KR101481366B1 - Selective recovery method of silver and tin in the anode slime - Google Patents

Selective recovery method of silver and tin in the anode slime Download PDF

Info

Publication number
KR101481366B1
KR101481366B1 KR20140037767A KR20140037767A KR101481366B1 KR 101481366 B1 KR101481366 B1 KR 101481366B1 KR 20140037767 A KR20140037767 A KR 20140037767A KR 20140037767 A KR20140037767 A KR 20140037767A KR 101481366 B1 KR101481366 B1 KR 101481366B1
Authority
KR
South Korea
Prior art keywords
tin
silver
hydroxide
solution
slime
Prior art date
Application number
KR20140037767A
Other languages
Korean (ko)
Inventor
이강명
이기웅
김홍인
김광중
손현태
Original Assignee
성일하이텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성일하이텍(주) filed Critical 성일하이텍(주)
Priority to KR20140037767A priority Critical patent/KR101481366B1/en
Priority to PCT/KR2014/003892 priority patent/WO2015152457A1/en
Application granted granted Critical
Publication of KR101481366B1 publication Critical patent/KR101481366B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/044Recovery of noble metals from waste materials from pyrometallurgical residues, e.g. from ashes, dross, flue dust, mud, skim, slag, sludge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/04Obtaining tin by wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The present invention relates to a method to recover silver and tin from anode slime and, more specifically, to a method to recover silver and tin from anode slime comprising: a step of stirring and filtering anode slime after the anode slime electrochemically not involved in electrolysis is inserted into a strong acid solution; a step of recovering silver by washing residues obtained by the filtering process; and a step of recovering tin from the residues by adding and filtering hydroxide to the filtered solution obtained from the filtering process.

Description

양극 슬라임으로부터 은 및 주석의 분리회수방법{Selective recovery method of silver and tin in the anode slime}[0001] The present invention relates to a selective recovery method of silver and tin in the anode slime,

본 발명은 전기화학적으로 전해에 참여하지 않은 양극 슬라임으로부터 은 및 주석의 분리회수방법에 관한 것이다.
The present invention relates to a method for separating and recovering silver and tin from a cathode slime which is not electrochemically participated in electrolysis.

금속의 가용성 양극을 사용하여 전해하였을 때 전해에 참여하기 않고 침적되거나 부유되는 잔여 찌꺼기를 양극 슬라임(anode slime)이라 한다. The soluble residue of the metal is called the anode slime when it is electrolyzed when it is electrolyzed.

일반적으로 인쇄회로기판 및 전자부품 등의 전자스크랩 폐기물은 구리(Cu), 철(Fe), 니켈(Ni), 주석(Sn), 납(Pb), 알루미늄(Al), 아연(Zn) 등과 같은 일반금속과 금(Au), 은(Ag), 팔라듐(Pd) 등과 같은 귀금속 성분 약 30%가 혼재하여 구성된다. 또한, 이러한 전자스크랩 중 인쇄회로기판에는 그 표면에 프린트된 인쇄회로망, 에지커넥터(edge connectors) 및 이에 배치된 집적회로인 IC, 트랜지스터 등의 반도체소자는 상기한 유가 귀금속이 존재하게 된다. 이처럼 인쇄회로기판 자체에 프린트된 유가금속의 인쇄회로망, 에지커넥터와 인쇄회로기판상에 장착된 집적회로(IC), 트랜지스터 등과 같은 반도체소자 등의 전자부품으로 되는 전자스크랩(이하 전자스크랩이라 통칭한다)을 인쇄회로기판으로부터 분리하여 유가금속을 회수하기 위한 방법은 여러 단계의 복잡한 선별공정을 거쳐 플라스틱성분과 유가금속성분을 구분하여 선별한 후, 선별된 유가금속 성분을 다시 습식 또는 건식제련공정이나 전기화학공정 등의 정련공정을 필요에 따라 선택적으로 사용하여 최종적으로 Au, Ag, Pd, Cu 등과 같은 귀금속 등의 유가금속을 분류, 회수하여 재활용하게 된다. 이처럼 정련공정에 의하여 얻어진 귀금속을 함유하는 저순도의 Cu 양극들은 보통 양극에서 용해되어 음극에서 고순도의 Cu로 전착되고, 귀금속들은 양극 슬라임에 농축된다. 이처럼, 양극 슬라임으로부터 귀금속을 회수하기 위한 방법으로 습식법이 있으나, 은과 주석을 분리하여 회수할 수 없고 은과 주석의 순도가 낮은 문제가 있다. Generally, electronic scrap wastes such as printed circuit boards and electronic parts are made of copper such as copper (Cu), iron (Fe), nickel (Ni), tin (Sn), lead (Pb), aluminum (Al), zinc About 30% of noble metal components such as gold (Au), silver (Ag), and palladium (Pd) are mixed. Among the electronic scraps, the printed circuit board has the above-mentioned valuable noble metal in the printed circuit board, the edge connectors printed on the surface thereof, and the semiconductor elements such as ICs and transistors which are integrated circuits disposed thereon. As such, electronic scrap (hereinafter referred to as electronic scrap) comprising an electronic component such as a printed circuit network of a valuable metal printed on a printed circuit board itself, an edge connector and an integrated circuit (IC) mounted on a printed circuit board, ) Is separated from a printed circuit board to recover valuable metals. The method involves a complicated sorting process in various stages, separating plastics and valuable metals from each other, sorting the selected valuable metals back into a wet or dry smelting process A refining process such as an electrochemical process is optionally used to finally sort and collect valuable metals such as Au, Ag, Pd, Cu and the like, such as precious metals, and recycle them. Low-purity Cu anodes containing noble metals obtained by the refining process are usually dissolved in the anode and electrodeposited in high-purity Cu from the cathode, and the noble metals are concentrated in the anode slime. As described above, although there is a wet method as a method for recovering the noble metal from the anode slime, silver and tin can not be separated and recovered, and the purity of silver and tin is low.

이와 관련된 선행문헌으로는 대한민국 공개특허 제10-1997-0074957호(1997.12.10. 공개)에 개시되어 있는 고순도 환원 은의 제조방법이 있다.
As a prior art related to this, there is a method for producing high purity reduced silver disclosed in Korean Patent Laid-Open No. 10-1997-0074957 (published on Dec. 10, 1997).

따라서, 본 발명은 양극 슬라임으로부터 은 및 주석을 선택적으로 분리하여 회수하는 방법을 제공하는데 있다. Accordingly, the present invention provides a method for selectively separating and recovering silver and tin from a cathode slime.

본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제(들)로 제한되지 않으며, 언급되지 않은 또 다른 과제(들)는 이하의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
The problems to be solved by the present invention are not limited to the above-mentioned problem (s), and another problem (s) not mentioned can be understood by those skilled in the art from the following description.

상기 과제를 해결하기 위해, 본 발명은 전기화학적으로 전해에 참여하지 않은 양극 슬라임을 강산 용액에 넣고 교반한 후 여과하는 단계; 상기 여과공정으로 얻어진 잔사를 세척하여 은을 회수하는 단계; 및 상기 여과공정으로 얻어진 여과용액에 수산화물을 첨가하고 여과시켜 잔사로부터 주석을 회수하는 단계;를 포함하는 양극 슬라임으로부터 은 및 주석의 분리회수방법을 제공한다.In order to solve the above-described problems, the present invention provides a method for manufacturing a lithium secondary battery, comprising: electrochemically injecting a cathode slime not participating in electrolysis into a strong acid solution; Washing the residue obtained in the filtration step to recover silver; And recovering tin from the residue by adding hydroxide to the filtration solution obtained in the filtration step and filtering the recovered tin and the tin from the anode slime.

이때, 상기 강산 용액은 염산 용액과 질산 용액의 혼합용액인 것을 특징으로 하고, 상기 염산 용액과 질산 용액은 1:0.05 ~ 0.1의 부피비로 혼합되는 것을 특징으로 한다. At this time, the strong acid solution is a mixed solution of a hydrochloric acid solution and a nitric acid solution, and the hydrochloric acid solution and the nitric acid solution are mixed at a volume ratio of 1: 0.05-0.1.

상기 양극 슬라임과 강산 용액은 45 ~ 55%의 고액비(양극 슬라임 무게(g)/강산 용액의 부피(ml))로 혼합되는 것을 특징으로 한다. The positive slurry and the strong acid solution are mixed at a liquid ratio of 45 to 55% (volume of positive slurry (g) / volume (ml) of strong acid solution).

상기 양극 슬라임과 강산 용액의 혼합은 70 ~ 80 ℃의 온도에서 수행되는 것을 특징으로 한다. The mixing of the positive slurry and the strong acid solution is performed at a temperature of 70 to 80 ° C.

상기 수산화물은 수산화나트륨, 수산화칼륨, 수산화마그네슘 및 수산화철로 이루어진 군으로부터 선택되는 1종을 사용할 수 있다. The hydroxide may be selected from the group consisting of sodium hydroxide, potassium hydroxide, magnesium hydroxide, and iron hydroxide.

상기 수산화물은 여과용액에 대해 15 ~ 25%의 고액비(수산화물 무게(g)/여과용액의 부피(ml))로 혼합되는 것을 특징으로 한다. The hydroxide is characterized in that it is mixed with the filtrate solution in a liquid ratio of 15 to 25% (weight of hydroxide (g) / volume (ml) of filtration solution).

상기 교반시 소포제를 더 포함할 수 있고, 상기 소포제는 디메틸 폴리실록산 또는 실리카 오일 등을 사용할 수 있다. The antifoaming agent may further include a defoaming agent, and dimethylpolysiloxane or silica oil may be used as the defoaming agent.

상기 수산화나트륨 첨가 후 응집제 또는 활성탄을 더 포함할 수 있고, 상기 응집제는 폴리염화알루미늄, 황산알루미늄 및 염화제2철로 이루어진 군으로부터 선택되는 1종을 사용할 수 있으며, 상기 활성탄은 주석의 10 ~ 30 중량%로 포함되는 것을 특징으로 한다.
The flocculant may further include one selected from the group consisting of polychlorinated aluminum, aluminum sulfate and ferric chloride, and the activated carbon may contain 10 to 30 wt% of tin %. ≪ / RTI >

본 발명에 따르면, 금속을 양극으로 하여 전해할 시 전기화학적으로 용해되지 않고 남은 찌꺼기(슬라임)로부터 찌꺼기에 포함된 은 및 주석을 고순도로 회수할 수 있고, 은 및 주석을 선택적으로 분리하여 높은 회수율로 회수할 수 있다.
According to the present invention, silver and tin contained in the residue can be recovered with high purity from the remaining slurry (slime) which is not electrochemically dissolved when electrolysis is performed using a metal as an anode, and silver and tin are selectively separated to obtain a high recovery .

도 1은 본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법을 나타낸 순서도이다.
도 2는 본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법에서 질산 첨가량에 따른 잔사에 포함된 원소 농도를 나타낸 그래프이다.
도 3은 본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법에서 은 회수 후 주석 잔사에 포함된 금속의 농도를 나타낸 그래프이다.
도 4는 본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법에서 주석 회수 후 여과된 용액에 포함된 금속의 농도를 나타낸 그래프이다.
도 5는 본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법에서 응집제 및 활성탄 첨가에 따른 여과 속도를 나타낸 그래프이다.
1 is a flowchart showing a method of separating and recovering silver and tin from a cathode slime according to the present invention.
FIG. 2 is a graph showing the concentration of elements contained in residues according to the amount of nitric acid added in the separation and recovery method of silver and tin from a cathode slime according to the present invention. FIG.
FIG. 3 is a graph showing the concentrations of metals contained in tin residues after silver recovery in the separation and recovery method of silver and tin from a cathode slime according to the present invention.
4 is a graph showing the concentration of metal contained in the filtered solution after recovery of tin in the method of separating and recovering silver and tin from the anode slime according to the present invention.
FIG. 5 is a graph showing the filtration rate according to the addition of coagulant and activated carbon in the separation and recovery method of silver and tin from the anode slime according to the present invention.

이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 이점 및 특징, 그리고 그것을 달성하는 방법은 첨부된 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention and the manner of achieving it will become apparent with reference to the embodiments described in detail below with reference to the accompanying drawings.

그러나 본 발명은 이하에 개시되는 실시예들에 의해 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. To fully disclose the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims.

또한, 본 발명을 설명함에 있어 관련된 공지 기술 등이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그에 관한 자세한 설명은 생략하기로 한다.
In the following description, well-known functions or constructions are not described in detail since they would obscure the invention in unnecessary detail.

본 발명은 양극 슬라임을 강산 용액에 넣고 교반한 후 여과하는 단계; The present invention relates to a method for producing a slurry, which comprises: mixing a slurry of a positive electrode into a strong acid solution and stirring the slurry;

상기 여과공정으로 얻어진 잔사를 세척하여 은을 회수하는 단계; 및Washing the residue obtained in the filtration step to recover silver; And

상기 여과공정으로 얻어진 여과용액에 수산화물을 첨가하고 여과시켜 잔사로부터 주석을 회수하는 단계;를 포함하는 양극 슬라임으로부터 은 및 주석의 분리회수방법을 제공한다.And recovering tin from the residue by adding a hydroxide to the filtrate obtained in the filtration step and filtering the recovered tin.

본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법은 금속을 양극으로 하여 전해하면 전기화학적으로 용해되지 않고 남은 찌꺼기(슬라임)로부터 찌꺼기에 포함된 은 및 주석을 고순도로 회수할 수 있고, 은 및 주석으로 선택적으로 분리하여 높은 회수율로 회수할 수 있다. The method of separating and recovering silver and tin from the cathode slime according to the present invention is capable of recovering silver and tin contained in the residue from the remaining slurry (slime) with high purity without electrochemically dissolving when electrolysis is carried out using a metal as an anode, And tin, and can be recovered at a high recovery rate.

도 1은 본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법을 나타낸 순서도이다. 이하, 도 1을 참고하여 본 발명을 상세히 설명한다.
1 is a flowchart showing a method of separating and recovering silver and tin from a cathode slime according to the present invention. Hereinafter, the present invention will be described in detail with reference to Fig.

본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법은 전기화학적으로 용해되지 않은 양극 슬라임을 강산 용액에 넣고 교반한 후 여과하는 단계(S10)를 포함한다. The method for separating and recovering silver and tin from the cathode slime according to the present invention includes a step (S10) of mixing a cathode slime which is not electrochemically dissolved in a strong acid solution, stirring the solution and filtering the slurry.

본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법에서 상기 양극 슬라임은 전기화학적으로 전해에 참여하지 않은 것이며, 상기 강산 용액은 염산 용액과 질산 용액의 혼합용액이고, 상기 염산 용액과 질산 용액은 1:0.05 ~ 0.1의 부피비로 혼합되는 것이 바람직하다. 상기 부피비가 0.05 미만인 경우에는 잔사에 은뿐 아니라 주석 및 납 등이 포함되어 은과 주석을 분리하여 회수할 수 없는 문제가 있고, 0.1 부피비를 초과하는 경우에는 잔사 중 납의 함량이 증가하여 불순물 함량이 높아지는 문제가 있다. 또한, 상기 염산 용액의 농도는 92 ~ 97%이고, 상기 질산 용액의 농도는 3 ~ 8%이다. In the method of separating and recovering silver and tin from a cathode slime according to the present invention, the cathode slime does not participate in electrochemical electrolysis, and the strong acid solution is a mixed solution of a hydrochloric acid solution and a nitric acid solution, 1: 0.05 to 0.1 by volume. When the volume ratio is less than 0.05, there is a problem in that silver and tin are contained in the residue as well as silver and the silver and tin can not be recovered. When the volume ratio is more than 0.1, lead content in the residue is increased to increase the impurity content There is a problem of increasing. The concentration of the hydrochloric acid solution is 92 to 97%, and the concentration of the nitric acid solution is 3 to 8%.

또한, 상기 양극 슬라임과 강산 용액은 45 ~ 55%의 고액비(양극 슬라임 무게(g)/강산 용액의 부피(ml))로 혼합되는 것이 바람직하다. 상기 고액비가 45% 미만인 경우에는 강산 용액에 비해 양극 슬라임이 적게 포함되어 충분한 양의 금속의 용해되지 않는 문제가 있고, 55%를 초과하는 경우에는 강산과 반응하지 못한 미반응 물질들이 증가하는 문제가 있다. It is preferable that the anode slime and the strong acid solution are mixed at a liquid ratio (anode slime weight (g) / volume (ml) of strong acid solution) of 45 to 55%. When the solid-liquid ratio is less than 45%, there is a problem that a sufficient amount of metal is not dissolved because the anode slime is less than that of the strong acid solution, and when the solid ratio exceeds 55%, unreacted materials that have not reacted with strong acid are increased have.

상기 양극 슬라임과 강산 용액의 혼합은 70 ~ 80 ℃의 온도에서 수행되는 것이 바람직하다. 상기 온도가 70 ℃ 미만인 경우에는 여과 공정 후 잔사에 구리나 주석이 포함되어 은으로부터 이들을 분리해야 하는 문제가 있고, 80 ℃를 초과하는 경우에는 격렬한 반응으로 인해 거품을 제거하기 위한 소포제와 물의 첨가량이 증가하는 문제가 있다. The mixing of the positive slurry and the strong acid solution is preferably performed at a temperature of 70 to 80 ° C. When the temperature is lower than 70 ° C., there is a problem that copper or tin is contained in the residue after the filtration step to separate them from silver. When the temperature exceeds 80 ° C., the addition amount of defoamer and water for removing bubbles due to a violent reaction There is an increasing problem.

본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법은 상기 교반시 소포제를 더 포함할 수 있다. 상기 소포제는 실리콘계 소포제일 수 있고 기포 발생 또는 거품을 제거할 수 있으며, 구체적으로 디메틸 폴리실록산, 실리카 오일 등을 사용할 수 있다.
The method of separating and recovering silver and tin from the anode slime according to the present invention may further include an antifoaming agent during the stirring. The antifoaming agent may be a silicone-based antifoaming agent and may remove bubbles or bubbles. Specifically, dimethylpolysiloxane, silica oil, etc. may be used.

다음으로, 본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법은 상기 여과공정으로 얻어진 잔사를 세척하여 은을 회수하는 단계(S20)를 포함한다. Next, a method for separating and recovering silver and tin from the cathode slime according to the present invention includes a step (S20) of washing the residue obtained in the filtration step to recover silver.

일반 여과지 또는 진공 여과 등으로 여과 공정이 수행되면, 잔사와 여과용액으로 분리할 수 있고, 여과된 잔사에는 다량의 은이 포함되어 있어 이를 세척한 후 은을 회수할 수 있다.
When the filtration process is performed with a general filter paper or vacuum filtration, it can be separated into a residue and a filtrate solution. The filtered residue contains a large amount of silver, and the silver can be recovered after washing it.

본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법은 상기 여과공정으로 얻어진 여과용액에 수산화물을 첨가하고 여과시켜 여과액으로부터 주석을 회수하는 단계(S30)를 포함한다. The method of separating and recovering silver and tin from the anode slime according to the present invention includes a step (S30) of adding hydroxide to the filtration solution obtained in the filtration step, and recovering tin from the filtrate by filtration.

전술한 여과 공정으로 분리된 잔사로부터 은을 회수한 후 남은 여과 용액에는 다량의 주석이 포함되어 있으며, 이를 회수하기 위해 수산화물을 첨가하여 여과 용액의 pH를 1.1 ~ 1.5로 조절하여 주석을 회수할 수 있다. The remaining filtrate after recovering the silver from the residue separated by the filtration process contains a large amount of tin. In order to recover the tin, hydroxide is added to adjust the pH of the filtrate to 1.1-1.5 to recover tin have.

상기 수산화물은 수산화나트륨, 수산화칼륨, 수산화마그네슘 및 수산화철로 이루어진 군으로부터 선택되는 1종을 사용할 수 있고, 상기 수산화물은 여과용액에 대해 15 ~ 25%의 고액비(수산화물 무게(g)/여과용액의 부피(ml))로 혼합되는 것이 바람직하다. 상기 고액비가 15% 미만인 경우에는 회수되는 주석의 양이 적은 문제가 있고, 25%를 초과하는 경우에는 은 회수 후 납과 구리와 같은 불순물이 주석에 포함되는 문제가 있다.
The hydroxide may be selected from the group consisting of sodium hydroxide, potassium hydroxide, magnesium hydroxide and iron hydroxide, and the hydroxide may be used in an amount ranging from 15 to 25% by weight of the filtrate solution (weight of hydroxide (g) / Volume (ml)). When the solid-liquid ratio is less than 15%, there is a problem that the amount of tin recovered is small. When the solid-liquid ratio exceeds 25%, there is a problem that tin contains impurities such as lead and copper after silver recovery.

본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법에서 상기 수산화물 첨가 후 응집제 또는 활성탄을 더 포함할 수 있다. The method of separating and recovering silver and tin from the anode slime according to the present invention may further comprise a flocculant or activated carbon after the hydroxide addition.

상기 응집제 또는 활성탄은 주석을 응집시키거나 주석을 담지할 수 있는 담체 역할을 하며, 상기 응집제로는 폴리염화알루미늄, 황산알루미늄 및 염화제2철로 이루어진 군으로부터 선택되는 1종을 사용할 수 있고, 상기 활성탄은 주석의 10 ~ 30 중량%로 포함되는 것이 바람직하다. 상기 활성탄이 주석의 10 중량% 미만으로 포함되는 경우에는 여과 시간이 장시간 소요되는 문제가 있고, 30 중량%를 초과하는 경우에는 여과 시간이 더 이상 짧아지지 않으므로 공정 효율의 측면에서 30 중량% 이하인 것이 적절하다.
The coagulant or activated carbon serves as a carrier capable of coagulating tin or supporting tin, and the coagulant may be one selected from the group consisting of polychlorinated aluminum, aluminum sulfate and ferric chloride, Is preferably contained in an amount of 10 to 30% by weight of the tin. When the activated carbon is contained in an amount of less than 10% by weight of tin, the filtration time is long. In the case of exceeding 30% by weight, the filtration time is not shortened further. proper.

실시예 1: 양극 슬라임으로부터 은 및 주석의 분리회수 1Example 1: Separation of Silver and Tin from a Positive Slime 1

염산 20L와 질산 1L를 혼합한 용액에 Sn-Ag 슬라임 10 kg을 조금씩 첨가하였다. 혼합용액에 Sn-Ag 슬라임을 첨가할 시 온도를 80 ℃로 승온하고, 1시간 동안 5분 간격으로 교반하였다. 온도 승온시 50 ℃에 거품이 발생하여 이를 제거하기 위해 약 15ml 소포제를 사용하여 거품을 제거하였다. 10 kg of Sn-Ag slime was added little by little to a solution of 20 L of hydrochloric acid and 1 L of nitric acid. When the Sn-Ag slime was added to the mixed solution, the temperature was raised to 80 ° C and stirred for 5 minutes at 1 hour. The bubbles were removed by using about 15 ml of defoamer in order to remove bubbles at 50 ℃ when the temperature was raised.

여과지를 사용하여 1차 여과하여 여과 잔사로부터 은을 회수하였다. The filtrate was subjected to primary filtration using a filter paper to recover silver from the filtrate residue.

여과지로 여과된 여과용액에 5M NaOH를 고액비(NaOH 양/여과용액 부피)가 20%가 되게 첨가하여 pH 1.1 ~ 1.5로 조절한 후 활성탄을 여과용액에 포함된 주석의 10 중량%로 첨가하고 2차 여과한 후 잔사로부터 주석을 회수하였다. 5 M NaOH was added to the filtrate so as to adjust the pH to 1.1 to 1.5 by adding a liquid ratio (NaOH content / filtrate volume) of 20% to the filtrate, and then activated carbon was added in an amount of 10% by weight of the tin contained in the filtrate After secondary filtration, tin was recovered from the residue.

하기 표 1은 양극 슬라임의 ICP 분석 결과를 나타낸 것이다. Table 1 below shows the ICP analysis results of the anode slime.

원소element 수분 제거전 함량(%)Content before moisture removal (%) 수분 제거후 함량(%)Content after moisture removal (%) AgAg 15.2515.25 27.3827.38 SnSn 17.5317.53 31.4831.48 PbPb 4.144.14 7.427.42 CuCu 7.347.34 13.1713.17

실시예 2: 양극 슬라임으로부터 은 및 주석의 분리회수 2Example 2: Number of separations of silver and tin from the anode slime 2

Sn-Ag 슬라임 4 kg을 첨가하고, 시료를 넣는 도중 거품이 많이 발생하여 이를 제거하기 위해 약 1L의 물을 사용하여 거품을 제거한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 은과 주석을 분리회수하였다.
4 kg of Sn-Ag slime was added, and silver and tin were removed in the same manner as in Example 1, except that bubbles were removed by using about 1 L of water to remove bubbles during sample loading Respectively.

실험예 1: 은의 분리회수량 분석Experimental Example 1: Separation of yield of silver

본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법에서 여과공정 후 잔사 및 여과용액에서의 원소의 양을 분석하고, 그 결과를 표 2 내지 표 5에 나타내었다. In the separation and recovery method of silver and tin from the anode slime according to the present invention, the amounts of the elements in the residue and the filtrate solution after the filtration process were analyzed, and the results are shown in Tables 2 to 5.

하기 표 2와 표 3은 양극 슬라임을 10 kg을 사용한 것(실시예 1)이다. Tables 2 and 3 below show that 10 kg of the anode slime is used (Example 1).

원소element 1차 여과용액(ppm)Primary filtration solution (ppm) 1차 여과된 잔사(ppm)Primary filtered residue (ppm) AgAg 2828 48944894 SnSn 142200142200 117117

상기 표 2에 나타난 바와 같이, 본 발명의 분리회수방법에 의해 1차 여과용액에는 Ag가 28 ppm만 남아있으며, 여과된 잔사에는 Ag가 4894 ppm이 남아있었다. 반면, Sn는 여과용액에 142200 ppm이 남아있어 Ag를 분리하여 회수할 수 있다. As shown in Table 2, only 28 ppm of Ag remained in the primary filtrate solution and 4894 ppm of Ag remained in the filtered residue by the separation and recovery method of the present invention. On the other hand, Sn can be recovered by separating Ag since 142200 ppm remains in the filtrate solution.

원소element 1차 여과용액Primary filtration solution 1차 잔사Primary residue 1차 여과용액 회수율Recovery of primary filtrate 1차 여과 잔사 회수율Primary filtration residue recovery rate AgAg 0.7507g0.7507g 1675.116g1675.116 g 0.1%0.1% 109.8%109.8% SnSn 3812.382g3812.382g 40.014g40.014 g 217.5%217.5% 2.3%2.3%

상기 표 3에 나타난 바와 같이, 1차 여과공정으로 얻어진 여과용액에는 주석이 다량 포함되어 있고, 1차 여과공정으로 얻어진 잔사에는 Ag가 다량 포함되어 있어 잔사로부터 은을 회수하였다. 또한, 1차 여과 잔사 회수율을 109.8%로 나타나 은을 99% 이상으로 회수할 수 있고, 1차 여과용액의 회수율이 217.5%로 나타나 주석도 99% 이상으로 회수할 수 있을 것으로 판단된다. As shown in Table 3, the filtrate obtained by the primary filtration process contained a large amount of tin, and the residue obtained by the primary filtration process contained a large amount of Ag, and silver was recovered from the residue. In addition, the primary filtration residue recovery rate was 109.8%, and the recovery of silver was 99% or more, and the recovery rate of the primary filtration solution was 217.5%, and the tin content could be recovered to 99% or more.

하기 표 4와 표 5는 양극 슬라임을 4 kg으로 사용한 것(실시예 2)이다. Tables 4 and 5 below show that the positive electrode slime is used at 4 kg (Example 2).

원소element 1차 여과용액(ppm)Primary filtration solution (ppm) 1차 여과된 잔사(ppm)Primary filtered residue (ppm) AgAg 3131 52095209 SnSn 4598045980 123123

상기 표 4에 나타난 바와 같이, 본 발명의 분리회수방법에 의해 1차 여과용액에는 Ag가 31 ppm만이 남아있으며, 여과된 잔사에는 Ag가 5209 ppm이 남아있었다. 반면, Sn는 여과용액에 45980 ppm이 남아있어 Ag를 분리회수할 수 있다. As shown in Table 4, only 31 ppm of Ag remained in the primary filtrate by the separation and recovery method of the present invention, and 5209 ppm of Ag remained in the filtered residue. On the other hand, 45980 ppm of Sn remains in the filtrate solution, and Ag can be separated and recovered.

원소element 1차 여과용액Primary filtration solution 1차 잔사Primary residue 1차 여과용액 회수율Recovery of primary filtrate 1차 여과 잔사 회수율Primary filtration residue recovery rate AgAg 0.7518g0.7518 g 729.26g729.26 g 0.1%0.1% 119.5%119.5% SnSn 1115.015g1115.015 g 17.22g17.22 g 159.1%159.1% 2.4%2.4%

상기 표 5에 나타난 바와 같이, 1차 여과공정으로 얻어진 여과용액에는 주석이 다량 포함되어 있고, 1차 여과공정으로 얻어진 잔사에는 Ag가 다량 포함되어 있어 잔사로부터 은을 회수하였다. 또한, 1차 여과 잔사 회수율을 119.5%로 나타나 은을 99% 이상으로 회수할 수 있고, 1차 여과용액의 회수율이 159.1%로 나타나 주석도 99% 이상으로 회수할 수 있을 것으로 판단된다.
As shown in Table 5, the filtrate obtained by the primary filtration process contained a large amount of tin, and the residue obtained by the primary filtration process contained a large amount of Ag, and silver was recovered from the residue. In addition, the primary filtration residue recovery rate was 119.5%, and the recovery rate of silver was 99% or more, and the recovery rate of the primary filtrate was 159.1%, indicating that the tin content could be recovered to 99% or more.

실험예 2: 질산 첨가량에 따른 잔사 중의 농도 분석Experimental Example 2: Analysis of concentration in residue according to amount of nitric acid

본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법에서 질산 첨가량에 따른 잔사 중의 원소 농도를 분석하고, 그 결과를 도 2에 나타내었다. In the separation and recovery method of silver and tin from the anode slime according to the present invention, the element concentration in the residue was analyzed according to the amount of nitric acid added, and the result is shown in FIG.

도 2에 나타난 바와 같이, 질산이 0.01 부피비(1%)인 경우에는 잔사에 다량이 주석이 포함되므로, 염산 용액과 질산 용액은 1:0.05 ~ 0.1의 부피비로 혼합되는 것이 바람직하였다.
As shown in FIG. 2, when the amount of nitric acid is 0.01 volume ratio (1%), a large amount of tin is contained in the residue. Therefore, the hydrochloric acid solution and the nitric acid solution are preferably mixed in a volume ratio of 1: 0.05-0.1.

실험예 3: pH에 따른 주석의 분리회수량 분석Experimental Example 3: Separation of Tin by pH

본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법에서 수산화나트륨 첨가 후 여과공정으로 얻어진 잔사 및 여과용액에서의 pH에 따른 원소의 양을 분석하고, 그 결과를 표 6과 표 7 및 도 3과 도 4에 나타내었다. In the separation and recovery method of silver and tin from the positive electrode slime according to the present invention, the amounts of the elements according to the pH in the residue and the filtrate obtained by the filtration step after the addition of sodium hydroxide were analyzed and the results are shown in Tables 6 and 7 And FIG. 4, respectively.

pHpH Sn(ppm)Sn (ppm) Ag(ppm)Ag (ppm) Pb(ppm)Pb (ppm) Cu(ppm)Cu (ppm) Fe(ppm)Fe (ppm) 1.11.1 36253625 0.80.8 8.638.63 88.188.1 86.986.9 1.51.5 33883388 1.21.2 11.8311.83 108.1108.1 121.4121.4 1.81.8 30663066 1.551.55 20.2120.21 147.6147.6 102.1102.1 2.82.8 28562856 17.4917.49 53.5653.56 232.9232.9 25.6125.61

상기 표 6에 나타난 바와 같이, 수산화나트륨 첨가 후 여과공정으로 얻어진 잔사에서는 pH 1.1 ~ 1.5에서 잔사 중 주석의 양이 많고, Ag의 양은 적은 것으로 나타났으나, pH 1.8 이상에서 Ag의 양이 증가하는 것을 알 수 있고, pH가 높아질수록 Pb, Cu, Fe의 양이 급격히 증가하므로, 수산화나트륨은 pH가 1.1 ~ 1.5 범위가 되도록 첨가하는 것이 바람직한 것을 알 수 있다.
As shown in Table 6, the residue obtained by filtration after adding sodium hydroxide exhibited a large amount of tin and a small amount of Ag at pH 1.1 to 1.5, but the amount of Ag was increased at a pH of 1.8 or more And the amount of Pb, Cu and Fe increases sharply as the pH is increased, so that it is preferable to add sodium hydroxide so that the pH is in the range of 1.1 to 1.5.

pHpH Sn(ppm)Sn (ppm) Ag(ppm)Ag (ppm) Pb(ppm)Pb (ppm) Cu(ppm)Cu (ppm) Fe(ppm)Fe (ppm) 회수율Recovery rate 1.11.1 823823 52.6652.66 465465 33003300 680680 99.199.1 1.51.5 733.6733.6 44.3944.39 429429 29972997 520520 99.39%99.39% 1.81.8 46.6246.62 45.3745.37 410.7410.7 26592659 55.4755.47 99.96%99.96% 2.82.8 00 42.2242.22 233.8233.8 799.1799.1 N.DN.D. 100100

상기 표 7에 나타난 바와 같이, 수산화나트륨 첨가 후 여과공정으로 얻어진 여과용액에서는 대부분의 주석이 잔사로부터 회수되어 미량의 주석이 발견되었으며, 회수율에서 알 수 있듯이 거의 99% 이상의 주석이 잔사로부터 회수된 것을 알 수 있다. As shown in Table 7, in the filtrate obtained by filtration after adding sodium hydroxide, most tin was recovered from the residue, and a small amount of tin was found. It was found that almost 99% or more of tin was recovered from the residue Able to know.

도 3은 본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법에서 은 회수 후 주석 잔사에 포함된 금속의 농도를 나타낸 그래프이고, 도 4는 본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법에서 주석 회수 후 여과된 용액에 포함된 금속의 농도를 나타낸 그래프이다. 분리회수 실험은 HCl:HNO3=1:0.05로 혼합하고 고액비(수산화나트륨(g)/여과용액(ml)) 20%로 하였으며 혼합은 80 ℃에서 수행하였다. FIG. 3 is a graph showing the concentrations of metals contained in tin residues after silver recovery in the method of separating and recovering silver and tin from a cathode slime according to the present invention. FIG. 4 is a graph showing the concentrations of metals and tin Which is a graph showing the concentration of the metal contained in the filtered solution after tin recovery in the method. Separation experiments HCl: HNO 3 = 1: 0.05, and mixed in a solid-liquid ratio (aqueous sodium hydroxide (g) / filtered solution (ml)) was mixed with 20% was carried out at 80 ℃.

도 3에 나타난 바와 같이, pH 1.1 ~ 1.5에서 대부분의 Sn이 회수된 것을 알 수 있고, pH 1.8과 2.8에서 다량의 Cu가 포함된 것을 알 수 있으며, 주석 잔사에 Ag의 양 또한 증가하는 것을 알 수 있다. As shown in FIG. 3, it can be seen that most of Sn was recovered at pH 1.1 to 1.5, and it was found that a large amount of Cu was contained at pH 1.8 and 2.8, and the amount of Ag in the tin residue was also increased .

또한, 도 4에 나타난 바와 같이, pH 1.1과 1.5에서 미량의 Sn이 잔존하였으나, 대부분의 주석이 회수된 것을 알 수 있고, pH가 높아질수록 Cu 및 Pb의 양이 증가하는 것을 알 수 있다.
Also, as shown in FIG. 4, it can be seen that a trace amount of Sn remained at pH 1.1 and 1.5, but most of the tin was recovered, and the amount of Cu and Pb was increased as the pH was increased.

실험예 4: 활성탄 및 응집제에 따른 여과 속도 분석Experimental Example 4: Filtration Rate Analysis According to Activated Carbon and Coagulant

본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법에서 응집제 및 활성탄 첨가에 따른 여과 속도를 분석하고, 그 결과를 도 5에 나타내었다. The filtration rate according to addition of coagulant and activated carbon was analyzed in the separation and recovery method of silver and tin from the anode slime according to the present invention, and the result is shown in FIG.

은 및 주석의 분리회수 실험은 HCl:HNO3=1:0.05로 혼합하고 고액비(수산화나트륨(g)/여과용액(ml)) 20%로 하였으며 혼합은 80 ℃에서 수행하였다. Separation and recovery of silver and tin were carried out by mixing HCl: HNO 3 = 1: 0.05 and 20% of liquid ratio (sodium hydroxide (g) / filtrate (ml)).

도 5에 나타난 바와 같이, 응집제 또는 활성탄을 첨가하여 주석을 회수할 수 있는데 활성탄을 사용하는 것이 응집제를 사용하는 것보다 여과 속도가 더 빠른 것을 알 수 있다. 특히 활성탄 10 중량%를 사용한 경우에는 활성탄 30 중량%를 사용한 경우와 거의 동일한 여과 시간이 소요된 것으로 나타났다.
As shown in FIG. 5, tin can be recovered by adding a flocculant or activated carbon. However, it can be seen that the use of activated carbon is faster than the use of flocculant. In particular, when 10 wt% of activated carbon was used, it was found that filtration time was almost the same as that of using 30 wt% of activated carbon.

지금까지 본 발명에 따른 양극 슬라임으로부터 은 및 주석의 분리회수방법에 관한 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 실시 변형이 가능함은 자명하다.Although a specific embodiment of the method of separating and recovering silver and tin from the positive electrode slime according to the present invention has been described, it is apparent that various modifications are possible within the scope of the present invention.

그러므로 본 발명의 범위에는 설명된 실시예에 국한되어 전해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the above-described embodiments, but should be determined by the scope of the appended claims and equivalents thereof.

즉, 전술된 실시예는 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 상세한 설명보다는 후술될 특허청구범위에 의하여 나타내어지며, 그 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
It is to be understood that the foregoing embodiments are illustrative and not restrictive in all respects and that the scope of the present invention is indicated by the appended claims rather than the foregoing description, It is intended that all changes and modifications derived from the equivalent concept be included within the scope of the present invention.

Claims (12)

은(Ag), 주석(Sn), 납(Pb), 구리(Cu) 및 철(Fe)을 포함하는 양극 슬라임을 염산 용액과 질산 용액의 혼합용액에 넣고 교반한 후 여과하는 단계;
상기 여과공정으로 얻어진 잔사를 세척하여 은을 회수하는 단계; 및
상기 여과공정으로 얻어진 여과용액에 수산화물을 첨가하고 여과시켜 잔사로부터 주석을 회수하는 단계;를 포함하고,
상기 염산 용액과 질산 용액은 1:0.05 ~ 0.1의 부피비로 혼합되는 것을 특징으로 하는 양극 슬라임으로부터 은 및 주석의 분리회수방법.
Mixing a positive slurry containing silver (Ag), tin (Sn), lead (Pb), copper (Cu) and iron (Fe) in a mixed solution of a hydrochloric acid solution and a nitric acid solution and stirring the mixture;
Washing the residue obtained in the filtration step to recover silver; And
Adding a hydroxide to the filtration solution obtained in the filtration step, and filtering the recovered tin to recover tin from the residue,
Wherein the hydrochloric acid solution and the nitric acid solution are mixed at a volume ratio of 1: 0.05-0.1.
삭제delete 삭제delete 제1항에 있어서,
상기 양극 슬라임과 혼합용액은 45 ~ 55%의 고액비(양극 슬라임 무게(g)/혼합용액의 부피(ml))로 혼합되는 것을 특징으로 하는 양극 슬라임으로부터 은 및 주석의 분리회수방법.
The method according to claim 1,
Wherein the anode slime and the mixed solution are mixed at a liquid ratio of 45 to 55% (anode slime weight (g) / volume (ml) of mixed solution).
제1항에 있어서,
상기 양극 슬라임과 혼합용액의 혼합은 70 ~ 80 ℃의 온도에서 수행되는 것을 특징으로 하는 양극 슬라임으로부터 은 및 주석의 분리회수방법.
The method according to claim 1,
Wherein the mixing of the anode slime and the mixed solution is performed at a temperature of 70 to 80 캜.
제1항에 있어서,
상기 수산화물은 수산화나트륨, 수산화칼륨, 수산화마그네슘 및 수산화철로 이루어진 군으로부터 선택되는 1종인 것을 특징으로 하는 양극 슬라임으로부터 은 및 주석의 분리회수방법.
The method according to claim 1,
Wherein the hydroxide is one selected from the group consisting of sodium hydroxide, potassium hydroxide, magnesium hydroxide and iron hydroxide.
제1항에 있어서,
상기 수산화물은 여과용액에 대해 15 ~ 25%의 고액비(수산화물 무게(g)/여과용액의 부피(ml))로 혼합되는 것을 특징으로 하는 양극 슬라임으로부터 은 및 주석의 분리회수방법.
The method according to claim 1,
Wherein the hydroxides are mixed at a liquid ratio of 15 to 25% (hydroxide weight (g) / volume (ml) of filtration solution) to the filtrate solution.
제1항에 있어서,
상기 교반시 소포제를 더 포함하는 것을 특징으로 하는 양극 슬라임으로부터 은 및 주석의 분리회수방법.
The method according to claim 1,
The method of separating and recovering silver and tin from a cathode slime according to claim 1, further comprising a defoaming agent.
제8항에 있어서,
상기 소포제는 디메틸 폴리실록산 또는 실리카 오일인 것을 특징으로 하는 양극 슬라임으로부터 은 및 주석의 분리회수방법.
9. The method of claim 8,
Wherein the antifoaming agent is dimethylpolysiloxane or silica oil.
제1항에 있어서,
상기 수산화물 첨가 후 응집제 또는 활성탄을 더 포함하는 것을 특징으로 하는 양극 슬라임으로부터 은 및 주석의 분리회수방법.
The method according to claim 1,
The method of separating and recovering silver and tin from a positive electrode slime according to claim 1, further comprising a flocculant or activated carbon after the hydroxide addition.
제10항에 있어서,
상기 응집제는 폴리염화알루미늄, 황산알루미늄 및 염화제2철로 이루어진 군으로부터 선택되는 1종인 것을 특징으로 하는 양극 슬라임으로부터 은 및 주석의 분리회수방법.
11. The method of claim 10,
Wherein the flocculant is one selected from the group consisting of polychlorinated aluminum, aluminum sulfate and ferric chloride.
제10항에 있어서,
상기 활성탄은 주석의 10 ~ 30 중량%로 포함되는 것을 특징으로 하는 양극 슬라임으로부터 은 및 주석의 분리회수방법.

11. The method of claim 10,
Wherein the activated carbon comprises 10 to 30% by weight of tin.

KR20140037767A 2014-03-31 2014-03-31 Selective recovery method of silver and tin in the anode slime KR101481366B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20140037767A KR101481366B1 (en) 2014-03-31 2014-03-31 Selective recovery method of silver and tin in the anode slime
PCT/KR2014/003892 WO2015152457A1 (en) 2014-03-31 2014-04-30 Method for separating and recovering silver and tin from anode slime

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20140037767A KR101481366B1 (en) 2014-03-31 2014-03-31 Selective recovery method of silver and tin in the anode slime

Publications (1)

Publication Number Publication Date
KR101481366B1 true KR101481366B1 (en) 2015-01-14

Family

ID=52588706

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20140037767A KR101481366B1 (en) 2014-03-31 2014-03-31 Selective recovery method of silver and tin in the anode slime

Country Status (2)

Country Link
KR (1) KR101481366B1 (en)
WO (1) WO2015152457A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190118347A (en) 2018-04-10 2019-10-18 주식회사 어스텍 Separation of valuable metals from waste secondary batteries by alkaline fritting method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3047421B1 (en) * 2016-02-10 2020-08-21 Commissariat Energie Atomique PROCESS FOR SLOWING THE DISSOLUTION OF A COMPOUND USING AN ANTI-FOAM AGENT
CN112441611A (en) * 2020-12-07 2021-03-05 云南锡业锡化工材料有限责任公司 Method for preparing tin dioxide by using sponge tin and anode mud

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069544A (en) * 2000-08-28 2002-03-08 Nikko Materials Co Ltd Method for recovering indium
KR100367709B1 (en) * 2000-05-29 2003-01-10 희성엥겔하드주식회사 Recovery method of platinum group metals from waste water
KR20040042696A (en) * 2002-11-15 2004-05-20 주식회사 씨에스 이엔지 Method for withdrawing indium from waste-ITO target
KR101364520B1 (en) * 2012-08-20 2014-02-19 한국해양대학교 산학협력단 Method for separating valuable metals from pb-free waste solder using iron chloride

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101199513B1 (en) * 2010-10-21 2012-11-09 한국지질자원연구원 Valuable metal recovery method from waste solder
KR101336121B1 (en) * 2011-11-30 2013-12-03 한국지질자원연구원 Method for recycling Pb-free solder waste using hydrochloric acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100367709B1 (en) * 2000-05-29 2003-01-10 희성엥겔하드주식회사 Recovery method of platinum group metals from waste water
JP2002069544A (en) * 2000-08-28 2002-03-08 Nikko Materials Co Ltd Method for recovering indium
KR20040042696A (en) * 2002-11-15 2004-05-20 주식회사 씨에스 이엔지 Method for withdrawing indium from waste-ITO target
KR101364520B1 (en) * 2012-08-20 2014-02-19 한국해양대학교 산학협력단 Method for separating valuable metals from pb-free waste solder using iron chloride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190118347A (en) 2018-04-10 2019-10-18 주식회사 어스텍 Separation of valuable metals from waste secondary batteries by alkaline fritting method

Also Published As

Publication number Publication date
WO2015152457A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
CN105112674B (en) A kind of waste printed circuit board Whote-wet method recovery process
CN105297020B (en) Tin stripping additive and application thereof
KR101685931B1 (en) Recovering method of concentrated precious metals using copper containing wastes
JP5250683B2 (en) Recovery method of valuable metals from Pb-free waste solder
KR101481366B1 (en) Selective recovery method of silver and tin in the anode slime
KR20170019246A (en) A recovery method for valuable metal from the LED wastes or electronic wastes
JP5070581B2 (en) Method for separating and recovering precious metals
JP2012144754A (en) Method for collecting bismuth
JP2010138490A (en) Method of recovering zinc
JP5200588B2 (en) Method for producing high purity silver
EP3055437B1 (en) Hydrometallurgy process for the recovery of materials from electronic boards
JP2012052215A (en) Method for collecting indium
WO2019178051A1 (en) Precious metals recovery processes
CN112921356B (en) Method for recovering copper from waste printed circuit board
JP2008106348A (en) Method of separating and recovering zinc
JP6373772B2 (en) Method for recovering indium and gallium
CN1200407A (en) Process for extracting and recovering silver
KR102237348B1 (en) Recovery method of copper and precious metal by electrolysis of crude copper containing precious metal using copper chloride solution
JP3753554B2 (en) Silver recovery method
JP2012214307A (en) Method for recovering tellurium
CN111500872A (en) Recovery treatment method of low-concentration palladium-containing waste liquid
KR20020094482A (en) Method of recovering silver
KR101665426B1 (en) Method for Selective Recovery of Silver from Waste Lead Frame Scrap
CN104975178B (en) The technique that non-acidizing reclaims palladium in discarded circuit board
CN110656251B (en) Rapid and environment-friendly circuit board gold stripping liquid, preparation method and application thereof, and gold stripping method

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180103

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200107

Year of fee payment: 6