KR101439530B1 - 투명 전극을 구비하는 수광소자 및 그 제조 방법 - Google Patents

투명 전극을 구비하는 수광소자 및 그 제조 방법 Download PDF

Info

Publication number
KR101439530B1
KR101439530B1 KR1020130020685A KR20130020685A KR101439530B1 KR 101439530 B1 KR101439530 B1 KR 101439530B1 KR 1020130020685 A KR1020130020685 A KR 1020130020685A KR 20130020685 A KR20130020685 A KR 20130020685A KR 101439530 B1 KR101439530 B1 KR 101439530B1
Authority
KR
South Korea
Prior art keywords
transparent electrode
photoelectric conversion
transparent
conversion layer
electrode
Prior art date
Application number
KR1020130020685A
Other languages
English (en)
Other versions
KR20140106302A (ko
Inventor
김태근
김희동
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020130020685A priority Critical patent/KR101439530B1/ko
Priority to US14/769,185 priority patent/US9793423B2/en
Priority to PCT/KR2013/006803 priority patent/WO2014133232A1/ko
Publication of KR20140106302A publication Critical patent/KR20140106302A/ko
Application granted granted Critical
Publication of KR101439530B1 publication Critical patent/KR101439530B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 투명 전극을 구비하는 수광소자 및 그 제조 방법을 공개한다. 본 발명의 바람직한 실시예는 광을 흡수하여 전기 에너지를 생성하는 광전 변환층에 접촉하도록 투명 전극을 형성하되, 투명 전극은 빛의 전 영역에 대한 투과도가 높고, 물질에 고유한 임계전압을 초과하는 전압이 인가되면, 내부에 전류가 흐를 수 있는 전도성 필라멘트들이 형성되어, 물질의 저항상태가 고저항 상태에서 저저항 상태로 변화되는 저항변화 물질로 형성되었다. 따라서, 본 발명의 바람직한 실시예에 따른 투명 전극은 광의 전 파장 영역에 대해서 높은 광투과 특성을 나타냄과 동시에 높은 전기 전도도 특성을 나타내므로 본 발명의 수광소자는 높은 광전 변환 효율을 나타내면서도 양호한 전기적 특성을 나타낸다.

Description

투명 전극을 구비하는 수광소자 및 그 제조 방법{light receiving device having transparent electrode and manufacturing method of the same}
본 발명은 수광소자 및 그 제조 방법에 관한 것으로서, 보다 구체적으로는 투명 전극을 구비하는 수광소자 및 그 제조 방법에 관한 것이다.
광을 수광하여 동작하는 태양전지 및 포토 다이오드와 같은 수광 소자 분야에서 에너지 효율을 극대화를 위해서는, 높은 전도도와 가시광 뿐만 아니라 자외선 영역에서 우수한 투과도 특성을 지닌 투명전극 개발이 요구된다.
하지만, 현재 수광 소자의 투명 전극으로 널리 사용되고 있는 ITO(Indium Tin Oxide)는 광을 흡수하여 전기 에너지를 생성하는 광전 변환층의 역할을 수행하는 반도체층과의 오믹 접촉을 형성하기 어렵고, 이로 인하여 수광 소자의 발전 효율이 감소하는 문제점이 발생한다. 특히, 수광 소자에 대표적으로 널리 사용되는 ITO는 400nm 이하의 자외선 영역에서 높은 투과도 손실을 나타내기 때문에 자외선 수광 소자의 적용에 한계가 따른다.
이러한 문제점을 해결하기 위해서는, 투명 전극과 반도체층간의 접촉저항을 낮추어 원활한 전류 주입이 이루어지며, 빛의 전 파장 영역에서 높은 투과 특성을 지닌 투명전극의 개발이 필수적이다.
이러한 문제를 해결하기 위해, 다양한 연구들이 진행되고 있으나, 아직까지 가시광 뿐만 아니라 자외선 영역까지 고전도성과 고투과도를 동시에 나타내는 투명 전극은 개발되고 못하는 실정이다. 이는 물질의 전도성과 투과도는 서로 trade-off관계를 가지고 있기 때문이다. 자외선 영역에서 이용될 수 있을 만큼 높은 광투과도를 가지는 물질은 큰 밴드갭(large band-gap; ITO의 밴드갭 3.4eV를 기준으로 이보다 큰 밴드갭)을 가지므로, 전극으로 이용되기에는 전도성이 매우 낮고 반도체 물질과 Ohmic contact 이 이루어지지 않아 전극으로 이용하는 것이 불가능하다.
따라서, 고효율 태양전지, 포토 다이오드 등과 같이, 가시광을 포함한 자외선 영역까지 응용할 수 있는 수광 소자를 구현하기 위해서는, 전 파장 영역에서 높은 광투과 특성을 나타내는 동시에 높은 전기 전도도 특성을 나타내어 반도체층과의 오믹 접촉 형성이 가능한 투명전극 개발이 필수적이다.
본 발명은 빛의 전 파장 영역에서 높은 투과도를 나타냄과 동시에 높은 전기 전도도 특성을 나타냄으로써 반도체층과 양호한 오믹 접촉이 가능한 투명 전극을 구비하는 수광 소자 및 그 제조 방법을 제공하는 것이다.
상술한 과제를 해결하기 위한 본 발명의 바람직한 실시예에 따른 수광 소자는, 빛을 흡수하여 전기 에너지를 발생시키는 광전 변환층; 및 상기 광전 변환층과 접촉하도록 형성되어 외부의 빛을 상기 광전 변환층으로 투과시키는 투명전극을 포함하고, 상기 투명 전극은 인가되는 전계에 의해서 저항상태가 고저항 상태에서 저저항 상태로 변화되는 투명 재질의 절연물질로 형성된다.
또한, 상기 바람직한 실시예에 따른 수광 소자의 상기 투명 전극은 고유한 임계 전압 이상의 전압이 인가되어 포밍(forming) 공정이 수행됨으로써, 내부에 전도성 필라멘트가 형성될 수 있다.
또한, 상기 바람직한 실시예에 따른 수광 소자의 상기 투명 전극은 투명한 Oxide 계열의 물질, 투명한 Nitride 계열의 물질, 투명한 폴리며 계열의 물질, 및 투명한 나노 물질들 중 어느 하나로 형성될 수 있다.
또한, 상기 바람직한 실시예에 따른 수광 소자는 상기 광전 변환층과 상기 투명 전극 사이에 CNT(Carbon Nano Tube) 또는 그래핀으로 형성되는 전류확산층을 더 포함할 수 있다.
또한, 상기 바람직한 실시예에 따른 수광 소자는 상기 투명 전극의 상기 광전 변환층이 접촉하는 면의 반대면에 접촉하고, CNT(Carbon Nano Tube) 또는 그래핀으로 형성되는 전류확산층을 더 포함할 수 있다.
또한, 상기 바람직한 실시예에 따른 수광 소자는, 상기 광전 변환층의, 상기 투명 전극이 접촉하는 면의 반대면에 접촉하도록 형성되는 대향 전극을 더 포함할 수 있다.
또한, 상기 바람직한 실시예에 따른 수광 소자의 상기 광전 변환층은 제 1 반도체층, 활성층, 및 투명 전극과 접촉하는 제 2 반도체층이 순차적으로 형성되고, 상기 제 1 반도체층에는 제 1 전극 패드가 형성되고, 상기 투명 전극에는 제 2 전극 패드가 형성될 수 있다.
한편, 상술한 과제를 해결하기 위한 본 발명의 바람직한 실시예에 따른 수광소자 제조 방법은, 빛을 흡수하여 전기 에너지를 발생시키는 광전 변환층과 접촉하는 투명 전극을 형성하되, 상기 투명 전극은 인가되는 전계에 의해서 저항상태가 고저항 상태에서 저저항 상태로 변화되는 투명 재질의 절연물질로 형성되는 것을 특징으로 한다.
또한, 상기 바람직한 실시예에 따른 수광 소자 제조 방법에서, 상기 투명 전극은 고유한 임계 전압 이상의 전압이 인가되어 포밍(forming) 공정이 수행됨으로써, 내부에 전도성 필라멘트가 형성될 수 있다.
또한, 상기 바람직한 실시예에 따른 수광 소자 제조 방법에서, 상기 투명 전극은 투명한 Oxide 계열의 물질, 투명한 Nitride 계열의 물질, 투명한 폴리며 계열의 물질, 및 투명한 나노 물질들 중 어느 하나로 형성될 수 있다.
또한, 상기 바람직한 실시예에 따른 수광 소자 제조 방법은, 기판 위에 대향 전극을 형성하는 대향 전극 형성 단계; 상기 대향 전극 위에 상기 광전 변환층을 형성하는 광전 변환층 형성 단계; 및 상기 광전 변환층 위에 상기 투명 전극을 형성하고, 상기 투명 전극에 고유한 임계 전압 이상의 전압을 인가하여 포밍 공정을 수행함으로써 저항상태를 저저항상태로 변화시키는 투명 전극 형성 단계를 포함할 수 있다.
또한, 상기 바람직한 실시예에 따른 수광 소자 제조 방법은, 기판 위에 투명 전극을 형성하고, 상기 투명 전극에 고유한 임계 전압 이상의 전압을 인가하여 포밍 공정을 수행함으로써 저항상태를 저저항상태로 변화시키는 투명 전극 형성 단계; 상기 투명 전극 위에 상기 광전 변환층을 형성하는 광전 변환층 형성 단계; 및 상기 광전 변환층 위에 대향 전극을 형성하는 대향 전극 형성 단계를 포함할 수 있다.
또한, 상기 바람직한 실시예에 따른 수광 소자 제조 방법은, 상기 투명 전극 형성 단계에서, 상기 투명 전극의 상면 또는 하면에 접촉하도록, CNT(Carbon Nano Tube) 또는 그래핀으로 전류 확산층이 형성될 수 있다.
본 발명의 바람직한 실시예는 광을 흡수하여 전기 에너지를 생성하는 광전 변환층에 접촉하도록 투명 전극을 형성하되, 투명 전극은 빛의 전 영역에 대한 투과도가 높고, 물질에 고유한 임계전압을 초과하는 전압이 인가되면, 내부에 전류가 흐를 수 있는 전도성 필라멘트들이 형성되어, 물질의 저항상태가 고저항 상태에서 저저항 상태로 변화되는 저항변화 물질로 형성되었다.
따라서, 본 발명의 바람직한 실시예에 따른 투명 전극은 광의 전 파장 영역에 대해서 높은 광투과 특성을 나타냄과 동시에 높은 전기 전도도 특성을 나타내므로 본 발명의 수광소자는 높은 광전 변환 효율을 나타내면서도 양호한 전기적 특성을 나타낸다.
도 1a 내지 도 1c는 본 발명의 바람직한 실시예에 따른 수광 소자의 구조를 도시하는 도면이다.
도 2a 및 도 2b 는 저항 변화 물질의 특성을 설명하는 도면이다.
도 3은 본 발명의 바람직한 일 실시예에 따라서 수광 소자가 자외선용 포토 다이오드로 구현된 실시예를 도시하는 도면이다.
도 4는 본 발명의 바람직한 일 실시예에 따라서 자외선용 포토 다이오드를 제조하는 과정을 설명하는 도면이다.
도 5a 및 도 5b는 본 발명의 바람직한 다른 일 실시예에 따른 자외선용 포토 다이오드를 도시하는 도면이다.
도 6은 본 발명의 바람직한 일 실시예에 따라서 수광 소자가 태양전지로 구현된 예를 도시하는 도면이다.
도 7은 본 발명의 바람직한 일 실시예에 따라서 투명 전극을 구비한 태양 전지를 제조하는 과정을 설명하는 도면이다.
도 8a 및 도 8b는 본 발명의 바람직한 다른 일 실시예에 따른 태양전지를 도시하는 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다.
도 1a는 본 발명의 바람직한 실시예에 따른 투명 전극(130)을 구비한 수광 소자의 구성을 도시한 도면이다.
도 1a를 참조하면, 본 발명의 바람직한 실시예에 따른 수광 소자는 빛을 흡수하여 전기 에너지로 변환하는 광전 변환층(110)을 사이에 두고, 광전 변환층(110)의 양 측면에 투명 전극(130)과 대향 전극(120)이 각각 접촉되도록 형성된 구조를 갖는다.
광전 변환층(110)은 빛을 흡수하여 광전효과에 따라서 전자-정공쌍을 발생시킴으로써 광 에너지를 전기 에너지로 변환하는 구성으로서, 수광 소자의 구현되는 예에 따라서 P-N 접합 구조로 형성될 수 있고, PIN 레이어 구조(진성 반도체층인 i형 반도체층 양측에 p형 반도체층과 n형 반도체층이 접합된 구조)로 형성될 수도 있으며, 이 밖에도 수광 소자에 따라서 다양하게 구현될 수 있다.
대향 전극(120)은 후술하는 투명 전극(130)에 대응되도록 형성되고, 일반적으로 태양전지, 포토 다이오드 등에서 이용되는 전극과 동일하게 구현될 수 있다. 수광 소자에는 2개의 전극이 필요하고, 그 중 하나는 투명전극이 되고, 나머지 하나는 대향 전극(120)이 된다. 따라서, 본 발명의 바람직한 실시예에서의 대향 전극(120)은 투명 전극(130)과의 물리적인 배치 관계와는 무관함을 주의해야 한다.
투명 전극(130)은 외부의 빛을 투과시켜 광전 변환층(110)으로 빛을 제공한다. 투명 전극(130)은 자외선 영역을 포함하는 빛에 대한 투과도가 높으면서도 인가된 전계에 의해서 저항상태가 변화되는 투명 재질의 물질(저항 변화 물질)로 형성된다. 이러한, 저항 변화 물질은 주로 ReRAM(Resistive RAM) 분야에서 이용되는 것으로서, 물질에 고유한 임계치 이상의 전압을 물질에 인가하면, electrical break down 현상이 발생하면서 electro-forming이 수행되어, 최초에는 절연체인 물질의 저항 상태가 고저항 상태에서 저저항 상태로 변화되어 전도성을 나타내게 된다.
구체적으로, 절연체인 저항 변화 물질에 임계치 이상의 전압을 인가하면, 전기적 스트레스(forming process)에 의해 박막 내부로 전극 금속 물질이 삽입되거나 박막내 결함구조에 의해 도 1a에 도시된 바와 같이 저항 변화 물질 내부에 전도성 필라멘트(132:conducting filaments)(또는, 금속 필라멘트(metallic filaments))가 형성된다. 이 후에는, 물질에 인가된 전압이 제거되어도 전도성 필라멘트(132)는 유지되고, 이러한 전도성 필라멘트(132)를 통해서 전류가 흐르게 되어, 물질의 저항 상태가 저저항 상태로 유지된다.
도 2a를 참조하면, 저항 변화 물질(예컨대, AlN)은 forming과정 전에는 절연체 특성을 보이다가 forming 과정 이후 금속의 I-V 특성을 나타냄을 확인 할 수 있다.
도 2b는 전도성 필라멘트(132)가 형성된 후 얼마나 안정적으로 유지 될 수 있는가를 보여 주는 그래프로서, 그래프의 빨간색 점선이 보여 주는 것과 같이 전도성 필라멘트(132)가 형성 된 후 10년 동안 안정적으로 저저항 상태가 유지 될 수 있음을 알 수 있다.
본 발명의 바람직한 실시예에서는, 이러한 저항 변화 물질로서, 투명한 전도성 Oxide 계열의 물질(SiO2, Ga2O3, Al2O3, ZnO, ITO 등), 투명한 전도성 Nitride 계열의 물질(Si3N4, AlN, GaN, InN 등), 투명한 전도성 폴리머 계열의 물질(polyaniline(PANI)), poly(ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) 등), 및 투명한 전도성 나노 물질(CNT, CNT-oxide, Graphene, Graphene-oxide 등) 등을 이용하였으나, 상술한 물질 이외에도 투명하고 상술한 저항 변화 특성을 나타내는 물질이라면 본 발명의 투명 전극(130)을 형성하는데 이용될 수 있음은 물론이다. 다만, 상기 물질들이 전도성을 갖는다는 의미는, electrical break-down 현상에 의한 포밍(forming) 공정에 의해서 내부에 전도성 필라멘트(132)가 형성된 이 후에, 전도성을 갖는다는 의미이고, 본 발명의 투명 전극(130)은 포밍 공정이 수행되어, 내부에 전도성 필라멘트(132)가 형성된 것임을 주의해야 한다.
상술한 바와 같은, 본 발명의 바람직한 실시에에 따른 수광 소자를 제조하는 방법을 간략하게 설명하면, 기판(미도시 됨) 위에 대향 전극(120)을 형성하고, 그 위에 광전 변환층(110)을 형성한다. 광전 변환층(110)은 PN 접합 구조로 형성될 수도 있고, PIN 구조(진성 반도체층인 i형 반도체층 양측에 p형 반도체층과 n형 반도체층이 접합된 구조)로 형성될 수도 있다.
그 후, 광전 변환층(110) 위에 저항 변화 물질로 투명 전극(130)을 형성하고, 저항 변화 물질에 고유한 임계 전압 이상의 전압을 인가하여 electrical break down 현상을 발생시켜 포밍 공정(forming process)을 수행함으로써 투명 전극(130) 내부에 전도성 필라멘트(132)를 형성한다. 이 밖에 투명 전극(130)의 일측에 전극 패드가 형성될 수도 있다.
한편, 상술한 수광 소자 제조 방법에서는 기판 위에 대향 전극(120)을 형성하는 것으로 설명하였으나, 빛이 투과할 수 있는 유리와 같은 재질의 투명 기판 위에 저항 변화 물질로 투명 전극(130)을 형성하고, 포밍 공정을 수행하여 전도성 필라멘트(132)를 형성한 후, 그 위에 광전 변환층(110) 및 대향 전극(120)을 순차적으로 형성할 수도 있음을 주의해야 한다.
한편, 투명 전극(130)의 전류 확산 특성(current spreading)을 향상시키기 위해서, 투명 전극(130)에 형성된 전도성 필라멘트들(132)을 상호 연결시키는 CNT(Carbon Nano Tube) 또는 그래핀(graphene)으로 구현되는 전류확산층이 추가로 투명 전극(130)의 상면 또는 하면에 형성될 수 있다.
도 1b에서는 CNT 또는 그래핀으로 구현된 전류확산층(140)을 투명 전극(130)과 광전 변환층(110) 사이에 형성한 예를 도시하였고, 도 1c 에서는 CNT 또는 그래핀으로 구현되는 전류확산층(140)을 투명 전극(130)의 광전 변환층(110)에 접촉하는 면의 반대면에 형성한 예를 도시하였다.
CNT 및 그래핀은 전도성 및 빛의 투과도가 뛰어난 특성이 있고, 본 발명은 이러한 특성을 이용하여 투명 전극(130)의 일면에 접촉하도록 CNT 또는 그래핀으로 전류확산층(140)을 형성하여 투명 전극(130)의 전도성 필라멘트(132)를 상호 연결함으로써, 수광소자에 흐르는 전류가 전체 영역에 균일하게 퍼지도록 할 수 있다.
이 때, 전류확산층(140)이 두껍게 형성될수록 내부의 CNT 및 그래핀이 상호 연결되고, 이에 따라서 전도성 필라멘트들(132)이 상호 연결될 확률이 높아져서 투명 전극(130)의 전도성은 향상되지만 투과도가 낮아진다. 따라서, 본 발명의 전류확산층(140)은 투명 전극(130)의 전도성 필라멘트들(132)을 상호 연결시키기에 충분하면서도 투과도가 저해되지 않는 한도내에서 가능한 얇게 형성되는 것이 바람직하다.
지금까지 도 1a 내지 도 2b를 참조하여 본 발명의 바람직한 실시예에 따른 투명전극을 구비하는 수광소자 및 그 제조 방법에 대해서 설명하였다. 이하에서는, 수광소자가 자외선용 포토 다이오드 및 태양전지로 각각 구현된 실시예들을 설명한다. 다만, 후술하는 자외선용 포토 다이오드 및 태양전지의 구조는 기본적으로 도 1a를 참조하여 설명한 수광 소자의 구조에 포함되는 것임을 주의해야 한다.
도 3은 본 발명의 바람직한 일 실시예에 따라서 수광 소자가 자외선용 포토 다이오드로 구현된 실시예를 도시하는 도면이다.
도 3을 참조하면, 본 발명의 자외선용 포토 다이오드는 사파이어 기판(310)위에 버퍼층(320), n형 반도체층(332), 활성층(334;intrinsic 반도체층), p형 반도체층(336)이 순차적으로 형성되어 있고, p형 반도체층(336) 위에는 투명 전극(340)이 형성되며, 투명 전극(340) 위에 p형 전극 패드(350)가 형성되어 있다. 또한, n형 반도체층(332)의 일측면이 드러나도록 식각되어 있고, 그 위에 n형 반도체층(332)과 접촉하도록 n형 전극 패드(360)가 형성되어 있다.
본 발명의 바람직한 실시예에서, 버퍼층(320)은 GaN층으로 형성되었고, n형 반도체층(332)은 n-AlxGa1-xN층으로 형성되었으며, 활성층(334)은 i-AlxGa1-xN층으로 형성되었고, p형 반도체층(336)은 p-AlxGa1-xN층으로 형성되었다.
투명 전극(340)은 상술한 바와 같은 저항 변화 물질로 형성되어, 가시광 영역 뿐만 아니라 자외선 영역에서도 양호한 광투과도를 나타내고, 투명 전극(340) 물질에 고유한 임계 전압 이상의 전압이 인가되어 electrical break down 현상이 발생함에 따라서 포밍 공정이 수행된 후에는, 내부에 전도성 필라멘트(342)가 형성되어 높은 전도 특성을 나타내므로, 접촉한 p형 반도체층(336)과 양호한 오믹 접촉이 이루어진다.
종래 기술에 따른 자외선용 포토 다이오드의 경우에는, 투명 전극 없이 p형 반도체층 위에 금속 전극 패드가 직접 형성되었는데, 금속 전극 패드와 p형 반도체층 사이의 밴드 갭 차이가 매우 커서 오믹 특성이 매우 저하되는 문제점이 존재점이 존재하였다. 이러한 오믹 특성이 저하되는 문제점을 해결하기 위해서 금속 전극을 대면적으로 형성하는 방안이 제안되었지만, 이 경우에는 빛이 반도체층으로 유입되는 면적을 크게 감소시켜 전체 포토 다이오드의 성능을 저하시키는 문제점이 발생하였다.
그러나, 본 발명의 투명 전극(340)은 상술한 바와 같이, 전도성 필라멘트(342)를 내부에 형성함으로써 투명 전극(340)의 전기 전도도를 크게 향상시킬 수 있고, 따라서, 양호한 광투과 특성을 나타냄과 동시에 p형 반도체층(336)과의 양호한 오믹 접촉 특성을 이룰 수 있다.
도 4는 본 발명의 바람직한 실시예에 따라서 자외선용 포토 다이오드를 제조하는 과정을 설명하는 도면이다.
도 4를 참조하면, 먼저, 사파이어 기판(310)위에 순차적으로 버퍼층(320)(GaN층), n형 반도체층(332)(n-AlxGa1-xN층), 활성층(334)(intrinsic 반도체층:i-AlxGa1-xN층), p형 반도체층(336)(p-AlxGa1-xN층)을 형성한다. 사파이어 기판(310)에서 p형 반도체층(336)까지 형성하는 과정은 일반적인 자외선용 포토 다이오드 제조 과정과 동일하므로 구체적인 설명은 생략한다. 그 후, p형 반도체층(336) 위에 저항 변화 물질을 이용하여 투명 전극(340)을 형성한다(도 4의 (a)참조).
투명 전극이 형성된 후, 투명 전극(340) 위에 포토레지스트층(미도시 됨)을 형성하며, 포토 리쏘그래피 공정을 수행하여 포토레지스트층 중에서 p형 타입 금속 패드가 형성될 영역의 일부에 포밍 전극(410)을 형성하기 위한 패턴을 형성하고, e-beam, 스퍼터 또는 기타 금속 증착 공정을 수행하여 패턴 내부에 포밍 전극(410)을 형성한 후, lift-off 공정을 통해서 포밍 전극(410)을 제외한 포토레지스트층을 제거하여 포밍 전극(410)을 완성한다(도 4의 (b)참조).
그 후, 투명 전극(340) 위에 형성된 포밍 전극(410)에 물질에 고유한 임계 전압 이상의 전압을 인가하면, electrical break-down에 따른 포밍 공정이 수행되어, 절연물질인 투명 전극(340) 내부에 전도성 필라멘트(342)가 형성되어, 투명 전극(340)의 저항 상태가 고저항 상태에서 저저항 상태로 변화된다(도 4의 (c)참조).
투명 전극(340) 내부에 전도성 필라멘트(342)가 형성되면, 투명 전극(340) 위에 p형 금속 전극 패드를 형성한다(도 4의 (d)참조). 이 때, p형 전극 패드(190)를 형성하는 방법은 포밍을 수행하기 위한 전극(410)을 제거하고 별도의 금속 전극 패드를 형성할 수도 있고, 마스크(420)를 이용하여 포밍 전극(410) 위에 추가로 금속을 증착하여 p형 금속 전극 패드를 형성할 수도 있다.
그 후, n형 반도체층(332)이 드러나도록 투명 전극(340)으로부터 p형 반도체층(336), 활성층(334)을 순차적으로 식각하고, n형 반도체층(332) 위에 n형 전극 패드를 형성함으로써 자외선용 포토 다이오드를 완성한다(도 4의 (e)참조).
지금까지 도 3 및 도 4를 참조하여 상술한 실시예에서, 광전 변환층(330)이 n형 반도체층(332), 활성층(334)(intrinsic 반도체층), 및 p형 반도체층(336)으로 구성되는 예를 설명하였으나, 광전 변환층(330)이 PN접합만으로도 구현될 수 있음은 물론이다.
지금까지 본 발명의 바람직한 일 실시예에 따른 자외선용 포토 다이오드 및 그 제조 방법에 대해서 설명하였다.
도 3 및 도 4를 참조하여 상술한 일 실시예에서, 투명 전극(340)내에 형성된 일부 전도성 필라멘트(342)는 다른 전도성 필라멘트들(342)과 연결되지 않을 가능성이 있다.
도 5a 및 도 5b는 문제를 해결하기 위한 본 발명의 바람직한 일 실시예의 변형 실시예에 따른 자외선용 포토 다이오드를 도시하였다.
도 5a 및 도 5b에 도시된 예에서는, 투명 전극(340)의 전류 확산 특성(current spreading)을 향상시키기 위해서, 투명 전극(340)에 형성된 전도성 필라멘트들(342)을 상호 연결시키는 CNT(Carbon Nano Tube) 또는 그래핀(graphene)으로 구현되는 전류확산층(510,520)을 투명 전극(340)의 상면 또는 하면에 형성하였다.
도 5a에서는 CNT 또는 그래핀으로 구현되는 전류확산층(510)을 투명 전극(340) 위에 형성한 예를 도시하였고, 도 5b에서는, CNT 또는 그래핀으로 구현된 전류확산층(520)을 투명 전극(340)과 p형 반도체층(336) 사이에 형성한 예를 도시하였다.
CNT 및 그래핀은 전도성 및 빛의 투과도가 뛰어난 특성이 있고, 본 발명은 이러한 특성을 이용하여 투명 전극(340)의 일면에 접촉하도록 CNT 또는 그래핀으로 전류확산층(510,520)을 형성하여 투명 전극(340)의 전도성 필라멘트(342)를 상호 연결함으로써, 투명 전극(340)으로 유입된 전류가 광전 변환층(330) 전체 영역으로 확산되도록 하였다.
이 때, 전류확산층(510,520)이 두껍게 형성될수록 내부의 CNT 및 그래핀이 상호 연결되고, 이에 따라서 전도성 필라멘트들(342)이 상호 연결될 확률이 높아져서 투명 전극(340)의 전도성은 향상되지만 투과도가 낮아진다. 따라서, 본 발명의 전류확산층(510,520)은 투명 전극(340)의 전도성 필라멘트들(342)을 상호 연결시키기에 충분하면서도 투과도가 저해되지 않는 한도내에서 가능한 얇게 형성되는 것이 바람직하다.
도 5a 및 도 5b에 도시된 본 발명의 실시예에서는, 약 2nm 내지 약 100nm 의 두께로 전류확산층(510,520)을 형성하였다. 2nm는 CNT 및 그래핀을 단일층으로 형성할 수 있는 최소의 두께이고, 100nm는 빛의 투과도를 80% 이상으로 유지할 수 있는 최대의 두께이다.
도 5a에 도시된 예의 경우에는, 도 4를 참조하여 상술한 제조 과정에서, 투명 전극(340)에 포밍 공정이 수행되어 전도성 필라멘트(342)가 형성된 직후에 CNT 또는 그래핀으로 전류확산층(510)을 형성하고, 그 위에 p타입 전극 패드(350)를 형성한다는 점을 제외하면 나머지 제조 공정은 동일하다.
도 5b에 도시된 예의 경우에, 도 4를 참조하여 상술한 제조과정에서, p형 반도체층(336)을 형성한 후, p형 반도체층(336) 위에 CNT 또는 그래핀으로 전류확산층(520)을 형성하고, 그 위에 투명 전극(340)을 형성한다는 점을 제외하면 나머지 제조 공정은 동일하다.
지금까지 도 3 내지 5b를 참조하여, 본 발명의 바람직한 실시예에 따른 수광소자가 자외선용 포토 다이오드에 적용된 예를 설명하였다. 종래의 가시광 영역에서 이용되는 포토 다이오드는 도 6 내지 7b를 참조하여 후술하는 태양 전지와 동일한 구조를 가지므로 구체적인 설명은 생략한다.
도 6은 본 발명의 바람직한 일 실시예에 따라서 수광 소자가 태양전지로 구현된 예를 도시하는 도면이다.
도 6을 참조하면, 본 발명의 바람직한 일 실시예에 따른 태양전지는 광전 변환층(630)의 양측에 투명 전극(640)과 대향 전극(620)이 각각 접합하고 있는 구조를 갖는다. 이 때, 유리 기판과 같은 지지 기판(610)은 투명 전극(640)에 접촉하도록 형성될 수도 있고, 대향 전극(620)에 접촉하도록 형성될 수도 있다.
또한, 광전 변환층(630)은 도 6에 도시된 바와 같이, PN 접합 구조로 형성될 수도 있고, n형, i형, p형 반도체층이 접합된 PIN 접합층으로 형성될 수도 있다. 도 6에 도시된 예에서는 투명 전극(640)이 p형 반도체층(634)에 접촉하고, 대향 전극(620)이 n형 반도체층(632)에 접촉하는 것으로 도시하였으나, 투명 전극(640)이 n형 반도체층에 접촉하고 대향 전극(620)이 p형 반도체층에 접촉하도록 구성될 수도 있음은 물론이다.
도 6에 도시된 태양전지의 동작을 간략하게 설명하면, 투명 전극(640)을 통해서 입사된 외부의 빛은 투명 전극(640)을 통과하여 광전 변환층(630)으로 유입되고, 입사된 태양광이 가지고 있는 에너지에 의해 광전 변환층(630)에서 정공(hole)과 전자(electron)가 발생하며, 이때, PN접합에서 발생한 전기장에 의해서 상기 정공(+)는 P형 반도체층으로 이동하고 전자(-)는 N형 반도체층으로 이동하게 되어 전위가 발생하게 된다.
상기 투명 전극(640)은 도 1a 및 도 3에 도시된 투명 전극(640)과 동일한 저항 변화 물질로 형성될 수 있고, 저항 변화 물질에 고유한 임계치 이상의 전압이 인가되어 electrical break down 현상이 발생함에 따라서 포밍 공정이 수행되어, 내부에 전도성 필라멘트(642)가 형성된다. 따라서, 도 6의 투명 전극(640)은 가시광 영역뿐만 아니라 자외선 영역의 빛까지 모두 높은 투과 특성을 나타냄과 동시에, 전도성 필라멘트(642)에 의해서 높은 전기 전도도 특성을 나타낸다.
도 7은 본 발명의 바람직한 일 실시예에 따라서 투명 전극(640)을 구비한 태양 전지를 제조하는 과정을 설명하는 도면이다.
도 7을 참조하면, 먼저, 일반적인 태양전지 제조 공정과 동일한 방식으로 기판위에 대향 전극(620) 및 광전 변환층(630)을 형성하고, 광전 변환층(630)에 접촉하도록 저항 변화 물질로 투명 전극(640)을 형성한다(도 7의 (a)참조).
그 후, 투명 전극(640) 위에 포토레지스트층(미도시 됨)을 형성하며, 포토 리쏘그래피 공정을 수행하여 포토레지스트층에 포밍 전극(710)을 형성하기 위한 패턴을 형성하고, e-beam, 스퍼터 또는 기타 금속 증착 공정을 수행하여 패턴 내부에 포밍 전극(710)을 형성한 후, lift-off 공정을 통해서 포밍 전극(710)을 제외한 포토레지스트층을 제거하여 포밍 전극(710)을 완성한다(도 7의 (b)참조).
그 후, 투명 전극(640) 위에 형성된 포밍 전극(710)에 물질에 고유한 임계 전압 이상의 전압을 인가하면, electrical break-down에 따른 포밍 공정이 수행되어, 절연물질인 투명 전극(640) 내부에 전도성 필라멘트(642)가 형성되어, 투명 전극(640)의 저항 상태가 고저항 상태에서 저저항 상태로 변화된다(도 7의 (c)참조).
투명 전극(640) 내부에 전도성 필라멘트(642)가 형성되면, 투명 전극(640)에 전극 패드를 형성한다(도 7의 (d)참조). 이 때, 전극 패드(720)를 형성하는 방법은 포밍을 수행하기 위한 전극(710)을 제거하고 별도의 금속 전극 패드를 형성할 수도 있고, 마스크(미도시 됨)를 이용하여 포밍 전극(710) 위에 추가로 금속을 증착하여 전극 패드를 형성할 수도 있다.
도 8a 및 도 8b는 본 발명의 바람직한 다른 일 실시예에 따른 태양전지를 도시하는 도면이다.
도 8a 및 도 8b에 도시된 예에서는, 투명 전극(640)의 전류 확산 특성(current spreading)을 향상시키기 위해서, 투명 전극(640)에 형성된 전도성 필라멘트들(642)을 상호 연결시키는 CNT(Carbon Nano Tube) 또는 그래핀(graphene)으로 구현되는 전류확산층(810,820)을 투명 전극(640)의 상면 또는 하면에 형성하였다.
도 8a에서는 CNT 또는 그래핀으로 구현되는 전류확산층(810)을 투명 전극(640) 위에 형성한 예를 도시하였고, 도 8b에서는 CNT 또는 그래핀으로 구현된 전류확산층(820)을 투명 전극(640)과 광전 변환층(630) 사이에 형성한 예를 도시하였다.
도 8a에 도시된 예의 경우에는, 도 7을 참조하여 상술한 제조 과정에서, 투명 전극(640)에 포밍 공정이 수행되어 전도성 필라멘트(642)가 형성된 직후에 CNT 또는 그래핀으로 전류확산층(810)을 형성하였다는 점을 제외하면 나머지 제조 공정은 동일하다.
도 8b에 도시된 예의 경우에, 도 7을 참조하여 상술한 제조과정에서, 광전 변환층(630)을 형성한 후에 광전 변환층(630) 위에 CNT 또는 그래핀으로 전류확산층(820)을 형성하고, 그 위에 투명 전극(640)을 형성한다는 점을 제외하면 나머지 제조 공정은 동일하다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
110 광전 변환층 120 대향 전극
130 투명 전극 132 전도성 필라멘트
140 전류확산층
310 기판 320 버퍼층
330 광전 변환층 332 n형 반도체층
334 활성층 336 p형 반도체층
340 투명 전극 342 전도성 필라멘트
510,520 전류확산층
610 기판 620 대향 전극
630 광전 변환층 632 n형 반도체층
634 p형 반도체층 640 투명 전극
642 전도성 필라멘트

Claims (13)

  1. 빛을 흡수하여 전기 에너지를 발생시키는 광전 변환층; 및
    상기 광전 변환층과 접촉하도록 형성되어 외부의 빛을 상기 광전 변환층으로 투과시키는 투명전극을 포함하고,
    상기 투명 전극은 인가되는 전계에 의해서 저항상태가 고저항 상태에서 저저항 상태로 변화된 투명 재질의 절연물질로 형성된 것을 특징으로 하는 수광소자.
  2. 제 1 항에 있어서,
    상기 투명 전극은 고유한 임계 전압 이상의 전압이 인가되어 포밍(forming) 공정이 수행됨으로써, 내부에 전도성 필라멘트가 형성된 것을 특징으로 하는 수광 소자.
  3. 제 1 항에 있어서,
    상기 투명 전극은 투명한 Oxide 계열의 물질, 투명한 Nitride 계열의 물질, 투명한 폴리며 계열의 물질, 및 투명한 나노 물질들 중 어느 하나로 형성되는 것을 특징으로 하는 수광소자.
  4. 제 1 항에 있어서,
    상기 광전 변환층과 상기 투명 전극 사이에 CNT(Carbon Nano Tube) 또는 그래핀으로 형성되는 전류확산층을 더 포함하는 것을 특징으로 하는 수광소자.
  5. 제 1 항에 있어서,
    상기 투명 전극의 상기 광전 변환층이 접촉하는 면의 반대면에 접촉하고, CNT(Carbon Nano Tube) 또는 그래핀으로 형성되는 전류확산층을 더 포함하는 것을 특징으로 하는 수광소자.
  6. 제 1 항에 있어서,
    상기 광전 변환층의, 상기 투명 전극이 접촉하는 면의 반대면에 접촉하도록 형성되는 대향 전극을 더 포함하는 것을 특징으로 하는 수광소자.
  7. 제 1 항에 있어서,
    상기 광전 변환층은 제 1 반도체층, 활성층, 및 투명 전극과 접촉하는 제 2 반도체층이 순차적으로 형성되고, 상기 제 1 반도체층에는 제 1 전극 패드가 형성되고, 상기 투명 전극에는 제 2 전극 패드가 형성되는 것을 특징으로 하는 수광 소자.
  8. 빛을 흡수하여 전기 에너지를 발생시키는 광전 변환층과 접촉하는 투명 전극을 형성하되,
    상기 투명 전극은 인가되는 전계에 의해서 저항상태가 고저항 상태에서 저저항 상태로 변화되는 투명 재질의 절연물질로 형성되는 것을 특징으로 하는 수광소자 제조 방법.
  9. 제 8 항에 있어서,
    상기 투명 전극은 고유한 임계 전압 이상의 전압이 인가되어 포밍(forming) 공정이 수행됨으로써, 내부에 전도성 필라멘트가 형성되는 것을 특징으로 하는 수광소자 제조 방법.
  10. 제 8 항에 있어서,
    상기 투명 전극은 투명한 Oxide 계열의 물질, 투명한 Nitride 계열의 물질, 투명한 폴리며 계열의 물질, 및 투명한 나노 물질들 중 어느 하나로 형성되는 것을 특징으로 하는 수광소자 제조 방법.
  11. 제 8 항에 있어서,
    기판 위에 대향 전극을 형성하는 대향 전극 형성 단계;
    상기 대향 전극 위에 상기 광전 변환층을 형성하는 광전 변환층 형성 단계; 및
    상기 광전 변환층 위에 상기 투명 전극을 형성하고, 상기 투명 전극에 고유한 임계 전압 이상의 전압을 인가하여 포밍 공정을 수행함으로써 저항상태를 저저항상태로 변화시키는 투명 전극 형성 단계를 포함하는 것을 특징으로 하는 수광소자 제조 방법.
  12. 제 8 항에 있어서,
    기판 위에 투명 전극을 형성하고, 상기 투명 전극에 고유한 임계 전압 이상의 전압을 인가하여 포밍 공정을 수행함으로써 저항상태를 저저항상태로 변화시키는 투명 전극 형성 단계;
    상기 투명 전극 위에 상기 광전 변환층을 형성하는 광전 변환층 형성 단계; 및
    상기 광전 변환층 위에 대향 전극을 형성하는 대향 전극 형성 단계를 포함하는 것을 특징으로 하는 수광소자 제조 방법.
  13. 제 11 항 또는 제 12 항에 있어서, 상기 투명 전극 형성 단계에서,
    상기 투명 전극의 상면 또는 하면에 접촉하도록, CNT(Carbon Nano Tube) 또는 그래핀으로 전류 확산층이 형성되는 것을 특징으로 하는 수광소자 제조 방법.

KR1020130020685A 2013-02-26 2013-02-26 투명 전극을 구비하는 수광소자 및 그 제조 방법 KR101439530B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020130020685A KR101439530B1 (ko) 2013-02-26 2013-02-26 투명 전극을 구비하는 수광소자 및 그 제조 방법
US14/769,185 US9793423B2 (en) 2013-02-26 2013-07-30 Light receiving device including transparent electrode and method of manufacturing light receiving device
PCT/KR2013/006803 WO2014133232A1 (ko) 2013-02-26 2013-07-30 투명 전극을 구비하는 수광소자 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130020685A KR101439530B1 (ko) 2013-02-26 2013-02-26 투명 전극을 구비하는 수광소자 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20140106302A KR20140106302A (ko) 2014-09-03
KR101439530B1 true KR101439530B1 (ko) 2014-09-17

Family

ID=51428474

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130020685A KR101439530B1 (ko) 2013-02-26 2013-02-26 투명 전극을 구비하는 수광소자 및 그 제조 방법

Country Status (3)

Country Link
US (1) US9793423B2 (ko)
KR (1) KR101439530B1 (ko)
WO (1) WO2014133232A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210026210A (ko) * 2019-08-29 2021-03-10 성균관대학교산학협력단 절연막을 가지는 태양전지의 전극 접촉 구조 및 이의 제조 방법
US11512396B2 (en) 2019-11-12 2022-11-29 Korea University Research And Business Foundation Method for doping using electric field

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101402037B1 (ko) * 2012-09-19 2014-06-02 고려대학교 산학협력단 전도성 필라멘트가 형성된 투명 전극을 구비하는 유기 발광소자 및 그 제조 방법
US10324317B2 (en) 2013-10-24 2019-06-18 Sony Semiconductor Solutions Corporation Light control device, imaging element, and imaging device, and light transmittance control method for light control device
KR102285456B1 (ko) * 2015-02-10 2021-08-03 동우 화인켐 주식회사 도전패턴
US10475948B1 (en) 2018-05-31 2019-11-12 International Business Machines Corporation Transparent ultraviolet photodetector
CN112103367B (zh) * 2020-10-09 2022-07-15 中国科学技术大学 一种半导体光电探测器及其制备方法
CN114725235A (zh) * 2022-04-06 2022-07-08 中国科学院苏州纳米技术与纳米仿生研究所 双极性响应多波长光电探测器、其制作方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004070361A (ja) * 2002-08-06 2004-03-04 Illinois Tool Works Inc <Itw> 静電制御装置、媒体処理装置用静電制御システム、および媒体処理装置用静電制御装置製造方法
JP2010016381A (ja) * 2008-07-03 2010-01-21 Gwangju Inst Of Science & Technology 酸化物膜と固体電解質膜を備える抵抗変化メモリ素子およびこれの動作方法
KR20110030162A (ko) * 2009-09-17 2011-03-23 주식회사 하이닉스반도체 저항성 메모리 장치 제조방법
KR101087911B1 (ko) * 2009-11-23 2011-11-30 한양대학교 산학협력단 유기-무기 하이브리드 태양전지 및 그 제조방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284631A (ja) * 2000-03-30 2001-10-12 Toshiba Corp 光検出器及び光検出システム
JP2007250742A (ja) * 2006-03-15 2007-09-27 Seiko Epson Corp 光電変換素子の製造方法、光電変換装置の製造方法、光電変換素子及び光電変換装置
US8018568B2 (en) * 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
KR101154347B1 (ko) * 2009-08-24 2012-06-13 한양대학교 산학협력단 그래핀 박막과 나노 입자를 이용한 광검출기 및 그 제조 방법
US8716953B2 (en) * 2009-12-07 2014-05-06 At&T Intellectual Property I, L.P. Mechanisms for light management
KR20120003775A (ko) * 2010-07-05 2012-01-11 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법, 발광 소자 패키지, 및 조명 시스템
JP2012195501A (ja) * 2011-03-17 2012-10-11 Sumitomo Chemical Co Ltd 薄膜光電変換素子および太陽電池
US8604574B2 (en) * 2011-05-03 2013-12-10 International Business Machines Corporation Transparent photodetector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004070361A (ja) * 2002-08-06 2004-03-04 Illinois Tool Works Inc <Itw> 静電制御装置、媒体処理装置用静電制御システム、および媒体処理装置用静電制御装置製造方法
JP2010016381A (ja) * 2008-07-03 2010-01-21 Gwangju Inst Of Science & Technology 酸化物膜と固体電解質膜を備える抵抗変化メモリ素子およびこれの動作方法
KR20110030162A (ko) * 2009-09-17 2011-03-23 주식회사 하이닉스반도체 저항성 메모리 장치 제조방법
KR101087911B1 (ko) * 2009-11-23 2011-11-30 한양대학교 산학협력단 유기-무기 하이브리드 태양전지 및 그 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210026210A (ko) * 2019-08-29 2021-03-10 성균관대학교산학협력단 절연막을 가지는 태양전지의 전극 접촉 구조 및 이의 제조 방법
KR102254528B1 (ko) * 2019-08-29 2021-05-20 성균관대학교산학협력단 절연막을 가지는 태양전지의 전극 접촉 구조 및 이의 제조 방법
US11512396B2 (en) 2019-11-12 2022-11-29 Korea University Research And Business Foundation Method for doping using electric field

Also Published As

Publication number Publication date
WO2014133232A1 (ko) 2014-09-04
US9793423B2 (en) 2017-10-17
US20150380579A1 (en) 2015-12-31
KR20140106302A (ko) 2014-09-03

Similar Documents

Publication Publication Date Title
KR101439530B1 (ko) 투명 전극을 구비하는 수광소자 및 그 제조 방법
Kong et al. Graphene/Si Schottky solar cells: a review of recent advances and prospects
CN108281554B (zh) 一种量子点结构光电探测器及其制备方法
US9570699B2 (en) Organic light emitting device having transparent electrode where conducting filaments formed and method of manufacturing the same
KR20140104144A (ko) 투명 전극을 구비하는 수직형 발광소자 및 그 제조 방법
KR101003808B1 (ko) Pn접합 및 쇼트키 접합을 갖는 다중 태양 전지 및 이의 제조 방법
US9024367B2 (en) Field-effect P-N junction
KR101508574B1 (ko) 투명전극을 포함하는 반도체 소자 및 그 제조방법
KR101505512B1 (ko) 투명 전극 및 이의 제조 방법
US9209335B2 (en) Solar cell system
KR101264368B1 (ko) 다층 구조의 쇼트키 접합층을 갖는 태양 전지
KR101920639B1 (ko) 후면 전극형 태양전지 및 이의 제조방법
US20100307576A1 (en) Photovoltaic device and method for manufacturing the same
KR101321353B1 (ko) 투명 전극 형성 방법 및 이를 이용하여 제조된 반도체 장치
WO2014136691A1 (ja) 光電変換装置及び同装置の製造方法
KR101206758B1 (ko) 이종 적층형 박막 태양전지 및 그 제조방법
KR20110107934A (ko) 탄소나노튜브/ZnO 투명태양전지 및 그 제조방법
Le et al. Advances in solar energy harvesting integrated by van der Waals graphene heterojunctions
US20120132266A1 (en) Photoelectric conversion device using semiconductor nanomaterial
TWI520193B (zh) 透明電極形成方法及利用其製造之半導體裝置
KR102646186B1 (ko) TOPCon 실리콘 태양전지와 그 제조방법 및 실리콘 태양전지의 폴리실리콘층 형성방법
KR20140068721A (ko) 미세 패턴 및 투명 도전막의 제조 방법
KR102451084B1 (ko) 고효율 태양광 모듈
KR102320117B1 (ko) 그래핀-반도체 이종접합 광전소자 및 이의 제조방법
Park et al. Transparent photodiodes consisting of p-type CNT/n-type ZnO heterojunction with graphene electrodes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170707

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180723

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190808

Year of fee payment: 6