KR101526655B1 - Sound-absorbing material for automobile by urethane foam with carbon nano-tube and its preparing method - Google Patents

Sound-absorbing material for automobile by urethane foam with carbon nano-tube and its preparing method Download PDF

Info

Publication number
KR101526655B1
KR101526655B1 KR1020130030450A KR20130030450A KR101526655B1 KR 101526655 B1 KR101526655 B1 KR 101526655B1 KR 1020130030450 A KR1020130030450 A KR 1020130030450A KR 20130030450 A KR20130030450 A KR 20130030450A KR 101526655 B1 KR101526655 B1 KR 101526655B1
Authority
KR
South Korea
Prior art keywords
weight
sound absorbing
absorbing material
parts
polyurethane foam
Prior art date
Application number
KR1020130030450A
Other languages
Korean (ko)
Other versions
KR20140115643A (en
Inventor
이정욱
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020130030450A priority Critical patent/KR101526655B1/en
Priority to US14/062,209 priority patent/US20140287644A1/en
Priority to DE102013221693.9A priority patent/DE102013221693B4/en
Priority to CN201310530657.4A priority patent/CN104059213B/en
Publication of KR20140115643A publication Critical patent/KR20140115643A/en
Application granted granted Critical
Publication of KR101526655B1 publication Critical patent/KR101526655B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/022Foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2350/00Acoustic or vibration damping material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/647Including a foamed layer or component
    • Y10T442/649Plural foamed layers

Abstract

본 발명은 탄소나노튜브 적용 발포 우레탄 폼을 이용한 자동차용 흡음재와 그 제조방법에 관한 것으로서, 더욱 상세하게는 반 경질 발포 우레탄 폼에 첨가되는 난연성 충전재의 일부를 탄소나노튜브로 대체하여 첨가함으로써 폼의 셀 구조를 균일하게 유지하면서 셀의 오픈(open)율을 증가시켜서 자동차용 흡음재로 사용하는 경우 우수한 난연성을 유지하면서도 흡 차음성이 우수한 자동차용 흡음재와 그 제조방법에 관한 것이다.The present invention relates to a sound absorbing material for automobiles using carbon nano tube foamed urethane foam and a method of manufacturing the same. More particularly, the present invention relates to a sound absorbing material for automobile using carbon nanotube foamed urethane foam, The present invention relates to a sound absorbing material for automobiles and a method for manufacturing the same, which is excellent in noise absorption while maintaining excellent flame retardancy when used as a sound absorbing material for an automobile by increasing the cell open rate while maintaining a uniform cell structure.

Description

탄소나노튜브 적용 발포 우레탄 폼을 이용한 자동차용 흡음재와 그 제조방법{Sound-absorbing material for automobile by urethane foam with carbon nano-tube and its preparing method}Technical Field [0001] The present invention relates to a sound absorbing material for a vehicle using a foamed urethane foam having carbon nanotubes and a method for manufacturing the sound absorbing material,

본 발명은 탄소나노튜브 적용 발포 우레탄 폼을 이용한 자동차용 흡음재와 그 제조방법에 관한 것으로서, 더욱 상세하게는 반 경질 발포 우레탄 폼에 첨가되는 난연성 충전재의 일부를 탄소나노튜브로 대체하여 첨가함으로써 폼의 셀 구조를 균일하게 유지하면서 셀의 오픈(open)율을 증가시켜서 자동차용 흡음재로 사용하는 경우 우수한 난연성을 유지하면서도 흡 차음성이 우수한 자동차용 흡음재와 그 제조방법에 관한 것이다.
The present invention relates to a sound absorbing material for automobiles using carbon nano tube foamed urethane foam and a method of manufacturing the same. More particularly, the present invention relates to a sound absorbing material for automobile using carbon nanotube foamed urethane foam, The present invention relates to a sound absorbing material for automobiles and a method for manufacturing the same, which is excellent in noise absorption while maintaining excellent flame retardancy when used as a sound absorbing material for an automobile by increasing the cell open rate while maintaining a uniform cell structure.

자동차는 주행하는 도중 엔진에서 소음이 지속적으로 발생하게 되는데, 이때 발생한 소음은 차체 대시 패널을 통하여 실내로 유입되거나 차체 틈새를 통하여 외부로 유출된다. 이러한 엔진룸 소음을 감소시키기 위해 다양한 흡차음 부품이 장착되고 있는데 대표적으로 후드 삽입재(hood insulator), 대쉬 삽입재(dash insulator) 등이 있다. The vehicle continuously generates noise in the engine during driving. The noise generated at this time is introduced into the room through the vehicle dash panel or is discharged to the outside through the vehicle body gap. In order to reduce the noise of the engine room, various sound absorption parts are mounted. Typically, hood insulators and dash insulators are used.

전통적으로 엔진룸 흡차음 부품 소재는 주로 레진 펠트(resinated felt), 글래스 울(glass wool) 등을 사용였다. 하지만 상기 재료는 흡음 및 차음 성능을 향상시키기 위해 고중량을 유지해야 하는 단점이 있다. 또한 유리 섬유의 노화 후 비산페놀 수지의 냄새 등 유해물질을 배출하는 단점을 가지고 있다.Traditionally, resin-felt parts, glass wool, etc., have been used for engine room absorption parts. However, the above materials have a disadvantage of maintaining a high weight in order to improve sound absorption and sound insulation performance. In addition, it has the disadvantage of emitting harmful substances such as the smell of the scattered phenolic resin after the aging of the glass fiber.

이러한 문제를 해결하고자 다양한 대체 소재에 대한 연구가 진행되고 있는데, 그 중 발포 폴리우레탄 폼은 기존 소재처럼 유해물질을 배출하는 단점이 없으며 배합 조정을 통해 경도 및 물성을 용이하게 조정할 수 있는 장점을 가진다. 발포 폴리우레탄 폼은 기존의 레진 펠트 및 글래스 대비 우수한 흡음 성능과 경량화 효과를 가지기 때문에 자동차 소음 저감 및 연비 향상 효과 기대할 수 있다. In order to solve these problems, various alternate materials are being studied. Among them, foamed polyurethane foam has no disadvantage of discharging harmful substances like existing materials, and has an advantage of being able to easily adjust hardness and physical properties through compounding . Foamed polyurethane foam has excellent sound absorbing performance and weight saving effect compared to conventional resin felt and glass, so it can be expected to reduce automobile noise and improve fuel efficiency.

그러나 반경질 발포 폴리우레탄 폼의 경우 1,500Hz 이하의 중 저주파 영역에서 기존의 두 소재 대비 우수한 성능을 보이나 고주파 영역에서의 성능이 상대적으로 부족하였다. However, the semi - rigid foamed polyurethane foam showed better performance than the conventional two materials in the mid - low frequency region below 1,500 Hz, but the performance in the high frequency region was relatively insufficient.

이를 보완하기 위해 한국특허공개 제10-2011-107675호에서는 폴리우레탄 원액에 탄소나노튜브 또는 탄소나노튜브와 탄소 나노플레이트를 첨가 및 분산시켜 발포하여 폴리우레탄 폼을 형성시킴으로써, 폴리우레탄 폼을 단열재로 사용할 시 내구성, 단열성 및 열적 안정성을 향상시키는 기술이 제안되어 있다. 그러나 이러한 기술은 일부 흡음재로서의 성능 등은 개선된 것으로 기대할 수 있지만, 자동차용 흡음재로 사용될 수 있는 반경질폼 발포물이 아닌 경질 폼을 적용함으로서 흡음 성능이 매우 취약한 문제가 있다. 경질 발포 우레탄 폼은 독립적으로 패쇄된 셀 구조로서 셀 내부로 가스를 가둬 단열 및 보냉 특성을 강화시킨 형태로서 주로 건축용 제품으로 사용된다. 또한 경질 폴리우레탄 폼은 발포된 후 다른 형상으로 열 성형을 할 수 없기 때문에 부품 형상으로 프레스 성형을 할 수 있는 특성이 필요하다. 따라서 이전 기술을 이용해 자동차 흡차음재로 사용하기에는 부적합한 특성이 있다.In order to compensate for this, Korean Patent Laid-Open Publication No. 10-2011-107675 discloses that polyurethane foam is formed by adding or dispersing carbon nanotubes or carbon nanotubes or carbon nanotubes to a polyurethane stock solution and foaming them to form a polyurethane foam as a heat insulating material A technique for improving durability, heat insulation and thermal stability when used is proposed. However, such a technology can be expected to improve the performance as a sound absorbing material. However, there is a problem in that the sound absorption performance is very weak due to the application of the rigid foam, which is not a semi-rigid foam foam that can be used as a sound absorbing material for automobiles. Rigid foamed urethane foam is an independently closed cell structure, which is a type in which the gas is sealed inside the cell to enhance the insulation and cooling characteristics, and is used mainly as a construction product. Further, the rigid polyurethane foam can not be thermoformed into other shapes after foaming, so that it is necessary to have a property of being able to press-mold in the shape of parts. Therefore, it is not suitable for use as an automobile sound absorbing material by using the prior art.

경질 발포 폴리우레탄 폼이 이와 같이 닫힌 셀 구조를 갖는 것은 주요 원액의 구조와 기타 첨가물의 조성에 의해 내부 셀 구조가 그물망 형태의 네트워크를 형성하기 때문이다. 또한 자동차용 엔진룸용 흡음재로 사용하기 위해서는 불이 붙어도 일정시간 후에 자연 소화되는 자소성의 난연성이 필요한데 탄소나노튜브 단독 혼합으로는 이러한 문제를 해결하기 어렵다.The reason why the rigid foamed polyurethane foam has such a closed cell structure is that the inner cell structure forms a mesh network by the structure of the main stock solution and the composition of the other additives. In order to be used as a sound absorbing material for an engine room for automobiles, it is necessary to have flame retardancy of self-burning which is naturally extinguished after a certain period of time even if a fire occurs, but this problem can not be solved by a single carbon nanotube mixing.

또한, 종래 탄소나노튜브를 사용한 기술로서, 한국특허공개 제10-2008-3843호에서는 탄소나노튜브를 포함하는 중합체-기재 셀 구조로서, 셀의 평균 크기가 150 마이크론 미만인 것을 특징으로 하는, 중합체 구조 중 중량%가 60 % 미만, 바람직하게는 10 내지 50 % 또는 바람직하게는 0.1 내지 3 %인 탄소나노튜브를 포함한 중합체성 셀 구조가 제안되어 있다. 일본특허공개 제2008-13802호에서는 팽창흑연이 함유되고, 엔진룸의 칸막이 벽으로 소음을 제거하는 용도로 사용되는 차량용 폴리우레탄 발포체가 제안되어 있고, 일본특허등록 제3,580,011호에서는 자동차 엔진의 방음처리 방법으로 도막을 형성하는 것으로서, 알크릴계 수지 에멀젼과 체질안료 및 그래파이트 등의 편상 충전재를 함유하는 도막 형성 도료가 제안되어 있으며, 한국특허공개 제10-2011-107838호에서는 항공기 동체 외판 등에 적용되는 방음성 및 방진성이 향상된 구조용 복합재로서, 사용된 점탄성 간지에 탄소나노튜브 등을 사용하는 기술이 제안되어 있다.As a technique using conventional carbon nanotubes, Korean Patent Laid-Open No. 10-2008-3843 discloses a polymer-based cell structure including carbon nanotubes, which has an average cell size of less than 150 microns. A polymeric cell structure including carbon nanotubes having a weight percentage of less than 60%, preferably 10 to 50% or preferably 0.1 to 3% is proposed. Japanese Patent Laid-Open Publication No. 2008-13802 proposes a vehicle polyurethane foam which contains expandable graphite and is used for removing noise from a partition wall of an engine room. In Japanese Patent No. 3,580,011, soundproofing of an automobile engine A coating film forming paint containing an alkyd type resin emulsion, an extender pigment, and a filler such as graphite has been proposed as a method for forming a coating film, and Korean Patent Laid-open Publication No. 10-2011-107838 discloses a coating film- As a structural composite material improved in soundproofness and dustproofness, a technique of using carbon nanotubes or the like in the viscoelastic gypsum used has been proposed.

그러나 이러한 기술들은 탄소나노튜브의 적용 환경을 구성하는 수지 성분이 제각각이고 대부분 경질의 발포체로 이루어져 있어서 경량화와 자동차용에 적합한 물성이 부족하거나 흡음성능이 그다지 좋지 못한 문제가 있다.
However, these techniques are problematic in that the resins constituting the application environment of the carbon nanotubes are various and most of them are composed of hard foams, so that they are not light-weighted and have poor physical properties suitable for automobiles, and sound absorption performance is not so good.

1. 한국특허공개 제10-2011-107675호1. Korean Patent Publication No. 10-2011-107675 2. 한국특허공개 제10-2008-3843호2. Korean Patent Publication No. 10-2008-3843 3. 일본특허공개 제2008-13802호3. Japanese Patent Laid-Open No. 2008-13802 4. 일본특허등록 제3,580,011호4. Japanese Patent No. 3,580,011 5. 한국특허공개 제10-2011-107838호5. Korean Patent Publication No. 10-2011-107838

이러한 종래 기술의 문제점을 해결하기 위해 본 발명자들은 중고주파 성능 향상을 위해 나노사이즈 미립자인 탄소나노튜브를 난연성 충전재와 함께 반경질의 폴리우레탄 폼에 첨가하게 되면 1,500Hz 이상의 중 고주파 영역에서도 흡음성능이 월등히 향상된다는 사실을 알게 되어 본 발명은 완성하게 되었다.In order to solve the problems of the prior art, the present inventors have found that when carbon nanotubes, which are nano-sized particles, are added to a semi-high-quality polyurethane foam together with a flame-retardant filler, The present invention has been completed.

따라서 본 발명은 소재의 경량화로 연비를 향상시키고 전 주파수 대역에서 기존 소재 대비 흡차음 성능이 향상되고 난연성도 우수한 탄소나노튜브 적용 발포 우레탄 폼을 이용한 자동차용 흡음재를 제공하는데 그 목적이 있다.Accordingly, it is an object of the present invention to provide a sound absorbing material for automobiles using a carbon nano-tube foamed urethane foam which improves fuel economy by reducing the weight of a material and improves absorptive sound performance compared to existing materials in all frequency bands and has excellent flame retardancy.

또한 본 발명은 고흡음성과 난연성을 동시에 만족하는 자동차용 부품 형상으로 열 프레스 성형이 가능한 탄소나노튜브 적용 발포 우레탄 폼을 이용한 자동차용 흡음재의 제조방법을 제공하는데 목적이 있다.
Another object of the present invention is to provide a method of manufacturing a sound absorbing material for automobiles using a foamed urethane foam using carbon nanotubes capable of hot press forming in the form of parts for automobiles satisfying both high sound absorption and flame retardancy.

위와 같은 과제 해결을 위해, 본 발명은 폴리프로필렌계 폴리올 성분과 이소시아네이트 성분을 주성분으로 하되, 고분자 및 저분자 폴리올 70~90중량%와 발포제를 포함한 첨가제 10~30중량%로 이루어진 폴리올 성분 100중량부, 이소시아네이트가 120~180중량부, 난연성 충전재 10~20중량부, 탄소나노튜브 0.1~3중량부를 포함하는 발포 원액으로 발포되고 슬라이스된 발포 폴리우레탄 폼을 포함하는 것을 특징으로 하는 탄소나노튜브 적용 발포 우레탄 폼을 이용한 자동차용 흡음재를 제공한다.In order to solve the above problems, the present invention provides a polyolefin composition comprising 100 parts by weight of a polyol component composed of a polypropylene-based polyol component and an isocyanate component as main components and comprising 70 to 90% by weight of a polymer and a low molecular weight polyol and 10 to 30% by weight of an additive including a foaming agent, Wherein the foamed polyurethane foam is foamed and sliced with a foaming stock solution containing 120 to 180 parts by weight of an isocyanate, 10 to 20 parts by weight of a flame-retardant filler, and 0.1 to 3 parts by weight of carbon nanotubes. A sound absorbing material for a vehicle using a foam is provided.

또한, 본 발명은 상기와 같은 탄소나노튜브 적용 발포 우레탄 폼을 이용한 자동차용 흡음재는 그 양면에 추가로 부직포가 압착 성형된 것을 포함한다.The present invention also relates to a sound absorbing material for automobiles using the foamed urethane foam of the present invention, wherein the nonwoven fabric is compression-molded on both sides thereof.

또한 본 발명은 고분자 및 저분자 폴리올 70~90중량%와 발포제를 포함한 첨가제 10~30중량%를 혼합하여 폴리올 성분 100중량부를 준비하고, 여기에 이소시아네이트 120~180중량부, 난연성 충전재 10~20중량부 및 탄소나노튜브 0.1~3중량부를 발포용 교반기로 혼합하여 준비된 혼합원료를 투입하여 교반 하에 혼합시켜 발포 원액을 제조하고, 이 발포 원액을 몰드에 주입하여 발포된 폴리우레탄 폼으로 숙성시키고 이를 슬라이싱하여 탄소나노튜브 적용 발포 우레탄 폼을 이용한 자동차용 흡음재를 제조하는 방법을 제공한다.Also, 100 parts by weight of a polyol component is prepared by mixing 70 to 90% by weight of a polymer and a low-molecular polyol with 10 to 30% by weight of an additive containing a blowing agent. 120 to 180 parts by weight of isocyanate, 10 to 20 parts by weight of a flame- And 0.1 to 3 parts by weight of carbon nanotubes are mixed by a stirrer for foaming, and the prepared mixed raw materials are added thereto and mixed under stirring to prepare a foaming stock solution. The foaming stock solution is injected into a mold, aged with foamed polyurethane foam, and sliced A method for manufacturing a sound absorbing material for automobiles using a foamed urethane foam using carbon nanotubes is provided.

또한 본 발명은 상기와 같이 제조된 탄소나노튜브 적용 발포 우레탄 폼을 이용한 자동차용 흡음재의 양면에 추가로 부직포를 합지하고 열성형 금형기에서 압착 성형한 다음, 냉각 지그에서 압착 냉각하여 반제품을 제조하고, 원하는 설계 형상으로 트리밍하여 자동차용 흡음재를 제조하는 것을 포함한다.
In addition, the present invention relates to a method for manufacturing a carbon nanotube foamed urethane foam, which comprises the steps of: forming a nonwoven fabric on both sides of an automotive sound absorbent material using the carbon nanotube foamed urethane foam manufactured as described above, compressing and molding the same in a thermoforming mold, And trimming to a desired design shape to manufacture automotive sound absorbing materials.

본 발명에 따른 탄소나노튜브 적용 발포 우레탄 폼을 이용한 자동차용 흡음재는 자동차 엔진룸용 대쉬 아웃터(dash outer), 후드 삽입재(hood insulator), 대쉬 삽입재(dash insulator) 등의 엔진룸 부품으로 열 성형이 가능하고 난연성을 만족할 수 있는 탄소나노튜브 적용 복합 폴리우레탄 폼을 구현할 수 있는 것이다.The sound absorbing material for a vehicle using the carbon nano tube foamed urethane foam according to the present invention is an engine room part such as a dash outer, a hood insulator, a dash insulator for an automobile engine room, And a composite polyurethane foam using carbon nanotubes capable of satisfying flame retardancy can be realized.

또한 본 발명의 자동차용 흡음재는 기존 제품과 비교하여 전 주파수 영역에서 향상된 소음진동수준(NVH ; Noise, Vibration, and Harshness)을 구현할 수 있으며, 경량화된 친환경 소재를 적용하여 우수한 품질의 자동차와 연비 향상에 효과가 있다.In addition, the sound absorbing material of the present invention can realize noise noise, vibration and harshness (NVH) in the entire frequency range as compared with existing products, and it is possible to improve the quality of automobile and fuel efficiency by applying lightweight eco- .

또한 본 발명을 통해 이전의 탄소나노튜브를 첨가한 폴리우레탄 폼의 적용 기술에서는 구현하지 못했던 자소성의 난연 성능을 탄소나노튜브와 그라파이트를 혼합하여 사용함으로서 해결할 수 있는 장점이 있다.Also, the present invention has an advantage of being able to solve the self-baking flame retardancy performance which is not realized in the application technique of the polyurethane foam added with the previous carbon nanotubes by mixing carbon nanotubes and graphite.

또한 본 발명을 통해 종래의 탄소나노튜브를 첨가한 폴리우레탄 폼의 적용 기술에서는 제시하지 못했던 열간 부품 성형의 우수한 물성을 확보할 수 있는 장점이 있다.
Also, the present invention has the advantage of securing excellent physical properties of hot part molding which has not been proposed in the application technology of the polyurethane foam to which the conventional carbon nanotubes are added.

도 1은 본 발명에 따른 실시예 2와 비교예 1~3에 대해 시편 흡음성능을 실험한 결과를 도시한 그래프이다.
도 2는 본 발명에 따른 실시예 1~3에 대한 흡음성능을 비교한 그래프이다.
도 3은 본 발명에 따른 실시예 2와 비교예 3에 대한 실차 투과소음 시험을 통한 차음 특성을 비교한 그래프이다.
도 4는 본 발명에 따른 폴리우레탄 폼에 대한 셀 구조를 주사전자현미경으로 촬영한 사진이다.
FIG. 1 is a graph showing the results of experiments on a sound absorption performance of a specimen according to Example 2 and Comparative Examples 1 to 3 according to the present invention.
2 is a graph comparing sound absorption performances of Examples 1 to 3 according to the present invention.
FIG. 3 is a graph comparing the sound insulation characteristics of the second and third comparative examples according to the present invention through actual vehicle penetration noise testing.
4 is a photograph of a cell structure of a polyurethane foam according to the present invention, taken by scanning electron microscope.

이하, 본 발명을 하나의 구현예로서 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail as an embodiment.

본 발명은 폴리프로필렌계 폴리올 성분과 이소시아네이트 성분을 주성분으로 ㅎ하 폴리우레탄 폼으로 이루어져 있되, 폴리우레탄 폼에 첨가되는 난연성 충전재의 일부를 탄소나노튜브로 대체 적용함으로서 우수한 물성의 자동차용 흡음재를 구성할 수 있는 것이다.The present invention relates to a polyurethane foam comprising a polypropylene-based polyol component and an isocyanate-based polyurethane foam, wherein a part of the flame-retardant filler added to the polyurethane foam is replaced with a carbon nanotube, It is.

본 발명에서 폴리우레탄 폼으로 이루어지는 자동차용 흡음재를 구성하는 폴리올 성분은 고분자 및 저분자 폴리올 70~90중량%와 발포제를 포함한 첨가제 10~30중량%로 이루어진다. 여기서 사용된 고분자 폴리올은 중량평균분자량이 3000~6000의 범위인 것을 사용할 수 있고, 저분자 폴리올은 중량평균분자량이 1500 이하의 범위인 것을 사용할 수 있다, 이러한 폴리올은 폴리프로필렌계의 폴리올이 사용되는데, 바람직하기로는 폴리프로필렌글리콜(PPG)가 사용될 수 있다. 폴리올 성분은 상기 고분자 및 저분자 폴리올에 발포제를 포함한 첨가제가 함유되는데, 예컨대 발포제와 더불어서 셀 개방제(cell opener), 사슬연장제, 난연제, 계면할성제, 촉매제 중에서 선택된 하나 이상이 첨가제로 혼합되는 것이 바람직하다. 여기서 폴리올 성분 중에 고분자 폴리프로필렌계 폴리올은 종기로는 40~60중량%, 저분자 폴리프로필렌계 폴리올은 20~40중량%로 사용되고 여기에 혼합되는 첨가제로 발포제로서는 예를 들어 물이 5~10중량%, 셀 개방제로서는 예컨대 폴리에테르계 기포 개방제가 1~5중량%, 사슬연장제로서는 예컨대 에틸렌글리콜, 부타디올, 트리에탄올아민, 글리세린등의 관능성 물질이 2~6중량%, 난연제로서는 인계난연제가 3~10중량%, 계면활성제로서는 예컨대 실리콘 계면활성제가 1~3 중량%, 촉매로서는 예컨대 아민 촉매가 0.1~3 중량%로 사용되는 것이 바람직하다. 이러한 발포제를 포함하는 첨가제는 폴리올 성분 중에 10~30중량부로 첨가하는 것이 좋다. 본 발명에서는 이와 같이 순수한 고분자 및 저분자 폴리올 이외에도 발포제를 포함한 첨가제가 혼합된 것을 편의상 폴리올 성분으로 통칭하기로 한다.In the present invention, the polyol component constituting the sound absorbing material for automobile comprising the polyurethane foam is composed of 70 to 90% by weight of a polymer and a low molecular weight polyol and 10 to 30% by weight of an additive containing a foaming agent. The polymer polyol used herein may have a weight average molecular weight in the range of 3,000 to 6,000, and the low molecular weight polyol may have a weight average molecular weight in the range of 1,500 or less. As the polyol, a polypropylene type polyol is used. Preferably, polypropylene glycol (PPG) can be used. The polyol component includes additives such as a cell opener, a chain extender, a flame retardant, an agent to be interfaced and a catalyst as well as an additive including a blowing agent in the polymer and the low molecular polyol. desirable. The polypropylene-based polyol is used in an amount of 40 to 60% by weight and the low-molecular polypropylene-based polyol is used in an amount of 20 to 40% by weight in the polyol component. As the foaming agent, for example, water is added in an amount of 5 to 10% For example, 1 to 5% by weight of a polyether base foaming agent, and 2 to 6% by weight of a functional agent such as ethylene glycol, butadiol, triethanolamine and glycerin as a chain extender, and a phosphorus- 3 to 10% by weight of a surfactant, 1 to 3% by weight of a silicone surfactant as a surfactant, and 0.1 to 3% by weight of an amine catalyst, for example. The additive containing such a blowing agent is preferably added in an amount of 10 to 30 parts by weight to the polyol component. In the present invention, in addition to the pure polymer and low-molecular polyol, the blend of the additives including the blowing agent is referred to as a polyol component for convenience.

본 발명의 폴리올 성분은 위와 같은 구성을 조절하게 되면 연질, 반경질, 경질의 형태로 폴리우레탄 재질의 특성을 달리하도록 조절할 수 있다. 이 중에서 상기와 같은 조성으로 구성하는 경우는 하기에서 설명하는 다른 성분들과 조합하여 본 발명의 목적에 가장 적합한 반경질의 발포 폴리우레탄 폼의 제조를 가능하게 한다.The polyol component of the present invention can be controlled to have different characteristics of the polyurethane material in the form of soft, semi-rigid, and rigid when the above configuration is controlled. In the case of constituting the composition as described above, it is possible to manufacture a foamed polyurethane foam of the semi-gloss quality most suitable for the purpose of the present invention in combination with other components described below.

본 발명에 따르면, 이러한 폴리올 성분에 이소시아네이트와 난연성 충전재와 탄소나노튜브을 혼합 적용하여 발포시킨 것을 특징으로 한다. 본 발명에서는 상기 폴리올 성분 100중량부를 기준으로 이소시아네이트가 120~180중량부, 더욱 좋기로는 150~160 중량부, 난연성 충전재가 10~20중량부, 더욱 좋기로는 14~16중량부, 탄소나노튜브가 0.1~5중량부를 포함하는 발포 원액으로 발포된 폴리우레탄 폼으로 이루어진 것을 특징으로 한다. According to the present invention, the isocyanate, the flame-retardant filler and the carbon nanotube are mixed and foamed in the polyol component. In the present invention, 120 to 180 parts by weight, more preferably 150 to 160 parts by weight of an isocyanate, 10 to 20 parts by weight, more preferably 14 to 16 parts by weight of a flame-retardant filler based on 100 parts by weight of the polyol component, And 0.1 to 5 parts by weight of a tubular polyurethane foam foamed with a foaming stock solution.

본 발명에서는 본질적으로는 난연성 충전재를 탄소나노튜브로 일부 대체한 것으로 볼 수 있는데, 이렇게 난연성 충전재를 탄소나노튜브로 대체 적용하는 이유는 폴리우레탄 폼의 흡음성능의 향상과 연관된 셀 구조 형성을 조정하기 위한 것이다.In the present invention, the flame-retardant filler is partially replaced with carbon nanotubes. The reason why the flame-retardant filler is replaced with the carbon nanotube is that the adjustment of the cell structure formation associated with the improvement of the sound absorption performance of the polyurethane foam .

본 발명에서 이소시아네이트는 좋기로는 NCO 함량이 30~35중량%인 변형된 메틸렌 디페닐 디이소시아네이트(MDI ; Methylene diphenyl diisocyanate)가 바람직하게 사용될 수 있다. 또한 난연성 충전재로서는 그라파이트가 바람직하게 사용될 수 있다.In the present invention, the isocyanate is preferably a modified methylene diphenyl diisocyanate (MDI) having an NCO content of 30 to 35% by weight. As the flame-retardant filler, graphite can be preferably used.

본 발명에서 사용되는 탄소나노튜브는 좋기로는 직경 10~50nm, 체적 밀도 0.02~1.5g/Ml, 순도 85~90%, Raman 분석하여 얻은 D와 G 밴드의 상대적 세기(IG/ID)로 나타낸 결정도 0.7~1.1의 단일벽 또는 다중벽 구조를 갖으며 파우더 형태와 분말 과립 등의 형태로 모두 적용 가능하다.The relative intensities (I G / I D ) of the D and G bands obtained by Raman analysis are preferably in the range of 10 to 50 nm in diameter, 0.02 to 1.5 g / Ml in bulk density, 85 to 90% in purity, Has a single-wall or multi-wall structure of 0.7 to 1.1 and can be applied in both powder form and powder granule form.

본 발명에서 사용되는 난연성 충전재로 바람직하게 사용되는 그라파이트와 탄소나노튜브는 동일한 탄소 성분 소재로서 폴리우레탄 폼의 난연성을 확보시킬 수 있다. 그러나 탄소나노튜브는 비중이 매우 가벼운 소재로서 공정상으로 너무 과량을 첨가하게 되면 질량대비 부피가 너무 크기 때문에 실제 공정에 바람직하지 않고 물성 저하는 가져온다. 또한 너무 과도하게 투입하면 폴리우레탄 폼을 구성하게 되는 원액의 점도가 상당히 높은 수준으로 상승하기 때문에 다른 첨가 성분들과의 혼합이 어렵고, 이로 인해 발포 폼 상태가 매우 불량해지는 문제가 있다. 따라서 본 발명에서 탄소나노튜브의 사용과 그 사용량은 매우 중요한 기술적 의의 및 임계적 의의를 가지며, 상기와 같은 범위로 첨가하는 것이 바람직하다. 탄소나노튜브는 전체 발포를 위한 발포원액 대비 0.1~1.1 중량% 정도가 더욱 바람직하다. The graphite and the carbon nanotube preferably used as the flame-retardant filler used in the present invention can ensure the flame retardancy of the polyurethane foam as the same carbon component material. However, carbon nanotubes are extremely light in weight, and if too much is added in the process, the volume is too large in relation to mass, which is not desirable in actual processes and deteriorates the physical properties. Further, when the polyurethane foam is excessively added, the viscosity of the raw liquid constituting the polyurethane foam rises to a considerably high level, so that it is difficult to mix with other additives and thus the foamed foam state becomes very poor. Therefore, the use and the amount of the carbon nanotubes in the present invention have a very important technical significance and critical significance, and it is preferable to add them in the above-mentioned range. It is more preferable that the carbon nanotube is in the range of about 0.1 to about 1.1% by weight based on the foaming stock solution for total foaming.

본 발명에 따른 자동차용 흡음재는 상기와 같은 성분 구성으로 이루어진 발포 원액으로 발포되고 슬라이스된 발포 폴리우레탄 폼을 포함하는 것을 특징으로 한다. The sound absorbing material for automobiles according to the present invention is characterized by including foamed polyurethane foam foamed and sliced into a foamed stock solution having the above-described constitution of components.

이러한 본 발명의 흡음재는 기본적으로 밀도 18~20 kg/m3의 반경질 발포 폴리우레탄 폼으로 구성될 수 있다. The sound absorbing material of the present invention may be basically composed of a semi-rigid foamed polyurethane foam having a density of 18 to 20 kg / m 3 .

본 발명에 따른 자동차용 흡음재는 폴리우레탄 폼에 탄소나노튜브(CNT)가 폴리올 성분 기준으로 0.1~3.0 중량%, 전체 반경질 발포 폴리우레탄 혼합 원액 기준으로 0.1~1.1 중량%의 비율로 함유되어 있어서, 발포 폴리우레탄 폼의 셀 구조의 오픈율 변화 및 굳기 변화를 통해 통기성 향상과 물리적 물성 개선으로 전 주파수 영역에서 흡음성능이 극대화된 효과를 나타내는 것이다.The sound absorbing material for automobiles according to the present invention is characterized in that the polyurethane foam contains carbon nanotubes (CNT) in an amount of 0.1 to 3.0% by weight based on the polyol component and 0.1 to 1.1% by weight based on the mixed semi-hard polyurethane foam , The change in open rate and the change in hardness of the cellular structure of the foamed polyurethane foam maximize the sound absorption performance in the entire frequency region by improving the breathability and physical properties.

이와 같이, 본 발명의 일 구현예에 따르면 발포 폴리우레탄 폼 소재에 탄소나노튜브 미립자를 첨가함으로써, 폼의 셀 구조를 균질하게 유지하면서 셀 오픈율이 증가되게 만든다. 또한 반경질 폴리우레탄 폼의 굳기를 완화시키게 된다. 이를 통해 전 주파수 영역에서 NVH성능이 월등하게 향상되는 특성을 나타내게 된다. 탄소나노튜브(CNT)의 함량이 증가될 수록 셀 오픈율이 절대적으로 증대되는 것은 아니다. 탄소나노튜브가 과량 함유되면 나노 크기 미립자의 첨가로 인해 점도가 상승되어 셀 오픈율이 반대로 감소될 수도 있다. 따라서 제품 요구 물성에 맞춰 반경질 발포 폴리우레탄 폼을 이루는 발포 원액의 성분 조성뿐만 아니라 첨가되는 탄소나노튜브(CNT) 첨가제의 함량을 본 발명에서 제시한 바와 같이 절절한 범위로 조절하여야만 셀 구조를 최적화할 수 있는 것이다. 이렇게 본 발명에서 제안된 구성으로 흡음재를 구성하는 것이 특히 자동차의 NVH 성능 향상에 중요하다.As described above, according to one embodiment of the present invention, by adding the carbon nanotube fine particles to the foamed polyurethane foam material, the cell open rate is increased while maintaining the cell structure of the foam homogeneously. It also alleviates the hardness of the semi-rigid polyurethane foam. Thus, the NVH performance is significantly improved in the entire frequency range. As the content of carbon nanotubes (CNT) increases, the cell open rate is not necessarily increased. If carbon nanotubes are contained in excess, the viscosity may increase due to the addition of nanosized particles, and the cell open rate may be reduced inversely. Therefore, it is necessary to optimize the cell structure only by adjusting the content of the carbon nanotube (CNT) additive as well as the composition of the raw material for foaming forming the semi-rigid foamed polyurethane foam according to the required properties of the product, You can. The construction of the sound absorbing material with the structure proposed in the present invention is particularly important for improving the NVH performance of a car.

본 발명에서 제시한 탄소나노튜브(CNT)의 적용으로 발포 폴리우레탄 폼의 흡음 성능이 개선되는 원리는 종래 알려진 일반적인 탄소나노튜브의 적용 기술과는 다른 것이다. 이는 본 발명에 따른 발포 원액의 일련의 조성이 다르기 때문에 본 발명에서만이 우수한 흡음재로서의 목적 달성이 가능한 것이다.The principle of improving the sound absorption performance of the foamed polyurethane foam by application of the carbon nanotube (CNT) proposed in the present invention is different from the conventional application technique of the conventional carbon nanotube. This is because it is possible to achieve the object of an excellent sound absorbing material only in the present invention because the composition of the foamed raw liquid according to the present invention is different.

본 발명에 따른 자동차용 흡음재의 특성은 흡음재의 성능에 가장 큰 영향을 미치는 셀 구조를 통해 확인할 수 있다. 주사전자현미경(SCANNING ELECTRON MICROSCOPY)을 통해 본 발명과 같은 구성으로 탄소나노튜브를 적용함으로써 셀 구조가 균질화되고 오픈율의 변화가 나타남을 확인하였고, 오픈율 변화의 실질적인 확인을 위한 측정을 위해 유동저항 측정기(FLOW RESISTIVITY MEASUREMENT)를 사용한 결과, 본 발명에 따라 탄소나노튜브가 적용된 발포 우레탄 폼은 이러한 본 발명의 구성이 적용되지 않은 폼에 비하여 저항값이 낮게 나타났고, 이것은 본 발명에서 통기성이 개선되었음을 의미한다. 즉, 본 발명에서는 셀의 균질화 및 통기 효과의 증대로 인하여 흡음성능이 월등히 향상된다. The characteristics of the sound absorbing material for automobile according to the present invention can be confirmed by the cell structure having the greatest influence on the performance of the sound absorbing material. It has been confirmed through the SCANNING ELECTRON MICROSCOPY that the cell structure is homogenized and the open rate changes by applying the carbon nanotube with the same structure as the present invention, and the flow resistance As a result of using the measurement apparatus (FLOW RESISTIVITY MEASUREMENT), the foamed urethane foam to which the carbon nanotubes were applied according to the present invention showed a lower resistance value than the foam to which the present invention was applied, it means. That is, in the present invention, the sound absorption performance is significantly improved due to the increase in homogenization and ventilation effect of the cells.

또한, 본 발명의 흡음재의 효과 확인을 위해 엔진룸 주요 흡음재의 원소재 시편을 통해 흡음성능을 비교 시험하였다. 그 결과, 본 발명에 따라 탄소나노튜브(CNT)를 적용한 발포 폴리우레탄 폼으로 이루어진 흡음재의 성능이 종래 알려진 흡음재나 다른 구성으로 이루어진 흡음재에 비해 가장 우수함을 확인할 수 있었다. 흡음성능의 경우, 독일 RIETER사의 소형 잔향실을 이용해 측정하였다. Also, in order to confirm the effect of the sound absorbing material of the present invention, the sound absorbing performance of the engine room main sound absorbing material was comparatively tested through a raw material specimen. As a result, it was confirmed that the performance of the sound absorbing material made of the foamed polyurethane foam using the carbon nanotube (CNT) according to the present invention is superior to that of the conventional sound absorbing material or the sound absorbing material made of other constitution. The sound absorption performance was measured using a small reverberation chamber of RIETER, Germany.

한편, 본 발명은 상기와 같은 탄소나노튜브 적용 발포 우레탄 폼을 이용한 자동차용 흡음재는 그 양면에 추가로 부직포가 압착 성형된 것을 포함한다.The present invention also relates to a sound absorbing material for automobiles using the foamed urethane foam of the present invention, wherein the nonwoven fabric is compression-molded on both sides thereof.

상기와 같은 본 발명에 따른 탄소나노튜브 적용 발포 우레탄 폼을 이용한 자동차용 흡음재를 제조하는 방법을 하나의 구현예로 설명하면 다음과 같다.Hereinafter, a method of manufacturing a sound absorbing material for automobiles using the foamed urethane foam according to the present invention will be described.

전형적으로는, 본 발명에 따른 자동차용 흡음제를 제조하기 위해서는 고분자 및 저분자 폴리올 70~90중량%와 발포제를 포함한 첨가제 10~30중량%를 혼합하여 폴리올 성분 100중량부를 준비한다.Typically, in order to produce a sound absorbing agent for automobiles according to the present invention, 70 to 90% by weight of a polymer and a low molecular weight polyol and 10 to 30% by weight of an additive including a foaming agent are mixed to prepare 100 parts by weight of a polyol component.

이와는 별도로 이소시아네이트 140~170중량부, 난연제 13~18중량부 및 탄소나노튜브 0.1~3중량부를 발포용 교반기로 혼합하여 혼합원료를 준비한다. 이때 발포용 교반기로의 혼합은 20~60초, 더 바람직하게는 25~35초 동안 교반하는 것이 좋다.Separately, 140 to 170 parts by weight of isocyanate, 13 to 18 parts by weight of a flame retardant, and 0.1 to 3 parts by weight of carbon nanotubes are mixed with a foaming stirrer to prepare a mixed raw material. At this time, the mixing with the stirrer for foaming is preferably carried out for 20 to 60 seconds, more preferably for 25 to 35 seconds.

상기 폴리올 성분에 준비된 상기 혼합원료를 투입하여 교반 하에 혼합시켜 발포 원액을 제조한다. 이때, 교반 하에 혼합은 좋기로는 5~20초간 1000~2000rpm의 속도로 고속 교반, 더 바람직하기로는 8~12초간 고속 교반하여 혼합하는 것이 좋다.The mixed raw material prepared in the polyol component is added and mixed under stirring to prepare a foaming stock solution. At this time, the mixing is preferably performed at a high speed stirring speed of 1000 to 2000 rpm for 5 to 20 seconds, more preferably 8 to 12 seconds of high speed stirring under stirring.

이 발포 원액을 몰드에 주입하여 발포된 폴리우레탄 폼으로 숙성시키되 이때 폴리우레탄 폼의 숙성은 2일 내지 5일간, 가장 좋기로는 3일 정도 숙성시킨다. The foamed stock solution is poured into a mold and aged with a foamed polyurethane foam. At this time, aging of the polyurethane foam is aged for 2 to 5 days, most preferably about 3 days.

이를 소정의 두께로 얇게 슬라이싱하여 탄소나노튜브 적용 발포 우레탄 폼을 이용한 자동차용 흡음재를 제조한다. And then sliced into a predetermined thickness to prepare a sound absorbing material for automobiles using the foamed urethane foam of carbon nanotubes.

또한, 본 발명은 상기와 같이 제조된 탄소나노튜브 적용 발포 우레탄 폼을 이용한 자동차용 흡음재의 양면에 추가로 부직포를 합지하고 열성형 금형기에서 압착 성형한 다음, 냉각 지그에서 압착 냉각하여 반제품을 제조하고, 원하는 설계 형상으로 트리밍하여 자동차용 흡음재를 제조하는 것을 포함한다.In addition, the present invention relates to a method for manufacturing a carbon nanotube foamed urethane foam, comprising the steps of: forming a nonwoven fabric on both sides of an automotive sound absorbent material using the carbon nanotube foamed urethane foam manufactured as described above, compressing and molding the same in a thermoforming mold, , And trimmed to a desired design shape to manufacture automotive sound absorbing materials.

여기서 양면에 부직포를 합지하는 경우 부직포를 붙여 일정온도, 좋기로는170~190℃ 의 열성형 금형에서 바람직하게는 30~60초간 압착 성형하고 성형 즉시, 냉각 지그에서 다시 30~60초간 압착 냉각하여 부직포와 폴리우레탄 소재의 흡음재의 수축을 조절하여 반제품을 만들고 원하는 설계 형상으로 트리밍하여 특정 적용 부위에 적합한 완제품 형태의 흡음재를 완성할 수 있다.When the nonwoven fabric is laminated on both surfaces, the nonwoven fabric is bonded and compression-molded at a predetermined temperature, preferably a thermoforming mold of 170 to 190 DEG C for 30 to 60 seconds, and immediately after molding, the resultant is compressed and cooled in the cooling jig for 30 to 60 seconds The non-woven fabric and the polyurethane material can be controlled to shrink to produce a semi-finished product and trimmed to a desired design shape, thereby completing a finished product-type sound absorbing material suitable for a specific application site.

이와 같이, 본 발명에 따라 제조된 탄소나노튜브 적용 발포 폴리우레탄 폼 소재의 자동차용 흡음재 제품은 자동차 생산 업체별 요구 물성에 맞추어 제품의 강도를 변화시키기 위하여 필요에 따라서 일반 부직포 또는 강화/발수 부직포를 선택적으로 사용하여 제조할 수도 있다.As described above, according to the carbon nanotube-applied foamed polyurethane foam material, the sound absorbing material for automobile may be selected from a general nonwoven fabric or a reinforcing / water repellent nonwoven fabric, if necessary, in order to change the strength of the product And the like.

상기와 같이, 본 발명에 제안된 기술을 적용하는 경우 발포 탄소나노튜브가 적용된 본 발명의 폴리우레탄 폼 흡음재를 이용하여 실 차종의 대쉬 아우터를 제작한 후, 투과소음(TRANSMISSION LOSS; TL)을 측정한 결과 500~2,500Hz 범위에서 약 0.3 dB 가 개선된 결과를 나타내었다. 대쉬 아우터(DASH OUTER)의 경우, 차량 전체에 적용된 NVH 제품 중에서 차지하는 면적의 비율이 큰 편은 아니므로 투과소음의 개선은 매우 큰 의미를 갖는다.As described above, when the technique proposed in the present invention is applied, a dash outer body of a vehicle model is manufactured using the polyurethane foam sound absorbing material of the present invention, to which foamed carbon nanotubes are applied, and then measurement of transmission noise (TL) As a result, about 0.3 dB was improved in the range of 500 ~ 2,500 Hz. In the case of DASH OUTER, the ratio of the area occupied by the NVH products applied to the entire vehicle is not so large, so that improvement of the transmission noise is very significant.

본 발명에서는 탄소나노튜브를 첨가하여 흡음성능을 개선하고, 그와 함께 그라파이트를 첨가하여 자소성의 난연성을 확보할 수 있는 기술을 제시한 것에 의미가 있다. 이러한 본 발명의 흡음재를 실제 자동차 엔진룸용 부품에 적용할 수 있는 기술도 추가적으로 제시한다. In the present invention, it is meaningful to propose a technique capable of improving the sound absorption performance by adding carbon nanotubes, and adding graphite thereto to ensure flame retardancy of self-baking. The present invention further provides a technique for applying the sound absorbing material of the present invention to an actual vehicle engine room component.

일반적으로 폴리우레탄 폼 소재의 흡음재는 기존 흡음재 소재와 비교하면 제품의 강도가 낮기 때문에 이를 보완할 필요가 있다. 따라서 필요에 따라 이를 개선하기 위해 고강성 발수 부직포를 우레탄 폼의 양면에 적층하여 열 성형한 후 사용할 수 있다는 점도 추가로 제시한 점에서도 의미가 있다. 고강성 발수 부직포는 기존의 일반 부직포보다 대비 접착제 역할 및 성형성 유지를 위해 사용하는 저융점 섬유의 양을 증가시켜 강성을 보완하여 사용할 수 있으며, 표면에 발수제를 첨가하여 습도에 대한 저항력을 증가시킬 수 있기 때문에 사용환경에 따라 선택적으로 사용할 수 있다. 하지만 본 발명에서 사용할 수 있는 부직포는 고강성 발수 부직포로 한정하지는 않는다. 일반 부직포 또는 고강성 발수 부직포를 우레탄 폼 양면에 적층한 후 열성형 프레스 금형을 거쳐 제품을 완성할 수 있다. Generally, a sound absorbing material of a polyurethane foam material needs to be supplemented because the strength of the product is lower than that of a conventional sound absorbing material. Therefore, it is also meaningful that a high-stiffness water-repellent nonwoven fabric can be laminated on both sides of the urethane foam and then thermoformed to be used as needed to improve it. The high stiffness water-repellent nonwoven fabric can be used to complement the stiffness by increasing the amount of the low melting point fiber used for the purpose of maintaining the comparative adhesive function and maintaining the formability than the conventional nonwoven fabric and increasing the resistance to humidity by adding a water repellent on the surface It can be used selectively depending on the usage environment. However, the nonwoven fabric which can be used in the present invention is not limited to the high stiffness water repellent nonwoven fabric. A general nonwoven fabric or a high stiffness water-repellent nonwoven fabric may be laminated on both sides of a urethane foam, followed by completion of a product through a thermoforming press mold.

따라서 본 발명에서는 자동차용 흡음재로 요구되는 고흡음성을 달성하고, 안전문제와 직결되는 난연성을 동시에 만족하면서, 자동차용 각 부위에 적용 가능한 부품 형상으로 열 프레스 성형을 할 수 있는 탄소나노튜브가 적용된 복합 폴리우레탄 폼의 바람직한 자동차용 흡음재를 제공할 수 있게 된 것이다.
Therefore, in the present invention, a carbon nanotube that can be subjected to hot press molding in a part shape applicable to each part of an automobile while simultaneously satisfying a high sound absorption property required for a sound absorbing material for automobiles, It is possible to provide a preferable sound absorbing material for automobiles of polyurethane foam.

이하, 본 발명을 실시예에 의거 상세히 설명하겠는 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the examples.

실시예 1 ~ 3Examples 1 to 3

다음 표 1에 나타낸 조성비(단위는 중량부)에 따라 발포 폴리우레탄 폼을 제조하였다. 발포 폴리우레탄 폼은 고분자 폴리올과 각 첨가제(셀 개방제, 사슬연장제, 난연제, 촉매, 물)를 혼합하고, 여기에 저분자 폴리올과 난연성 충전재인 그라파이트 및 탄소나노튜브를 혼합한 혼합원료를 발포기를 통해 혼합하여 발포원액을 제조하였다. 다만, 이때 탄소나노튜브는 하기 표 1의 폴리올 성분에 대해 각각 0.1중량%(실시예 1), 0.3 중량%(실시예 2), 0.5 중량%(실시예 3)가 되도록 탄소나노튜브를 첨가하였다. 발포 원액은 몰드에 가하여 발포된 폴리우레탄 폼을 형성하도록 하고 3일간의 숙성기간을 거친 후에 1.5mm 두께로 슬라이싱하였다. A foamed polyurethane foam was produced according to the composition ratio (unit: parts by weight) shown in Table 1 below. Foamed polyurethane foam is prepared by mixing a polymer polyol and each additive (cell opener, chain extender, flame retardant, catalyst, water), mixing the low molecular polyol with graphite and carbon nanotubes as flame retardant fillers, To prepare a foaming stock solution. At this time, carbon nanotubes were added to the polyol component shown in Table 1 in the order of 0.1 wt% (Example 1), 0.3 wt% (Example 2), and 0.5 wt% (Example 3) . The foaming stock solution was added to the mold to form a foamed polyurethane foam, and after a three-day aging period, it was sliced to a thickness of 1.5 mm.

슬라이싱한 폴리우레탄 폼의 양면에 실리콘 레진을 함침한 케미컬계 강화 발수 부직포를 붙여 180℃ 온도의 열성형 금형에서 금형냉각 지그에서 압착 냉각하여 부직포와 폴리우레탄 폼 소재의 접합에 의한 수축을 막아 1차 반제품을 만든다. 이렇게 형성된 반제품은 최종적으로 제품 설계 형상에 따라 트리밍하여 엔진룸 NVH 부품용 흡음재를 제조하였다.
The chemical-reinforced water-repellent nonwoven fabric impregnated with silicone resin on both sides of the sliced polyurethane foam was pressed and cooled by a mold cooling jig in a thermoforming mold at a temperature of 180 ° C to prevent shrinkage by bonding of the nonwoven fabric and the polyurethane foam material, Make semi-finished products. The semi-finished product thus formed was finally trimmed according to the product design shape to produce the sound absorbing material for the engine room NVH parts.

실시예 4 ~ 6Examples 4 to 6

상기 실시예 1과 동일하게 실시하되 탄소 나노튜브를 하기 표 1의 조성에 따라 첨가하여 흡음재를 제조하였다.
Carbon nanotubes were prepared in the same manner as in Example 1 except that the carbon nanotubes were added according to the composition shown in Table 1 below.

비교예 1 ~ 2Comparative Examples 1 to 2

부직포와 레진 펠트 1200를 사용한 경우, 부직포와 부직포 사이에 글래스 울 450g을 사용한 경우로 흡음재를 구성하였다.
When a nonwoven fabric and resin felt 1200 were used, a sound absorbing material was formed when 450 g of glass wool was used between the nonwoven fabric and the nonwoven fabric.

비교예 3Comparative Example 3

상기 실시예 2와 동일하게 실시하되 탄소나노튜브를 사용하지 아니하고 폴리우레탄 폼을 제조하고 이를 이용하여 흡음재를 구성하였다.
A polyurethane foam was prepared in the same manner as in Example 2 except that carbon nanotubes were not used, and a sound absorbing material was formed using the polyurethane foam.

구분division 비교예3
Comparative Example 3
실시예 4, 5, 6
Examples 4, 5, and 6
비고Remarks

폴리올
성분
(PPG)

Polyol
ingredient
(PPG)
POLYOL APOLYOLE 4848 4848 고분자 PPG Polymer PPG
POLYOL BPOLYOL B 2929 2929 저분자 PPG Low molecular PPG Cell opener Cell opener 33 33 셀OPENER 폴리올 Cell OPENER Polyol Chain-extenderChain-extender 44 44 Flame-retardantFlame-retardant 66 66 SurfactantSurfactant 1.51.5 1.51.5 CatalystCatalyst 1One 1One AMINE AMINE WaterWater 7.57.5 7.57.5 발포제blowing agent 합계Sum 100100 100100 -- 이소시아네이트(ISO)Isocyanate (ISO) MODIFIED MDIMODIFIED MDI 155155 155155 NCO : 32.1%NCO: 32.1% 난연성
충전재
Flammability
filling
GRAPHITEGRAPHITE 1515 14.8514.85 14.2514.25 13.6513.65 난연성Flammability
CabonNano-TubeCabonNano-Tube -- 0.150.15 0.750.75 1.351.35 탄소나노튜브Carbon nanotube

실험예 1Experimental Example 1

상기 실시예 1~3과 비교예 3에 따른 흡음재에 대한 물성을 측정하고 이를 다음 표 2에 나타내었다.The properties of the sound absorbing materials according to Examples 1 to 3 and Comparative Example 3 were measured and are shown in Table 2 below.

Figure 112013024660893-pat00001
Figure 112013024660893-pat00001

표 2에서, NVH 성능은 ○는 우수 ◎는 매우 우수 등급을 나타낸다.
In Table 2, NVH performance is represented by O, and excellent by O represents excellent rating.

실험예 2Experimental Example 2

상기 실시예 2와 비교예 1 ~ 3에 따른 흡음재에 대한 물성을 측정하고 이를 다음 표 3에 나타내었다. 여기서 A는 매우 우수, B는 우수, C는 보통, D는 불량 을 나타낸다.The physical properties of the sound absorber according to Example 2 and Comparative Examples 1 to 3 were measured and are shown in Table 3 below. Where A is very good, B is good, C is good and D is bad.

구분division 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 실시예 2Example 2 중량weight AA BB BB AA NVH 성능NVH performance DD CC BB AA 비용cost CC CC BB BB

실험예 3Experimental Example 3

실시예 2와 비교예 1~3에 대해 시편 흡음성능 실험결과 도 1의 그래프와 같이 실시예 2의 경우 가장 우수한 결과를 나타내었다.
As a result of the test results of the sound absorption performance of the specimen for Example 2 and Comparative Examples 1 to 3, the best results were obtained in Example 2 as shown in the graph of FIG.

실험예 4Experimental Example 4

실시예 1~3에 대한 흡음 성능을 비교한 결과 도 2의 그래프에서와 같이 모두 우수한 수준의 흡음성능을 나타내었다.
As a result of comparing the sound absorption performances of Examples 1 to 3, all of the sound absorption performance was excellent as shown in the graph of FIG.

실험예 5Experimental Example 5

실시예 2와 비교예 3에 대한 실차 투과소음 시험을 통한 차음특성을 비교한 결과 도 3의 그래프에서와 같이 실시예 2(-6으로 표시된 선)의 경우 2500Hz 이상에서도 우수한 수준의 차음성능을 나타내었다.
As shown in the graph of FIG. 3, the sound insulation performance of the second embodiment and the third comparison example is comparable to that of the second embodiment of the present invention. .

이러한 실험결과, 탄소나노튜브(CNT)의 적용으로 발포 폴리우레탄 폼의 흡음성능이 개선되는 원리는 성능에 가장 큰 영향을 미치는 셀 구조를 통해 확인할 수 있다. 즉, 상기 실험결과에 의해 주사전자현미경(SCANNING ELECTRON MICROSCOPY)을 통해 탄소나노튜브 적용에 의해 셀 구조가 균질화되고 OPEN율의 변화가 나타남을 확인하였고(도 4의 사진 참조), OPEN율의 변화의 실질적인 측정을 위해 유동저항 측정기(FLOW RESISTIVITY MEASUREMENT)를 사용한 결과 탄소나노튜브가 적용된 발포 우레탄 폼이 탄소나노튜브가 적용되지 않은 폼에 비하여 저항값이 낮게 나타났고 이것은 통기성이 개선됨을 의미한다. 즉, 셀의 균질화 및 통기효과의 증대로 인하여 흡음성능이 월등히 향상되었다. 엔진룸 주요 흡음재에 대해 기존과 같은 소재 시편을 통해 비교예 흡음성능을 비교 시험하였다. 그 결과 탄소나노튜브(CNT)를 적용한 발포 폴리우레탄 폼의 성능이 가장 우수함을 확인할 수 있었다(도 1 참조). 흡음성능의 경우, 독일 RIETER사의 소형 잔향실을 이용해 측정하였다.
As a result of this experiment, the principle of improving sound absorption performance of foamed polyurethane foam by applying carbon nanotube (CNT) can be confirmed through the cell structure which has the greatest influence on the performance. That is, according to the above experimental results, it was confirmed that the cell structure was homogenized by the application of the carbon nanotube through a scanning electron microscope, and the OPEN rate was changed (see the photograph of FIG. 4) As a result of using FLOW RESISTIVITY MEASUREMENT for practical measurement, the foamed urethane foam with carbon nanotubes showed a lower resistance value than the foam with no carbon nanotubes, which means improved air permeability. That is, due to the homogenization of the cells and the increase of the ventilation effect, the sound absorption performance was remarkably improved. The sound absorbing performance of the engine room was compared with that of the conventional sound absorbing material. As a result, it was confirmed that the foamed polyurethane foam to which carbon nanotube (CNT) was applied had the best performance (see FIG. 1). The sound absorption performance was measured using a small reverberation chamber of RIETER, Germany.

Claims (11)

폴리프로필렌계 폴리올 성분과 이소시아네이트 성분을 주성분으로 하되, 고분자 및 저분자 폴리올 70~90중량%와 발포제를 포함한 첨가제 10~30중량%로 이루어진 폴리올 성분 100중량부, 이소시아네이트가 120~180중량부, 난연성 충전재 10~20중량부, 탄소나노튜브 0.1~3중량부를 포함하는 발포 원액으로 발포되고 슬라이스된 발포 폴리우레탄 폼을 포함하는 것을 특징으로 하는 탄소나노튜브 적용 발포 우레탄 폼을 이용한 자동차용 흡음재.
100 parts by weight of a polyol component composed mainly of a polypropylene-based polyol component and an isocyanate component and comprising 70 to 90% by weight of a polymer and a low-molecular polyol and 10 to 30% by weight of an additive containing a foaming agent, 120 to 180 parts by weight of an isocyanate, 10 to 20 parts by weight of carbon nanotubes, and 0.1 to 3 parts by weight of carbon nanotubes. The sound absorbing material for a vehicle using the foamed urethane foam for carbon nanotubes.
청구항 1에 있어서, 발포제를 포함한 첨가제는 발포제로서는 물 5~10중량%, 셀 개방제 1~5중량%, 사슬연장제 2~6중량%, 인계난연제 3~10중량%, 실리콘 계면활성제 1~3 중량%, 아민 촉매 0.1~3 중량%를 포함하는 것을 특징으로 하는 자동차용 흡음재.
The additive comprising a blowing agent according to claim 1, wherein the additive containing the blowing agent is selected from the group consisting of 5 to 10% by weight of water, 1 to 5% by weight of a cell opening agent, 2 to 6% by weight of a chain extender, 3 to 10% by weight of a phosphorus- 3% by weight of an amine catalyst, and 0.1 to 3% by weight of an amine catalyst.
삭제delete 청구항 1에 있어서, 이소시아네이트는 NCO 함량이 30~35중량%인 변형된 메틸렌 디페닐 디이소시아네이트(MDI)인 것을 특징으로 하는 자동차용 흡음재.
The sound absorbing material for automobile according to claim 1, wherein the isocyanate is a modified methylenediphenyl diisocyanate (MDI) having an NCO content of 30 to 35% by weight.
청구항 1에 있어서, 탄소나노튜브는 직경 10~50nm, 체적 밀도 0.02~1.5g/Ml, 순도 85~90%, Raman 분석하여 얻은 D와 G 밴드의 상대적 세기(IG/ID)로 나타낸 결정도 0.7~1.1의 단일벽 또는 다중벽 구조를 갖으며 파우더, 분말 또는 과립 형태인 것을 특징으로 하는 자동차용 흡음재.
The carbon nanotube according to claim 1, wherein the carbon nanotube has a diameter of 10 to 50 nm, a bulk density of 0.02 to 1.5 g / Ml, a purity of 85 to 90%, a crystal represented by the relative intensities (I G / I D ) Characterized in that it has a single wall or multiwall structure of 0.7 to 1.1 and is in the form of powder, powder or granules.
청구항 1에 있어서, 탄소나노튜브(CNT)는 폴리우레탄 혼합 원액 기준으로 0.1~1.1 중량%의 비율로 함유되어 있고, 밀도 18~20 kg/m3의 반경질 발포 폴리우레탄 폼을 포함하는 것을 특징으로 하는 자동차용 흡음재.
The carbon nanotube according to claim 1, characterized in that the carbon nanotube (CNT) is contained in a ratio of 0.1 to 1.1% by weight based on the mixed amount of polyurethane, and has a semi-hard foam polyurethane foam having a density of 18 to 20 kg / m 3 Sound absorbing materials for automobiles.
청구항 1에 있어서, 난연성 충전재는 그라파이트인 것을 특징으로 하는 자동차용 흡음재.
The sound absorbing material for automobile according to claim 1, wherein the flame-retardant filler is graphite.
청구항 1에 있어서, 슬라이스된 발포 폴리우레탄 폼의 양면에 추가로 부직포가 압착 성형된 것을 특징으로 하는 자동차용 흡음재.
The sound absorbing material for automobile according to claim 1, characterized in that the nonwoven fabric is further pressed on both sides of the sliced foamed polyurethane foam.
고분자 및 저분자 폴리올 70~90중량%와 발포제를 포함한 첨가제 10~30중량%를 혼합하여 폴리올 성분 100중량부를 준비하고, 여기에 이소시아네이트 120~180중량부, 난연성 충전재 10~20중량부 및 탄소나노튜브 0.1~3중량부를 발포용 교반기로 혼합하여 준비된 혼합원료를 투입하여 교반 하에 혼합시켜 발포 원액을 제조하고, 이 발포 원액을 몰드에 주입하여 발포된 폴리우레탄 폼으로 숙성시키고 이를 슬라이싱하는 것을 포함하는 탄소나노튜브 적용 발포 우레탄 폼을 이용한 자동차용 흡음재의 제조 방법.
100 parts by weight of a polyol component are prepared by mixing 70 to 90% by weight of a polymer and a low-molecular polyol and 10 to 30% by weight of an additive including a blowing agent. 120 to 180 parts by weight of isocyanate, 10 to 20 parts by weight of a flame- 0.1 to 3 parts by weight of a polyurethane foam is mixed with a stirrer for foaming, the prepared mixed raw materials are added and mixed under stirring to prepare a foaming stock solution, the foaming stock solution is injected into a mold, aged with foaming polyurethane foam, (METHOD FOR MANUFACTURING AN ABSORBER MATERIAL FOR AUTOMOBILE USING NANOTUBE FOAMED URETHANE FOAM)
청구항 9에 있어서, 발포용 교반기로의 혼합은 20~60초 동안 교반하고, 상기 폴리올 성분에 준비된 상기 혼합원료를 투입하여 5~20초간 고속 교반 하에 혼합시켜 발포 원액을 제조하는 것을 특징으로 하는 자동차용 흡음재의 제조방법.
[12] The method according to claim 9, wherein the mixing with the foaming stirrer is performed for 20 to 60 seconds, the mixed raw material prepared in the polyol component is charged, and mixed for 5 to 20 seconds under high-speed stirring to produce a foaming stock solution A method of manufacturing a sound absorbing material for a vehicle.
청구항 9에 있어서, 상기와 같이 제조된 탄소나노튜브 적용 발포 우레탄 폼을 이용한 자동차용 흡음재의 양면에 추가로 부직포를 합지하고 열성형 금형기에서 압착 성형한 다음, 냉각 지그에서 압착 냉각하여 반제품을 제조하고, 원하는 설계 형상으로 트리밍하는 것을 특징으로 하는 자동차용 흡음재의 제조방법.[12] The method of claim 9, wherein the non-woven fabric is further formed on both sides of the automotive sound absorbing material using the carbon nanotube foamed urethane foam manufactured as described above, followed by compression molding in a thermoforming mold and compression- , And trimmed to a desired design shape.
KR1020130030450A 2013-03-21 2013-03-21 Sound-absorbing material for automobile by urethane foam with carbon nano-tube and its preparing method KR101526655B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020130030450A KR101526655B1 (en) 2013-03-21 2013-03-21 Sound-absorbing material for automobile by urethane foam with carbon nano-tube and its preparing method
US14/062,209 US20140287644A1 (en) 2013-03-21 2013-10-24 Sound-absorbing material for automobile using foaming urethane foam to which carbon nano-tube is applied and preparation method thereof
DE102013221693.9A DE102013221693B4 (en) 2013-03-21 2013-10-25 Sound absorbing material for a vehicle, method of manufacturing the same and laminate comprising the sound absorbing material
CN201310530657.4A CN104059213B (en) 2013-03-21 2013-10-31 There are the automobile-used sound-absorbing material and preparation method of the polyurathamc foam of carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130030450A KR101526655B1 (en) 2013-03-21 2013-03-21 Sound-absorbing material for automobile by urethane foam with carbon nano-tube and its preparing method

Publications (2)

Publication Number Publication Date
KR20140115643A KR20140115643A (en) 2014-10-01
KR101526655B1 true KR101526655B1 (en) 2015-06-05

Family

ID=51484763

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130030450A KR101526655B1 (en) 2013-03-21 2013-03-21 Sound-absorbing material for automobile by urethane foam with carbon nano-tube and its preparing method

Country Status (4)

Country Link
US (1) US20140287644A1 (en)
KR (1) KR101526655B1 (en)
CN (1) CN104059213B (en)
DE (1) DE102013221693B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190073672A (en) * 2017-12-19 2019-06-27 주식회사 아트캠 Eco-friendly polyurethane composition amd its preparing method
KR102431487B1 (en) 2021-10-14 2022-08-11 주식회사 서연이화 Manufacturing method of lightweight and flame retardant sound-absorbing materials

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101637764B1 (en) * 2014-12-05 2016-07-07 현대자동차주식회사 A dash isolation pad comprising a sound insulation material having variable thickness, and a method for producing thereof
CN104562702A (en) * 2015-01-05 2015-04-29 芜湖环瑞汽车内饰件有限公司 Porous alumina-polyurethane composite emulsion-coated polypropylene-based non-woven sound-absorbing material for automotive interiors
CN104562701A (en) * 2015-01-05 2015-04-29 芜湖环瑞汽车内饰件有限公司 Ferric oxide-polyurethane composite emulsion-coated polypropylene-based non-woven sound-absorbing material for automotive interiors
CN105271943A (en) * 2015-10-12 2016-01-27 苏州法斯特信息科技有限公司 Sound insulation and adsorption material for indoor decoration and preparation method thereof
EP3371235A1 (en) * 2015-11-03 2018-09-12 Dow Global Technologies, LLC Polyurethane foam for noise and vibration absorption
CN105689172A (en) * 2016-04-18 2016-06-22 昆明奥图环保设备股份有限公司 Mist sprayer
CN105665167A (en) * 2016-04-18 2016-06-15 昆明奥图环保设备股份有限公司 Low-noise atomized mist sprayer
CN106519639A (en) * 2016-11-08 2017-03-22 宁波锐克轮业科技有限公司 A roller outer-ring fireproof flame-retardant polyurethane material and a preparing method thereof
CN106758570B (en) * 2017-01-18 2018-05-18 青岛理工大学 Padded damping vibration attenuation silencing steel rail of carbon nano-tube modification and preparation method thereof
CN107043449A (en) * 2017-04-06 2017-08-15 吉林大学 A kind of preparation method of automobile-used carbon-nanotube enhanced polyurethane foam
CN110914494B (en) 2017-07-14 2022-07-12 3M创新有限公司 Noise control article
CN108231053A (en) * 2018-03-13 2018-06-29 吉林大学 A kind of acoustics packaging material with convex closure form and preparation method thereof
CN110437406B (en) * 2019-08-30 2021-09-03 惠彩材料科技(苏州)有限公司 Low-density semi-hard polyurethane material and preparation method and application thereof
KR102290975B1 (en) * 2020-11-13 2021-08-17 우문식 Foam compositions for sound-absorbing materials with improved fire-retardancy and sound-absorption, and sound-absorbing materials for sound box using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100054284A (en) * 2008-11-14 2010-05-25 금호미쓰이화학 주식회사 Preparation method of polyurethane foam for sound absorbing material of automobile floor mat
KR20110002289A (en) * 2009-07-01 2011-01-07 성현산업 주식회사 A sound absorbing and insulating material for vehicle including vermiculite and manufacturing method thereof
KR20110107675A (en) * 2010-03-25 2011-10-04 주식회사 제이오 Polyurethan foam composition using nano compound material and manufacturing method thereof
JP2013032492A (en) * 2011-07-05 2013-02-14 Nitto Denko Corp Polyester elastomer foam and foam material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1291605C (en) * 1987-06-08 1991-11-05 Seiji Ishii Manufacturing method of a rigid or semi-rigid foamed material and a composite panel
JP3580011B2 (en) 1996-02-26 2004-10-20 日本特殊塗料株式会社 Engine soundproofing method
BR9902239A (en) * 1998-06-17 2000-04-11 Air Prod & Chem Process and composition of banknote additives for rigid flexible polyurethane foams.
US20060135636A1 (en) * 2004-11-15 2006-06-22 Honeywell International Inc. Isocyanate-based polymer foams with nano-scale materials
FR2885131B1 (en) 2005-04-27 2008-03-07 Arkema Sa POLYMER-BASED CELL STRUCTURE COMPRISING CARBON NANOTUBES, PREPARATION METHOD AND APPLICATIONS THEREOF
JP2008013802A (en) 2006-07-05 2008-01-24 Amc:Kk Method for manufacturing metal product
JP5101092B2 (en) * 2006-11-30 2012-12-19 株式会社イノアックコーポレーション Polyurethane foam for vehicles
TWI474927B (en) 2009-01-06 2015-03-01 Cytec Tech Corp Structural composite material with improved acoustic and vibrational damping properties
US9045343B2 (en) * 2011-07-27 2015-06-02 California Institute Of Technology Carbon nanotube foams with controllable mechanical properties
CN102634187B (en) * 2012-04-05 2013-08-28 哈尔滨工程大学 Piezoelectric and conductive grafting type polyurethane base composite damping material and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100054284A (en) * 2008-11-14 2010-05-25 금호미쓰이화학 주식회사 Preparation method of polyurethane foam for sound absorbing material of automobile floor mat
KR20110002289A (en) * 2009-07-01 2011-01-07 성현산업 주식회사 A sound absorbing and insulating material for vehicle including vermiculite and manufacturing method thereof
KR20110107675A (en) * 2010-03-25 2011-10-04 주식회사 제이오 Polyurethan foam composition using nano compound material and manufacturing method thereof
JP2013032492A (en) * 2011-07-05 2013-02-14 Nitto Denko Corp Polyester elastomer foam and foam material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190073672A (en) * 2017-12-19 2019-06-27 주식회사 아트캠 Eco-friendly polyurethane composition amd its preparing method
KR102000105B1 (en) 2017-12-19 2019-07-15 주식회사 아트캠 Eco-friendly polyurethane composition and its preparing method
KR102431487B1 (en) 2021-10-14 2022-08-11 주식회사 서연이화 Manufacturing method of lightweight and flame retardant sound-absorbing materials

Also Published As

Publication number Publication date
DE102013221693A1 (en) 2014-09-25
CN104059213B (en) 2019-04-05
DE102013221693B4 (en) 2021-09-23
KR20140115643A (en) 2014-10-01
CN104059213A (en) 2014-09-24
US20140287644A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
KR101526655B1 (en) Sound-absorbing material for automobile by urethane foam with carbon nano-tube and its preparing method
KR101874882B1 (en) Method of manufacturing polyurethane foam seat with carbon nano tube for vehicle, method of manufacturing insulation of vehicle using the same, and the insulation using the same method
DE102014224610B4 (en) Product molded from polyolefin resin, method of forming the same, and air duct using the same
CN105504649A (en) Sound insulating, shock absorbing and heat resisting ABS resin composition for automobile interior and preparation method of ABS resin composition
KR102140941B1 (en) Method for forming polyurethane absorptive material of vehicle and the polyurethane absorptive material thereof
KR20150072555A (en) Dash inner insulation for vehicle
CN111117036B (en) Polyethylene composition and preparation method thereof
EP3335871B1 (en) A multilayer structure and automotive component made thereof
KR101371848B1 (en) Polyurethane composition for automobile interior material
CN110549707B (en) Foamed polypropylene composite sheet and preparation method thereof
DE102011013516A1 (en) Method for manufacturing mold part e.g. A-column, in cladding part in body construction of automobile, involves processing mold part, where preferential direction of foaming lies perpendicular to propagation direction of foaming material
KR20210037936A (en) A polyurethane foam composition for a low density sound absorbing material improved in appearance formability, smell reduction and sound absorption performance, method for manufacturing polyurethane foam and polyurethane foam manufactured therefrom
KR101152187B1 (en) Hollow fiber acoustic absorbent and method for manufacturing the same
KR101516404B1 (en) Manufacturing method of an Air duct for air conditioning system of automobile
KR101240928B1 (en) Polyurethane foam acoustic absorbent using dash-panel of automobile
KR102029924B1 (en) Method of manufacturing insulation for vehicle, and the insulation using the same method
DE102020110246A1 (en) Plastic composite that has excellent soundproofing and mechanical properties
KR101488320B1 (en) Sound absorbing material, sound absorbing and sound blocking material and method for manufacturing the same
KR20120086466A (en) Lightweight wood-plastic composite and method for manufacturing the same
KR101082129B1 (en) Noise absortion material for vehicle by recycling poly urethane foam and Manufacturing method thereof
KR20150072551A (en) Engine room insulation for vehicle
KR101763242B1 (en) Foam pad for vehicle floor carpet and manufacturing method of thereof
KR20200078754A (en) Polypropylene resin composition reinforced with along glass fiber and method for preparing polypropylene resin foam using the same
KR102145724B1 (en) Sound insulation and sound absorption composition for automobile
KR100535011B1 (en) Sound-absorbing material for vehicle

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180530

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190528

Year of fee payment: 5