KR101483923B1 - Method for producing the functional expanded polystyrene which have the high closed cell contents - Google Patents

Method for producing the functional expanded polystyrene which have the high closed cell contents Download PDF

Info

Publication number
KR101483923B1
KR101483923B1 KR20130126561A KR20130126561A KR101483923B1 KR 101483923 B1 KR101483923 B1 KR 101483923B1 KR 20130126561 A KR20130126561 A KR 20130126561A KR 20130126561 A KR20130126561 A KR 20130126561A KR 101483923 B1 KR101483923 B1 KR 101483923B1
Authority
KR
South Korea
Prior art keywords
polystyrene
inorganic particles
size
foam
closed cell
Prior art date
Application number
KR20130126561A
Other languages
Korean (ko)
Inventor
이진희
전영호
방한배
이해리
이범석
Original Assignee
금호석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호석유화학 주식회사 filed Critical 금호석유화학 주식회사
Priority to KR20130126561A priority Critical patent/KR101483923B1/en
Application granted granted Critical
Publication of KR101483923B1 publication Critical patent/KR101483923B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Abstract

The present invention relates to a method for producing a foaming polystyrene bead for producing polystyrene foam that contains inorganic particles having a size of several μm to tens of μm but has a bubble size of 200 μm or less and a high closed cell content. The foaming polystyrene bead for producing polystyrene foam that has a bubble size of 200 μm or less and a high closed cell content is produced through a step of adding a styrene-based monomer and a thermal stabilizer in a pellet-shaped seed or a polystyrene bead containing inorganic particles to be polymerized in an aqueous environment and injecting a foaming agent. Considering that general polystyrene foam has a bubble curtain having a thickness of about 2 μm, the polystyrene foam provided by means of the method contains functional inorganic particles having a size of several μm to tens of μm causing foam breaking of a bubble curtain but has a bubble size of 200 μm or less and a high closed cell content, so that compression strength and curvature strength are excellent and a molded product is not shrunken.

Description

독립기포율이 높은 기능성 폴리스티렌 발포체의 제조 방법{Method for producing the functional expanded polystyrene which have the high closed cell contents}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for producing a functional polystyrene foam having a high self-

본 발명은 발포성 폴리스티렌 입자의 제조방법에 관한 것으로, 보다 상세하게는 수 ㎛ 에서 수십 ㎛ 크기의 무기 입자를 함유함에도 불구하고, 기포 크기가 200㎛ 이하이고, 독립기포율이 높은 폴리스티렌 발포체를 제공하기 위한 발포성 폴리스티렌 비드의 제조 방법에 관한 것이다. The present invention relates to a method for producing expandable polystyrene particles, and more particularly, to a method for producing a foamed polystyrene foam having an air bubble size of 200 μm or less and a high self-contained void ratio despite containing inorganic particles having a size of several μm to several tens of μm To a method for producing expandable polystyrene beads.

폴리스티렌 발포체의 제조 방법으로 현탁중합법을 이용하여 발포성 폴리스티렌 비드를 제조 후에 발포, 성형하는 제조 방법이 널리 공지되어 있고, [대한민국 공개특허 2001-12557호], [대한민국 공개특허 2009-38314호]에는 현탁중합법을 이용하여 무기 입자인 흑연이나, 탈크, 금속 수산화물, 금속분말 등을 도입하여 단열 성능 및 난연 성능을 개선하려는 제조 방법이 기재되어 있다.As a method for producing a polystyrene foam, a manufacturing method for foaming and molding expandable polystyrene beads by using a suspension polymerization method is widely known, and Korean Unexamined Patent Publication No. 2001-12557 and Korean Unexamined Patent Publication No. 2009-38314 Discloses a manufacturing method for introducing inorganic particles such as graphite, talc, metal hydroxides, metal powders and the like by using the suspension polymerization method to improve the heat insulating performance and the flame retardant performance.

그러나, 현탁 중합법을 이용하여 이러한 수 ㎛ 에서 수십 ㎛ 크기의 무기 입자를 도입하는 경우, 현탁 중합 과정에서 비드 내 수분을 많이 함유하게 되어, 최종 폴리스티렌 발포체의 기포 크기가 200㎛ 이상이 되고, 균일하지 못하는 등, 이러한 특성으로 인해 기존 비드법 폴리스티렌 발포체(EPS)에 비해 압축 강도 및 굴곡 강도가 저하되는 단점이 있다. 즉, 발포체의 기포크기가 200㎛ 이상인 경우 발포체의 표면 취성이 악화되고 최종 발포체의 구조적 강도가 현저히 떨어지므로 진공압을 견디지 못하는 문제가 발생하는 것이다. However, when inorganic particles having a size of several mu m to several tens of mu m are introduced by the suspension polymerization method, a large amount of moisture in the beads is contained in the suspension polymerization process, and the bubble size of the final polystyrene foam becomes 200 mu m or more, And the compressive strength and the flexural strength are lower than those of the conventional bead polystyrene foam (EPS). That is, when the bubble size of the foam is 200 μm or more, the surface brittleness of the foam is deteriorated and the structural strength of the final foam is remarkably lowered, resulting in a problem that it can not withstand the vacuum pressure.

이와 다른 방법으로 [대한민국 등록특허 10-0801275호]에는 수 ㎛의 흑연을 압출하여 마이크로펠렛을 제조 후 핵 중합하는 방법을 이용하여 중합시 비드 내 수분을 최소화 함으로써 최종 발포체의 기포 크기를 80~120㎛를 유지하는 방법을 소개하고 있으나, 이러한 방법은 최종 발포체의 기포 크기가 80~120㎛이고, 기포 막의 두께가 2 ㎛ 수준으로 얇기 때문에 기포 막이 파포되는 단점이 있어, 독립기포율이 낮아지고, 성형기에서 후발포력 저하에 따른 성형품 수축 현상이 발생할 수 있다.
Alternatively, [Korean Patent Registration No. 10-0801275] discloses a method of extruding a graphite of several 탆 to prepare a micropellet, followed by nuclear polymerization, thereby minimizing the moisture content in the bead during polymerization, However, this method is disadvantageous in that the bubble size of the final foam is 80 to 120 탆 and the thickness of the foam film is as thin as 2 탆, The shrinkage of the molded article may occur due to the lowering of the foaming power in the molding machine.

따라서, 본 발명의 목적은 수 ㎛ 에서 수십 ㎛ 크기의 무기 입자를 함유함에도 불구하고, 기포 크기가 200㎛ 이하이고, 독립기포율이 높은 폴리스티렌 발포체를 제공하기 위한 발포성 폴리스티렌 비드의 신규 제조 방법을 제공하는 것이다. Accordingly, an object of the present invention is to provide a novel method for producing a foamed polystyrene bead for providing a polystyrene foam having a bubble size of 200 mu m or less and a high independent foam ratio although it contains inorganic particles having a size of several mu m to several tens of mu m .

본 발명의 또 다른 목적은 수 ㎛ 에서 수십 ㎛ 크기의 무기 입자를 함유함에도 불구하고, 압축 강도 및 굴곡 강도가 우수하고, 성형시 후발포력 저하에 따른 성형품 수축 현상이 없는 폴리스티렌 발포체를 제공하기 위한 발포성 폴리스티렌 비드의 신규 제조 방법을 제공하는 것이다.
It is still another object of the present invention to provide a polystyrene foam which is excellent in compression strength and bending strength and which does not shrink the molded article due to lowering of foaming power at the time of molding even though it contains inorganic particles having a size of several 탆 to several tens of 탆 And to provide a novel method for producing expandable polystyrene beads.

본 발명에서는 상기 종래 기술들의 문제점들을 보완하기 위하여 수 ㎛ 에서 수십 ㎛ 크기의 기능성 무기 입자를 함유하는 폴리스티렌 비드 또는 펠렛 형태의 시드를 제조하고, 시드를 열안정제와 함께 수성상에서 중합을 실시함으로써 기포 크기가 200㎛ 이하이고, 독립기포율이 높은 폴리스티렌 발포체를 제공하기 위한 발포성 폴리스티렌 비드를 제조하였다.
In order to solve the problems of the prior art, the present invention proposes a process for producing polystyrene beads or pellets in the form of polystyrene beads or functional pellets containing functional inorganic particles having a size of several mu m to several tens of mu m and polymerizing the seeds together with a heat stabilizer in an aqueous phase, Of 200 占 퐉 or less and having a high independent foam ratio was prepared.

이러한 방법에 의해서 얻어진 폴리스티렌 발포체는 기포 막(Cell Wall)의 파포를 유발하는 수 ㎛ 에서 수십 ㎛ 크기의 기능성 무기 입자를 함유함에도 불구하고, 압축강도 및 굴곡강도가 우수하고, 성형품의 수축 현상이 없다는 장점이 있다.
Although the polystyrene foam obtained by this method contains functional inorganic particles having a size of several 탆 to several tens of 탆 which causes the cell wall to be dispersed, the foam has excellent compressive strength and bending strength and does not shrink the molded article There are advantages.

도 1은 무기 입자에 의해 폴리스티렌 발포체의 기포 막이 파포되어진 형상을 나타낸 사진 1 is a photograph showing a shape in which a foamed film of a polystyrene foam is dispersed by an inorganic particle

일반적으로 폴리스티렌계 제품을 생산하는데에 있어서, 단열성능 개선을 위해 흑연을 도입하거나, 난연성능 개선을 위해 무기 난연제를 도입하는 방법이 공지되어 있는데, 이들 무기 입자들을 포함한 발포체를 발포시킬 때에 형성되는 기포벽(Cell Wall)의 강도가 충분하지 못하여 기포벽이 쉽게 파포되어 독립기포율이 저하되는 문제가 존재하고 있었다. Generally, in the production of polystyrene-based products, there is known a method of introducing graphite for improvement of the heat insulating performance or introducing an inorganic flame retardant for improving the flame retardant performance. The bubbles There is a problem that the strength of the cell wall is not sufficient and the bubble wall is easily ruptured, thereby lowering the independent bubble ratio.

상기 독립기포율은 단위면적에 형성된 기포들 중 닫혀진 기포의 분율을 의미하는데, 독립기포율이 낮은 발포체의 경우 구조적 강도가 현저히 떨어지고 진공압을 견디지 못하는 등 물리적 물성이 약화된다는 문제가 있다. The closed-cell ratio refers to the fraction of the closed cells in the bubbles formed in the unit area. In the case of the foam having a low closed cell ratio, the structural strength is significantly lowered and the physical properties such as failure to withstand the vacuum pressure are weakened.

따라서, 본 발명은 수 ㎛ 에서 수십 ㎛ 크기의 무기 입자를 함유함에도 불구하고, 기포 크기가 200㎛ 이하이고, 독립기포율이 높은 폴리스티렌 발포체를 제공하기 위한 발포성 폴리스티렌 비드의 제조 방법에 관한 것이다.Accordingly, the present invention relates to a method for producing expandable polystyrene beads for providing a polystyrene foam having a bubble size of 200 mu m or less and a high independent foam ratio although it contains inorganic particles having a size of several mu m to several tens of mu m.

보다 상세하게는 기포 크기가 200㎛ 이하이고, 독립기포율이 높은 폴리스티렌 발포체를 제공하기 위한 발포성 폴리스티렌 비드는 스티렌계 수지에 수 ㎛ 에서 수십 ㎛ 크기의 무기 입자를 혼합하여 혼합 조성물을 제조하고, 상기 조성물을 압출하여 상기 무기 입자를 함유하는 폴리스티렌 입자 또는 펠렛 형태의 시드를 얻는 단계 및 상기 시드를 열안정제와 함께 물에 현탁시켜 스티렌계 단량체와 중합을 실시하는 동시에 발포제를 투입하는 단계를 통해서 이루어진다.More specifically, a foamed polystyrene bead for providing a polystyrene foam having a bubble size of 200 μm or less and a high closed cell ratio can be obtained by mixing a styrene resin with inorganic particles having a size of several μm to several tens of μm to prepare a mixed composition, A step of extruding the composition to obtain polystyrene particles or pellet seeds containing the inorganic particles, suspending the seeds together with a heat stabilizer in water, and conducting polymerization with a styrenic monomer and injecting a foaming agent.

본 발명의 실시에 있어서, 상기 무기입자 중 하나인 흑연을 함유하는 폴리스티렌 비드 또는 펠렛 형태의 시드는 통상적인 현탁중합 내지 수중커팅방식 등을 이용한 압출법으로 제조되어질 수 있다.In the practice of the present invention, a polystyrene bead or a pellet-shaped seed containing graphite, which is one of the inorganic particles, can be produced by an extrusion method using a conventional suspension polymerization or an underwater cutting method.

본 발명의 실시에 있어서, 폴리스티렌 비드 또는 펠렛 형태의 시드에 함유된 상기 무기입자는 흑연, 금속 분말, 금속 산화물, 금속 수산화물, 무기 난연제 등의 단열 및 난연 성능 개선 첨가제를 포함하고, 입자 크기는 1 ~ 20 마이크론이 바람직하고, 2 ~ 10 마이크론이 특히 바람직하다. 본 발명에 있어서, 기능성 무기 입자의 함량은 발포성 폴리스티렌 비드 100 중량부를 기준으로 0.05 ~ 30 중량부를 사용하는 것이 바람직하며, 보다 바람직하게는 0.5 ~ 10 중량부를 사용한다.In the practice of the present invention, the inorganic particles contained in the polystyrene bead or pellet type seeds include additives for improving heat insulation and flame retardancy such as graphite, metal powder, metal oxide, metal hydroxide, inorganic flame retardant and the like, To 20 microns is preferable, and 2 to 10 microns is particularly preferable. In the present invention, the content of the functional inorganic particles is preferably 0.05 to 30 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of expandable polystyrene beads.

본 발명의 실시에 있어서, 상기 열안정제는 여러 수지에 혼합하여 가공과 완성된 제품의 사용기간 중 수지의 물리적, 화학적 성질을 유지하도록 도와주는 화합물로서, 주요 용도로는 압출 및 사출시 범용 플라스틱이 200℃ 이상의 고온에서 분해되는 것을 방지하기 위해 일반적으로 사용되고 있으며, 형태에 따라 분말, 액상, 과립형으로 분류되고, 성상에 따라 Cd/Ba/Zn계, Cd/Ba계, Ba/Zn계, Ca/Zn계, Na/Za계, Sn계, Pb계, Cd계, Zn계로 나눌 수 있다.In the practice of the present invention, the heat stabilizer is a compound which is mixed with various resins to help maintain the physical and chemical properties of the resin during processing and use of the finished product. Ba / Zn system, Ba / Zn system, Ba / Zn system, Ca / Zn system, and the like depending on the properties. / Zn system, Na / Za system, Sn system, Pb system, Cd system and Zn system.

본 발명에 따른 수 ㎛ 에서 수십 ㎛ 크기의 무기 입자를 함유하는 발포성 폴리스티렌 비드에 상기 열안정제를 도입하게 되면 70~110℃의 발포기 내부의 발포 과정에서 기포 막의 파포를 감소시키고, 독립기포율이 높게 유지될 수 있는 것이다.When the heat stabilizer is introduced into expandable polystyrene beads containing inorganic particles having a size of several mu m to several tens of microns according to the present invention, it is possible to reduce the foaming of the foam film during the foaming process inside the foaming machine at 70 to 110 DEG C, It can be kept high.

본 발명의 실시에 있어서, 열안정제는 분말 형태의 Sn계를 사용하였고, 발포성 폴리스티렌 비드 100 중량부를 기준으로 0.01~0.05 중량부를 사용하는 것이 바람직하다. 열안정제의 함량이 0.01 중량부 미만일 경우에는 기포의 파포 방지 효과가 미비하고, 0.05 중량부를 초과할 경우에는 수성상에 분산계가 파괴되어 입자를 얻을 수 없다. In the practice of the present invention, the thermal stabilizer is preferably a powdered Sn-based material, and it is preferable to use 0.01 to 0.05 part by weight based on 100 parts by weight of expandable polystyrene beads. When the content of the heat stabilizer is less than 0.01 part by weight, the effect of preventing the foaming of the bubble is insufficient. When the amount of the heat stabilizer is more than 0.05 part by weight, the dispersion system is broken on the aqueous phase and particles can not be obtained.

본 발명의 실시에 있어서, 발포제는 발포성 폴리스티렌 입자에 사용되는 통상의 발포제로서, 적합한 발포제로는 탄소 원자수 4 ~ 6의 지방족 탄화수소를 사용할 수 있으며, 바람직하게는 부탄과 펜탄이다. 발포제의 함량은 발포성 폴리스티렌 입자를 기준으로 3중량부 내지 10중량부를 사용할 수 있고, 바람직하게는 5내지 8중량부를 사용한다.In the practice of the present invention, the foaming agent is a conventional foaming agent used in expandable polystyrene particles, and a suitable foaming agent is aliphatic hydrocarbons having 4 to 6 carbon atoms, preferably butane and pentane. The content of the foaming agent may be 3 to 10 parts by weight, preferably 5 to 8 parts by weight, based on the expandable polystyrene particles.

본 발명의 실시에 있어서, 현탁 중합에서 통상의 현탁 안정화제, 과산화물 개시제, 발포 보조제, 난연 보조제 및 핵생성제가 첨가될 수 있다. In the practice of the present invention, conventional suspension stabilizers, peroxide initiators, foaming aids, flame retardant adjuvants and nucleating agents may be added in suspension polymerization.

이하, 본 발명을 실시예에 의거 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.
EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples.

<실시예1> 흑연 함유 시드를 이용하고, 발포성 폴리스티렌 비드 100 중량부를 기준으로 열안정제 0.02 중량부 도입한 폴리스티렌 발포체. &Lt; Example 1 &gt; A polystyrene foam comprising graphite-containing seeds and 0.02 parts by weight of a heat stabilizer based on 100 parts by weight of expandable polystyrene beads.

100L 반응기에 물 40kg, 피로인산나트륨(영진산업) 0.2kg 및 염화마그네슘(㈜씨엠아이, 30% 수용액) 0.5kg을 투입하여 교반하고, 흑연을 함유한 펠렛 형태의 시드(MP20G ; 금호석유화학) 20kg을 투입하였다. 이 후 70℃까지 반응기 온도를 승온시키고, 스티렌 단량체(Styrene Monomer; SK) 5kg에 열안정제(디부틸틴 말레이트; 송원산업) 8g, 저온 개시제(벤조일 퍼옥사이드; 한솔케미칼) 0.07kg, 고온 재시제(t-부틸 퍼옥시 벤조네에트; 호성케멕스) 0.03kg을 용해시켜 2시간 동안 투입하였다. 이후 반응기 입구를 닫고 스티렌 단량체 15kg을 70℃에서 115℃까지 3.5시간 동안 승온 시키면서 천천히 투입하여 중합을 진행시켰다. 이것이 완료된 후 115℃에서 발포제(펜탄; SK) 3kg을 질소 압력으로 반응기에 투입하고 최종 반응기 압력을 13kgf/cm2 를 유지하면서 5시간 동안 함침을 실시하였다. 이후 30℃이하로 냉각시키고 제품을 반응기에 배출하였다. 이 제품을 수세, 건조시키고, 통상적인 발포성 폴리스티렌 입자 제조시 사용하는 블랜딩제를 도포하여 발포, 성형 및 물성 평가를 진행하였고, 그 결과를 하기 표 1에 나타내었다.(MP20G; KKPC) containing 40 kg of water, 0.2 kg of sodium pyrophosphate (Youngjin Industry) and 0.5 kg of magnesium chloride (SiMei, 30% aqueous solution) 20 kg. Thereafter, the reactor temperature was raised to 70 DEG C, and 8 g of a heat stabilizer (dibutyl tin maleate; Songwon Industry), 0.07 kg of a low temperature initiator (benzoyl peroxide; Hansol Chemical Co., Ltd.) 0.03 kg of t-butylperoxy benzoate (HEPATIC CEREX) was dissolved therein and the mixture was added for 2 hours. Thereafter, the inlet of the reactor was closed, and 15 kg of the styrene monomer was slowly added thereto while the temperature was elevated from 70 ° C to 115 ° C for 3.5 hours to proceed the polymerization. After this was completed, 3 kg of a blowing agent (pentane; SK) was introduced into the reactor at a pressure of nitrogen at 115 ° C and the impregnation was carried out for 5 hours while maintaining the final reactor pressure at 13 kgf / cm 2 . Thereafter, the mixture was cooled to 30 DEG C or lower and the product was discharged to the reactor. The product was washed with water, dried, and applied with a blending agent used for preparing ordinary expandable polystyrene particles, and subjected to foaming, molding and physical property evaluation. The results are shown in Table 1 below.

<비교예1> 흑연을 포함하지 않고, 일반적인 현탁중합법을 이용한 발포성 폴리스티렌 발포체. Comparative Example 1 A foamed polystyrene foam containing no graphite and using a general suspension polymerization method.

100L 반응기에 물 40kg, 트리칼슘포스페이트(듀본유화) 0.2kg을 투입하여 교반하고, 스티렌 단량체(Styrene Monomer; SK) 40kg에, 저온 개시제(벤조일 퍼옥사이드; 한솔케미칼) 0.14kg, 고온 개시제(t-부틸 퍼옥시 벤조에이트; 호성케멕스) 0.06kg을 용해하여 투입하였다. 이후 90℃로 승온하고 6.5시간을 유지하였다. 이후 반응기의 입구를 닫고, 90℃에서 115℃까지 1시간 30분 동안 서서히 승온 완료하였고, 115℃에서 발포제(펜탄; SK) 3kg을 질소 압력으로 반응기에 투입하고 최종 반응기 압력을 13kgf/cm2 를 유지하면서 5시간 동안 함침을 실시하였다. 이후 30℃이하로 냉각시키고 제품을 반응기에 배출하였다. 이 제품을 수세, 건조시키고, 통상적인 발포성 폴리스티렌 입자 제조시 사용하는 블랜딩제를 도포하여 발포, 성형 및 물성 평가를 진행하였고, 그 결과를 표 1에 나타내었다.(Toluene), 40 kg of water and 0.2 kg of tricalcium phosphate (Dubon oil) were added to 40 kg of a styrene monomer (SK), and 0.14 kg of a low temperature initiator (benzoyl peroxide; Butyl peroxybenzoate; HOMEPAGE CEMEX) was added to the solution. Thereafter, the temperature was raised to 90 DEG C and maintained for 6.5 hours. The inlet of the reactor was then closed and the temperature was gradually raised from 90 ° C to 115 ° C for 1 hour and 30 minutes. 3kg of foaming agent (pentane; SK) was introduced into the reactor at 115 ° C and the final reactor pressure was 13kgf / cm 2 The impregnation was carried out for 5 hours. Thereafter, the mixture was cooled to 30 DEG C or lower and the product was discharged to the reactor. The product was washed with water, dried, and applied with a blending agent used for preparing ordinary expandable polystyrene particles, and subjected to foaming, molding and physical property evaluation. The results are shown in Table 1.

<비교예2> 종래의 일반적인 현탁중합법을 이용한 흑연 함유 발포성 폴리스티렌 발포체. Comparative Example 2 A graphite-containing expandable polystyrene foam using a conventional suspension polymerization method.

100L 반응기에 물 40kg, 피로인산나트륨(영진산업) 0.2kg 및 염화마그네슘(㈜씨엠아이, 30% 수용액) 0.5kg을 투입하여 교반하고, 스티렌 단량체(Styrene Monomer; SK) 35kg에, 폴리스티렌(GP150K, 금호석유화학) 5kg, 흑연(HCN 905, 현대코마산업) 1.6kg, 저온 개시제(벤조일 퍼옥사이드; 한솔케미칼) 0.14kg, 고온 개시제(t-부틸 퍼옥시 벤조에이트; 호성케멕스) 0.06kg을 용해하여 투입하였으며, 이후 공정은 비교에1과 동일하게 반복하였다. A 100 L reactor was charged with 40 kg of water, 0.2 kg of sodium pyrophosphate (Youngjin Industry), and 0.5 kg of magnesium chloride (SiMiA, 30% aqueous solution) and stirred. To 35 kg of styrene monomer (SK) (Benzoyl peroxide; Hansol Chemical) and 0.06 kg of a high temperature initiator (t-butyl peroxybenzoate, Hosung Co., Ltd.) were dissolved in an amount of 5 kg, graphite (HCN 905, And the subsequent process was repeated in the same manner as in the comparison 1.

<비교예3> 흑연 함유 시드를 이용하고, 열안정제는 도입하지 않은 발포성 폴리스티렌 발포체. &Lt; Comparative Example 3 > A foamed polystyrene foam using a graphite-containing seed and no heat stabilizer.

열안정제 도입하는 것을 제외하고, 실시예 1의 과정을 동일하게 반복하였다.The procedure of Example 1 was repeated, except that a heat stabilizer was introduced.

항 목Item 실시예1Example 1 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 흑연함량(중량%)Graphite content (% by weight) 4.14.1 00 4.04.0 4.14.1 기포크기(㎛)Bubble size (㎛) 100~150100 to 150 80~12080-120 300~500300 to 500 80~12080-120 압축강도(kgf/cm2)Compressive strength (kgf / cm2) 1.871.87 1.901.90 1.571.57 1.881.88 굴곡강도(kgf/cm2)Flexural Strength (kgf / cm2) 3.883.88 3.933.93 3.303.30 3.913.91 독립기포율(%)Percentage of closed cells (%) 85.285.2 86.086.0 84.984.9 78.378.3 성형품 수축율(%)Mold Shrinkage (%) 0.80.8 0.50.5 0.80.8 4.14.1 열전도율(W/mK)Thermal conductivity (W / mK) 0.03090.0309 0.03650.0365 0.03140.0314 0.03110.0311 비 고Remarks 열전도율 저하Decrease of thermal conductivity 강도 저하Drop in strength 성형품 수축 과다Overshrinkage

상기 표 1에 있어서, 평가를 위한 폴리스티렌 발포체 밀도는 30kg/㎥이고, 첨가된 흑연 평균 입자크기는 5㎛이고, 물성평가는 구체적으로 다음과 같이 수행하였다.In Table 1, the polystyrene foam density for evaluation was 30 kg / m 3, the added graphite average particle size was 5 μm, and the physical property evaluation was carried out specifically as follows.

1) 흑연함량 : THF(테트라하이드로푸란) 용제에 녹인 후 여과함(중량%; 습식법)1) Graphite content: dissolved in THF (tetrahydrofuran) solvent and filtered (weight%; wet process)

2) 기포 크기: 기포 벽과 기포 사이의 평균직경(mm; 현미경으로 측정)2) Bubble size: average diameter between bubble wall and bubble (mm; measured by microscope)

3) 압축강도: 한국공업규격 KS M 3808에 규정된 발포 폴리스티렌 보온재의 압축강도 측정 방법에 준함(kgf/cm2)3) Compressive strength: According to the method of measuring compressive strength of expanded polystyrene insulation material specified in Korean Industrial Standard KS M 3808 (kgf / cm 2 )

4) 굴곡강도: 한국공업규격 KS M 3808에 규정된 발포 폴리스티렌 보온재의 굴곡강도 측정 방법에 준함(kgf/cm2)4) Flexural strength: According to the method of measuring the flexural strength of expanded polystyrene insulation materials specified in Korean Industrial Standard KS M 3808 (kgf / cm 2 )

5) 독립기포율 : 울트라피크노미터(Ultrapycnometer; Quantachrome사 제품)을 사용하여 ASTM D-2856에 준하여 측정(%)5) Percentage of closed cells:% (%) measured according to ASTM D-2856 using an Ultrapycnometer (manufactured by Quantachrome)

6) 성형품 수축율 : 성형품 배면 방향을 기준으로 수축율 계산(%; 수축 길이/금형 길이*100)6) Shrinkage rate of molded article: calculation of shrinkage rate based on the back direction of molded article (% shrinkage length / mold length * 100)

7) 열전도율: Netzsch사의 열전도율 기기를 이용하여 측정 (W/mK)
7) Thermal conductivity: measured by Netzsch's thermal conductivity instrument (W / mK)

상기 표 1의 결과로부터, 평균 입자 크기가 5㎛인 흑연을 함유한 폴리스티렌 시드를 이용하여 열안정제와 함께 수성상에서 중합할 경우, 이러한 방법에 의하여 제공된 폴리스티렌 발포체는 기포 크기가 200㎛ 이하이고, 독립기포율이 85% 수준으로 흑연을 도입하지 않은 일반 폴리스티렌 발포제와 유사한 압축강도, 굴곡강도를 보유하고, 성형품 수축율을 개선할 수 있었다.From the results shown in the above Table 1, it can be seen that when polystyrene seeds containing graphite having an average particle size of 5 탆 are used and polymerized in an aqueous phase together with a heat stabilizer, the polystyrene foam provided by this method has a bubble size of 200 탆 or less, And the compression strength and flexural strength similar to those of a general polystyrene blowing agent in which graphite was not introduced at a bubble ratio of 85%, and the shrinkage ratio of a molded article could be improved.

비교예들을 살펴보면 흑연을 미도입한 일반적인 현탁중합품(비교예1)은 압축강도, 굴곡강도 및 성형품 수축율은 우수하지만 열전도율이 저하되고, 일반적인 현탁중합법을 이용하여 흑연을 도입한 실험품(비교예2)은 열전도율은 우수하지만, 기포 대립화로 압축강도 및 굴곡강도가 저하되는 특징이 있다. 또한 흑연 함유 시드를 이용하고, 열안정제를 미도입한 실험품(비교예3)은 열전도율 및 미세한 기포 크기를 확보하여 압축강도, 굴곡강도는 우수하지만, 흑연 도입으로 인해 얇은 기포 막이 파포되어 독립기포율이 저하되고, 이로 인해 성형시 후발포력 저하로 인한 성형품 수축 현상이 발생하였다.In the comparative examples, a general suspension polymer product in which graphite is not introduced (Comparative Example 1) exhibits excellent compressive strength, bending strength and shrinkage of a molded product, but exhibits a low thermal conductivity and exhibits a graphite- Example 2) is excellent in thermal conductivity, but is characterized in that compressive strength and flexural strength are lowered by bubble opposed. In addition, the experimental article (Comparative Example 3) using a graphite-containing seed and a heat stabilizer without any heat stabilizes the thermal conductivity and the fine bubble size to provide excellent compression strength and bending strength. However, due to the introduction of graphite, Resulting in shrinkage of the molded article due to lowering of the foaming power at the time of molding.

결과적으로 흑연과 같은 기능성 무기 입자를 함유한 폴리스티렌 시드를 이용하여 열안정제와 함께 수성상에서 중합할 경우, 이러한 방법에 의하여 제공된 폴리스티렌 발포체는 기포 크기가 200㎛ 이하이고, 독립기포율이 높은 이유로, 종래의 발포 폴리스티렌과 유사한 압축강도, 굴곡강도를 보유하고, 성형품 수축율을 개선할 수 있었다.As a result, when a polystyrene seed containing functional inorganic particles such as graphite is polymerized in an aqueous phase together with a heat stabilizer, the polystyrene foam provided by this method has a bubble size of 200 μm or less and a high self- Compression strength and flexural strength similar to those of expanded polystyrene of the present invention, and the shrinkage of the molded article could be improved.

본 발명이 상기 실시예에 있어서, 상세하게 설명되었다 할지라도, 상기 실시예는 본 발명의 범위를 한정하기 위해서 기술된 것이 아니며, 단지 예시적인 목적으로 기술된 것이다.Although the present invention has been described in detail in the above embodiments, the above embodiments are not described for the purpose of limiting the scope of the present invention, but are described for illustrative purposes only.

당업자는 본원 발명의 범위와 사상을 벗어나지 않는 범위 내에서 발명의 변형이 가능하다는 것을 인식할 것이며, 본원 발명의 범위는 하기 특허청구범위에 의해서 결정된다.
Those skilled in the art will recognize that modifications of the invention are possible without departing from the scope and spirit of the invention, and the scope of the invention is determined by the claims that follow.

Claims (6)

무기입자를 함유하는 폴리스티렌 비드 또는 펠렛 형태의 시드에, 스티렌계 단량체 및 열안정제를 부가하여 수성상에서 중합을 실시하고 발포제를 투입하는 것으로 이루어지되,
상기 열 안정제는 발포성 폴리스티렌 비드 100 중량부를 기준으로 0.01 내지 0.05 중량부가 부가되는 것을 특징으로 하는,
발포체의 기포 크기가 200㎛ 이하이고 독립기포율이 80% 이상인 발포성 폴리스티렌 비드의 제조방법.
Wherein a styrene monomer and a heat stabilizer are added to a polystyrene bead or a seed in the form of a pellet containing inorganic particles to polymerize in an aqueous phase and to introduce a foaming agent,
Wherein the heat stabilizer is added in an amount of 0.01 to 0.05 parts by weight based on 100 parts by weight of expandable polystyrene beads.
Wherein the foam has a bubble size of 200 m or less and a closed cell ratio of 80% or more.
제1항에 있어서, 상기 무기입자는 1 내지 20 ㎛ 크기의 흑연, 금속분말, 금속 산화물, 금속 수산화물 및 무기 난연제로 이루어진 군으로부터 선택되는 것을 특징으로 하는 발포성 폴리스티렌 비드의 제조방법.
The method of claim 1, wherein the inorganic particles are selected from the group consisting of graphite, metal powder, metal oxide, metal hydroxide, and inorganic flame retardant having a size of 1 to 20 μm.
제1항에 있어서, 상기 열 안정제는 Cd-Ba-Zn 혼합물, Cd-Ba 혼합물, Ba-Zn 혼합물, Ca-Zn 혼합물, Na-Zn 혼합물, Sn계, Pb계, Cd계 및 Zn계로 이루어진 군으로부터 선택되는 것을 특징으로 하는 발포성 폴리스티렌 비드의 제조방법.
The heat stabilizer according to claim 1, wherein the heat stabilizer is selected from the group consisting of a Cd-Ba-Zn mixture, a Cd-Ba mixture, a Ba-Zn mixture, a Ca-Zn mixture, a Na-Zn mixture, a Sn mixture, a Pb mixture, &Lt; / RTI &gt; wherein the polymer is selected from the group consisting of polyvinyl alcohol and polyvinyl alcohol.
제1항에 있어서, 상기 무기입자는 발포성 폴리스티렌 비드 100 중량부를 기준으로 0.05 내지 30 중량부인 것을 특징으로 하는 발포성 폴리스티렌 비드의 제조방법.
The method according to claim 1, wherein the inorganic particles are 0.05 to 30 parts by weight based on 100 parts by weight of expandable polystyrene beads.
삭제delete 제1항에 의한 제조방법에 의해 제조된 기포 크기가 200㎛ 이하이고 독립기포율이 80% 이상인 폴리스티렌 발포체.
A polystyrene foam having a bubble size of 200 μm or less and a closed cell ratio of 80% or more, produced by the manufacturing method according to claim 1.
KR20130126561A 2013-10-23 2013-10-23 Method for producing the functional expanded polystyrene which have the high closed cell contents KR101483923B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130126561A KR101483923B1 (en) 2013-10-23 2013-10-23 Method for producing the functional expanded polystyrene which have the high closed cell contents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130126561A KR101483923B1 (en) 2013-10-23 2013-10-23 Method for producing the functional expanded polystyrene which have the high closed cell contents

Publications (1)

Publication Number Publication Date
KR101483923B1 true KR101483923B1 (en) 2015-01-19

Family

ID=52590822

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130126561A KR101483923B1 (en) 2013-10-23 2013-10-23 Method for producing the functional expanded polystyrene which have the high closed cell contents

Country Status (1)

Country Link
KR (1) KR101483923B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000003098A (en) * 1998-06-25 2000-01-15 황규억 Process for preparing foaming styrene polymer resin bead
US20080096989A1 (en) 2004-12-22 2008-04-24 Albemarle Corporation Flame Retardant Expanded Polystyrene Foam Compositions
KR20130071864A (en) * 2011-12-21 2013-07-01 금호석유화학 주식회사 Manufacturing method of expandable polystyrene particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000003098A (en) * 1998-06-25 2000-01-15 황규억 Process for preparing foaming styrene polymer resin bead
US20080096989A1 (en) 2004-12-22 2008-04-24 Albemarle Corporation Flame Retardant Expanded Polystyrene Foam Compositions
KR20130071864A (en) * 2011-12-21 2013-07-01 금호석유화학 주식회사 Manufacturing method of expandable polystyrene particles

Similar Documents

Publication Publication Date Title
JP5208501B2 (en) Styrene polymer-particle foam with low thermal conductivity
JP2013514397A (en) Flame retardant polymer foam
EP3087125B1 (en) Combination of a mineral component with carbon black and its use for decreasing the thermal conductivity of vinyl aromatic polymer
EP2591044B1 (en) Improved expandable vinyl aromatic polymers
EP3087126B1 (en) Use of cenospheres for improving the self-extinguishing properties of polymer foam prepared from vinyl aromatic monomer and containing athermanous additive
KR101113948B1 (en) Method for increasing coating efficiency of functional additives with insolubility when producing expandable polystyrene beads
KR100884817B1 (en) Method for producing expandable polystyrene beads
KR101483923B1 (en) Method for producing the functional expanded polystyrene which have the high closed cell contents
CN111117091A (en) Polystyrene foam thermal insulation material
KR101662546B1 (en) manufacturing method of expandable polystyrene having improved insulation property
KR101789704B1 (en) Preparing Method of Expandable Polystyrene Beads Having Thermal Insulation Property, Using Recycled Styrene Resin
KR101099027B1 (en) Method for producing expandable polystyrene beads which have excellent flammable capability
KR20140085261A (en) Expandable resin composition, method for preparing the same and foam using the same
KR101713655B1 (en) Method for producing expandable polystyrene beads with the nonflammable properties
KR101419457B1 (en) method for manufacturing expandable styrene polymer containing aluminium particles, and expandable styrene polymer produced thereby
KR20090039877A (en) Method for producing expandable styrene polymers
EP3087127B1 (en) Use of sterically hindered styrene comonomer for improving the thermal stability of expanded vinyl aromatic polymer
KR20130052484A (en) Expandable polystyrene having good thermal insulation and workability, method for preparing the same and foam thereof
KR101991584B1 (en) Expandable resin composition, method for preparing the same and foam using the same
KR102119032B1 (en) Expandable resin composition, foam using the same and method of the foam
KR101992628B1 (en) The fabrication method of expanded polystyrene particle and expanded polystyrene particle
KR20120077060A (en) Non flammable expandable polystyrene polymerized beads and method for preparing the same
KR20130071864A (en) Manufacturing method of expandable polystyrene particles
KR101064177B1 (en) Expandable styrenic polymer particles
KR100876211B1 (en) Expandable polystyrene bead including plate-shaped talc coated by resin and production method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171208

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 5