KR101476172B1 - 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법 - Google Patents

이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법 Download PDF

Info

Publication number
KR101476172B1
KR101476172B1 KR20130082915A KR20130082915A KR101476172B1 KR 101476172 B1 KR101476172 B1 KR 101476172B1 KR 20130082915 A KR20130082915 A KR 20130082915A KR 20130082915 A KR20130082915 A KR 20130082915A KR 101476172 B1 KR101476172 B1 KR 101476172B1
Authority
KR
South Korea
Prior art keywords
road
block
road network
network data
blocks
Prior art date
Application number
KR20130082915A
Other languages
English (en)
Inventor
유기윤
김지영
이준표
Original Assignee
(주)시터스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)시터스 filed Critical (주)시터스
Priority to KR20130082915A priority Critical patent/KR101476172B1/ko
Application granted granted Critical
Publication of KR101476172B1 publication Critical patent/KR101476172B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Image Analysis (AREA)

Abstract

본 발명은 구축시기가 상이한 이종의 도로망 데이터 셋을 이용하여 선형인 도로객체를 면인 블록으로 변형한 후 면 객체 기반의 매칭 기법을 적용하여 변화를 탐지하는 방법에 관한 것으로, (a) 갱신장치에서 네트워크로 연결된 구축시기가 상이한 이종의 도로망 데이터 셋 각각으로부터 도로망 데이터를 불러와 선형 도로객체로 둘러싸인 면인 블록으로 변형하여 생성하는 단계; (b) 상기 갱신장치는 이종의 도로망 데이터 셋에서 생성된 블록을 중첩하여 교차하는 블록 쌍에 대하여 위치 기준, 형상 기준 및 면적 기준의 가중선형조합으로 계상되는 형상유사도를 이용하여 형상유사도가 일정 값 이상인 블록 쌍을 판별하는 단계; (c) 상기 갱신장치는 오목다각형 특성을 이용하여 상기 판별된 블록 쌍에서 블록 내부에 도로가 신설된 변화를 탐지하는 단계; (d) 상기 갱신장치는 이분 그래프 기반의 군집화를 이용하여 상기 판별된 블록 쌍에서 도로가 신설되어 블록이 더 작은 블록으로 나뉘는 변화를 탐지하는 단계, 및 (e) 상기 갱신장치는 부합도를 이용하여 상기 변화가 탐지된 블록 쌍으로부터 최신의 도로망 데이터 셋에서 갱신 도로객체 선형을 추출하는 단계를 포함하여 이루어진 것이다. 본 발명은 구축시기가 상이한 벡터 구조의 이종의 도로망 데이터 셋에서 매월 갱신되는 최신의 도로망 데이터 셋을 활용하여 자동으로 변화를 탐지하고 갱신 도로객체를 추출함으로써 내비게이션 등에 적용되는 지리정보의 도로 갱신 비용을 대폭 절감하고, 갱신 시간도 단축시켜 짧은 갱신주기가 요구되는 도로망 데이터 셋의 신속한 갱신이 가능하도록 한 것이다.

Description

이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법{Method for Automatic Change Detection Based on Areal Feature Matching in Different Network Datasets}
본 발명은 이종 도로망 데이터 셋에서 면 객체 매칭 기반의 변화를 탐지하는 방법에 관한 것으로, 더욱 상세하게는 구축시기가 상이한 이종의 도로망 데이터 셋을 이용하여 선형인 도로객체를 면인 블록으로 변형한 후 면 객체 기반의 매칭 기법을 적용하여 변화를 탐지하는 방법에 관한 것이다.
차량용 내비게이션의 성공을 비롯하여 GPS가 탑재된 스마트폰과 측위 기술의 발달로 사용자 중심의 위치기반서비스가 제공되면서 도로 정보가 관리되는 벡터 구조의 도로망에 대한 사용자의 요구가 증대되고 있다. 그러나 벡터 구조의 도로망은 대용량인 경우가 대부분이고 짧은 갱신주기를 요구하는 경우가 많아 효율적인 갱신이 중요한 이슈가 되고 있다. 이를 위하여 이종의 도로망 데이터 셋에서 자동으로 변화를 탐지하고 갱신 도로객체를 추출하는 과정이 중요하다.
일반적으로 벡터 구조의 공간 데이터 셋을 갱신하는 과정은 변화를 탐지하는 단계와, 변화를 전파(Propagation)하는 단계로 이루어진다. 이종의 도로망을 이용하여 변화를 탐지하는 방법은 꾸준히 연구되어 왔으며, 특히 최신의 고해상도 영상으로부터 추출된 도로선형을 이용하여 오래된 벡터 구조의 도로망을 갱신하기 위하여 벡터 구조의 도로객체 간의 매칭을 통하여 변화를 탐지하는 연구도 지속적으로 이루어지고 있다.
이러한 선행기술로서, 학술논문지에 게재된 Zhang and Couloigner(2004)에 의한 캐나다의 국가지형도DB(Database)의 도로망을 갱신하기 위하여 공간해상도 5.8m인 위성영상으로부터 도로를 추출하고, 추출된 도로 선형을 이용하여 벡터 구조의 도로망의 도로객체를 구성하는 링크와 노드 기반의 매칭을 수행하여 변화를 탐지하고 갱신을 수행하는 방법이 제안되었다.
또한, 선행기술로 고해상도의 위성영상에서 도로를 추출하고 추출된 도로 선형을 오래된 벡터 구조의 GIS DB의 도로망을 갱신하기 위한 연구를 수행하였으며, 이들 벡터 구조의 도로 선형간의 매칭을 위하여 GIS DB의 도로망에 버퍼를 수행하여 추출된 도로 선형과 중첩하여 버퍼거리(Buffer Distance)를 구함으로써 갱신 도로객체 여부를 판별하였다. 따라서 이종의 선형인 도로망에서 유사도를 산출하여 매칭(Matching)시키는 방법은 복잡한 과정이므로 갱신이 되어야 하는 도로망을 면으로 변형 및 매칭시켜 변화를 탐지하는 방법이 필요하다.
도로 선형에 비교 도로객체 간의 유사도를 산출하여 매칭시키는 데는 데이터에서의 표현 방식이나 세밀도(Level Of Details)의 차이로 인하여 어려움이 있다. 또한, 구축시기와 축척의 차이로 세밀도가 상이한 벡터 구조의 이종의 도로망 데이터 셋의 매칭을 수행한 결과, 도로 선형으로 매칭을 수행하였을 때 보다 이들 도로로 둘러싸인 면인 블록(Block)으로 매칭을 수행하였을 때 더 의미 있는 결과를 보일 것이다.
저자명; Zhang and Couloigner, 제목; Automatic road change detection and GIS updating from high spatial remotely-sensed imagery, 학술지; Geo-spatial Information Science, Vol.7, No.2, 2004, p.89-95
본 발명은 상기 실정을 감안하여 구축시기가 상이한 벡터 구조의 이종의 도로망 데이터 셋에서 도로 선형을 이들 도로 선형으로 둘러싸인 면인 블록을 생성하고 변화가 탐지된 블록을 탐지하고 변화가 탐지된 블록에서 갱신 도로객체를 추출하는 방법을 제공하기 위한 것이 목적이다.
또한, 본 발명에서 대상으로 하는 이종의 도로망 데이터 셋은 최근에 그 필요성이 높아진 도로망 링크와 매월 갱신된 정보가 제공되는 도로명주소 기본도 도로구간을 대상으로 하기 위한 것이 다른 목적이다.
본 발명은 상기 목적을 달성하기 위하여, (a) 갱신장치에서 네트워크로 연결된 구축시기가 상이한 이종의 도로망 데이터 셋 각각으로부터 도로망 데이터를 불러와 선형 도로객체로 둘러싸인 면인 블록으로 변형하여 생성하는 단계; (b) 상기 갱신장치는 이종의 도로망 데이터 셋에서 생성된 블록을 중첩하여 교차하는 블록 쌍에 대하여 위치 기준, 형상 기준 및 면적 기준의 가중선형조합으로 계상되는 형상유사도를 이용하여 형상유사도가 일정 값 이상인 블록 쌍을 판별하는 단계; (c) 상기 갱신장치는 오목다각형 특성을 이용하여 상기 판별된 블록 쌍에서 블록 내부에 도로가 신설된 변화를 탐지하는 단계; (d) 상기 갱신장치는 이분 그래프 기반의 군집화를 이용하여 상기 판별된 블록 쌍에서 도로가 신설되어 블록이 더 작은 블록으로 나뉘는 변화를 탐지하는 단계, 및 (e) 상기 갱신장치는 부합도를 이용하여 상기 변화가 탐지된 블록 쌍으로부터 최신의 도로망 데이터 셋에서 갱신 도로객체 선형을 추출하는 단계를 포함하여 이루어진 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법을 제공한 것이 특징이다.
본 발명에 따르면, 구축시기가 상이한 벡터 구조의 이종의 도로망 데이터 셋에서 매월 갱신되는 최신의 도로망 데이터 셋을 활용하여 자동으로 변화를 탐지하고 갱신 도로객체를 추출함으로써 갱신 탐지 정확도가 높고, 내비게이션 등에 적용되는 지리정보의 도로 갱신 비용을 대폭 절감하고, 갱신 시간도 단축시켜 짧은 갱신주기가 요구되는 도로망 데이터 셋의 신속한 갱신이 가능한 이점이 있다.
도 1은 본 발명에 따른 실시 예로, 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지를 위한 시스템의 구성을 나타낸 블록도이다.
도 2는 본 발명에 따른 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지를 위한 갱신의 정의를 예시한 도면이다.
도 3은 본 발명에 따른 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법을 나타낸 흐름도이다.
도 4는 본 발명에 따른 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법에서 오목다각형 특성을 이용한 갱신 Ⅰ 변화탐지 방법을 나타낸 도면이다.
도 5는 본 발명에 따른 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법에서 이분 그래프 군집화를 통한 갱신 Ⅱ 변화탐지 방법을 나타낸 도면이다.
도 6은 본 발명에 따른 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법에서 부합도를 예시한 도면이다.
도 7은 본 발명에 따른 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법에서 도로명주소 기본도 도로구간 레이어에서 추출된 도로객체를 나타낸 도면이다.
이하, 본 발명에 따른 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법에 관한 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.
먼저, 도 1에서, 본 발명은 이종의 도로망 데이터 셋(Datasets 또는 Database)에서 도로망 데이터 셋(110)의 갱신을 위하여 이용될 도로명주소 기본도 데이터 셋(120)은 도로를 기준으로 건물의 주소가 부여되어 매달 갱신되는 데이터가 국가공간정보유통시스템(www.nsic.go.kr)에서 무료로 배포되고 있어 취득이 용이하다는 장점이 있다. 따라서 갱신하려는 도로망 데이터 셋(110)을 갱신장치(200)에서 도로명주소 기본도 데이터 셋(120)으로부터 도로명주소 기본도 도로구간을 이용한다. 갱신장치(200)는 원격 또는 근거리 네트워크로 연결된 서버나 데스크톱 컴퓨터 또는 노트북 컴퓨터 등이 포함되고, 여기에 갱신을 위한 하드웨어 모듈과 소프트웨어 모듈 등이 포함된다.
도로망 데이터 셋(110)의 도로망 링크와 도로명주소 기본도 데이터 셋(120)의 도로구간(TL_SPRD_MANAGE)의 객체가 선으로 묘화되어 있으며, 이들 선 객체로 둘러싸인 면인 블록을 생성하여 갱신 도로객체를 탐지하게 되므로 이종의 도로망 데이터 셋에서의 갱신을 정의함에 있어 선 객체에서 변형된 블록을 기준으로 한다. 여기서, 면인 블록 생성은 이를 컴퓨터로 수행하기 위해 프로그램 언어를 통해 직접 알고리즘을 코딩한 프로그램 또는 상용프로그램(ArcGIS 등)에 의해 수행될 수 있다. 이종의 도로망 데이터 셋에서 생성된 면, 즉 블록으로 이루어진 객체를 중첩하면 교차되는 면 객체의 수가 상이하며, 이들 교차되는 면 객체 간의 관계인 매칭 관계를 분석함으로써 변화가 발생한 블록을 탐지할 수 있다. 따라서 이종의 도로망의 블록 간 매칭 관계를 바탕으로 이종의 도로망에서 도로신설로 인한 갱신을 표 1과 같이 정의할 수 있다.
Figure 112013063491012-pat00001
이때, 현장조사가 진행되지 않고 기 구축된 공간정보만을 이용하여 도로망을 갱신하기 위해서는 도로망과 도로명주소 기본도 도로구간의 세밀도 차이로 발생한 변화까지 탐지하는데 한계가 있으므로 구축된 도로망 링크가 참이라고 가정한다. 도로망 링크 블록(이하, 링크 블록이라 한다)과 도로명주소 기본도 도로구간 블록(이하, 도로구간 블록이라 한다)이 1:0이나 M:1 매칭 관계인 경우는 도로망 링크의 세밀도가 도로명주소 기본도 도로구간보다 높아 링크 블록은 있는데 도로구간 블록이 없거나 링크 블록 여러 개가 하나의 도로구간 블록과 중첩된다고 판단할 수 있다. 그 외 1:1, 1:N, 그리고 M:N 매칭 관계인 경우는 도로가 신설됨으로써 발생한 변화로 판단하고, 이를 갱신 대상으로 정의하였다.
도 2a 내지 도 2c에서, 1:1 매칭 관계는 도 2a의 링크 블록(A1)과 매칭되는 도 2b의 도로구간 블록(B1) 내부에 신설 도로가 존재하는 경우에는 갱신(갱신Ⅰ)으로 정의할 수 있으나, 도로가 신설되지 않은 경우도 있을 수 있으므로 이를 구분할 필요가 있다. 그리고 도 2c에서, 1:N과 M:N 매칭 관계는 도로구간 블록이 여러 개인 경우로 이는 신설된 도로가 새로운 도로구간 블록을 생성한 경우로 갱신(갱신 Ⅱ) 대상으로 정의하였다. 따라서 신설 도로로 인하여 링크 블록(A1)이 도로구간 블록(B11)과 (B12)에 매칭된다.
본 발명에서는 도로가 신설되어 변화가 발생한 블록을 기존의 블록이 나누어지는 경우(갱신 Ⅰ)와 기존의 블록 내에 도로가 신설되는 경우(갱신Ⅱ)로 각각 나눌 수 있으며, 갱신 Ⅰ은 매칭 관계가 1:1인 경우, 갱신 Ⅱ는 매칭 관계 1:N이나 M:N인 경우로 정의할 수 있다. 정의된 갱신에 해당하는 변화가 탐지되면 변화가 탐지된 도로구간 블록에 신설된 도로객체를 추출할 수 있다.
도 3에서, 이종의 도로망 데이터 셋(110 및 120)에서 면 객체 기반의 변화를 탐지하는 방법을 나타낸 흐름도를 참조하여 보다 상세하게 설명한다.
본 발명은 이종의 도로망 데이터 셋에서 생성된 블록의 변화를 탐지하여 탐색된 블록에서 갱신 도로객체를 추출하기 위하여 우선, 갱신장치(200)는 네트워크로 연결된 구축시기가 상이한 이종의 도로망 데이터 셋(110 및 120) 각각으로부터 도로망 데이터를 불러와 선형 도로객체로 둘러싸인 면인 블록으로 변형하여 생성한다(S10). 그리고 이종의 도로망 데이터 셋에서 생성된 블록을 중첩하여 교차하는 블록 쌍에 대하여 위치 기준, 형상 기준 및 면적 기준의 가중선형조합으로 계상되는 형상유사도를 이용하여 형상유사도가 일정 값 이상인 블록 쌍을 판별한다(S20).
갱신장치는 오목다각형 특성을 이용하여 상기 판별된 블록 쌍에서 블록 내부에 도로가 신설된 변화를 탐지(갱신 Ⅰ)하고(S30), 이분 그래프 기반의 군집화를 이용하여 상기 판별된 블록 쌍에서 도로가 신설되어 블록이 더 작은 블록으로 나뉘는 변화를 탐지(갱신 Ⅱ)한다(S40). 또한, 갱신장치(200)는 변화가 탐지된 블록 쌍에서 부합도를 측정하여 그 값이 일정 값 이상인 세그먼트(Segment, 객체)를 갱신 도로객체로 추출한다(S50).
상기 단계(S20)에서, 형상유사도를 기반으로 블록 쌍을 판별하는 방법은 링크 블록과 도로구간 블록을 중첩하여 링크 블록과 교차하는 도로구간 블록에 대하여 CRITIC를 이용한 형상유사도 기반 면 객체 매칭 알고리즘을 적용하여 형상유사도가 0.6 이상 1.0 이내인 블록 쌍을 판별한다. 이때, 본 발명은 동일한 방향성을 보이는 도로 선형으로 둘러싸인 블록에서 블록 쌍을 판별하므로 블록 면 객체 간 중첩이나 포함 관계를 설명할 수 있는 매칭 기준으로 구성하였다.
먼저, 위치 기준(Position Criterion, PC)으로, 링크 블록(
Figure 112013063491012-pat00002
)과 도로구간 블록(
Figure 112013063491012-pat00003
)의 무게중심(Centroid) 사이의 유클리드 거리(Distance)를 의미하며, 그 거리가 짧을수록 두 자료간의 공간적 위치에 대한 일치가 높다. 이는 다음의 식과 같다.
Figure 112013063491012-pat00004
다음은 형상 기준(Shape Criterion, SC)으로, 둘레(Perimeter)와 면적(Area)의 비로 산출되는 형상 지수(Shape Index)로 면 객체의 형상을 판별할 수 있다. 형상 지수는 0과 1사이의 값을 가지며 1에 가까울수록 해당 면 객체는 더 콤팩트 형상(Compact Shape)을 의미한다. 이는 다음의 식과 같다.
Figure 112013063491012-pat00005
다음은 면적 기준(Area Criterion, AC)으로, 다대다 매칭인 면 객체를 탐지하는데 이용되는 포함함수로, 면 객체간의 중첩 및 포함 관계를 설명할 수 있는 지수로, 그 값이 클수록 두 자료간의 공간적 위치 일치가 높다. 이는 다음의 식과 같다.
Figure 112013063491012-pat00006
여러 기준에서 최적의 대안을 선택하는 다기준 의사결정에서 주관적 방법으로 가중치를 결정하는 것은 항상 유용한 방법은 아니며, 객관적 방법에서 많이 사용되고 있는 표준편차 방법과 평균 방법은 속성들의 상호관계를 고려하지 않고, 동일한 가중치를 부여한다는 한계가 있는 반면에 CRITIC 방법은 각 기준의 표준편차뿐만 아니라 기준들 간의 상관관계를 고려함으로써 가중치를 결정하는 방법으로. 본 발명에서는 사용자가 가중치를 선정하는 것이 아니고, CRITIC 방법을 이용하여 자동으로 가중치를 산출하여 세 가지의 매칭 기준의 선형조합을 유도하게 되는데, CRITIC 방법은 다음과 같이 크게 4 단계로 구성된다.
1 단계: 각 매칭 기준별 표준화(normalization)
2 단계: 다기준에서 발생할 수 있는 강도 차를 평가하기 위하여, 매칭 기준 간의 상관계수 산출
3 단계: 상관계수와 각 매칭 기준별 표준편차를 이용하여 각 매칭 기준 내 정보량(amount of information) 산출
4 단계: 가중치 산출.
이렇게 생성된 매칭 기준별 가중치와 매칭 기준의 선형조합으로 산출된 값을 형상유사도라 하고, 형상 유사도(Shape Similarity, SS)는 다음의 식과 같다.
Figure 112013063491012-pat00007
다음으로, 상기 단계(S30)에서, 갱신 유형별 변화탐지로 갱신 Ⅰ에 해당하는 오목다각형 특성을 이용한 변화를 탐지한다.
형상유사도가 0.6 이상인 블록 쌍에서 1:1 매칭 관계인 블록 쌍에서 갱신Ⅰ에 해당하는 변화가 탐지된다. 이는 도 4에서, 갱신Ⅰ 변화발생 블록 쌍은 블록 내부에 도로가 신설되어 볼록다각형(Convex Polygon, 도4a)인 블록이 오목다각형(Concave Polygon, 도4b)으로 변형된다. 오목다각형은 한 변 또는 여러 변을 연장할 때, 그 연장한 선이 그 도형 안을 통과하는 다각형으로 하나 이상의 내각이 180°보다 커야한다. 이런 특성을 이용하여 각각의 블록에서 180°보다 큰 내각의 개수를 비교함으로써 갱신Ⅰ 변화발생 블록 쌍을 탐지할 수 있다. 즉 1:1 매칭 관계인 블록 쌍에서 링크 블록과 도로구간 블록을 구성하는 각각의 버텍스에서 내각을 구하여 도로구간 블록만 오목다각형인 블록 쌍과 180°보다 큰 내각의 수가 서로 상이한 매칭 블록 쌍이 갱신Ⅰ 변화발생 블록 쌍으로 판별된다.
다음으로, 상기 단계(S40)에서, 갱신 Ⅱ에 해당하는 이분 그래프 군집화를 통하여 변화를 탐지한다.
형상유사도가 0.6 이상인 블록 쌍에서 1:N이나 M:N 매칭 관계인 블록 쌍이 갱신Ⅱ 변화가 발생한 블록 쌍에 해당된다. 블록 쌍에서 1:N이나 M:N 매칭 관계인 블록 쌍은 인접행렬(Adjacency Matrix) 기반의 이분 그래프 군집화를 적용하여 판별할 수 있다.
형상유사도가 0.6 이상인 블록 쌍
Figure 112013063491012-pat00008
의 인접행렬(
Figure 112013063491012-pat00009
)은 각 블록 쌍에 해당하는 링크 블록(
Figure 112013063491012-pat00010
)의 개수(
Figure 112013063491012-pat00011
)와 도로구간 블록(
Figure 112013063491012-pat00012
)의 개수(
Figure 112013063491012-pat00013
)인
Figure 112013063491012-pat00014
행렬
Figure 112013063491012-pat00015
로 나타나며, 다음의 식과 같이 표현될 수 있다.
Figure 112013063491012-pat00016
그리고 인접행렬을 이용하여 군집화를 수행하기 위해서 다음의 식과 같은 자신 노드와의 인접(Self-adjacency)을 포함하는 행렬
Figure 112013063491012-pat00017
을 생성하고, 행렬
Figure 112013063491012-pat00018
에서 값이 0인 원소가 변하지 않을 때까지 거듭제곱을 수행한다. 이때, 값이 0이 아닌 원소 중에서 대각 성분이 군집을 이루는 블록 쌍이 갱신Ⅱ 변화발생 블록 쌍으로 판별된다.
Figure 112013063491012-pat00019
도 5에서, 이종의 면 객체 데이터 셋에서 형상유사도가 0.6 이상인 도 5a의 블록 A(링크블록)와 도 5b의 블록 B(도로구간 블록)를 이분 그래프로 도 5c와 같이 표현할 수 있다. 이분 그래프를 군집화하기 위해서는 도 5d의 인접행렬
Figure 112013063491012-pat00020
로 나타내고 이를 다시 도 5e의 행렬
Figure 112013063491012-pat00021
로 변환한다. 행렬
Figure 112013063491012-pat00022
의 값이 0인 원소가 변하지 않을 때까지 거듭제곱 수행한 후 인접이 군집으로 나타나는 블록 쌍, 즉 도 5f의 굵은 선으로 묶인 블록 쌍이 갱신 Ⅱ 변화발생 블록 쌍으로 판별된다.
다음으로, 상기 단계(S50)에서, 갱신 도로객체를 추출한다. 즉 도로망 링크와 도로구간을 변화가 탐지된 블록 쌍과 중첩하여 각 블록 내부(갱신 Ⅰ의 경우)에 있는 세그먼트(도로객체)를 추출한다. 추출된 링크 블록 내부 세그먼트에 2m 버퍼를 수행한 후, 도로구간 블록 내부 세그먼트와 중첩하여 도로구간 블록 내부 세그먼트가 버퍼로 생성된 폴리곤과 교차되는 도로구간 블록 내부 세그먼트로 나누어 부합도(Correctness)를 다음의 식과 같이 계산한다. 이때, 식에서
Figure 112013063491012-pat00023
Figure 112013063491012-pat00024
는 도 6과 같고, 산출된 부합도가 0.6 미만인 도로구간 블록 내부에 있는 세그먼트가 갱신 도로객체로 추출된다.
Figure 112013063491012-pat00025
갱신 Ⅱ 변화는 신설 도로로 인하여 도로구간 블록이 여러 개의 블록으로 나뉘게 되는 경우가 포함되며, 이 경우에는 도로구간 블록 내부가 아니라 해당 변화가 탐지된 도로구간 블록을 구성하는 도로객체를 추출해야 한다. 이를 위하여 먼저 변화가 탐지된 링크 블록에 네거티브 버퍼를 수행 후, 도로구간과 중첩하여 변화가 탐지된 도로구간 블록을 구성하는 세그먼트를 추출한다. 다음으로 이렇게 추출된 세그먼트를 이용하여 부합도를 계산하여 도로구간 블록에서 갱신 도로객체를 추출한다.
마찬가지로, 상기 일련의 과정은 이를 컴퓨터로 수행하기 위해 프로그램 언어를 통해 직접 알고리즘을 코딩한 프로그램 또는 상용프로그램(ArcGIS 등)에 의해 수행될 수 있다.
본 발명의 실시 예에서 갱신될 도로객체인 도로망 데이터 셋의 도로망 링크는 2006년 촬영되고, 2007년에 갱신된 수치지도2.0 37709081도엽과 2009년 8월 배포된 도로명주소 기본도를 이용하여 생성되었다. 생성된 도로망 링크와 2013년 4월 배포된 도로명주소 기본도 도로구간을 이용하여 328개의 링크 블록과 286개의 도로구간 블록을 생성하고 실험 자료로 사용하였다.
도로망의 링크 블록과 도로명주소 기본도의 도로구간 블록에서 형상유사도 기반 면 객체 매칭 알고리즘을 적용한 결과 중첩되는 블록 간의 형상유사도가 0.6 이상인 332개의 블록 쌍이 추출되었다. 이들 블록 쌍에서 표 2와 같이 1:1 매칭관계인 블록 쌍이 225개 판별되었으며, 오목다각형 특성을 적용하여 변화탐지를 수행한 결과 91개의 블록 쌍이 갱신Ⅰ 변화발생 블록 쌍으로 판별되었다. 다음으로, 1:1 매칭관계를 제외한 107개 블록 쌍을 대상으로 이분 그래프 군집화를 수행한 결과 표 2와 같이 1:N과 M:N 매칭 관계인 블록 쌍이 차례대로 9개와 3개가 판별되었다.
도 7a 및 도 7b에서, 이들 12개의 블록 쌍이 갱신 Ⅱ 변화발생 블록 쌍에 해당한다. 결과적으로 변화가 탐지된 블록 쌍 118개에서 블록 내부 및 블록을 구성하는 도로 세그먼트를 찾고 이들 간의 부합도를 산출하여 그 값이 0.6 미만인 도로 세그먼트, 즉 갱신 도로객체로 167개가 탐색되었다.
Figure 112013063491012-pat00026
한편, 탐색된 갱신 도로객체의 정확도 평가는 탐색율(Detection Rate,
Figure 112013063491012-pat00027
)로 수행하였다.
Figure 112013063491012-pat00028
은 정확히 탐색된 도로객체의 개수(
Figure 112013063491012-pat00029
)와 갱신 객체로 오 탐색된 도로객체의 개수(
Figure 112013063491012-pat00030
), 그리고 갱신 도로객체로 탐색되지 못한 객체의 개수(
Figure 112013063491012-pat00031
)의 합에 대한 정확히 탐색된 갱신 도로객체의 개수(
Figure 112013063491012-pat00032
)의 비로 다음의 식으로 계산될 수 있다.
Figure 112013063491012-pat00033
본 발명은 정확도 평가에 사용된 수치는 표 3과 같이 정확히 탐색된 도로객체가 167개, 갱신 도로객체로 오 탐색된 객체는 없으며, 갱신 객체로 탐색되지 못한 도로객체가 6개로 탐색율이 0.965로 나타났다. 갱신 도로객체로 탐색되지 못한 객체는 갱신 블록 쌍으로 판별되지 않는 블록에 포함된 도로객체로, 향후 갱신 블록 쌍 판별의 정확도를 더욱 향상시킬 필요가 있다.
Figure 112013063491012-pat00034
이와 같이 본 발명은 구축시기가 상이한 이종의 도로망 데이터 셋을 이용하여 선형인 도로객체를 면인 블록으로 변형한 후 면 객체 기반의 매칭 기법을 적용하여 변화를 탐지하는 방법이다. 갱신 도로객체를 탐지하기에 앞서 본 발명에서는 신설된 도로로 인하여 발생할 수 있는 이종의 도로망 데이터 셋의 갱신을 블록의 형상은 동일한데 도로구간 블록 내부에 도로가 신설된 경우(갱신 Ⅰ)와 기존의 도로구간 블록이 여러 개로 나뉘는 경우(갱신 Ⅱ)로 구분하였다. 정의된 갱신에 해당하는 도로객체를 탐지하기 위하여 도로망 링크와 도로명주소 기본도 도로구간의 선형 객체를 도로로 둘러싸인 블록인 면형으로 변형하였다. 또한, 중첩되는 블록에 형상유사도 기반 면 객체 매칭을 수행하여 형상유사도가 0.6 이상인 중첩 블록을 블록 쌍으로 판별하였다. 이들 블록 쌍에 오목다각형 성질을 이용하여 갱신Ⅰ 변화를 탐지하고, 인접행렬 기반 이분 그래프 군집화를 통하여 갱신 Ⅱ 변화를 탐지하였다. 변화가 탐지된 블록 쌍 내부에 있거나 이들 블록 쌍을 구성하는 세그먼트 간의 부합도를 산출하여 부합도가 0.6 미만인 도로명주소 기본도의 도로구간 세그먼트를 갱신 도로객체로 추출하였다. 정확도 평가를 수행한 결과, 탐색율이 0.965로 높게 나타났다.
따라서 본 발명은 이종의 도로망 데이터 셋에서 블록 쌍을 탐색하고, 탐색된 블록 쌍 내부나 이를 구성하는 도로 세그먼트를 이용하여 갱신 도로객체를 추출함으로써 블록 쌍을 탐색하는 과정이 갱신 도로객체 추출에 영향을 주게 된다.
인용된 선행기술문헌은 영상에서 추출된 도로객체를 객체 매칭과 융합 기술을 이용하여 GIS DB에서 도로 갱신 객체를 탐지함으로써, 취득시기가 상이한 이종의 공간 데이터 셋을 이용하여 매칭 기법을 적용하여 갱신 도로객체를 탐지하는 접근이고, 영상에서 추출된 도로객체, 즉 노드와 링크로 구성된 도로객체와 GIS DB의 도로객체를 노드 매칭과 링크 매칭을 수행하여 매칭인 객체를 찾고, 여기에서 비매칭인 객체가 갱신 객체로 탐지되는데, 선형의 도로객체를 그대로 적용함으로써, 노드와 링크의 매칭에 따른 2단계의 매칭을 진행하고 있다. 따라서 본 발명은 노드와 링크로 구성된 도로객체를 이들로 둘러싸인 면인 블록(block)으로 정의하고 매칭을 수행하여 갱신 도로객체를 탐지하였다는 점에서 선행기술문헌과는 차별화된 발명이다.
이상의 설명에서 본 발명은 특정의 실시 예와 관련하여 도시 및 설명하였지만, 특허청구범위에 의해 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도 내에서 다양한 개조 및 변화가 가능하다는 것을 이 기술분야에서 통상의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다.
110: 도로망 데이터 셋 120: 도로망주소 기본도 데이터 셋 200: 갱신장치

Claims (6)

  1. (a) 갱신장치에서 네트워크로 연결된 구축시기가 상이한 이종의 도로망 데이터 셋 각각으로부터 도로망 데이터를 불러와 선형 도로객체로 둘러싸인 면인 블록으로 변형하여 생성하는 단계;
    (b) 상기 갱신장치는 이종의 도로망 데이터 셋에서 생성된 블록을 중첩하여 교차하는 블록 쌍에 대하여 위치 기준, 형상 기준 및 면적 기준의 가중선형조합으로 계상되는 형상유사도를 이용하여 형상유사도가 일정 값 이상인 블록 쌍을 판별하는 단계;
    (c) 상기 갱신장치는 오목다각형 특성을 이용하여 상기 판별된 블록 쌍에서 블록 내부에 도로가 신설된 변화를 탐지하는 단계;
    (d) 상기 갱신장치는 이분 그래프 기반의 군집화를 이용하여 상기 판별된 블록 쌍에서 도로가 신설되어 블록이 더 작은 블록으로 나뉘는 변화를 탐지하는 단계, 및
    (e) 상기 갱신장치는 부합도를 이용하여 상기 변화가 탐지된 블록 쌍으로부터 최신의 도로망 데이터 셋에서 갱신 도로객체 선형을 추출하는 단계;
    를 포함하여 이루어진 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법.
  2. 제1항에 있어서, 상기 단계(b)에서,
    (b-1) 상기 갱신장치는 이종의 도로망 데이터 셋에서 생성된 블록을 중첩하여 교차하는 블록 쌍에 대하여 위치 기준(PC)으로 다음의 수학식,
    Figure 112013063491012-pat00035

    을 적용하고,
    (b-2) 상기 갱신장치는 이종의 도로망 데이터 셋에서 생성된 블록을 중첩하여 교차하는 블록 쌍에 대하여 형상 기준(SC)으로 다음의 수학식,
    Figure 112013063491012-pat00036

    을 적용하며,
    (b-3) 상기 갱신장치는 이종의 도로망 데이터 셋에서 생성된 블록을 중첩하여 교차하는 블록 쌍에 대하여 면적 기준(AC)으로 다음의 수학식,
    Figure 112013063491012-pat00037

    을 적용하고,
    (b-4) 상기 갱신장치는 상기 위치 기준, 형상 기준 및 면적 기준의 가중선형조합으로 계상되는 형상유사도(SS)로 다음의 수학식,
    Figure 112013063491012-pat00038

    을 적용하여 블록 쌍을 판별하는 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법.
  3. 제2항에 있어서, 상기 형상유사도(SS)는 0.6 ~ 1.0 인 블록 쌍을 판별하는 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법.
  4. 제1항에 있어서, 상기 단계(c)에서,
    상기 갱신장치는 한 변 또는 여러 변을 연장하였을 때에 그 연장한 선이 그 도형 안을 통과하는 다각형으로 하나 이상의 내각이 180°보다 커야하는 오목다각형의 특징에 따라 각각의 블록에서 180°보다 큰 내각의 개수를 비교하여 변화가 발생한 블록 쌍을 탐지하는 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법.
  5. 제2항에 있어서, 상기 단계(d)에서,
    (d-1) 상기 갱신장치는 형상유사도가 0.6 ~1.0 인 블록 쌍
    Figure 112014084735893-pat00039
    의 인접행렬(
    Figure 112014084735893-pat00040
    )은 각 블록 쌍에 해당하는 링크 블록(
    Figure 112014084735893-pat00041
    )의 개수(
    Figure 112014084735893-pat00042
    )와 도로구간 블록(
    Figure 112014084735893-pat00043
    )의 개수(
    Figure 112014084735893-pat00044
    )인
    Figure 112014084735893-pat00045
    행렬
    Figure 112014084735893-pat00046
    로 나타나며, 인접행렬(
    Figure 112014084735893-pat00047
    )은 다음의 수학식,
    Figure 112014084735893-pat00048

    을 적용하고,
    (d-2) 상기 갱신장치는 인접행렬을 이용하여 군집화를 수행하기 위해서 자신 노드와의 인접(Self-adjacency)을 포함하는 행렬
    Figure 112014084735893-pat00049
    을 생성하고, 행렬
    Figure 112014084735893-pat00050
    는 다음의 수학식,
    Figure 112014084735893-pat00051

    을 적용하며,
    상기 행렬
    Figure 112014084735893-pat00052
    에서 값이 0인 원소가 변하지 않을 때까지 거듭제곱을 수행하고, 값이 0이 아닌 원소 중에서 대각 성분이 군집을 이루는 블록 쌍이 갱신Ⅱ 변화발생 블록 쌍으로 판별하는 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법.
  6. 제1항에 있어서, 상기 단계(e)에서,
    상기 갱신장치는 부합도로서 다음의 수학식,
    Figure 112013063491012-pat00053

    (여기서,
    Figure 112013063491012-pat00054
    는 버퍼로 생성된 폴리곤과 교차되는 도로구간 블록 내 객체길이,
    Figure 112013063491012-pat00055
    는 도로구간 블록 내 객체길이)
    을 적용하여 계산하는 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법.
KR20130082915A 2013-07-15 2013-07-15 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법 KR101476172B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130082915A KR101476172B1 (ko) 2013-07-15 2013-07-15 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130082915A KR101476172B1 (ko) 2013-07-15 2013-07-15 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법

Publications (1)

Publication Number Publication Date
KR101476172B1 true KR101476172B1 (ko) 2014-12-24

Family

ID=52679862

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130082915A KR101476172B1 (ko) 2013-07-15 2013-07-15 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법

Country Status (1)

Country Link
KR (1) KR101476172B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109271928A (zh) * 2018-09-14 2019-01-25 武汉大学 一种基于矢量路网融合与高分遥感影像验证的道路网自动更新方法
KR101938399B1 (ko) * 2018-05-21 2019-04-10 동아항업 주식회사 Utm-k 기반의 생성 영상을 지역별 블록화를 통해 편집하는 영상처리시스템
CN111932653A (zh) * 2019-05-13 2020-11-13 阿里巴巴集团控股有限公司 数据处理方法、装置、电子设备及可读存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
김지영 외 3명, 면 객체 매칭을 위한 판별모델의 성능 평가, 2013.2. *
허용 외 2명, 응집 계층 군집화 기법을 이용한 이종 공간정보의 M:N 대응 클래스 군집 쌍 탐색, 한국측량학회지, 2012.4. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101938399B1 (ko) * 2018-05-21 2019-04-10 동아항업 주식회사 Utm-k 기반의 생성 영상을 지역별 블록화를 통해 편집하는 영상처리시스템
CN109271928A (zh) * 2018-09-14 2019-01-25 武汉大学 一种基于矢量路网融合与高分遥感影像验证的道路网自动更新方法
CN109271928B (zh) * 2018-09-14 2021-04-02 武汉大学 一种基于矢量路网融合与遥感影像验证的道路网更新方法
CN111932653A (zh) * 2019-05-13 2020-11-13 阿里巴巴集团控股有限公司 数据处理方法、装置、电子设备及可读存储介质
CN111932653B (zh) * 2019-05-13 2023-12-15 阿里巴巴集团控股有限公司 数据处理方法、装置、电子设备及可读存储介质

Similar Documents

Publication Publication Date Title
Du et al. Large-scale urban functional zone mapping by integrating remote sensing images and open social data
Xavier et al. A survey of measures and methods for matching geospatial vector datasets
Jochem et al. Identifying residential neighbourhood types from settlement points in a machine learning approach
Koukoletsos et al. Assessing data completeness of VGI through an automated matching procedure for linear data
Yang et al. A pattern‐based approach for matching nodes in heterogeneous urban road networks
Huh et al. Detecting conjugate-point pairs for map alignment between two polygon datasets
US9959647B1 (en) Representation of activity in images using geospatial temporal graphs
Sun et al. Roads and Intersections Extraction from High‐Resolution Remote Sensing Imagery Based on Tensor Voting under Big Data Environment
KR101476172B1 (ko) 이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 방법
CN116522272A (zh) 一种基于城市信息单元的多源时空数据透明融合方法
Zhang et al. An improved probabilistic relaxation method for matching multi-scale road networks
Chen et al. UVLens: Urban village boundary identification and population estimation leveraging open government data
Chen et al. Geo-referencing place from everyday natural language descriptions
Li et al. Framework for unknown airport detection in broad areas supported by deep learning and geographic analysis
Xiong A three-stage computational approach to network matching
Kaur et al. Systematic literature review of data quality within openstreetmap
KR20160116862A (ko) 복수개의 지도 상에서의 건물 폴리곤 자동정합 장치 및 방법
Lei Geospatial data conflation: A formal approach based on optimization and relational databases
Schäfers et al. SimMatching: adaptable road network matching for efficient and scalable spatial data integration
CN112883133A (zh) 基于时序数据和功能演变数据的流量预测方法
Li et al. An improved measuring method for the information entropy of network topology
Guo et al. Combined matching approach of road networks under different scales considering constraints of cartographic generalization
Wang et al. Hierarchical stroke mesh: A new progressive matching method for detecting multi-scale road network changes using OpenStreetMap
Zhang et al. Vector data partition correction method supported by deep learning
Du et al. Similarity measurements on multi‐scale qualitative locations

Legal Events

Date Code Title Description
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181218

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191218

Year of fee payment: 6