 챔버와 채널 및 밸브의 배치상의 특징 및 그 내부에 수용되어 있는 물질의 종류에 따라 각기 다른 기능을 수행하는 유닛을 구성할 수 있다.
원심력을 유체의 이송을 위한 구동압력으로 할 경우, 플랫폼은 회전 가능한 디스크형일 수 있다. 그러나 플랫폼은 디스크 형상으로 한정되는 것은 아니다. 그 자체로서 회전 가능한 온전한 원판 형상뿐만 아니라 회전 가능한 프레임(frame)에 안착되어 회전할 수 있는 부채꼴 등의 형상일 수도 있다. 플랫폼의 회전을 위해 회전구동부를 포함하여 이를 통해 고속 회전할 수 있다.
도1을 참조하면, 본 발명의 일 구체예에 따른 콜레스테롤 측정장치는 시료챔버(100), 시료분리부(200) 및 상청액 계량챔버(300)를 포함할 수 있다.
시료챔버(100)는 혈액 등의 유체 상태의 시료를 수용하기 위한 공간을 제공한다.
시료챔버(100)는 시료를 주입하기 위한 시료 주입구와, 시료가 수용되는 수용부를 구비한다. 수용부에는 시료분리부(200)와 연결되는 배출구가 마련되어 있고 배출구에는 유체시료의 흐름을 통제하기 위한 밸브가 설치될 수 있다. 밸브는 채널을 통한 시료의 흐름을 제어한다. 밸브는 다양한 형태의 미세유동밸브가 채용될 수 있다. 예로서, 밸브는 외부로부터 동력을 전달받아 개방되기 전에는 유체가 흐를 수 없도록 채널을 폐쇄하고 있는, 소위 폐쇄된 밸브(normally closed valve)일 수 있다. 구체적으로 밸브는 상전이 물질(phase transition material)과 발열 유체를 혼합하여 제조될 수 있다. 상전이 물질은 왁스(wax), 겔(gel), 또는 열가소성 수지일 수 있다. 왁스로는 예컨대, 파라핀 왁스(paraffin wax)가 채용될 수 있고, 겔로는 예컨대, 폴리아크릴아미드(polyacrylamide), 폴리아크릴레이트(polyacrylates), 폴리메타크릴레이트(polymethacrylates), 또는 폴리비닐아미드(polyvinylamides) 등이 채용될 수 있으며, 열가소성 수지로는 예컨대, COC(cyclic olefin copolymer), PMMA(polymethylmethacrylate), PC(polycarbonate), PS(polystyrene), POM(polyoxymethylene), PFA(perfluoralkoxy), PVC(polyvinylchloride), PP(polypropylene), PET(polyethylene terephthalate), PEEK(polyetheretherketone), PA(polyamide), PSU(polysulfone), 또는 PVDF(polyvinylidene fluoride) 등이 채용될 수 있다. 발열 유체는 소수성(疏水性) 캐리어 오일과, 캐리어 오일에 분산된 다수의 미세 발열입자를 포함한다. 미세 발열입자는 수십 내지 수백 나노미터(nm)의 직경을 갖는다. 미세 발열입자는 예컨대, 레이저빔 조사 등과 같은 방법으로 에너지가 공급되면 그 에너지에 의해 온도가 급격히 상승하여 발열하는 성질을 갖는다. 미세 발열입자는 강자성(强磁性)의 미세한 금속 산화물 입자일 수 있다. 한편, 밸브에 에너지를 공급하는 외부 에너지원은 레이저 광원일 수 있고, 레이저 광원은 레이저 다이오드(LD; laser diode)를 구비하여, 응고된 밸브를 향해 레이저빔을 조사할 수 있도록 마련된다. 레이저 광원이 응고된 밸브를 향해 레이저빔을 조사하면, 레이저빔을 통해 공급된 외부 에너지에 의해 밸브가 유동 가능하게 용융되며 급격히 팽창하여 채널의 개폐를 조절한다. 시료 주입구와 수용부 사이에는 시료 주입구를 통하여 주입되는 시료의 주입압력에 의하여 수용부로 시료가 흘러가도록 하는 한편, 수용부에 도달된 시료가 다시 시료 주입구 쪽으로 역류하지 않도록 하기 위하여 모세관 압력을 형성할 수 있는 구조물, 즉 소정 크기 이상의 압력이 작용하는 경우에만 시료를 통과시키는 모세관 밸브의 역할을 하는 구조물이 설치될 수 있다.
시료분리부(200)는 시료챔버(100)의 하류에 위치하고 채널을 통해 시료챔버(100)와 연결된다. 시료분리부(200)는 시료챔버(100)에서 이송된 혈액 등의 유체를 수용하고, 이를 상청액(예를 들면, 혈청, 혈장 등)과 침강물(예를 들면, 혈구 등)로 원심분리한다. 유체시료의 원심분리를 위한 시료분리부(200)는 다양한 형태로 구성될 수 있다. 시료분리부(200)는 상청액 수집부(미도시)와, 상청액 수집부의 말단에 위치되어 비중이 큰 침강물을 수집하는 공간인 침강물 수집부(미도시)를 포함할 수 있다. 상청액 수집부에는 원심분리된 상청액을 반응챔버(400)로 분배하기 위한 채널이 마련될 수 있다. 밸브는 채널을 통한 시료의 흐름을 제어한다. 밸브는 다양한 형태의 미세유동밸브가 채용될 수 있다. 예로서, 밸브는 전술한 것처럼 외부로부터 동력을 전달받아 개방되기 전에는 유체가 흐를 수 없도록 채널을 폐쇄하고 있는, 소위 폐쇄된 밸브(normally closed valve)일 수 있다.  
시료분리부(200)와 반응챔버(400) 사이에는 상청액의 양을 계량하기 위한 상청액 계량챔버(300)가 설치될 수 있다. 상청액 계량챔버(300)는 검사에 필요한 양의 상청액을 수용할 수 있는 용적을 갖는다. 상청액 계량챔버(300)의 출구에는 유체의 흐름을 제어하기 위한 밸브가 마련되어 있다. 밸브는 전술한 것과 같이 소위 폐쇄된 밸브이다. 상청액 계량챔버(300)는 채널을 통해 반응챔버(400)와 연결될 수 있다. 도면에 도시되지는 않았으나 시료분리부(200)와 상청액 계량챔버(300) 사이에는 계량 후 남는 과량의 유체시료를 수용하기 위한 챔버 및 유로가 더 형성될 수 있다.
 
도1을 참조하면, 본 발명의 일 구체예에 따른 콜레스테롤 측정장치는 반응챔버(400), 버퍼챔버(500), 검출챔버(600) 및 검출부를 포함할 수 있다.
반응챔버(400)는 시료분리부(200)의 하류에 위치하고, 채널을 통해 시료분리부(200)와 연결되며, 혈액 내의 지단백질(Lipoprotein)과 결합하기 위해 아포 단백질(이하, Apo 단백질이라 한다.)과 특이적으로 결합하는 포획 바인더(401)를 수용할 수 있다.
반응챔버(400)는 항원-항체 반응, 리간드-리셉터 결합 등을 이용하여 포획 바인더(401)를 통해 상청액에 포함된 지단백질을 검출하기 위한 구조물이다.
포획 바인더(401)는 분석대상물질을 분석하기 위한 포획 프로브로서, 항체, 항원, 리셉터, 리간드, 올리고뉴클레오타이드, 합텐(hapten) 또는 압타머(aptamer) 등, 그 분석대상물질에 따라 다양하다. 예를 들면, 분석대상물질이 카바메이트계 살충제인 경우 포획 접합체는 아세틸콜린에스터라아제(AChE)이며, 분석대상물질이 항원인 경우 포획 접합체는 포획 항체일 수 있다.
본 발명의 일 구체예에 따른 포획 바인더(401)는 상청액 내의 지단백질에 특이적으로 결합할 수 있는 항체, 항원, 리셉터, 리간드, 올리고뉴클레오타이드, 합텐(hapten) 또는 압타머(aptamer) 등을 포함할 수 있다.
혈액 내의 콜레스테롤을 포함하는 지질들은 Apo 단백질이라는 혈장 단백질과 결합하여 지단백질 상태로 혈액 내에 존재한다. 지단백질은 그 밀도에 따라 킬로미크론(Chylomicron), 초저밀도 지단백질(VLDL: Very Low Density Lipoprotein), 저밀도 지단백질(LDL: Low Density Lipoprotein) 및 고밀도 지단백질(HDL: High Density Lipoprotein, 이하 HDL이라 한다.)로 구분된다.
포획 바인더(401)는 HDL 이외의 지단백질(이하, non-HDL이라 한다.)과 결합할 수 있도록 Apo-B단백질과 특이적으로 결합할 수 있는 바인더일 수 있다. HDL은 Apo-B단백질을 포함하지 않고, non-HDL은 Apo-B단백질을 포함하므로, non-HDL을 포획하기 위해서 Apo-B단백질에 특이적인 바인더를 사용할 수 있다.
포획 바인더(401)는 아가로스 겔(Agarose gel) 또는 폴리머 비드(Polymer bead)를 포함하는 고체상(402)에 결합된 형태로 존재할 수 있으나 이에 한정되는 것은 아니고 이들은 반응챔버(400) 내의 검출영역(403)에 고정배치될 수 있다.
검출영역(403)은 다공성 멤브레인, 마이크로 포어(micro-pore) 또는 마이크로 필러(micro-pillar)로 이루어질 수 있다(도 2참조).
검출챔버(600)는 반응챔버(400)의 하류에 위치하고 채널을 통해 반응챔버(400)와 연결되며, 콜레스테롤 측정용 시약을 수용할 수 있다. 콜레스테롤 측정용 시약은 콜레스테롤 측정용 효소, 기질, 산도 완충제 및 부형제 등을 포함하는 건조된 시약 또는 액상의 시약일 수 있으나 이에 한정되는 것은 아니다.
버퍼챔버(500)는 반응챔버(400)의 상류에 위치하고 채널을 통해 반응챔버(400)와 연결되며, 용출버퍼를 수용할 수 있다. 용출버퍼는 포획 바인더(401)와 non-HDL의 Apo-B 단백질 사이의 항원-항체 결합 또는 리간드-리셉터 결합을 해리시킴으로써, 고정된 포획 바인더(401)로부터 non-HDL을 해리시킬 수 있다. 또는 용출버퍼는 선택적 계면활성제(selective surfactant)를 포함하여 고정된 포획 바인더(401)에 결합된 non-HDL로부터 콜레스테롤을 방출시킬 수 있다.
검출부(미도시)는 미세유동구조물의 외부에 배치될 수 있고, 검출챔버(600)의 흡광도를 측정하기 위해 복수로 마련될 수 있다. 검출부는 하나 이상의 광원부와 광원부에 대응하도록 마련되어 검출챔버(600)를 투과한 빛을 수광하는 하나 이상의 수광부 및 수광부가 수신한 빛의 광학적 특성을 분석하여 분석대상물질의 농도를 산출하는 분석부를 포함할 수 있다.
광원부는 소정의 주파수로 점멸하는 광원으로써, LED(light emitting diode) , LD(laser diode)와 같은 반도체 발광 소자와 할로겐 램프나 제논(Xenon)램프 같은 가스 방전 램프를 포함할 수 있다. 수광부는 입사광의 세기에 따른 전기적 신호를 발생시키는 것으로서, 예를 들면, 공핍층 포토 다이오드(depletionlayer photo diode)나 애벌런치 포토 다이오드(avalanche photo diode, APD) 또는 광전자증배관(photomultiplier tubes, PMT)등을 포함할 수 있다.
본 발명의 일 구체예에 따른 검출부의 광원부 및 수광부는 미세유동구조물을 사이에 두고 상하측의 대응되는 위치에 배치될 수 있고, 반사경 또는 도광 부재 등을 통해 광 경로가 조절될 수 있다. 분석부는 수광부에서 수신된 흡광도와 미리 저장된 표준곡선을 이용하여 검출챔버(600) 내의 분석대상물질의 농도를 산출할 수 있다.
본 발명의 일 구체예에 따른 콜레스테롤 측정장치 내의 유체의 이송은 플랫폼의 회전으로 인한 원심력, 모세관압, 별도의 펌프에 의한 압력 또는 중력을 그 구동압력으로 할 수 있다.
 
도 3은 본 발명의 일 구체예에 따른 콜레스테롤 측정방법의 순서도이다.
일 예로서, 피검자로부터 채취한 전혈(whole blood)을 시료챔버(100)에 주입하고(S100), 시료챔버(100)와 시료분리부(200)를 연결하는 채널의 폐쇄된 밸브를 개방시켜 상술한 구동압력을 통해 전혈을 시료분리부(200)로 이송시킨다.
시료분리부(200)로 이송된 전혈은 고속회전을 통해 혈청 또는 혈장을 포함하는 상청액과 혈구를 포함하는 침강물로 원심분리 된다(S200).
원심분리로 인해, 혈청 또는 혈장에 비해 상대적으로 무거운 혈구 등은 침강하여 침강물 수집부로 이동되고, 혈구 등에 비해 상대적으로 가벼운 상청액은 상청액 수집부에 남게 된다. 원심분리 후, 시료분리부(200)와 반응챔버(400)를 연결하는 채널의 폐쇄된 밸브를 개방시켜 상청액을 반응챔버(400)로 이송시킨다.
시료분리부(200)로부터 반응챔버(400)로 상청액이 유입되면 반응챔버(400) 내의 검출영역(403)에 고정배치되는, 고체상(402)과 결합된 상태의 포획 바인더(401)가 상청액 내의 non-HDL에 존재하는 Apo-B단백질과 특이적으로 결합한다(S300).
이 과정에서 포획 바인더(401)와 non-HDL이 잘 결합할 수 있도록 플랫폼을 좌우로 수회 흔들어 주는 것이 가능하다. 그 결과, 반응챔버(400) 내에서 HDL은 상청액 내에 그대로 존재하고 non-HDL은 포획 바인더(401)와 결합하여 검출영역(403)에 고정된다.
포획 바인더(401)와 non-HDL의 결합을 위한 반응시간이 지나면, 반응챔버(400)와 제1 검출챔버(601)를 연결하는 채널의 폐쇄된 밸브를 개방하여 HDL을 포함하는 상청액을 제1 검출챔버(601)로 이송시킨다(S400). HDL을 포함하는 상청액을 제1 검출챔버(601)로 이송시킴으로써 HDL을 non-HDL과 분리할 수 있다.
HDL이 제1 검출챔버(601)로 이송되면, 반응챔버(400)와 제1 검출챔버(601)를 연결하는 채널을 폐쇄하고, 버퍼챔버(500)와 반응챔버(400)를 연결하는 채널을 개방하여 버퍼챔버(500)에 수용된 용출버퍼를 반응챔버(400)로 이송시킨다. 용출버퍼는 포획 바인더(401)와 non-HDL 사이의 항원-항체 결합 또는 리간드-리셉터 결합을 해리시키거나, 고정된 포획 바인더(401)에 결합된 non-HDL로부터 콜레스테롤을 방출시킨다(S500).
용출버퍼에 의해 non-HDL이 포획 바인더(401)로부터 해리되면 반응챔버(400)와 제2 검출챔버(602)를 연결하는 채널의 폐쇄된 밸브를 개방하여 non-HDL을 제2 검출챔버(602)로 이송시킨다(S600). 이로써, 제1 검출챔버(601)는 HDL을 수용하게 되고 제2 검출챔버(602)는 non-HDL을 수용하게 되어 HDL과 non-HDL이 물리적으로 분리된다.
각 검출챔버(600)에 수용되어 있던 콜레스테롤 측정용 시약은 각 검출챔버(600)로 이송된 HDL 및 non-HDL과 반응하게 되고, 미세유동구조물의 외부에 장착된 검출부는 측정시약과 반응한 콜레스테롤을 광학적 또는 전기적으로 측정하여, 미리 작성된 HDL 콜레스테롤 표준곡선을 통해 그 농도를 산출한다(S700).
 
첨부된 도면에 도시되어 설명된 특정의 실시 예들은 단지 본 발명의 예로서 이해되어 지고, 본 발명의 범위를 한정하는 것이 아니며, 본 발명이 속하는 기술분야에서 본 발명에 기술된 기술적 사상의 범위에서도 다양한 다른 변경이 발생될 수 있으므로, 본 발명은 보여지거나 기술된 특정의 구성 및 배열로 제한되지 않는 것은 자명하다.
100 : 시료챔버                   200 : 시료분리부
300 : 상청액 계량챔버            400 : 반응챔버
401 : 포획 바인더                402 : 고체상
403 : 검출영역                   500 : 버퍼챔버
600 : 검출챔버                   700 : 플랫폼

Claims (28)

  1. 챔버, 상기 챔버를 연결하는 채널를 구비한 미세유동장치 로서,
    혈액 내의 지단백질(Lipoprotein)과 결합할 수 있도록 아포 단백질(Apo Protein)과 특이적으로 결합하는 포획 바인더를 수용하는 반응챔버;
    상기 반응챔버와 연결되며, 용출버퍼(elution buffer)를 수용하는 버퍼챔버 및
    상기 반응챔버와 연결되며, 콜레스테롤(Cholesterol) 측정시약을 수용하는 하나 이상의 검출챔버를 포함하는 콜레스테롤 측정장치.
  2. 제1항에 있어서,
    상기 반응챔버, 버퍼챔버 및 하나 이상의 검출챔버 사이의 유체 이송이 밸브에 의해 조절되는 콜레스테롤 측정장치.
  3. 제2항에 있어서,
    상기 밸브는 상전이 물질과 발열유체의 혼합물로 이루어진 콜레스테롤 측정장치.
  4. 제3항에 있어서,
    상기 상전이 물질은 왁스, 겔 및 열가소성 수지로 이루어진 군에서 선택된 어느 하나인 콜레스테롤 측정장치.
  5. 제3항에 있어서,
    상기 발열유체는 캐리어 오일과 상기 캐리어 오일에 분산된 다수의 미세 발열입자를 포함하고, 상기 미세발열입자는 미세 금속 산화물입자인 콜레스테롤 측정장치.
  6. 제3항에 있어서,
    상기 콜레스테롤 측정장치는 상기 밸브에 에너지를 공급하기 위한 외부 에너지원을 구비하는 콜레스테롤 측정장치.
  7. 제6항에 있어서,
    상기 외부 에너지원은 레이저 광원인 콜레스테롤 측정장치.
  8. 제1항에 있어서,
    상기 포획 바인더는 항체, 항원, 리셉터, 리간드, 올리고뉴클레오타이드, 합텐(hapten) 및 압타머(aptamer)로 이루어진 군에서 선택된 어느 하나인 콜레스테롤 측정장치.
  9. 제1항에 있어서,
    상기 포획 바인더는 고밀도 지단백질(HDL: High Density Lipoprotein) 이외의 지단백질(non-HDL)을 포획할 수 있도록 Apo-B 단백질과 특이적으로 결합하는 콜레스테롤 측정장치.
  10. 제1항에 있어서,
    상기 포획 바인더는 아가로스 겔(Agarose gel)과 폴리머 비드(Polymer bead)중 어느 하나의 고체상에 결합된 형태인 콜레스테롤 측정장치.
  11. 제1항에 있어서,
    상기 반응챔버는 상기 포획 바인더를 고정 배치할 수 있는 검출영역을 포함하는 콜레스테롤 측정장치.
  12. 제11항에 있어서,
    상기 검출영역은 다공성 멤브레인, 마이크로 포어(micro-pore) 및 마이크로 필러(micro-pillar)로 이루어진 군에서 선택되는 어느 하나로 형성되는 콜레스테롤 측정장치.
  13. 회전체,
    챔버, 상기 챔버를 연결하는 채널를 구비한 미세유동장치 로서,
    혈액 내의 지단백질(Lipoprotein)과 결합할 수 있도록 아포 단백질(Apo Protein)과 특이적으로 결합하는 포획 바인더를 수용하는 반응챔버;
    상기 반응챔버와 연결되며, 용출버퍼(elution buffer)를 수용하는 버퍼챔버 및
    상기 반응챔버와 연결되며, 콜레스테롤(Cholesterol) 측정시약을 수용하는 하나 이상의 검출챔버를 포함하고,
     상기 포획 바인더는 고밀도 지단백질(HDL: High Density Lipoprotein) 이외의 지단백질(non-HDL)을 포획할 수 있도록 Apo-B 단백질과 특이적으로 결합하는 원심력 기반의 콜레스테롤 측정장치.
  14. 제13항에 있어서,
    상기 반응챔버, 버퍼챔버 및 하나 이상의 검출챔버 사이의 유체 이송이 밸브에 의해 조절되는 원심력 기반의 콜레스테롤 측정장치.
  15. 제14항에 있어서,
    상기 밸브는 상전이 물질과 발열유체의 혼합물로 이루어진 원심력 기반의 콜레스테롤 측정장치.
  16. 제15항에 있어서,
    상기 상전이 물질은 왁스, 겔 및 열가소성 수지로 이루어진 군에서 선택된 어느 하나인 원심력 기반의 콜레스테롤 측정장치.
  17. 제15항에 있어서,
    상기 발열유체는 캐리어 오일과 상기 캐리어 오일에 분산된 다수의 미세 발열입자를 포함하고, 상기 미세발열입자는 미세 금속 산화물입자인 원심력 기반의 콜레스테롤 측정장치.
  18. 제15항에 있어서,
    상기 콜레스테롤 측정장치는 상기 밸브에 에너지를 공급하기 위한 외부 에너지원을 구비하는 원심력 기반의 콜레스테롤 측정장치.
  19. 제18항에 있어서,
    상기 외부 에너지원은 레이저 광원인 원심력 기반의 콜레스테롤 측정장치.
  20. 제13항에 있어서,
    상기 포획 바인더는 항체, 항원, 리셉터, 리간드, 올리고뉴클레오타이드, 합텐(hapten) 및 압타머(aptamer)로 이루어진 군에서 선택되는 어느 하나인 원심력 기반의 콜레스테롤 측정장치.
  21. 제13항에 있어서,
    상기 포획 바인더는 아가로스 겔(Agarose gel)과 폴리머 비드(Polymer bead)중 어느 하나의 고체상에 결합된 형태인 원심력 기반의 콜레스테롤 측정장치.
  22. 제13항에 있어서,
    상기 반응챔버는, 다공성 멤브레인, 마이크로 포어(micro-pore) 및 마이크로 필러(micro-pillar)로 이루어진 군에서 선택되는 어느 하나로 형성되고 상기 포획 바인더를 고정 배치할 수 있는 검출영역을 포함하는 원심력 기반의 콜레스테롤 측정장치.
  23. 혈액을 분석장치에 주입하고, 시료분리부로부터 얻어진 상청액을  상기 혈액 내의 non-HDL과 결합하는 포획 바인더가 수용된 반응챔버로 이송하고,
    상기 상청액 내의 상기 non-HDL과 상기 포획 바인더를 결합시키며,
    상기 포획 바인더와 결합하지 않은 HDL을 제1 검출챔버로 이송하고,
    버퍼챔버로부터 이송된 용출버퍼에 의해 상기 포획 바인더로부터 해리된 상기 non-HDL을 제2 검출챔버로 이송하고,
    상기 제1 검출챔버와 상기 제2 검출챔버 내에 수용된 콜레스테롤 측정용 시약과 상기 검출챔버로 이송된 지단백질의 반응을 통해 혈중 콜레스테롤의 농도를 측정하는 콜레스테롤 측정방법.
  24. 제23항에 있어서,
    상기 포획 바인더는 항체, 항원, 리셉터, 리간드, 올리고뉴클레오타이드, 합텐(hapten) 및 압타머(aptamer)로 이루어진 군에서 선택되는 어느 하나인 콜레스테롤 측정방법.
  25. 제23항에 있어서,
    상기 포획 바인더는 non-HDL을 포획할 수 있도록 Apo B 단백질과 특이적으로 결합하는 콜레스테롤 측정방법.
  26. 제23항에 있어서,
    상기 포획 바인더는 아가로스 겔(Agarose gel)과 폴리머 비드(Polymer bead)중 어느 하나의 고체상에 결합된 형태인 콜레스테롤 측정방법.
  27. 제23항에 있어서,
    상기 반응챔버는 상기 포획 바인더를 고정 배치할 수 있는 검출영역을 포함하는 콜레스테롤 측정방법.
  28. 제27항에 있어서,
    상기 검출영역은 다공성 멤브레인, 마이크로 포어(micro-pore) 및 마이크로 필러(micro-pillar)로 이루어진 군에서 선택되는 어느 하나로 형성되는 콜레스테롤 측정방법.
KR1020100067308A 2010-07-13 2010-07-13 콜레스테롤 측정장치 및 이를 이용한 측정방법 KR101528154B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020100067308A KR101528154B1 (ko) 2010-07-13 2010-07-13 콜레스테롤 측정장치 및 이를 이용한 측정방법
PCT/KR2011/004972 WO2012008709A2 (en) 2010-07-13 2011-07-07 Apparatus for measuring cholesterol and method thereof
US13/179,013 US8481326B2 (en) 2010-07-13 2011-07-08 Apparatus for measuring cholesterol and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100067308A KR101528154B1 (ko) 2010-07-13 2010-07-13 콜레스테롤 측정장치 및 이를 이용한 측정방법

Publications (2)

Publication Number Publication Date
KR20120006697A KR20120006697A (ko) 2012-01-19
KR101528154B1 true KR101528154B1 (ko) 2015-06-11

Family

ID=45467297

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100067308A KR101528154B1 (ko) 2010-07-13 2010-07-13 콜레스테롤 측정장치 및 이를 이용한 측정방법

Country Status (3)

Country Link
US (1) US8481326B2 (ko)
KR (1) KR101528154B1 (ko)
WO (1) WO2012008709A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105974125A (zh) * 2016-05-22 2016-09-28 杜护侠 一种心脑血管疾病特异性检测试剂盒
KR20230129130A (ko) * 2022-02-28 2023-09-06 주식회사 에이치피바이오 Ldl에 특이적으로 결합하는 dna 앱타머 및 상기 dna 앱타머의 용도

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020015246A (ko) * 2000-08-21 2002-02-27 김주호 자기입자를 이용한 hdl/ldl 콜레스테롤의 동시진단방법 및 그 장치
JP2004251673A (ja) * 2003-02-18 2004-09-09 Bios Ikagaku Kenkyusho:Kk 生体物質および化学物質の光学的測定装置および光学的測定方法
US20100049022A1 (en) * 2000-05-16 2010-02-25 Animas Technologies, Llc. Methods for improving performance and reliability of biosensors

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5215886A (en) * 1987-06-22 1993-06-01 Patel P Jivan HDL determination in whole blood
US7179659B2 (en) * 2001-04-02 2007-02-20 Agilent Technologies, Inc. Sensor surfaces for detecting analytes and methods of use
KR101343034B1 (ko) * 2006-09-05 2013-12-18 삼성전자 주식회사 원심력 기반의 단백질 검출용 미세유동 장치 및 이를포함하는 미세유동 시스템
EP2126587B1 (en) * 2007-01-09 2010-09-29 Cholestech Corporation Device and method for measuring ldl-associated cholesterol
KR100960066B1 (ko) * 2008-05-14 2010-05-31 삼성전자주식회사 동결건조시약이 저장된 미세유동장치 및 이를 이용한시료분석방법
KR20100023538A (ko) * 2008-08-22 2010-03-04 삼성전자주식회사 고상 시약의 제조방법 및 고상 시약을 수용하는 미세유동장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100049022A1 (en) * 2000-05-16 2010-02-25 Animas Technologies, Llc. Methods for improving performance and reliability of biosensors
KR20020015246A (ko) * 2000-08-21 2002-02-27 김주호 자기입자를 이용한 hdl/ldl 콜레스테롤의 동시진단방법 및 그 장치
JP2004251673A (ja) * 2003-02-18 2004-09-09 Bios Ikagaku Kenkyusho:Kk 生体物質および化学物質の光学的測定装置および光学的測定方法

Also Published As

Publication number Publication date
US20120015441A1 (en) 2012-01-19
US8481326B2 (en) 2013-07-09
WO2012008709A3 (en) 2012-04-19
WO2012008709A2 (en) 2012-01-19
KR20120006697A (ko) 2012-01-19

Similar Documents

Publication Publication Date Title
JP6904932B2 (ja) 試料の分析のためのシステムおよびデバイス
KR101519379B1 (ko) 원심력 기반의 미세유동장치 및 이를 이용한 면역분석방법
KR101722548B1 (ko) 원심력기반의 미세유동장치 및 이를 이용한 유체시료 내 분석대상물질 검출방법
US9616424B2 (en) Centrifugal-based microfluidic apparatus, method of fabricating the same, and method of testing samples using the microfluidic apparatus
EP2028496B1 (en) Centrifugal force-based microfluidic device for blood chemistry analysis
US8333935B2 (en) Microfluidic device using microfluidic chip and microfluidic device using biomolecule microarray chip
KR101422573B1 (ko) 원심력기반의 미세유동장치 및 이를 이용한 면역혈청검사방법
US9289765B2 (en) Micro-fluidic device and sample testing apparatus using the same
RU2555049C2 (ru) Картридж для обработки образца и способ обработки и/или анализа образца под действием центробежной силы
EP2002895A1 (en) Microfluidic device for simultaneously conducting multiple analyses
US20120178182A1 (en) Microfluidic device and analyte detection method using the same
KR20150101307A (ko) 미세유동장치
US20130196360A1 (en) Microfluidic device and control method thereof
AU2011239538A1 (en) Systems and devices for analysis of samples
EP2781263A2 (en) Microfluidic Device and Control Method Thereof
KR20140115912A (ko) 미세유동장치 및 그 제어방법
KR101528154B1 (ko) 콜레스테롤 측정장치 및 이를 이용한 측정방법
KR20120051133A (ko) 미세유동장치 및 이를 이용한 헤모글로빈의 측정방법
AU2015202055B2 (en) Systems and devices for analysis of samples

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180530

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190530

Year of fee payment: 5