KR101438937B1 - Method for measuring residual capacity of lithium sulfur battery - Google Patents

Method for measuring residual capacity of lithium sulfur battery Download PDF

Info

Publication number
KR101438937B1
KR101438937B1 KR1020120141893A KR20120141893A KR101438937B1 KR 101438937 B1 KR101438937 B1 KR 101438937B1 KR 1020120141893 A KR1020120141893 A KR 1020120141893A KR 20120141893 A KR20120141893 A KR 20120141893A KR 101438937 B1 KR101438937 B1 KR 101438937B1
Authority
KR
South Korea
Prior art keywords
battery
voltage
lithium
remaining capacity
electrolyte
Prior art date
Application number
KR1020120141893A
Other languages
Korean (ko)
Other versions
KR20140073888A (en
Inventor
진대건
류희연
류경한
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020120141893A priority Critical patent/KR101438937B1/en
Publication of KR20140073888A publication Critical patent/KR20140073888A/en
Application granted granted Critical
Publication of KR101438937B1 publication Critical patent/KR101438937B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0038Circuits for comparing several input signals and for indicating the result of this comparison, e.g. equal, different, greater, smaller (comparing pulses or pulse trains according to amplitude)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬황 배터리의 방전 시 용량이 줄어듦에 따라 방전곡선에서 2차 평탄 전압 영역의 배터리 잔존 용량을 정확하게 측정할 수 있는 리튬황 배터리 잔존 용량 측정 방법에 관한 것이다.The present invention relates to a lithium sulfur battery residual capacity measurement method capable of accurately measuring the remaining capacity of the battery in the secondary flat voltage region in the discharge curve as the capacity of the lithium sulfur battery is reduced.

Description

리튬황 배터리 잔존 용량 측정 방법{Method for measuring residual capacity of lithium sulfur battery}TECHNICAL FIELD [0001] The present invention relates to a method for measuring a residual capacity of a lithium sulfur battery,

본 발명은 리튬황 배터리의 잔존용량을 정확하게 측정할 수 있고, 배터리를 효율적으로 운용할 수 있는 리튬황 배터리 잔존 용량 측정 방법에 관한 것이다.
The present invention relates to a lithium sulfur battery remaining capacity measuring method capable of accurately measuring the remaining capacity of a lithium sulfur battery and efficiently operating the battery.

자동차의 대량 보급에 따른 대기 오염 및 소음 등의 환경 공해 문제 및 석유 고갈에 따른 새로운 형태의 에너지 수급원의 필요성이 대두됨에 따라 이를 해결할 수 있는 전기 자동차의 개발 필요성이 증가되어 왔으며, 이들의 동력원으로서 고출력, 고에너지 밀도를 갖는 전지의 개발이 요구되고 있다.As the necessity of a new type of energy supply source is emerged due to environmental pollution problems such as air pollution and noise due to massive supply of automobiles and oil depletion, the necessity of development of electric vehicles that can solve this problem has been increased. Development of a battery having high output and high energy density is required.

이러한 요구에 부응하는 에너지원으로서 리튬황 배터리와 리튬 이온 배터리의 리튬 이차 전지가 주로 연구되고 있으며, 특히 최근 가장 많은 각광을 받고 있는 고성능의 차세대 첨단 신형 전지중의 하나가 리튬황 배터리이다. Lithium secondary batteries of lithium-sulfur batteries and lithium-ion batteries are mainly studied as energy sources to meet these demands. In particular, lithium-sulfur batteries are one of the most advanced high-performance next-generation advanced batteries recently.

리튬황 배터리는 양극 활물질로 1675mAh/g의 비용량을 갖는 황(무기 유황, S8) 또는 황 계열 화합물을 이용하고 음극 활물질로 3860mAh/g의 비용량을 갖는 리튬 금속을 이용하는 전지이다.The lithium sulfur battery is a battery using a sulfur metal (inorganic sulfur, S 8 ) or a sulfur type compound having a specific capacity of 1675 mAh / g as a cathode active material and a lithium metal having a specific capacity of 3860 mAh / g as an anode active material.

리튬황 전지는 환원 반응시(방전시) S-S 결합이 끊어지면서 S의 산화수가 감소하고, 산화 반응시(충전시) S의 산화수가 증가하면서 S-S 결합이 다시 형성되는 산화-환원 반응을 이용하여 전기적 에너지를 저장 및 생성한다.Lithium sulphate batteries use an oxidation-reduction reaction, in which SS bonds are re-formed during the reduction reaction (discharge) to decrease the oxidation number of S and increase the oxidation number of S (upon charging) Store and generate energy.

한편, 전기 자동차는 배터리에 충전된 에너지에 의해 주행하는 자동차이므로, 배터리에 충전된 잔존 용량(SOC %)을 파악하는 것이 매우 중요하며, 주행 중 배터리의 잔존 용량을 파악하여 주행 가능 거리 등의 정보를 운전자에게 알려 주고자 하는 여러 기술이 개발되고 있다.On the other hand, it is very important to understand the remaining capacity (SOC%) charged in the battery because the electric vehicle is driven by energy charged in the battery. It is very important to know the remaining capacity of the battery while driving and to obtain information A number of technologies are being developed to inform the driver.

충전가능한 2차 전지의 잔존 용량을 검출하기 위해 이용가능한 방법으로서, 전지 전압을 측정하는 것에 의해 2차 전지의 잔존 용량을 검출하는 전압법을 이용하는 검출 방법과, 전압과 전류를 측정하고 적산하는 것에 의해 2차 전지의 잔존 용량을 구하는 적산법을 이용하는 검출 방법 등을 들 수 있다.As a method that can be used to detect the remaining capacity of the rechargeable secondary battery, there is a detection method that uses a voltage method that detects the remaining capacity of the secondary battery by measuring the battery voltage, And a detection method using an integration method for obtaining the remaining capacity of the secondary battery.

전압법을 이용한 잔존 용량 검출방법을 살펴보면, 전지 셀의 단자 전압을 측정하고, 2차 전지의 전압과 전지 용량(잔존 용량율) 사이의 상관성에 의거해서 잔존 용량을 산출하는 것으로써, 예를 들면 리튬 이온 전지의 경우에는 전지전압이 4. 2V/셀이면 풀충전이라고 판단하고, 전지 전압이 2. 4V/셀이 되면 전지가 과방전 상태라고 판단할수 있으며, 이에 의해 측정을 용이하게 할 수 있다.The residual capacity detection method using the voltage method can be exemplified by measuring the terminal voltage of the battery cell and calculating the remaining capacity based on the correlation between the voltage of the secondary battery and the battery capacity (remaining capacity ratio) In the case of a lithium ion battery, it is determined that the battery is full-charged if the battery voltage is 4.2 V / cell, and it can be determined that the battery is in an over-discharge state when the battery voltage is 2.4 V / cell. .

상기 적산법을 이용한 잔존 용량 검출방법을 살펴보면, 전류를 측정하고 이 측정 전류를 일정시간마다 적산하는 전류 적산법과, 전압과 전류를 측정하고 측정된 전압과 측정된 전류를 서로 곱함으로써 전력량을 산출하고, 또한 일정시간마다 산출된 전력량을 적산하는 전력 적산법으로 분류될 수 있다. The remaining capacity detection method using the above-described integration method includes a current integration method of measuring a current and integrating the measured current every predetermined time, a method of measuring a voltage and a current, calculating a power amount by multiplying a measured voltage and a measured current, And can also be classified into a power accumulation method for accumulating the calculated amount of electric power at predetermined time intervals.

상기 적산법 모두 방전 전류량 또는 방전 전력량을 산출한 후, 전지가 갖는 사용 가능한 전류량 또는 전력량에 대해 그 산출된 방전 전류 또는 산출된 방전 전력량의 비율로부터 2차 전지의 잔존 용량을 구할 수 있으며, 이에 의해 전압의 변동에 좌우되는 일없이, 잔존 용량의 안정된 검출이 가능해진다.The remaining capacity of the secondary battery can be obtained from the ratio of the calculated discharge current or the calculated discharge power amount to the usable current amount or amount of electric power of the battery after calculating the discharge current amount or the discharge electric power amount, It is possible to stably detect the remaining capacity without being influenced by fluctuation of the remaining capacity.

도 1은 특허문헌(등록특허 10-1166099; 도 7 참조)에 따른 2차 전지의 잔존용량율 산출 방법의 순서도로서, 2차 전지의 잔존 용량율을 산출 방법은 2차 전지의 전류값 또는 전력값을 일정시간마다 적산하는 것에 의해 전지 용량을 산출하는 적산법을 이용하여 2차 전지의 잔존 용량율을 검출하는 단계와, 2차 전지의 전압값을 측정하고 전압값과 잔존 용량율 사이의 상관성에 의거해서 잔존 용량율을 산출하는 전압법을 이용하여 2차 전지의 잔존 용량율을 검출하는 단계와, 2차 전지의 잔존 용량율에 따라서 적산법에 의해 검출된 잔존 용량율과 전압법에 의해 검출된 잔존 용량율을 가중 가산하고, 최종적인 잔존 용량율을 검출하는 단계를 포함하여 이루어진다.FIG. 1 is a flow chart of a method for calculating a remaining capacity rate of a secondary battery according to a patent document (refer to Patent Document 10-1166099; see FIG. 7). The method for calculating the remaining capacity rate of a secondary battery is a method The method comprising the steps of: detecting a remaining capacity ratio of the secondary battery by using an integration method for calculating a battery capacity by integrating a value of the battery capacity at a predetermined time; measuring a voltage value of the secondary battery; Detecting a remaining capacity ratio of the secondary battery by using a voltage method of calculating a remaining capacity ratio based on the remaining capacity ratio of the secondary battery; Weighted addition of the remaining capacity rate, and detecting the final remaining capacity rate.

그런데, 상기 특허문헌에서 제시한 방법은 도 2에 도시한 바와 같이 기존의 리튬 이온 배터리와 같은 충·방전 전압 곡선(충방전시 변하는 전압의 형태로서 양극과 음극 및 배터리의 소재가 같으면 모두 동일하게 나타남)이 잔존 용량에 따라 계속해서 일대일 대응하는 경우에는 그 적용이 용이하지만, 충·방전 전압 곡선이 남은 용량에 따라 일대일 대응을 하지 않는 경우에는 이러한 방법에 의해 잔존용량을 측정하는데 한계가 있다.However, as shown in FIG. 2, the method disclosed in the above patent document is based on the same charging / discharging voltage curve as that of a conventional lithium ion battery (when the materials of the positive electrode, the negative electrode, and the battery are the same, However, if the charging / discharging voltage curve does not correspond one-to-one depending on the remaining capacity, there is a limit to the measurement of the remaining capacity by this method.

예를 들면, 도 3은 리튬황 배터리 시스템의 방전곡선을 보여주는 그래프로서, 리튬황 배터리는 리튬 이온 배터리와 달리 평탄 전압 영역이 2번 나타난다.For example, FIG. 3 is a graph showing a discharge curve of a lithium sulfur battery system, in which a lithium-sulfur battery appears twice in a flat voltage region unlike a lithium-ion battery.

그런데, 기존의 리튬 이온 배터리와 같은 기술을 사용할 경우, 1차 평탄 전압 영역에서의 용량 측정은 문제가 되지 않지만, 2차 평탄 전압 영역에서는 용량이 줄어듦에 따라 전압이 감소하는 것이 아니라 평행하게 유지되며, 전압곡선이 직선적으로 평행한 것이 아니라 볼록한 형태를 보이며 잔존 용량에 따라 일대일 대응되지 않아 잔존 용량 측정이 어려워진다.However, when using the same technology as the conventional lithium ion battery, the capacity measurement in the primary flat-voltage region is not a problem, but in the secondary flat-voltage region, as the capacity is reduced, , The voltage curve shows a convex shape instead of being linearly parallel to each other, and the one-to-one correspondence does not correspond to the remaining capacity, which makes it difficult to measure the remaining capacity.

다시 말해서, 상기 볼록한 전압 곡선을 보이는 2차 평탄 전압 영역에서는 전압값은 동일하지만 용량이 서로 다른 지점이 발생하여 전압과 용량이 1 대 2로 대응되므로 잔존 용량 측정이 어려워지는 것이다.
In other words, in the second-order flat-voltage region showing the convex voltage curve, since the voltage value is the same but the capacity is different from each other, the voltage and the capacity correspond to one to two, which makes it difficult to measure the remaining capacity.

본 발명은 상기와 같은 문제점을 해결하기 위해 발명한 것으로서, 리튬황 배터리의 방전 시 용량이 줄어듦에 따라 방전곡선에서 2차 평탄 전압 영역의 배터리 잔존 용량을 정확하게 측정할 수 있는 리튬황 배터리 잔존 용량 측정 방법을 제공하는데 그 목적이 있다.
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above problems, and it is an object of the present invention to provide a lithium-sulfur battery residual capacity measuring method capable of accurately measuring the residual capacity of the battery in the secondary flat- The purpose of the method is to provide.

상기한 목적을 달성하기 위해 본 발명에 따른 리튬황 배터리의 방전 시 전압곡선이 볼록한 형태로 나타나는 2차 평탄 전압 영역이 발생하는지 여부를 판단하는 단계; 상기 2차 평탄 전압 영역이 발생하는 경우에 동일한 전압을 나타내는 두 지점에서 전해질 내에 녹아 있는 검출인자를 측정하는 단계; 및 상기 두 지점에서 측정된 전해질 내의 검출인자를 비교하고, 각 지점에서의 검출인자를 확인하여 배터리의 잔존 용량을 측정하는 단계를 포함하여 이루어지는 것을 특징으로 한다.In order to accomplish the above object, there is provided a method of controlling a lithium-ion battery, the method comprising: determining whether a secondary flat-voltage region appears in a convex shape of a voltage curve at the time of discharging the lithium- Measuring a detection factor dissolved in the electrolyte at two points that indicate the same voltage when the secondary flat voltage region occurs; And comparing the detection factors in the electrolyte measured at the two points and determining the detection factor at each point to measure the remaining capacity of the battery.

상기 검출인자는 리튬폴리설파이드(PS)의 농도, 전해질 점도 및 이온전도도 중 어느 하나 또는 둘 이상으로 조합된 것을 특징으로 한다.
The detection factor is characterized by being combined with any one or two or more of the concentration of lithium polysulfide (PS), the electrolyte viscosity and the ionic conductivity.

본 발명에 따른 리튬황 배터리 잔존 용량 측정 방법의 장점을 설명하면 다음과 같다.The advantages of the lithium-sulfur battery residual capacity measuring method according to the present invention will be described below.

첫째로, 리튬황 배터리의 방전 곡선이 볼록하게 나타나는 2차 평탄 전압 영역에서 전압이 동일하게 나타나는 지점 사이의 전해질 점도, PS의 농도, 이온전도도, 전해질의 색 변화를 확인하고, 역으로 상기 농도 등을 확인하여 배터리 잔존 용량을 정확하게 측정할 수 있다.First, the electrolyte viscosity, the PS concentration, the ion conductivity, and the color change of the electrolyte between the point where the voltage appears the same in the secondary flat voltage region in which the discharge curves of the lithium sulfur battery appear convex are confirmed, and conversely, The battery remaining capacity can be accurately measured.

둘째로, 배터리의 잔존 용량을 사용자가 파악함으로써 배터리를 효율적으로 운용할 수 있다.
Second, the user can determine the remaining capacity of the battery and efficiently operate the battery.

도 1은 특허문헌(등록특허 10-1166099; 도 7 참조)에 따른 2차 전지의 잔존용량율 산출 방법의 순서도
도 2는 리튬이온 배터리의 방전 곡선을 보여주는 그래프
도 3은 리튬황 배터리의 방전 곡선을 보여주는 그래프
도 4는 본 발명에 따른 2차 평탄 전압 역역에서 방전 전압 곡선의 개략도
도 5는 본 발명에 따른 리튬황 배터리 방전 시 2차 평탄 전압 영역에서 측정된 농도값을 보여주는 그래프
1 is a flow chart of a method for calculating a remaining capacity rate of a secondary battery according to Patent Document 10-1606099 (refer to FIG. 7)
2 is a graph showing a discharge curve of a lithium ion battery
3 is a graph showing a discharge curve of a lithium sulfur battery
4 is a schematic view of a discharge voltage curve in a secondary flat-voltage region according to the present invention
FIG. 5 is a graph showing the concentration values measured in the secondary flat-voltage region in the lithium-sulfur battery discharge according to the present invention

이하, 첨부한 도면을 참조하여 본 발명의 바림작한 실시예를 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세하게 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention.

첨부한 도 4는 본 발명에 따른 2차 평탄 전압 역역에서 방전 전압 곡선의 개략도이고, 도 5는 본 발명에 따른 리튬황 배터리 방전 시 2차 평탄 전압 영역에서 측정된 농도값을 보여주는 그래프이다.FIG. 4 is a schematic view of a discharge voltage curve in a secondary flat-voltage region according to the present invention, and FIG. 5 is a graph showing a concentration value measured in a secondary flat-voltage region in a lithium-sulfur battery discharge according to the present invention.

본 발명은 리튬황 배터리 잔존 용량 측정 방법은 셀 반응이 일어날 때 전해질 내의 PS(리튬폴리설파이드) 농도 및 전해질의 점도가 변하는 것을 통해 리튬황 배터리의 잔존 용량을 정확하게 측정할 수 있는 리튬황 배터리 잔존 용량 측정 방법에 관한 것이다.The present invention relates to a method for measuring the remaining capacity of a lithium-sulfur battery, which is capable of accurately measuring the remaining capacity of a lithium-sulfur battery through a change in PS (lithium polysulfide) concentration in the electrolyte and a viscosity of the electrolyte when a cell reaction occurs, And a measurement method.

리튬황 배터리의 경우 방전 시 고상의 유황 S8이 리튬이온과 반응하여 LiXS8 형태의 리튬폴리설파이드(PS)로 전해질에 용해된다.In the case of lithium-sulfur batteries, solid sulfur S 8 reacts with lithium ions and dissolves in the electrolyte as lithium polysulfide (PS) in the form of Li X S 8 .

상기 리튬폴리설파이드는 1차 평탄 전압 영역이 끝나는 지점에서 최대로 많이 녹아 있고, 이후 2차 평탄 전압 영역에서는 리튬폴리설파이드가 계속해서 리튬이온과 반응하여 리튬설파이드 Li2S를 생성하며, 이 리튬설파이드는 다시 고체 형태로 석출된다.The lithium polysulfide melts to a maximum at the end of the primary flat voltage region. Then, in the secondary flat voltage region, lithium polysulfide continuously reacts with lithium ions to generate lithium sulfide Li 2 S, and this lithium sulfide Is again precipitated in solid form.

상기와 같은 과정에서 전해질에 녹아있는 PS로 인해 전해질의 점도, 전해질 내 PS의 농도, 전해질의 이온전도도, 전해질의 색 등이 변화한다.The viscosity of the electrolyte, the concentration of PS in the electrolyte, the ionic conductivity of the electrolyte, and the color of the electrolyte change due to the PS dissolved in the electrolyte in the above process.

본 발명은 2차 평탄 전압 영역에서 전해질에 녹아있는 PS로 인해 전해질의 점도, 전해질 내 PS의 농도, 전해질의 이온전도도, 전해질의 색 등이 변화하는 것을 확인하고, 역으로 농도를 확인하면 배터리의 용량을 정확하게 측정할 수 있다.In the present invention, it is confirmed that the viscosity of the electrolyte, the concentration of PS in the electrolyte, the ion conductivity of the electrolyte, the color of the electrolyte, and the like change due to the PS dissolved in the electrolyte in the secondary flat voltage region. Conversely, The capacity can be measured accurately.

이때, 전해액의 PS 농도, 점도, 이온전도도는 배터리 팩에서 자체적으로 측정이 가능하고, 리튬황 배터리의 전해액을 넣는 양에 따라 전해질의 PS 농도, 점도, 이온전도도 모두 상대적으로 바뀌기 때문에, 어떠한 고정된 수치를 갖지는 않는다.At this time, the PS concentration, viscosity, and ion conductivity of the electrolyte can be measured by the battery pack itself, and the PS concentration, viscosity, and ionic conductivity of the electrolyte are relatively changed depending on the amount of the electrolyte of the lithium-sulfur battery, It does not have numerical values.

본 발명에 따른 리튬황 배터리 잔존 용량 측정 방법은 리튬황 배터리의 방전 전압 곡선에서 1차 평탄 전압 영역의 경우에는 전압을 통해 잔존 용량을 측정하는 기존의 방법을 사용하고, 2차 평탄 전압 영역의 경우에는 방전 전압 곡선이 위로 볼록하게 나타나는 것을 이용한다.In the method for measuring the remaining capacity of a lithium-sulfur battery according to the present invention, a conventional method of measuring a remaining capacity through a voltage is used in the case of a primary flat-voltage region in a discharge voltage curve of a lithium-sulfur battery, , The discharge voltage curve appears convex upward.

도 4에 도시한 바와 같이, 상기 2차 평탄 전압 영역의 경우에는 동일한 전압을 나타내는 지점이 2 곳이 있으며, 이때 두 점 사이의 전해질 내의 PS 농도(혹은 전해질의 점도 혹은 전해질의 이온전도도)를 비교함으로써, ①번 포인트인지 또는 ②번 포인트 인지를 알 수 있다. 즉, 좀더 상세히 설명하면, 리튬황 배터리의 방전 시 전해질에 대해 미리 정해진 검출인자를 측정하면서 전압을 측정하여 방전 전압 곡선이 볼록한 형태로 나타나는 2차 평탄 전압 영역이 발생하는지 여부를 판단하고, 이어 2차 평탄 전압 영역이 발생하는 경우에 동일한 전압을 나타내는 두 지점에서 측정된 검출인자를 확인한 후, 상기 동일한 전압을 나타내는 두 지점에서 측정된 검출인자를 비교하여 동일한 전압을 나타내는 상기 두 지점을 구분한 다음, 전압과 검출인자에 의해 구분된 각 지점에 해당하는 배터리의 잔존 용량을 구하는 것이다.As shown in FIG. 4, in the case of the secondary flat voltage region, there are two points at which the same voltage is expressed. In this case, the PS concentration (or the electrolyte viscosity or the ion conductivity of the electrolyte) in the electrolyte between the two points is compared , It is possible to know whether it is the first point or the second point. That is, in more detail, when a lithium sulfur battery discharges, a voltage is measured while measuring a predetermined detection factor with respect to the electrolyte, and it is determined whether or not a secondary flat voltage region appearing as a convex discharge voltage curve occurs. A detection factor measured at two points indicating the same voltage in the case of a flat flat voltage region is detected and then the detection factors measured at two points representing the same voltage are compared to distinguish the two points representing the same voltage , The remaining capacity of the battery corresponding to each point separated by the voltage and the detection factor is obtained.

상기 ①번 포인트에서 ②번 포인트로 갈수록 전해질의 PS 농도 및 점도가 감소하고, 전해질의 이온전도도가 증가한다.The PS concentration and viscosity of the electrolyte decrease from the point ① to the point ②, and the ion conductivity of the electrolyte increases.

이하, 본 발명을 다음 실시예에 의거하여 더욱 상세히 설명하겠는바, 본 발명이 다음 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples, but the present invention is not limited by the following examples.

실시예Example

리튬황 배터리의 양극에 포함된 황 S8의 양은 1.836mg으로 7.15×10-6 mol(몰)이고, 방전 시 유황이 리튬 이온과 반응하여 리튬폴리설파이드(PS) 형태로 전해질에 용해되는데, 1차 평탄 전압 영역이 끝나는 지점에서 PS가 전해질에 가장 많이 녹았을 때의 양은 1.43×10-5 mol(Li2S4 기준)이다.The amount of sulfur S 8 contained in the anode of the lithium-sulfur battery is 1.836 mg, which is 7.15 × 10 -6 mol (mol), and sulfur reacts with lithium ions to dissolve in the electrolyte in the form of lithium polysulfide (PS) At the point where the car flat voltage region ends, the amount of PS dissolved in the electrolyte is 1.43 × 10 -5 mol (based on Li 2 S 4 ).

이때, 전해질에 녹아 있는 PS의 몰농도는 0.179M이다.At this time, the molar concentration of PS dissolved in the electrolyte is 0.179M.

도 5에 도시한 바와 같이 2.052V의 전압이 나타나는 지점은 두 곳이고, 두 지점에서의 PS 농도를 확인한 결과는 각각 0.153M과 0.034M이었다.As shown in FIG. 5, there are two points at which a voltage of 2.052 V appears, and PS concentrations at two points are 0.153 M and 0.034 M, respectively.

역으로 상기 지점에서 농도를 확인하면 배터리의 잔존용량을 측정할 수 있다.Conversely, if the concentration is confirmed at the above point, the remaining capacity of the battery can be measured.

따라서, 본 발명에 의하면 리튬황 배터리의 방전 곡선이 볼록하게 나타나는 2차 평탄 전압 영역에서 전압이 동일하게 나타나는 지점 사이의 전해질 점도, PS의 농도, 전해질 이온전도도, 전해질의 색 변화 등을 통해 확인하고, 역으로 상기 농도 등을 확인하여 배터리 잔존 용량을 정확하게 측정할 수 있다.Therefore, according to the present invention, it is confirmed through the electrolyte viscosity, the concentration of PS, the electrolyte ion conductivity, the color change of the electrolyte, etc. between the point where the discharge curve of the lithium-sulfur battery appears convex in the secondary flat- , It is possible to accurately measure the battery remaining capacity by checking the concentration and the like.

또한, 배터리의 잔존 용량을 사용자가 파악함으로써 배터리를 효율적으로 운용할 수 있다.
In addition, the user can determine the remaining capacity of the battery, thereby efficiently operating the battery.

Claims (2)

리튬황 배터리의 방전 시 전해질에 대해 미리 정해진 검출인자를 측정하면서 전압을 측정하여 방전 전압 곡선이 볼록한 형태로 나타나는 2차 평탄 전압 영역이 발생하는지 여부를 판단하는 단계;
상기 2차 평탄 전압 영역이 발생하는 경우에 동일한 전압을 나타내는 두 지점에서 측정된 검출인자를 확인하는 단계;
상기 동일한 전압을 나타내는 두 지점에서 측정된 검출인자를 비교하여 동일한 전압을 나타내는 상기 두 지점을 구분한 뒤, 전압과 검출인자에 의해 구분된 각 지점에 해당하는 배터리의 잔존 용량을 구하는 단계;
를 포함하여 이루어지는 것을 특징으로 하는 리튬황 배터리 잔존 용량 측정 방법.
Measuring a voltage while measuring a predetermined detection factor with respect to an electrolyte when discharging the lithium-sulfur battery, and determining whether a secondary flat voltage region in which a discharge voltage curve appears in a convex form occurs;
Confirming the measured detection factor at two points that indicate the same voltage when the secondary flat voltage region occurs;
Comparing the measured detection factors at two points representing the same voltage to distinguish the two points representing the same voltage, and then obtaining a remaining capacity of the battery corresponding to each point divided by the voltage and the detection factor;
And measuring the remaining capacity of the lithium-sulfur battery.
청구항 1에 있어서,
상기 검출인자는 리튬폴리설파이드(PS)의 농도, 전해질 점도 및 이온전도도 중 어느 하나 또는 둘 이상으로 조합된 것을 특징으로 하는 리튬황 배터리 잔존 용량 측정 방법.
The method according to claim 1,
Wherein the detection factor is selected from the group consisting of a concentration of lithium polysulfide (PS), an electrolyte viscosity, and ionic conductivity, or a combination of two or more thereof.
KR1020120141893A 2012-12-07 2012-12-07 Method for measuring residual capacity of lithium sulfur battery KR101438937B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120141893A KR101438937B1 (en) 2012-12-07 2012-12-07 Method for measuring residual capacity of lithium sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120141893A KR101438937B1 (en) 2012-12-07 2012-12-07 Method for measuring residual capacity of lithium sulfur battery

Publications (2)

Publication Number Publication Date
KR20140073888A KR20140073888A (en) 2014-06-17
KR101438937B1 true KR101438937B1 (en) 2014-09-11

Family

ID=51127232

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120141893A KR101438937B1 (en) 2012-12-07 2012-12-07 Method for measuring residual capacity of lithium sulfur battery

Country Status (1)

Country Link
KR (1) KR101438937B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220052548A (en) * 2020-10-21 2022-04-28 주식회사 엘지에너지솔루션 Method for determining state of charge of a lithium-sulfur battery and a battery pack implementing the method
CN113655399B (en) * 2021-08-16 2024-04-16 国网湖南省电力有限公司 Intelligent perception terminal battery power consumption life detection method and system
CN117872167B (en) * 2024-03-12 2024-05-14 深圳市杰维工业设备有限公司 Battery performance influence factor analysis method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020039824A (en) * 2000-11-22 2002-05-30 김순택 Negative electrode and for lithium-sulfur battery and lithium-sulfur battery comprising same
KR20040096384A (en) * 2003-05-09 2004-11-16 엘지전자 주식회사 A method and a device of displaying remained discharge time for rechargeable battery
KR20090080996A (en) * 2006-10-25 2009-07-27 옥시스 에너지 리미티드 A lithium-sulphur battery with a high specific energy and a method of operating same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020039824A (en) * 2000-11-22 2002-05-30 김순택 Negative electrode and for lithium-sulfur battery and lithium-sulfur battery comprising same
KR20040096384A (en) * 2003-05-09 2004-11-16 엘지전자 주식회사 A method and a device of displaying remained discharge time for rechargeable battery
KR20090080996A (en) * 2006-10-25 2009-07-27 옥시스 에너지 리미티드 A lithium-sulphur battery with a high specific energy and a method of operating same

Also Published As

Publication number Publication date
KR20140073888A (en) 2014-06-17

Similar Documents

Publication Publication Date Title
EP3410138B1 (en) Battery system in vehicle and aging deterioration estimation method for battery
EP2894486B1 (en) Apparatus and method for estimating power of secondary battery comprising blended cathode material
US10408886B2 (en) Apparatus and method for estimating SOC of secondary battery including blended cathode material
US9121911B2 (en) Degradation determination device and degradation determination method for lithium ion secondary battery
JP5179047B2 (en) Storage device abnormality detection device, storage device abnormality detection method, and abnormality detection program thereof
CN102761141B (en) Electric quantity correction and control method of lithium ion power storage battery
JP5515524B2 (en) Secondary battery deterioration state determination system and secondary battery deterioration state determination method
CN103823191B (en) A kind of Li-ion batteries piles that calculates can by the method for residual capacity
EP2848954B1 (en) Apparatus and method for estimating state of charge of secondary battery including blended cathode material
KR101619634B1 (en) System for estimating state of health using battery moedel parameter and method thereof
US9897660B2 (en) Apparatus and method for estimating parameter of secondary battery
EP3913726B1 (en) Soh/soc detecting device for power storage element, and power storage element managing unit
CN110061531B (en) Energy storage battery equalization method
JP2012181976A (en) Lithium secondary battery abnormally charged state detection device and inspection method
CN102203628B (en) Method for determining the charging state of a battery in a charging or discharging phase
WO2013132907A1 (en) Lithium-ion secondary cell system, method for testing lithium-ion secondary cell, and method for controlling lithium-ion secondary cell
CN106340689A (en) Battery pack system capacity self-learning method
CN104749524A (en) Battery management system power calculation method
US11217832B2 (en) Power supply system
KR101438937B1 (en) Method for measuring residual capacity of lithium sulfur battery
Khizbullin et al. Research on the effect of the depth of discharge on the service life of rechargeable batteries for electric vehicles
Mushini et al. Analysis of open circuit voltage and state of charge of high power lithium ion battery
WO2013105139A1 (en) Method for controlling and device for controlling secondary battery
JP2023030370A (en) Device for estimating deterioration of lithium ion secondary battery and method for estimating battery capacity of lithium ion secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee