KR101482452B1 - Manufacturing method of carbon fiber reinforced thermoplastic composite and the composite manufactured by the same - Google Patents

Manufacturing method of carbon fiber reinforced thermoplastic composite and the composite manufactured by the same Download PDF

Info

Publication number
KR101482452B1
KR101482452B1 KR1020130139380A KR20130139380A KR101482452B1 KR 101482452 B1 KR101482452 B1 KR 101482452B1 KR 1020130139380 A KR1020130139380 A KR 1020130139380A KR 20130139380 A KR20130139380 A KR 20130139380A KR 101482452 B1 KR101482452 B1 KR 101482452B1
Authority
KR
South Korea
Prior art keywords
carbon fiber
composite material
treated
thermoplastic resin
alooh
Prior art date
Application number
KR1020130139380A
Other languages
Korean (ko)
Inventor
배일준
박세민
이성영
홍익표
김병주
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020130139380A priority Critical patent/KR101482452B1/en
Application granted granted Critical
Publication of KR101482452B1 publication Critical patent/KR101482452B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/45Oxides or hydroxides of elements of Groups 3 or 13 of the Periodic System; Aluminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/047Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material made of fibres or filaments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M17/00Producing multi-layer textile fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/06Processes in which the treating agent is dispersed in a gas, e.g. aerosols
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene

Abstract

The present invention relates to a method for manufacturing a high strength and thermoplastic carbon fiber reinforced composite and a composite manufactured thereby, and more particularly, to a composite including an Al2O3 surface-treated carbon fiber and a thermoplastic resin and to a method for manufacturing the composite, the method including the steps of: impregnating a carbon fiber in an AlOOH sol treatment bath; drying the impregnated carbon fiber to obtain an Al2O3 surface-treated carbon fiber; and heating and pressurizing the Al2O3 surface-treated carbon fiber and the thermoplastic resin. According to the present invention, since Al2O3 is applied to a surface of a carbon fiber, it is possible to obtain a thermoplastic resin and a carbon fiber-reinforced composite with improved interfacial strength. In addition, according to the present invention, it is possible to obtain such a composite by a method which is simple compared to a chemical treatment or a physical treatment and efficient in terms of cost and productivity.

Description

고강도 열가소성 탄소섬유 강화 복합재료의 제조 방법 및 이에 의해 제조된 복합재료{Manufacturing method of carbon fiber reinforced thermoplastic composite and the composite manufactured by the same}TECHNICAL FIELD The present invention relates to a method for producing a high strength thermoplastic carbon fiber reinforced composite material and a composite material produced by the method.

본 발명은 고강도 열가소성 탄소섬유 강화 복합재료의 제조 방법 및 이에 의해 제조된 복합재료에 관한 것으로, 보다 구체적으로는 탄소섬유 표면을 AlOOH로 처리하여 Al2O3 코팅층을 형성하여 열가소성 수지와의 계면 강도를 증가시키는 방법 및 이에 의해 제조된 복합재료에 관한 것이다.
The present invention relates to a method of manufacturing a high strength thermoplastic carbon fiber reinforced composite material and a composite material produced by the method. More particularly, the present invention relates to a method of producing a high strength thermoplastic carbon fiber reinforced composite material by treating a surface of a carbon fiber with AlOOH to form an Al 2 O 3 coating layer, And a composite material produced thereby.

탄소섬유는 비강도(밀도당 인장강도) 및 비탄성율(밀도당 영율) 등의 기계적 물성이 매우 우수하기 때문에 복합재료의 강화제로 널리 사용되고 있다. 이러한 탄소섬유 용도로는 항공기, 자동차 등의 구조재료나, 낚시 대, 골프채 샤프트 등의 스포츠레져 용품 등에서 많이 사용되고 있으며, 점진적으로 사용분야가 확대되고 있다.
Carbon fibers are widely used as reinforcing agents for composites because of their excellent mechanical properties such as non-strength (tensile strength per density) and non-elasticity (Young's modulus per density). Such carbon fiber uses are widely used in structural materials such as aircraft and automobiles, sports leisure goods such as fishing rods, golf club shafts, and the like, and the field of use is gradually increasing.

다양한 열가소성 수지들이 모재로 사용되고 있으며, 특히 폴리프로필렌은 낮은 밀도와 높은 굽힘 강도를 가지고 있는 대표적인 모재 (matrix) 중 하나이지만, 폴리프로필렌 수지는 표면 자유에너지가 낮아 탄소섬유와의 접착력이 떨어지고, 용융상태에서의 높은 점도 때문에 섬유 사이로의 함침이 어려운 문제점이 있다. 이 때 탄소섬유와 폴리프로필렌 수지 간의 낮은 계면 강도에 의해 계면 분리가 발생한다. 따라서 탄소섬유 복합재료 제조 시 폴리프로필렌과 같은 열가소성 수지와 탄소섬유의 계면 결합력을 증가시키기 위한 다양한 표면 처리 또는 수지의 개질 등이 연구되고 있다.
Various thermoplastic resins are used as a base material. Especially, polypropylene is one of representative matrix materials having low density and high bending strength. However, since the polypropylene resin has low surface free energy, adhesion with carbon fiber is low, There is a problem that impregnation between the fibers is difficult due to the high viscosity in the fibers. At this time, the interface separation occurs due to the low interfacial strength between the carbon fiber and the polypropylene resin. Therefore, in the production of carbon fiber composite materials, various surface treatments or modification of resins are being studied to increase the interfacial bonding strength between thermoplastic resins such as polypropylene and carbon fibers.

탄소섬유 복합재료의 계면 접착력을 증가시키기 위한 방법으로는, 크게 모재로 사용되는 수지의 개질 방법 및 탄소섬유의 표면 처리 방법이 있다.
As a method for increasing the interfacial adhesion of the carbon fiber composite material, a method of modifying a resin used as a base material and a method of treating a surface of a carbon fiber are known.

수지의 개질은 기존 수지의 개질을 통해 고분자 사슬 내 작용기를 붙이거나 수지의 점도를 낮추어 섬유와의 결합력을 향상시키는 것으로, 이는 수지의 고유의 물성을 저하시키고 수지에 생성된 작용기도 비활성 표면을 가진 탄소섬유와는 화학결합을 형성할 수 없어 효과가 떨어진다.
The modification of the resin improves the bonding force with the fiber by attaching the functional group in the polymer chain through the modification of the existing resin or lowering the viscosity of the resin. This is because the inherent physical properties of the resin are lowered, It can not form a chemical bond with the carbon fiber and the effect is reduced.

반면, 탄소섬유 표면처리에는 산화처리, 플라즈마(plasma) 처리, 그래프팅 (grafting) 등을 사용해 작용기를 부여하거나 표면 자유 에너지를 증가시키는 방법이 있다. 이러한 방법들은 에폭시와 같은 수지가 탄소섬유와 화학적인 결합을 할 수 있도록 유도하여 계면 결합력을 증가시킨다. 그러나 이러한 표면처리 방법은 폴리프로필렌과 같은 작용기를 가지지 않는 수지와의 결합에는 큰 효과를 기대할 수는 문제점이 있다.
On the other hand, surface treatment of carbon fiber has a method of imparting functional groups or increasing surface free energy by using oxidation treatment, plasma treatment, grafting and the like. These methods increase the interfacial bonding force by inducing the chemical bonding of the resin such as epoxy to the carbon fiber. However, such a surface treatment method has a problem that a great effect can be expected for bonding with a resin having no functional group such as polypropylene.

이에 탄소섬유 복합재료의 계면 접착력을 증가시킬 수 있는 복합재료의 제조방법 및 이를 이용하여 계면 접착력이 증가된 탄소섬유 복합재료의 획득이 가능한 경우 관련 분야에서 유용하게 사용될 것으로 기대된다.
Accordingly, it is expected that the method of manufacturing a composite material capable of increasing the interfacial adhesion of the carbon fiber composite material and the use of the composite material for the interfacial adhesion enhancement of the carbon fiber composite material are useful in the related field.

이에 본 발명의 한 측면은 Al2O3 표면처리된 탄소섬유를 이용하여 열가소성 수지와의 계면 강도가 향상된 복합재료를 제공하는 것이다.
Accordingly, one aspect of the present invention is to provide a composite material improved in interfacial strength with a thermoplastic resin by using an Al 2 O 3 surface-treated carbon fiber.

본 발명의 또 다른 측면은 화학적 처리나 물리적 처리 방법에 비하여 간단하고, 비용과 생산성 측면에서 효과적인 함침 방법을 이용하여 탄소섬유 복합재료의 계면 강도가 향상된 복합재료의 제조방법을 제공하는 것이다.
Another aspect of the present invention is to provide a method for producing a composite material in which the interfacial strength of a carbon fiber composite material is improved by using an impregnation method which is simple in comparison with a chemical treatment or a physical treatment method and is effective in cost and productivity.

본 발명의 일 견지에 의하면, Al2O3 표면처리된 탄소섬유 및 열가소성 수지를 포함하는 복합재료가 제공된다.
According to one aspect of the present invention, there is provided a composite material comprising an Al 2 O 3 surface-treated carbon fiber and a thermoplastic resin.

상기 열가소성수지는 폴리프로필렌, 폴리에틸렌, 폴리스티렌 및 나일론으로 이루어진 그룹으로부터 선택되는 1종 이상인 것이 바람직하다.
The thermoplastic resin is preferably at least one selected from the group consisting of polypropylene, polyethylene, polystyrene, and nylon.

상기 복합재료는 Al2O3 표면처리된 탄소섬유층 및 열가소성 수지층이 적층된 형태인 것이 바람직하다.
Preferably, the composite material is a laminate of a carbon fiber layer and a thermoplastic resin layer having been subjected to Al 2 O 3 surface treatment.

상기 Al2O3 표면처리된 탄소섬유층은 탄소섬유 직물층인 것이 바람직하다.
The Al 2 O 3 surface-treated carbon fiber layer is preferably a carbon fiber fabric layer.

본 발명의 다른 견지에 의하면, 탄소섬유를 AlOOH 졸(sol) 처리욕에 함침시키는 단계; 함침된 탄소섬유를 건조하여 Al2O3 표면처리된 탄소섬유를 획득하는 단계; 상기 Al2O3 표면처리된 탄소섬유와 열가소성 수지를 적층하여 적층체를 형성하는 단계; 및 상기 적층체를 가열 및 가압하는 단계를 포함하는 복합재료의 제조방법이 제공된다.
According to another aspect of the present invention, there is provided a method for producing a carbon fiber, comprising: impregnating a carbon fiber into an AlOOH sol treatment bath; The impregnated carbon fiber was dried to obtain Al 2 O 3 Obtaining surface-treated carbon fibers; The Al 2 O 3 Laminating the surface-treated carbon fiber and the thermoplastic resin to form a laminate; And a step of heating and pressing the laminate.

상기 함침시키는 단계는 5 내지 15 중량% 수용액의 AlOOH 졸(sol) 농도가 일정하게 유지되는 것이 바람직하다.
In the impregnating step, the AlOOH sol concentration of the aqueous solution of 5 to 15 wt% is preferably maintained constant.

상기 AlOOH 졸(sol) 농도는 AlOOH 졸(sol) 처리욕에 반투막으로 연결되고 상기 처리욕 내 AlOOH 졸(sol) 농도의 삼투압을 유지할 수 있는 높이의 물이 담긴 수조를 이용하여 유지되는 것이 바람직하다.
It is preferable that the AlOOH sol concentration is maintained using a water tank containing water high enough to maintain the osmotic pressure of the AlOOH sol concentration in the treatment bath, which is connected to the AlOOH sol treatment bath by a semipermeable membrane .

상기 AlOOH 졸(sol) 처리욕은 pH가 3 내지 4인 것이 바람직하다.
The AlOOH sol treatment bath preferably has a pH of 3 to 4.

상기 건조는 150 내지 300℃ 온도로 20 내지 40분 동안 수행되는 것이 바람직하다.
The drying is preferably performed at a temperature of 150 to 300 ° C for 20 to 40 minutes.

상기 Al2O3 표면처리된 탄소섬유를 획득하는 단계에 후속적으로 상기 Al2O3 표면처리된 탄소섬유를 탄소섬유 직물 형태로 형성하는 단계를 추가로 포함하는 것이 바람직하다.
The Al 2 O 3 It is preferable that the step of obtaining the surface-treated carbon fibers further includes the step of subsequently forming the Al 2 O 3 surface-treated carbon fibers in the form of carbon fiber cloth.

상기 가열은 150 내지 220℃ 온도로 수행되는 것이 바람직하다.
The heating is preferably performed at a temperature of 150 to 220 ° C.

상기 가압은 5 내지 20MPa의 압력을 10 내지 20분간 가하여 수행되는 것이 바람직하다.
The pressing is preferably performed by applying a pressure of 5 to 20 MPa for 10 to 20 minutes.

본 발명에 의하면, 탄소섬유 표면에 Al2O3가 코팅되어 열가소성 수지와 계면 강도가 향상된 탄소섬유 강화 복합재료를 획득할 수 있다. 또한, 본 발명에 따르면 이와 같은 복합재료를 화학적 처리나 물리적 처리 방법에 비하여 간단하고, 비용과 생산성 측면에서 효율적인 방법에 의해 획득할 수 있다.
According to the present invention, Al 2 O 3 is coated on the surface of the carbon fiber to obtain a carbon fiber-reinforced composite material having improved thermoplastic resin and interfacial strength. Further, according to the present invention, such a composite material is simple in comparison with a chemical treatment or a physical treatment method, and can be obtained by an efficient method in terms of cost and productivity.

도1(a)는 탄소섬유를 AlOOH에 함침한 후 건조에 의해 Al2O3층이 형성되는 과정을 도식적으로 나타낸 것이며, 도 1(b)는 본 발명의 복합재료의 구조를 도식적으로 나타낸 것이다.
도2는 본 발명의 복합재료를 적층(stacking)방법에 의해 예시적으로 제조하는 방법을 개략적으로 나타낸 것이다.
도3은 Al2O3 표면처리된 탄소섬유를 획득하는 과정의 예시적인 도면이다.
도4는 탄소섬유를 AlOOH 졸(sol) 처리욕에 함침시키는 단계의 개략적인 도면이다.
도5는 본 발명의 복합재료의 압력-시간-온도 성형 사이클을 나타내는 그래프이다.
도6은 실시예 1, 실시예 2, 비교예 1 및 비교예 2에서 형성된 복합재료의 층간 전단 강도의 값을 나타내는 그래프이다.
도7은 실시예 1, 실시예 2, 비교예 1 및 비교예 2에서 형성된 복합재료의 파단면을 나타낸 사진이다.
FIG. 1 (a) is a schematic view showing a process in which an Al 2 O 3 layer is formed by impregnation of carbon fibers with AlOOH and drying, and FIG. 1 (b) is a schematic view showing the structure of the composite material of the present invention .
Fig. 2 schematically shows a method of illustratively preparing the composite material of the present invention by a stacking method. Fig.
3 is Al 2 O 3 Is an exemplary illustration of the process of obtaining surface treated carbon fibers.
4 is a schematic view of a step of impregnating a carbon fiber into an AlOOH sol treatment bath.
5 is a graph showing the pressure-time-temperature molding cycles of the composite material of the present invention.
6 is a graph showing values of interlaminar shear strength of the composite material formed in Example 1, Example 2, Comparative Example 1 and Comparative Example 2. Fig.
7 is a photograph showing the fracture surfaces of the composite material formed in Example 1, Example 2, Comparative Example 1 and Comparative Example 2. Fig.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 도면에서 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the embodiments of the present invention can be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below. Further, the embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art. The shape and size of elements in the drawings may be exaggerated for clarity.

본 발명은 Al2O3 표면처리된 탄소섬유 및 열가소성 수지를 포함하는 복합재료에 관한 것으로, 본 발명과 같이 Al2O3 표면처리된 탄소섬유는 표면의 자유에너지가 높아지고 열가소성 수지의 기핵 작용을 유도하여 계면 강도가 증가된다.
The invention to be, Al 2 O 3 surface-treated carbon fiber is gihaek action of the thermoplastic resin increases the free energy of the surface as in the present invention relates to a composite material comprising carbon fibers and a thermoplastic resin, the surface Al 2 O 3 treatment And the interfacial strength is increased.

본 발명에 사용될 수 있는 탄소섬유는 PAN계 탄소섬유 및 피치계 탄소 섬유를 포함하며, 에폭시 사이징 처리된 탄소섬유를 포함하는 등 특히 제한되지 않지만, 일반적으로 에폭시와 같은 사이징은 Al2O3와 섬유의 직접적인 결합을 방해하기 때문에 제거하는 것이 더 유리하다.
The carbon fibers that can be used in the present invention include PAN-based carbon fibers and pitch-based carbon fibers, and include carbon fibers subjected to an epoxy-sizing treatment, etc. Although not particularly limited, sizing such as epoxy generally includes Al 2 O 3 and fibers It is more advantageous to remove it.

도 1(a)은 탄소섬유를 AlOOH에 함침한 후 건조에 의해 탄소섬유 표면에 Al2O3층이 형성되는 것을 도식적으로 나타낸 것으로, 이러한 과정을 통해 최종적으로 획득되는 복합재료는 도 1(b)에 도시된 구조와 같다. 본 발명에 있어서, Al2O3 코팅과 Al2O3 표면처리는 상호교체 사용이 가능한 동일한 의미인 것으로 사용된다. 보다 상세하게 상기 Al2O3 표면처리는 Al2O3 코팅에 의해 수행될 수 있다.
FIG. 1 (a) schematically shows the formation of an Al 2 O 3 layer on the surface of a carbon fiber by impregnating carbon fibers with AlOOH, followed by drying. The composite material finally obtained through this process is shown in FIG. 1 ). ≪ / RTI > In the present invention, Al 2 O 3 The coating and the Al 2 O 3 surface treatment are used interchangeably and have the same meaning. More specifically, the Al 2 O 3 The surface treatment was performed using Al 2 O 3 Coating. ≪ / RTI >

도 1(b)을 참고하면, 점선에 의해 표시된 계면에서 탄소섬유 표면의 Al2O3는 기핵 작용을 도와 열가소성 수지와의 계면에서 결정화도가 향상된다.
Referring to Fig. 1 (b), at the interface indicated by the dotted line, Al 2 O 3 on the surface of the carbon fiber serves to enhance nucleation and improve the crystallinity at the interface with the thermoplastic resin.

본 발명에 이용될 수 있는 열가소성 수지는 예를 들어 폴리프로필렌, 폴리에틸렌, 폴리스티렌 및 나일론으로 이루어진 그룹으로부터 선택되는 1종 이상인 것이 바람직하며, 보다 바람직하게는 폴리프로필렌을 이용한다.
The thermoplastic resin which can be used in the present invention is preferably at least one selected from the group consisting of polypropylene, polyethylene, polystyrene and nylon, more preferably polypropylene.

나아가, 본 발명의 복합재료는 특히 도2에 도시된 바와 같이 Al2O3 표면처리된 탄소섬유층 및 열가소성 수지층이 적층된 형태인 것이 바람직하다. 이때 Al2O3 표면처리된 탄소섬유층 및 열가소성 수지층은 교대로 적층되며, 각 층이 적어도 1층 이상 적층되는 것이 바람직하며, 특히 제한되는 것은 아니지만 각각의 층이 3층 내지 10층 적층될 수 있다.
Furthermore, it is preferable that the composite material of the present invention has a laminated structure of a carbon fiber layer and a thermoplastic resin layer, which have been surface-treated with Al 2 O 3, as shown in FIG. At this time, the carbon fiber layer and the thermoplastic resin layer, which have been surface-treated with Al 2 O 3, are alternately laminated and it is preferable that at least one layer is laminated on each layer, and each layer may be laminated three to ten layers have.

한편, 상기 Al2O3 표면처리된 탄소섬유층은 탄소섬유로 이루어진 층이면 특히 제한되는 것은 아니며, 예를 들어 탄소 섬유가 부직포의 형태 또는 직물의 형태로 직조되거나, 메쉬, 필름 등의 형태일 수 있으나, 예를 들어 탄소섬유 직물층인 것이 바람직하다.
On the other hand, the Al 2 O 3 surface-treated carbon fiber layer is not particularly limited as long as it is a layer made of carbon fibers. For example, the carbon fiber may be woven in the form of a nonwoven fabric or a woven fabric, For example, a carbon fiber fabric layer.

상기와 같은 본 발명의 복합재료는 탄소섬유를 AlOOH 졸(sol) 처리욕에 함침시키는 단계; 함침된 탄소섬유를 건조하여 Al2O3 표면처리된 탄소섬유를 획득하는 단계; 상기 Al2O3 표면처리된 탄소섬유와 열가소성 수지를 적층하여 적층체를 형성하는 단계; 및 상기 적층체를 가열 및 가압하는 단계를 포함하는 복합재료의 제조방법에 의해 제조될 수 있다.
The composite material of the present invention as described above includes a step of impregnating a carbon fiber into an AlOOH sol treatment bath; The impregnated carbon fiber was dried to obtain Al 2 O 3 Obtaining surface-treated carbon fibers; The Al 2 O 3 Laminating the surface-treated carbon fiber and the thermoplastic resin to form a laminate; And a step of heating and pressing the laminate.

도 3은 Al2O3 표면처리된 탄소섬유를 획득하는 예시적인 과정을 도시한 것으로, 탄소섬유를 AlOOH 졸(sol) 처리욕에 함침시키는 단계 및 함침된 탄소섬유를 건조하여 Al2O3 표면처리된 탄소섬유를 획득하는 단계를 포함한다.
3 is Al 2 O 3 An exemplary process for obtaining surface treated carbon fibers is described. The process comprises impregnating a carbon fiber with an AlOOH sol treatment bath, and drying the impregnated carbon fiber to produce Al 2 O 3 And obtaining a surface-treated carbon fiber.

본 발명의 탄소섬유는 이에 제한되는 것은 아니나, 예를 들어 도3의 (a) 내지 (c)에 도시된 바와 같이 탄소섬유 전구체를 이용하여 당해 기술분야에 널리 알려져 있는 (a)산화/안정화 및 (b)탄화 공정을 거쳐 생성된 탄소섬유에 표면 임의로 거칠기를 증가시키기 위한 (c)산 표면처리를 수행한 것일 수 있다. 이를 통해 탄소섬유 표면의 거칠기가 증가함에 따라 Al2O3와의 접착력이 증가될 수 있으며, 이때 사용될 수 있는 산은 HNO3, NaOCl, KMnO4, NaClO3, NaIO4 등이 있다.
The carbon fiber of the present invention is not limited thereto. For example, as shown in FIG. 3 (a) to FIG. 3 (c) (b) Carbon fiber produced through the carbonization process may be subjected to acid surface treatment (c) to increase the surface roughness arbitrarily. As the surface roughness of the carbon fiber increases, the adhesion to Al 2 O 3 can be increased. HNO 3 , NaOCl, KMnO 4 , NaClO 3 and NaIO 4 can be used.

상기 전구체 섬유는 폴리아크릴로니트릴, 폴리퍼퓨릴 알콜, 셀룰로오스, 글루코오스, 폴리비닐클로라이드, 폴리아크릴산, 폴리락트산, 폴리에틸렌옥사이드, 폴리피롤, 폴리이미드, 폴리아미드이미드, 폴리아라미드, 폴리벤질이미다졸, 페놀수지 및 피치류, 폴리아닐린, 폴리(3,4-에틸렌디옥시티오펜)(PEDOT), 폴리티오펜, 폴리티오펜 유도체로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상인 것이 바람직하지만 이에 한정되는 것은 아니다.
Wherein the precursor fibers are selected from the group consisting of polyacrylonitrile, polyperfuryl alcohol, cellulose, glucose, polyvinyl chloride, polyacrylic acid, polylactic acid, polyethylene oxide, polypyrrole, polyimide, polyamideimide, polyaramid, polybenzylimidazole, phenol A resin and a pigment, polyaniline, poly (3,4-ethylenedioxythiophene) (PEDOT), a polythiophene, a polythiophene derivative, but is not limited thereto.

한편, (d)탄소섬유를 AlOOH 졸(sol) 처리욕에 함침시키는 단계는 5 내지 15 중량% 수용액의 AlOOH 졸(sol) 농도가 일정하게 유지되는 것이 바람직하다. 즉, AlOOH 졸(sol) 농도는 5 내지 15 중량일 수 있고, 바람직하게는 10 중량%이며, 상기 처리욕이 특정의 농도로 일정하게 유지되어는 경우 함침 결과 획득되는 코팅이 균일하게 부여될 수 있다.
On the other hand, in the step of (d) impregnating the carbon fiber into the AlOOH sol treatment bath, it is preferable that the AlOOH sol concentration of the aqueous solution of 5-15 wt% is kept constant. That is, the concentration of AlOOH sol may be 5 to 15 wt%, preferably 10 wt%, and if the treatment bath is kept constant at a certain concentration, the coating obtained as a result of the impregnation may be uniformly applied have.

상기 AlOOH 졸은 졸-겔 법에 의하여 제조할 수 있으며, 다만 이에 제한되는 것은 아니다. 상기 AlOOH 졸은 접착성이 높아 상기 표면처리된 탄소섬유에 강하게 접착할 수 있다.
The AlOOH sol can be prepared by a sol-gel method, but is not limited thereto. The AlOOH sol has high adhesiveness and can strongly adhere to the surface-treated carbon fiber.

도4는 탄소섬유를 AlOOH 졸(sol) 처리욕에 함침시키는 단계를 구체적으로 나타낸 것으로, AlOOH-졸은 양성 콜로이드이므로 직류 전류가 통하면 음극으로 입자들이 이동하는 전기 이동 현상이 발생하며, 따라서 음극 롤러(11)를 통해 탄소섬유를 음으로 대전하고 양극의 금속 판 (12)을 사용하여 AlOOH-졸에 일정한 전류를 가하여 AlOOH 입자가 일정한 이동 속도를 가지게 함으로써 탄소섬유에 균일하게 표면처리 할 수 있다.
FIG. 4 shows a step of impregnating a carbon fiber with an AlOOH sol treatment bath in detail. Since the AlOOH-sol is a positive colloid, an electrophoresis phenomenon occurs in which particles move to the cathode when a direct current passes, The carbon fiber is negatively charged through the roller 11 and a constant current is applied to the AlOOH-sol using the metal plate 12 of the anode, so that the AlOOH particles have a constant moving speed, .

즉, 본 발명에서 AlOOH 코팅이 균일하게 실시되기 위해서는 처리욕(21)의 AlOOH-졸의 농도가 항상 일정하게 유지되어야 하므로, 처리욕(21)에 항상 일정한 양의 AlOOH-졸이 담겨 있을 수 있도록 AlOOH-졸의 공급관(13)으로 줄어든 양만큼의 동일한 농도의 AlOOH-sol을 공급해준다. 그러나, AlOOH-졸의 공급이 계속되더라도 탄소섬유에 대한 처리가 계속 될수록 AlOOH-졸의 농도가 감소하게 된다. 본 발명에서는 이러한 문제를 해결하기 위해 삼투압의 원리를 적용하였다.
That is, in order to uniformly apply the AlOOH coating in the present invention, the concentration of AlOOH-sol in the treatment bath 21 must always be kept constant, so that the treatment bath 21 always contains a certain amount of AlOOH-sol The AlOOH-sol supply line 13 supplies the same amount of AlOOH-sol as the reduced amount. However, even if the supply of the AlOOH-sol is continued, the concentration of the AlOOH-sol decreases as the treatment with the carbon fiber continues. In the present invention, the principle of osmotic pressure is applied to solve this problem.

즉, 상기 AlOOH 졸(sol) 농도는 AlOOH 졸(sol) 처리욕(21)에 반투막(14)으로 연결되고 상기 처리욕 내 AlOOH 졸(sol) 농도의 삼투압을 유지할 수 있는 높이의 물이 담긴 수조(22)를 이용하여 유지할 수 있다.
That is, the concentration of the AlOOH sol (sol) is higher than that of the water containing the water that is connected to the AlOOH sol treatment bath 21 by the semipermeable membrane 14 and maintains the osmotic pressure of the AlOOH sol concentration in the treatment bath (22).

보다 상세하게, 처리욕(21)과 수조(22)를 반투막(14)을 통해 연결하고, 수조에 물을 넣는다. 이때 물의 높이는 원하는 농도의 AlOOH-졸과 삼투압을 유지할 수 있는 높이가 되도록 한다. 이는 원하는 높이 이상 수위가 높아지지 않도록 수조의 일부에 구멍(23)을 뚫어 유지할 수 있다. 그 결과 처리욕(21)의 AlOOH-졸 농도가 낮아지는 경우 삼투압의 원리에 의해 반투막(14)을 통해 처리욕(21) 쪽의 물이 수조(22) 쪽으로 이동하게 되나, 수조의 구멍(23)에 의해 삼투압에 의해 증가한 물의 양 만큼 물이 넘쳐 수위가 일정하게 유지될 수 있으며, 따라서 처리욕(21)의 AlOOH-졸 농도가 설정한 수치가 될 때까지 수조 쪽으로 물이 이동하게 되어 농도를 일정하게 유지할 수 있다.
More specifically, the treatment bath 21 and the water tank 22 are connected to each other through the semipermeable membrane 14, and water is introduced into the water tank. The height of the water should be such that the desired concentration of AlOOH-sol and osmotic pressure can be maintained. This allows the hole 23 to be pierced and maintained in a part of the water tank so that the height above the desired height is not increased. As a result, when the AlOOH-sol concentration of the treatment bath 21 is lowered, water on the side of the treatment bath 21 is moved toward the water tank 22 through the semipermeable membrane 14 by the principle of osmotic pressure, The water level can be kept constant by the amount of water increased by the osmotic pressure by the osmotic pressure, so that the water moves toward the water tank until the AlOOH-sol concentration of the treatment bath 21 reaches the set value, It can be kept constant.

상기 AlOOH 졸(sol) 처리욕은 분산의 안정성을 위하여 pH가 3 내지 4인 것이 바람직하다.
The AlOOH sol treatment bath preferably has a pH of 3 to 4 for stability of dispersion.

한편, 도 3(e)에 도시된 바와 같이 상기 함침된 탄소섬유를 건조하면 Al2O3 표면처리된 탄소섬유가 획득되며, 상기 건조 과정에 의해 탈수반응이 일어나 탄소섬유 표면에 Al2O3 층이 형성되는 것이다. 탄소섬유 표면에 형성된 Al2O3 층은 세라믹 소재로 기존 탄소섬유보다 더 높은 표면에너지를 가지고 있어 모재인 열가소성 수지와 더욱 높은 표면 부착력을 가지며, 결정성 고분자인 열가소성 수지의 기핵 작용을 증가시켜 계면부 열가소성 수지의 결정화도를 높일 수 있다. 여기서 일어나는 기핵 작용은 외부의 불순물이나 강화제와 같은 것이 결정의 씨앗으로 작용하여 결정을 발달시키는 불균일 기핵으로 핵이 자발적으로 생성되어 결정이 생성되는 균일 기핵 보다 먼저 결정의 성장점을 제공하게 된다. Al2O3의 경우 탄소섬유에 비해 이러한 기핵 작용이 더욱 잘 일어나기 때문에 AlOOH 처리를 통해 탄소섬유와 접하는 계면부 열가소성 수지의 결정이 발달하게 된다.
On the other hand, as shown in FIG. 3 (e), when the impregnated carbon fiber is dried, Al 2 O 3 Surface treated carbon fibers are obtained, and dehydration reaction occurs by the drying process, and Al 2 O 3 Layer is formed. The Al 2 O 3 layer formed on the surface of the carbon fiber is a ceramic material having a higher surface energy than that of the conventional carbon fiber and has a higher surface adhesion with the thermoplastic resin as the base material and increases the nucleus action of the thermoplastic resin as the crystalline polymer, The degree of crystallization of the thermoplastic resin can be increased. The nucleus action occurring here is a heterogeneous nucleus which develops crystals by acting as seeds of crystals such as external impurities or strengthening agents, and nuclei are generated spontaneously to provide crystals growth points before uniform nuclei where crystals are generated. In the case of Al 2 O 3 , since the nucleophilic action occurs more easily than the carbon fiber, the crystallization of the interfacial thermoplastic resin in contact with the carbon fiber through AlOOH treatment is developed.

상기 건조는 150 내지 300℃ 온도로 20 내지 40분 동안 수행되는 것이 바람직하며, 상기 건조 방식은 특히 제한되는 것은 아니며 열가소성 수지의 변형을 수반하지 않으면서 탈수 반응을 수행할 수 있는 것이면 제한되지 않으나 열풍 건조에 의하거나 오븐을 이용한 건조일 수 있다. 도 3에 도시된 바와 같이 건조(e) 과정 후에 Al2O3 표면처리된 탄소섬유를 권취하는 단계(d)를 수행하여 Al2O3 표면처리된 탄소섬유를 보관할 수 있다.
The drying is preferably performed at a temperature of 150 to 300 ° C for 20 to 40 minutes. The drying method is not particularly limited and is not limited as long as it can perform a dehydration reaction without deformation of the thermoplastic resin, And may be dried or oven-dried. As shown in FIG. 3, the step (d) of winding the Al 2 O 3 surface-treated carbon fibers after the drying step (e) can be performed to store the carbon fiber surface-treated with Al 2 O 3 .

본 발명에 의하면, 상기와 같은 공정에 의해 획득된 Al2O3 표면처리된 탄소섬유와 열가소성 수지를 적층하여 적층체를 형성하는 단계; 및 상기 적층체를 가열 및 가압하는 단계를 통해 본 발명의 복합재료가 획득될 수 있다.
According to the present invention, there is provided a method of manufacturing a carbon fiber composite material, comprising: forming a laminate by laminating Al 2 O 3 surface treated carbon fibers and a thermoplastic resin obtained by the above process; And heating and pressing the laminate, the composite material of the present invention can be obtained.

한편, 상기 Al2O3 표면처리된 탄소섬유를 획득하는 단계에 후속적으로 상기 Al2O3 표면처리된 탄소섬유를 탄소섬유 직물 형태로 형성하는 단계를 추가로 포함할 수 있으며, 즉 상기 Al2O3 표면처리된 탄소섬유로 이루어진 층이면 특히 제한되는 것은 아니며, 예를 들어 탄소 섬유가 부직포의 형태 또는 직물의 형태로 직조되거나, 메쉬, 필름 등의 형태일 수 있으나, 예를 들어 탄소섬유 직물인 것이 바람직하다.
On the other hand, the Al 2 O 3 The step of obtaining the surface-treated carbon fibers may further comprise the step of subsequently forming the Al 2 O 3 surface-treated carbon fibers in the form of carbon fiber cloth, that is, the step of obtaining the Al 2 O 3 surface- For example, the carbon fibers may be in the form of a nonwoven fabric or a woven fabric, or may be in the form of a mesh, a film or the like, but it is preferably a carbon fiber fabric, for example.

이 경우 상기 표면 처리된 탄소섬유 직물(fabric)과 열가소성 수지를 적층하여 탄소섬유 강화 열가소성수지를 제작하여 본 발명의 복합재료를 획득할 수 있다.
In this case, the carbon fiber-reinforced thermoplastic resin can be obtained by laminating the surface-treated carbon fiber fabric and the thermoplastic resin to obtain the composite material of the present invention.

상기 적층체는 특히 도 2에 도시된 바와 같이 Al2O3 표면처리된 탄소섬유층 및 열가소성 수지층이 적층된 형태인 것이 바람직하다. 이때 Al2O3 표면처리된 탄소섬유층 및 열가소성 수지층은 교대로 적층되어 적층체가 형성되며, 각 층이 적어도 1층 이상 적층되는 것이 바람직하며, 특히 제한되는 것은 아니지만 각각의 층이 3층 내지 10층 적층될 수 있다.
Preferably, the laminate is a laminate of a carbon fiber layer and a thermoplastic resin layer, which are surface-treated with Al 2 O 3, as shown in FIG. 2. At this time, the carbon fiber layer and the thermoplastic resin layer, which have been surface-treated with Al 2 O 3, are alternately laminated to form a laminate. Preferably, each layer is laminated by at least one layer. Layer.

후속적으로, 상기 적층체를 가열 및 가압하는 단계가 수행됨에 따라 표면처리된 탄소섬유와 열가소성수지가 복합재료를 형성할 수 있으며, 상기 가열은 150 내지 220℃ 온도로 수행되는 것이 바람직하고 상기 가열이 150℃ 미만인 경우 열가소성 수지의 용융이 불충분할 수 있고, 220℃를 초과하는 겨우 열가소성 수지의 물성이 변형될 수 있다. 다만, 상기 가열 온도는 적용되는 열가소성 수지의 용융 온도 및 물성이 변하는 온도를 고려하여 설정할 수 있다.
Subsequently, as the step of heating and pressing the laminate is performed, the surface-treated carbon fiber and the thermoplastic resin can form a composite material, and the heating is preferably performed at a temperature of 150 to 220 ° C, Is less than 150 deg. C, the thermoplastic resin may be insufficiently melted and the physical properties of the thermoplastic resin may be deformed only when the temperature exceeds 220 deg. However, the heating temperature can be set in consideration of the temperature at which the melting temperature and physical properties of the applied thermoplastic resin are varied.

한편, 상기 가압은 5 내지 20MPa의 압력을 10 내지 20분간 가하여 수행될 수 있으며, 바람직하게는 약 10 MPa의 압력을 가하여 수행한다. 이때 보다 상세하게 상기 가압 전에 열가소성 수지가 충분히 녹을 수 있도록 약 10분간 0.2 MPa와 같은 낮은 압력을 유지하고, 탄소섬유의 균일한 함침을 위하여 일정 시간, 즉 약 5분간, 시간을 두고 10MPa까지 가한 후 그 압력을 15분 동안 유지하여 함침도를 증가시킬 수 있다.
On the other hand, the pressurization may be performed by applying a pressure of 5 to 20 MPa for 10 to 20 minutes, preferably by applying a pressure of about 10 MPa. At this time, a lower pressure of 0.2 MPa is maintained for about 10 minutes to sufficiently dissolve the thermoplastic resin before the pressing, and the pressure is increased to 10 MPa for a predetermined time, that is, about 5 minutes, for uniform impregnation of the carbon fibers The pressure can be maintained for 15 minutes to increase the degree of impregnation.

상기 가열 및 가압 단계는 바람직하게는 핫 프레스 공정을 적용하여 수행될 수 있다.
The heating and pressurizing steps may preferably be performed by applying a hot pressing process.

본 발명에 따라 제조된 탄소섬유 강화 열경화성 수지 복합재료는 열경화성 수지의 함침성을 높이고 계면부의 결정화도를 증가시켜 계면강도를 향상시키게 되며, 따라서 계면 전단 강도와 같은 기계적 특성을 높일 수 있다.
The carbon fiber-reinforced thermosetting resin composite material produced according to the present invention can improve the impregnation property of the thermosetting resin and increase the degree of crystallization of the interface portion, thereby improving the interfacial strength, and thus improving the mechanical properties such as interface shear strength.

이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.
Hereinafter, the present invention will be described more specifically by way of specific examples. The following examples are provided to aid understanding of the present invention, and the scope of the present invention is not limited thereto.

실시예Example

실시예Example 1 One

에폭시 사이징 처리된 탄소섬유(12k plane weave, ENC Inc, korea)를 10 중량% AlOOH 졸 수용액 처리욕에 함침하여 표면처리(코팅)한 후 200℃의 오븐에 넣고 30분 동안 건조시켰다. 한편, 아이소택틱 폴리프로필렌(427888, Sigma-Aldrich Co. LLC., USA) 펠릿을 사용하여 두께 0.2mm의 폴리프로필렌 필름을 제작하였다.
Epoxy-sized Carbon fiber (12k plane weave, ENC Inc, korea) was impregnated in a 10 wt% AlOOH sol aqueous solution treatment bath to be surface treated (coated), and then placed in an oven at 200 ° C and dried for 30 minutes. On the other hand, a polypropylene film having a thickness of 0.2 mm was prepared using pellets of isotactic polypropylene (427888, Sigma-Aldrich Co. LLC, USA).

7장의 상기 폴리프로필렌 필름과 6장의 상기 표면처리된 탄소섬유를 교대로 적층하고, 220℃ 에서 30분동안 10MPa의 압력을 가하여 복합재료를 제작하였다. 보다 상세하게, 도 5의 그래프로 나타낸 바와 같이 압력을 가하기 전 폴리프로필렌이 충분히 녹을 수 있도록 10 분간 0.2MPa를 유지하였으며, 탄소 섬유의 균일한 함침을 위하여 5분간 시간을 두고 10MPa까지 압력을 가한 후 이 압력을 15분 동안 유지하여 폴리프로필렌의 함침을 증가시켰다.
Seven sheets of the polypropylene film and six sheets of the surface-treated carbon fibers were alternately laminated and a pressure of 10 MPa was applied at 220 DEG C for 30 minutes to prepare a composite material. More specifically, as shown in the graph of FIG. 5, 0.2 MPa was maintained for 10 minutes so that the polypropylene could sufficiently melt before the pressure was applied. Pressure was applied to 10 MPa for 5 minutes to uniformly impregnate the carbon fibers This pressure was maintained for 15 minutes to increase the impregnation of the polypropylene.

실시예Example 2 2

500℃의 진공 상태에서 3시간 동안 열처리하여 탄화한 후 아세톤으로 수세하여 에폭시 사이징을 제거하는 단계를 수행한 탄소섬유를 사용하여 후속적으로 표면차리한 것을 제외하고는, 실시예 1과 동일한 방법으로 복합재료를 제작하였다.
Except that the carbon fibers were subjected to heat treatment in a vacuum state at 500 ° C for 3 hours to carbonize them, and then washed with acetone to remove epoxy sizing. Composite material was prepared.

비교예Comparative Example 1 One

탄소섬유에 표면처리를 하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 복합재료를 제작하였다.
A composite material was prepared in the same manner as in Example 1, except that the carbon fiber was not surface-treated.

비교예Comparative Example 2 2

탄소섬유에 표면처리를 하지 않은 것을 제외하고는 실시예 2와 동일한 방법으로 복합재료를 제작하였다.
A composite material was prepared in the same manner as in Example 2, except that the carbon fiber was not surface-treated.

실험예Experimental Example 1: 층간  1: Interlayer 전단강도Shear strength 측정방법 How to measure

층간 전단 강도(interlaminar shear strength, ILSS)를 측정하기 위해 숏 빔(short beam) 전단 시험을 실행하였다. 실시예 1, 실시예 2, 비교예 1 및 비교예 2로부터 획득한 복합재료의 층간 전단 강도를 ASTM D2344에 근거하여 만능재료시험기(INSTRON 4469, MA, USA)로 측정하였다.
Short beam shear tests were performed to measure interlaminar shear strength (ILSS). The interlaminar shear strength of the composite materials obtained from Example 1, Example 2, Comparative Example 1 and Comparative Example 2 was measured with an universal material tester (INSTRON 4469, MA, USA) based on ASTM D2344.

이때 직사각형 형태의 시편은 24 mm×6.5 mm×4 mm의 치수로 제작되었고, 1mm/min의 하중 속도로 시험하였다.
At this time, the rectangular specimens were made in dimensions of 24 mm × 6.5 mm × 4 mm and tested at a load speed of 1 mm / min.

그 결과, 도 6에서 확인할 수 있는 바와 같이 실시예 1 및 2의 경우 비교예 1 및 2에 비하여 계면 전단강도가 향상되었음을 확인할 수 있었으며, 이러한 결과로부터 계면 결합력이 증가했음을 알 수 있는 것이다.
As a result, as can be seen from FIG. 6, it was confirmed that the interface shear strength was improved as compared with Comparative Examples 1 and 2 in Examples 1 and 2. From these results, it can be understood that the interfacial bonding strength was increased.

한편, 도 7은 실시예 1, 실시예 2, 비교예 1 및 비교예 2에서 형성된 복합재료의 파단면을 나타낸 사진으로, 상기 사진에 의해 실시예 1 및 2로부터 획득한 복합재료의 경우 계면 간에 결합이 더욱 견고한 것을 확인할 수 있다.
7 is a photograph showing the fracture surfaces of the composite material formed in Example 1, Example 2, Comparative Example 1, and Comparative Example 2. In the case of the composite material obtained from Examples 1 and 2, It can be confirmed that the coupling is more robust.

11: 음극 롤러
12: 금속판
13: 공급관
14: 반투막
21: 처리욕
22: 수조
23: 수조의 구멍
11: cathode roller
12: metal plate
13: Supply pipe
14: Semipermeable membrane
21: Treatment bath
22: aquarium
23: hole in the water tank

Claims (12)

Al2O3가 균일하게 표면처리된 탄소섬유층 및 열가소성 수지층이 적층된 복합재료.
A composite material in which a carbon fiber layer and a thermoplastic resin layer are uniformly surface-treated with Al 2 O 3 .
제1항에 있어서, 상기 열가소성 수지층은 폴리프로필렌, 폴리에틸렌, 폴리스티렌 및 나일론으로 이루어진 그룹으로부터 선택되는 1종 이상인 복합재료.
The composite material according to claim 1, wherein the thermoplastic resin layer is at least one selected from the group consisting of polypropylene, polyethylene, polystyrene, and nylon.
삭제delete 제1항에 있어서, 상기 Al2O3가 균일하게 표면처리된 탄소섬유층은 탄소섬유 직물층인 복합재료.
The composite material according to claim 1, wherein the carbon fiber layer in which the Al 2 O 3 is uniformly surface-treated is a carbon fiber fabric layer.
탄소섬유를 AlOOH 졸(sol) 처리욕에 함침시키는 단계;
함침된 탄소섬유를 건조하여 Al2O3 표면처리된 탄소섬유를 획득하는 단계;
상기 Al2O3 표면처리된 탄소섬유와 열가소성 수지를 적층하여 적층체를 형성하는 단계; 및
상기 적층체를 가열 및 가압하는 단계
를 포함하는 복합재료의 제조방법.
Impregnating the carbon fiber with an AlOOH sol treatment bath;
The impregnated carbon fiber was dried to obtain Al 2 O 3 Obtaining surface-treated carbon fibers;
The Al 2 O 3 Laminating the surface-treated carbon fiber and the thermoplastic resin to form a laminate; And
Heating and pressing the laminate
≪ / RTI >
제5항에 있어서, 상기 함침시키는 단계는 5 내지 15 중량% 수용액의 AlOOH 졸(sol) 농도가 일정하게 유지되는 복합재료의 제조방법.
6. The method of claim 5, wherein the impregnating step comprises maintaining an AlOOH sol concentration of 5-15 wt% aqueous solution constant.
제6항에 있어서, 상기 AlOOH 졸(sol) 농도는 AlOOH 졸(sol) 처리욕에 반투막으로 연결되고 상기 처리욕 내 AlOOH 졸(sol) 농도의 삼투압을 유지할 수 있는 높이의 물이 담긴 수조를 이용하여 유지되는 복합재료의 제조방법.
7. The method according to claim 6, wherein the AlOOH sol concentration is in the range of from about 1 to about 10% by weight, based on the total weight of the AlOOH sol solution, By weight of the composite material.
제5항에 있어서, 상기 AlOOH 졸(sol) 처리욕은 pH가 3 내지 4인 복합재료의 제조방법.
6. The method of claim 5, wherein the AlOOH sol treatment bath has a pH of from 3 to 4.
제5항에 있어서, 상기 건조는 150 내지 300℃ 온도로 20 내지 40분 동안 수행되는 복합재료의 제조방법.
6. The method of claim 5, wherein the drying is performed at a temperature of 150 to 300 DEG C for 20 to 40 minutes.
제5항에 있어서, 상기 Al2O3 표면처리된 탄소섬유를 획득하는 단계에 후속적으로 상기 Al2O3 표면처리된 탄소섬유를 탄소섬유 직물 형태로 형성하는 단계를 추가로 포함하는 복합재료의 제조방법.
The method according to claim 5, wherein the Al 2 O 3 Further comprising the step of subsequently forming the Al 2 O 3 surface treated carbon fibers in the form of a carbon fiber fabric in the step of obtaining the surface-treated carbon fibers.
제5항에 있어서, 상기 가열은 150 내지 220℃ 온도로 수행되는 복합재료의 제조방법.
6. The method of claim 5, wherein the heating is performed at a temperature of 150 to 220 deg.
제5항에 있어서, 상기 가압은 5 내지 20MPa의 압력을 10 내지 20분간 가하여 수행되는 복합재료의 제조방법.The method for producing a composite material according to claim 5, wherein the pressing is performed by applying a pressure of 5 to 20 MPa for 10 to 20 minutes.
KR1020130139380A 2013-11-15 2013-11-15 Manufacturing method of carbon fiber reinforced thermoplastic composite and the composite manufactured by the same KR101482452B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130139380A KR101482452B1 (en) 2013-11-15 2013-11-15 Manufacturing method of carbon fiber reinforced thermoplastic composite and the composite manufactured by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130139380A KR101482452B1 (en) 2013-11-15 2013-11-15 Manufacturing method of carbon fiber reinforced thermoplastic composite and the composite manufactured by the same

Publications (1)

Publication Number Publication Date
KR101482452B1 true KR101482452B1 (en) 2015-01-14

Family

ID=52588972

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130139380A KR101482452B1 (en) 2013-11-15 2013-11-15 Manufacturing method of carbon fiber reinforced thermoplastic composite and the composite manufactured by the same

Country Status (1)

Country Link
KR (1) KR101482452B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180058560A (en) 2016-11-24 2018-06-01 한국기계연구원 Enhanced interfacial adhesion composition for carbon-fiber reinforced polymer composite, composite material using the same and preparation method thereof
KR20180058519A (en) 2016-11-24 2018-06-01 한국기계연구원 Sizing agent for carbon- fiber, carbon-fiber having enhanced interfacial adhesion, reactive carbon-fiber reinforced polymer composite using the same and preparation method thereof
KR101864512B1 (en) 2016-12-20 2018-06-04 전인권 Manufacturing method of carbon fiber
KR101859638B1 (en) * 2016-12-20 2018-06-28 재단법인 포항산업과학연구원 Method for manufaturing thermopalsticity carbon fiber composite material
CN112712944A (en) * 2020-12-24 2021-04-27 武汉肯达科讯科技有限公司 High-thermal-conductivity insulating gasket and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268111A (en) * 1994-08-29 1995-10-17 Mitsubishi Chem Corp Composite material using carbon fiber
JP2011063029A (en) * 2010-11-12 2011-03-31 Daicel Chemical Industries Ltd Method for producing heat-treated carbon filament-reinforced resin pellet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268111A (en) * 1994-08-29 1995-10-17 Mitsubishi Chem Corp Composite material using carbon fiber
JP2011063029A (en) * 2010-11-12 2011-03-31 Daicel Chemical Industries Ltd Method for producing heat-treated carbon filament-reinforced resin pellet

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Advanced Materials Research, Vols.79-82, 2009 *
대한기계학회논문집 A권, 제37권, 제6호, 2013.06 *
대한기계학회논문집 A권, 제37권, 제6호, 2013.06*

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180058560A (en) 2016-11-24 2018-06-01 한국기계연구원 Enhanced interfacial adhesion composition for carbon-fiber reinforced polymer composite, composite material using the same and preparation method thereof
KR20180058519A (en) 2016-11-24 2018-06-01 한국기계연구원 Sizing agent for carbon- fiber, carbon-fiber having enhanced interfacial adhesion, reactive carbon-fiber reinforced polymer composite using the same and preparation method thereof
KR101911861B1 (en) 2016-11-24 2018-10-29 한국기계연구원 Enhanced interfacial adhesion composition for carbon-fiber reinforced polymer composite, composite material using the same and preparation method thereof
US10570561B2 (en) 2016-11-24 2020-02-25 Korea Institute Of Machinery & Materials Sizing agent for carbon fiber, carbon fiber with improved interfacial adhesion, polymerization reaction type carbon fiber-reinforced polymer composite material using same, and production method therefor
KR101864512B1 (en) 2016-12-20 2018-06-04 전인권 Manufacturing method of carbon fiber
KR101859638B1 (en) * 2016-12-20 2018-06-28 재단법인 포항산업과학연구원 Method for manufaturing thermopalsticity carbon fiber composite material
CN112712944A (en) * 2020-12-24 2021-04-27 武汉肯达科讯科技有限公司 High-thermal-conductivity insulating gasket and preparation method thereof
CN112712944B (en) * 2020-12-24 2022-04-08 武汉肯达科讯科技有限公司 High-thermal-conductivity insulating gasket and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101482452B1 (en) Manufacturing method of carbon fiber reinforced thermoplastic composite and the composite manufactured by the same
US10889070B2 (en) Composite material including unidirectional continuous fibers and thermoplastic resin
JP5842916B2 (en) Carbon fiber thermoplastic resin prepreg, carbon fiber composite material, and production method
JP4233560B2 (en) Manufacturing method of prepreg
JP6211881B2 (en) Carbon fiber and method for producing the same
KR101428423B1 (en) Manufacturing method of carbon fiber reinforced thermoplastic composite and the composite manufactured by the same
KR101659591B1 (en) Method for manufacturing hybrid ceramic fiber reinforced composite material and hybrid ceramic fiber reinforced composite material manufactured thereby
JP5939050B2 (en) Method for producing fiber-reinforced thermoplastic resin molded body and fiber-reinforced thermoplastic resin molded body
JP7007630B2 (en) Carbon fiber reinforced plastic containing cellulose nanofibers
JP2012036018A (en) Carbon fiber-reinforced carbon composite material and method for manufacturing the same
EP3467008A1 (en) Polysaccharide aerogel reinforced plastics
KR101868679B1 (en) Carbon fiber reinforced thermoplastics and method for preparing the same
JP6862609B2 (en) Aramid woven fabric with excellent adhesion and tensile strength to polyurethane matrix resin, its manufacturing method, prepreg of aramid woven fabric containing it, and aramid woven fabric / thermoplastic polyurethane resin composite material containing this.
JP6991483B2 (en) Method for manufacturing carbon fiber reinforced thermoplastic resin composite material
JP6780921B2 (en) High-performance carbon / carbon composite material with high carbon fiber contribution
KR101171424B1 (en) Aramid complex product and method for manufacturing the same
JP2011246595A (en) Glass fiber-reinforced composite material and production method therefor
JP6139318B2 (en) Carbon fiber manufacturing method
Chaishome et al. The influence of alkaline treatment of plant fibres on tensile properties of single fibres and composites
JP3109928B2 (en) Method for producing carbon fiber reinforced carbon composite material
ITTO20080252A1 (en) PROCEDURE FOR THE PRODUCTION OF FUNCTIONAL FABRIC BASED ON CARBON FIBER
KR102434379B1 (en) Esterified PVA-lignin Eco-friendly Resin, Fabrication Method Thereof and Eco-friendly Natural Fiber-reinforced Composite Comprising the Same
CN116277355B (en) Preparation method of bamboo strip laminated material
JP2012251043A (en) Thread, sheet-like reinforcing fiber base material, preform and method for manufacturing fiber reinforced composite material
Ram et al. Dynamic mechanical analysis of Asian Palmyra Sprouts fiber reinforced epoxy composites

Legal Events

Date Code Title Description
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171207

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200107

Year of fee payment: 6