KR101424487B1 - Inductively coupled plasma reactor having multi rf antenna - Google Patents

Inductively coupled plasma reactor having multi rf antenna Download PDF

Info

Publication number
KR101424487B1
KR101424487B1 KR1020070088035A KR20070088035A KR101424487B1 KR 101424487 B1 KR101424487 B1 KR 101424487B1 KR 1020070088035 A KR1020070088035 A KR 1020070088035A KR 20070088035 A KR20070088035 A KR 20070088035A KR 101424487 B1 KR101424487 B1 KR 101424487B1
Authority
KR
South Korea
Prior art keywords
radio frequency
gas supply
power
reaction chamber
plasma
Prior art date
Application number
KR1020070088035A
Other languages
Korean (ko)
Other versions
KR20090022564A (en
Inventor
최대규
Original Assignee
최대규
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최대규 filed Critical 최대규
Priority to KR1020070088035A priority Critical patent/KR101424487B1/en
Publication of KR20090022564A publication Critical patent/KR20090022564A/en
Application granted granted Critical
Publication of KR101424487B1 publication Critical patent/KR101424487B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/32119Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor
    • H01Q1/366Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor using an ionized gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/4652Radiofrequency discharges using inductive coupling means, e.g. coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

본 발명은 다중 무선 주파수 안테나를 갖는 유도 결합 플라즈마 반응기에 관한 것이다. 유도 결합 플라브마 반응기는 플라즈마 방전 영역을 갖는 반응 챔버, 상기 반응 챔버에 플라즈마 방전을 발생시키기 위한 유도 기전력을 제공하는 다중 무선 주파수 안테나, 다중 무선 주파수 안테나로 구동 전력을 제공하는 전원 공급원, 및 상기 전원 공급원으로부터 제공되는 구동 전력을 상기 다중 무선 주파수 안테나로 제공하되 각각의 무선 주파수 안테나로 제공되는 전력 비율을 가변시킬 수 있는 전력 가변 분배기를 포함한다. 본 발명의 다중 무선 주파수 안테나를 갖는 유도 결합 플라즈마 반응기에 의하면, 유도 결합 플라즈마의 에지 영역과 중앙 영역의 플라즈마 커플링 에너지에 대한 개별적인 조절이 가능하다. 그럼으로 에지 영역과 중앙 영역의 플라즈마 밀도를 균일하도록 제어할 수 있어서 보다 향상된 고균일한 고밀도의 플라즈마를 발생할 수 있다.The present invention relates to an inductively coupled plasma reactor having multiple radio frequency antennas. An inductively coupled plasma reactor includes a reaction chamber having a plasma discharge region, a multi-radio frequency antenna providing an induction electromotive force to generate a plasma discharge in the reaction chamber, a power source providing driving power to the multiple radio frequency antenna, And a power variable divider that provides the driving power provided from the source to the multiple radio frequency antenna and can vary the power ratio provided to each radio frequency antenna. INDUSTRIAL APPLICABILITY According to the inductively coupled plasma reactor having multiple radio frequency antennas of the present invention, it is possible to individually control the plasma coupling energy at the edge region and the central region of the inductively coupled plasma. Thus, it is possible to control the plasma density in the edge region and the central region to be uniform so that a more uniform high density plasma can be generated.

유도 결합 플라즈마, 유도 결합, 무선 주파수, 안테나 Inductively coupled plasma, inductively coupled, radio frequency, antenna

Description

다중 무선 주파수 안테나를 갖는 유도 결합 플라즈마 반응기{INDUCTIVELY COUPLED PLASMA REACTOR HAVING MULTI RF ANTENNA}TECHNICAL FIELD [0001] The present invention relates to an inductively coupled plasma reactor having multiple radio frequency antennas,

본 발명은 무선 주파수(radio frequency)를 이용한 유도 결합 플라즈마 반응기(inductively coupled plasma reactor)에 관한 것으로, 구체적으로는 다중 무선 주파수 안테나를 사용하여 플라즈마 이온 에너지에 대한 제어 능력이 높고 보다 균일한 대면적의 고밀도 플라즈마를 발생할 수 있는 유도 결합 플라즈마 반응기에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inductively coupled plasma reactor using a radio frequency and, more particularly, to a plasma processing apparatus using a radio frequency antenna, To an inductively coupled plasma reactor capable of generating a high-density plasma.

플라즈마는 같은 수의 음이온(positive ions)과 전자(electrons)를 포함하는 고도로 이온화된 가스이다. 플라즈마 방전은 이온, 자유 래디컬, 원자, 분자를 포함하는 활성 가스를 발생하기 위한 가스 여기에 사용되고 있다. 활성 가스는 다양한 분야에서 널리 사용되고 있으며 대표적으로 반도체 제조 공정 예들 들어, 식각(etching), 증착(deposition), 세정(cleaning), 에싱(ashing) 등에 다양하게 사용된다.A plasma is a highly ionized gas containing the same number of positive ions and electrons. Plasma discharges are used in gas excitation to generate active gases including ions, free radicals, atoms, and molecules. The active gas is widely used in various fields and is typically used in a variety of semiconductor manufacturing processes such as etching, deposition, cleaning, and ashing.

플라즈마를 발생하기 위한 플라즈마 소스는 여러 가지가 있는데 무선 주파수(radio frequency)를 사용한 용량 결합 플라즈마(capacitive coupled plasma)와 유도 결합 플라즈마(inductive coupled plasma)가 그 대표적인 예이다.Plasma sources for generating plasma are various, and examples thereof include capacitive coupled plasma and inductive coupled plasma using a radio frequency.

용량 결합 플라즈마 소스는 정확한 용량 결합 조절과 이온 조절 능력이 높아서 타 플라즈마 소스에 비하여 공정 생산력이 높다는 장점을 갖는다. 반면, 무선 주파수 전원의 에너지가 거의 배타적으로 용량 결합을 통하여 플라즈마에 연결되기 때문에 플라즈마 이온 밀도는 용량 결합된 무선 주파수 전력의 증가 또는 감소에 의해서만 증가 또는 감소될 수 있다. 그러나 무선 주파수 전력의 증가는 이온 충격 에너지를 증가시킨다. 결과적으로 이온 충격에 의한 손상을 방지하기 위해서는 공급되는 무선 주파수 전력의 한계성을 갖게 된다.Capacitively coupled plasma sources have the advantage that they have higher capacity for process control than other plasma sources because of their accurate capacitive coupling and ion control capability. On the other hand, because the energy of the radio frequency power source is almost exclusively coupled to the plasma through capacitive coupling, the plasma ion density can only be increased or decreased by increasing or decreasing the capacitively coupled radio frequency power. However, an increase in radio frequency power increases the ion impact energy. As a result, in order to prevent damage due to the ion bombardment, the radio frequency power supplied is limited.

한편, 유도 결합 플라즈마 소스는 무선 주파수 전원의 증가에 따라 이온 밀도를 쉽게 증가시킬 수 있으며 이에 따른 이온 충격은 상대적으로 낮아서 고밀도 플라즈마를 얻기에 적합한 것으로 알려져 있다. 그럼으로 유도 결합 플라즈마 소스는 고밀도의 플라즈마를 얻기 위하여 일반적으로 사용되고 있다. 유도 결합 플라즈마 소스는 대표적으로 무선 주파수 안테나(RF antenna)를 이용하는 방식과 변압기를 이용한 방식(변압기 결합 플라즈마(transformer coupled plasma)라고도 함)으로 기술 개발이 이루어지고 있다. 여기에 전자석이나 영구 자석을 추가하거나, 용량 결합 전극을 추가하여 플라즈마의 특성을 향상 시키고 재현성과 제어 능력을 높이기 위하여 기술 개발이 이루어지고 있다.On the other hand, it is known that an inductively coupled plasma source can easily increase the ion density according to the increase of a radio frequency power source, and accordingly, the ion impact is relatively low and is suitable for obtaining a high density plasma. Thus, inductively coupled plasma sources are commonly used to obtain high density plasma. Inductively coupled plasma sources are typically developed using a RF antenna or a transformer coupled plasma (also referred to as a transformer coupled plasma). Techniques are being developed to improve the characteristics of plasma by adding electromagnets or permanent magnets thereto or adding capacitive coupling electrodes, and to improve reproducibility and controllability.

무선 주파수 안테나는 나선 타입 안테나(spiral type antenna) 또는 실린더 타입 안테나(cylinder type antenna)가 일반적으로 사용된다. 무선 주파수 안테나는 플라즈마 반응기(plasma reactor)의 외부에 배치되며, 석영과 같은 유전체 위도 우(dielectric window)를 통하여 플라즈마 반응기의 내부로 유도 기전력을 전달한다. 무선 주파수 안테나를 이용한 유도 결합 플라즈마는 고밀도의 플라즈마를 비교적 손쉽게 얻을 수 있으나, 안테나의 구조적 특징에 따라서 플라즈마 균일도가 영향을 받는다. 그럼으로 무선 주파수 안테나의 구조를 개선하여 균일한 고밀도의 플라즈마를 얻기 위해 노력하고 있다.As a radio frequency antenna, a spiral type antenna or a cylinder type antenna is generally used. A radio frequency antenna is disposed outside a plasma reactor and delivers induced electromotive force into a plasma reactor through a dielectric window, such as quartz. Inductively coupled plasma using radio frequency antenna is relatively easy to obtain high density plasma, but plasma uniformity is affected by the structural characteristics of the antenna. Therefore, we are trying to obtain uniform high density plasma by improving the structure of radio frequency antenna.

그러나 대면적의 플라즈마를 얻기 위하여 안테나의 구조를 넓게 하거나 안테나에 공급되는 전력을 높이는 것은 한계성을 갖는다. 예를 들어, 정상파 효과(standing wave effect)에 의해 방사선상으로 비균일한 플라즈마가 발생되는 것으로 알려져 있다. 또한, 안테나에 높은 전력이 인가되는 경우 무선 주파수 안테나의 용량성 결합(capacitive coupling)이 증가하게 됨으로 유전체 윈도우를 두껍게 해야 하며, 이로 인하여 무선 주파수 안테나와 플라즈마 사이의 거리가 증가함으로 전력 전달 효율이 낮아지는 문제점이 발생된다.However, in order to obtain a large-area plasma, it is difficult to increase the structure of the antenna or increase the power supplied to the antenna. For example, it is known that a non-uniform plasma is generated in the form of a radiation due to a standing wave effect. In addition, when high power is applied to the antenna, the capacitive coupling of the radio frequency antenna increases, so that the dielectric window must be made thick. As a result, the distance between the radio frequency antenna and the plasma increases, Problems arise.

최근 반도체 제조 산업에서는 반도체 소자의 초미세화, 반도체 회로를 제조하기 위한 실리콘 웨이퍼 기판의 대형화, 액정 디스플레이를 제조하기 위한 유리 기판의 대형화 그리고 새로운 처리 대상 물질 등장 등과 같은 여러 요인으로 인하여 더욱 향상된 플라즈마 처리 기술이 요구되고 있다. 특히, 대면적의 피처리물에 대한 우수한 처리 능력을 갖는 향상된 플라즈마 소스 및 플라즈마 처리 기술이 요구되고 있다.Recently, in the semiconductor manufacturing industry, due to various factors such as miniaturization of semiconductor devices, enlargement of a silicon wafer substrate for manufacturing a semiconductor circuit, enlargement of a glass substrate for manufacturing a liquid crystal display, and appearance of a new object to be processed, . Particularly, there is a demand for an improved plasma source and plasma processing technique having an excellent processing capability for a large-area object to be processed.

따라서 본 발명은 상술한 문제점을 해결하기 위한 것으로, 그 목적은 유도 결합 플라즈마를 대면적화 함에 있어서 플라즈마 이온 에너지에 대한 제어 능력이 높고 보다 고균일한 대면적의 고밀도 플라즈마를 발생할 수 있는 유도 결합 플라즈마 반응기를 제공하는데 있다.SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an inductively coupled plasma reactor capable of generating a high-density plasma having a high controllability against plasma ion energy and a higher uniformity in large- .

상기한 기술적 과제를 달성하기 위한 본 발명의 일면은 유도 결합 플라즈마 반응기에 관한 것이다. 본 발명의 유도 결합 플라즈마 반응기는: 플라즈마 방전 영역을 갖는 반응 챔버; 상기 반응 챔버에 플라즈마 방전을 발생시키기 위한 유도 기전력을 제공하는 다중 무선 주파수 안테나; 다중 무선 주파수 안테나로 구동 전력을 제공하는 전원 공급원; 및 상기 전원 공급원으로부터 제공되는 구동 전력을 상기 다중 무선 주파수 안테나로 제공하되 각각의 무선 주파수 안테나로 제공되는 전력 비율을 가변시킬 수 있는 전력 가변 분배기를 포함한다.According to an aspect of the present invention, there is provided an inductively coupled plasma reactor. The inductively coupled plasma reactor of the present invention comprises: a reaction chamber having a plasma discharge region; A plurality of radio frequency antennas for providing an induction electromotive force for generating a plasma discharge in the reaction chamber; A power source providing driving power to the multiple radio frequency antenna; And a power variable divider for providing driving power provided from the power source to the multiple radio frequency antenna, and varying a power ratio provided to each radio frequency antenna.

일 실시예에 있어서, 상기 전력 가변 분배기는 상기 다중 무선 주파수 안테나로 공급되는 전력 비율을 조절할 수 있도록 다중 무선 주파수 안테나에 전기적으로 연결되는 권선비 조절이 가능한 하나 이상의 트랜스포머를 포함한다.In one embodiment, the power variable divider includes at least one transformer that is electrically connected to multiple radio frequency antennas to control the ratio of power supplied to the multiple radio frequency antennas.

일 실시예에 있어서, 상기 전력 가변 분배기는 상기 다중 무선 주파수 안테나로 공급되는 전력 비율을 조절할 수 있도록 다중 무선 주파수 안테나에 전기적으로 연결되는 하나 이상의 가변 인덕터를 포함한다.In one embodiment, the power variable divider includes one or more variable inductors electrically coupled to multiple radio frequency antennas to adjust the power ratio to the multiple radio frequency antennas.

일 실시예에 있어서, 상기 전력 가변 분배기는 상기 다중 무선 주파수 안테나로 공급되는 전력 비율을 조절할 수 있도록 다중 무선 주파수 안테나에 전기적으 로 연결되며 권선비 조절이 가능한 하나 이상의 가변 커패시터를 포함한다.In one embodiment, the power splitter includes one or more variable capacitors electrically coupled to multiple radio frequency antennas and capable of controlling the ratio of turns to adjust the power ratio to the multiple radio frequency antennas.

일 실시예에 있어서, 상기 다중 무선 주파수 안테나는 에지 영역에 배치되는 제1 무선 주파수 안테나와 중앙 영역에 배치되는 제2 무선 주파수 안테나를 포함한다.In one embodiment, the multiple radio frequency antenna includes a first radio frequency antenna disposed in an edge region and a second radio frequency antenna disposed in a central region.

일 실시예에 있어서, 상기 제1 무선 주파수 안테나와 상기 제2 무선 주파수 안테나는 각각의 전원 입력단이 대칭된 구조로 배치된다.In one embodiment, the first radio frequency antenna and the second radio frequency antenna are arranged in such a structure that respective power input terminals are symmetrical.

일 실시예에 있어서, 상기 반응 챔버는 상기 다중 무선 주파수 안테나와 상기 반응 챔버의 방전 영역 사이에 설치되는 유전체 윈도우를 포함한다.In one embodiment, the reaction chamber includes a dielectric window disposed between the multiple radio frequency antenna and the discharge region of the reaction chamber.

일 실시예에 있어서, 상기 유전체 윈도우는 상기 다중 무선 주파수 안테나가 설치되는 트랜치 영역; 및 상기 반응 챔버 내부로 개구된 하나 이상의 가스 공급홀을 포함한다.In one embodiment, the dielectric window includes a trench region in which the multiple radio frequency antenna is installed; And at least one gas supply hole opened into the reaction chamber.

일 실시예에 있어서, 자속 출입구가 상기 반응 챔버의 내부를 지향하면서 상기 다중 무선 주파수 안테나를 덮는 코어 커버를 포함한다.In one embodiment, the core cover includes a magnetic flux entry port facing the interior of the reaction chamber and covering the multiple radio frequency antenna.

일 실시예에 있어서, 상기 유전체 윈도우의 가스 공급홀을 통하여 상기 반응 챔버의 방전 영역으로 공정 가스를 공급하는 가스 공급부를 포함한다.In one embodiment, the gas supply unit supplies a process gas to a discharge region of the reaction chamber through a gas supply hole of the dielectric window.

일 실시예에 있어서, 상기 가스 공급부는 둘 이상의 분리된 가스 공급 구조를 갖는다.In one embodiment, the gas supply has two or more separate gas supply structures.

일 실시예에 있어서, 상기 가스 공급부는 상기 유전체 윈도우의 에지 영역에 개구된 제1 그룹의 가스 공급홀을 통하여 공정 가스를 공급하는 제1 가스 공급 채널; 및 상기 유전체 윈도우의 중앙 영역에 개구된 제2 그룹의 가스 공급홀을 통하 여 공정 가스를 공급하는 제2 가스 공급 채널을 포함한다.In one embodiment, the gas supply comprises a first gas supply channel for supplying a process gas through a first group of gas supply holes opened in an edge region of the dielectric window; And a second gas supply channel for supplying a process gas through a second group of gas supply holes opened in a central region of the dielectric window.

일 실시예에 있어서, 상기 반응 챔버는 피처리 기판을 지지하는 기판 지지대를 포함하고, 상기 기판 지지대는 하나 이상의 무선 주파수를 공급받아서 바이어스 되거나 또는 전혀 바이어스가 되지 않는 것 중 어느 하나로 구성된다.In one embodiment, the reaction chamber comprises a substrate support for supporting a substrate to be processed, wherein the substrate support is configured to be biased with one or more radio frequencies and not to be biased at all.

본 발명의 다른 일면에 따른 유도 결합 플라즈마 반응기는: 플라즈마 방전 영역과 피처리 기판이 놓이는 기판 지지대를 갖는 반응 챔버; 상기 기판 지지대에 대향된 반응 챔버의 천정을 구성하도록 설치되며 에지 영역에 개구된 제1 그룹의 가스 공급홀과 중앙 영역에 개구된 제2 그룹의 가스 공급홀을 갖는 유전체 윈도우; 상기 유전체 윈도우의 상부 에지 영역에 설치되는 제1 무선 주파수 안테나; 상기 유전체 윈도우의 상부 중앙 영역에 설치되는 제2 무선 주파수 안테나; 및 상기 제1 그룹의 가스 공급홀과 상기 제2 그룹의 가스 공급홀을 통하여 공정 가스를 공급하는 가스 공급부를 포함한다.According to another aspect of the present invention, there is provided an inductively coupled plasma reactor comprising: a reaction chamber having a plasma discharge region and a substrate support on which a substrate to be processed is placed; A dielectric window provided to constitute a ceiling of a reaction chamber opposite to the substrate support and having a first group of gas supply holes opened in the edge region and a second group of gas supply holes opened in the central region; A first radio frequency antenna disposed at an upper edge region of the dielectric window; A second radio frequency antenna disposed in an upper central region of the dielectric window; And a gas supply unit for supplying a process gas through the first group of gas supply holes and the second group of gas supply holes.

일 실시예에 있어서, 상기 가스 공급부는 상기 제1 그룹의 가스 공급홀을 통하여 공정 가스를 공급하는 제1 가스 공급 채널; 및 상기 제2 그룹의 가스 공급홀을 통하여 공정 가스를 공급하는 제2 가스 공급 채널을 포함한다.In one embodiment, the gas supply unit includes a first gas supply channel for supplying a process gas through the first group of gas supply holes; And a second gas supply channel for supplying process gas through the second group of gas supply holes.

일 실시예에 있어서, 상기 제1 무선 주파수 안테나와 상기 제2 무선 주파수 안테나로 구동 전력을 제공하는 전원 공급원; 및 상기 전원 공급원으로부터 제공되는 구동 전력을 상기 제1 및 제2 무선 주파수 안테나로 제공하되 상기 제1 및 제2 무선 주파수 안테나로 제공되는 전력 비율을 가변시킬 수 있는 전력 가변 분배기를 포함한다.In one embodiment, a power source for providing driving power to the first radio frequency antenna and the second radio frequency antenna; And a power variable divider providing the driving power provided from the power source to the first and second radio frequency antennas and varying a power ratio provided to the first and second radio frequency antennas.

일 실시예에 있어서, 상기 제1 및 제2 가스 공급 채널을 통하여 공급되는 가스 유량과 전력 가변 분배기의 전력 분배 비율은 서로 상관되어 조절된다.In one embodiment, the gas flow rate supplied through the first and second gas supply channels and the power distribution ratio of the power variable distributor are adjusted in correlation with each other.

본 발명의 다중 무선 주파수 안테나를 갖는 유도 결합 플라즈마 반응기에 의하면, 유도 결합 플라즈마의 에지 영역과 중앙 영역의 플라즈마 커플링 에너지에 대한 개별적인 조절이 가능하다. 그럼으로 에지 영역과 중앙 영역의 플라즈마 밀도를 균일하도록 제어할 수 있어서 보다 향상된 고균일한 고밀도의 플라즈마를 발생할 수 있다. 또한, 에지 영역과 중앙 영역으로 공급되는 가스 유량을 각기 제어할 수 있어서 보다 균일한 가스 공급이 가능하다. 또한, 다중 무선 주파수 안테나가 코어 커버에 의해 덥혀짐으로 유도되는 자속은 세기가 강화되어 플라즈마와 커플링 효과가 매우 향상된다. 그럼으로 비교적 낮은 주파수를 사용하여도 보다 고밀도의 플라즈마가 형성될 수 있으며 평면적으로도 균일한 플라즈마 발생 분포를 얻을 수 있다.INDUSTRIAL APPLICABILITY According to the inductively coupled plasma reactor having multiple radio frequency antennas of the present invention, it is possible to individually control the plasma coupling energy at the edge region and the central region of the inductively coupled plasma. Thus, it is possible to control the plasma density in the edge region and the central region to be uniform so that a more uniform high density plasma can be generated. Further, the gas flow rate supplied to the edge region and the central region can be controlled, and more uniform gas supply is possible. In addition, the magnetic flux induced by the multi-radio frequency antenna being heated by the core cover is strengthened and the plasma and coupling effect are greatly improved. Therefore, even if a relatively low frequency is used, a higher density plasma can be formed and a uniform plasma generation distribution in plan view can be obtained.

본 발명을 충분히 이해하기 위해서 본 발명의 바람직한 실시예를 첨부 도면을 참조하여 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상세히 설명하는 실시예로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공 되어지는 것이다. 따라서 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어 표현될 수 있다. 각 도 면에서 동일한 부재는 동일한 참조부호로 도시한 경우가 있음을 유의하여야 한다. 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략된다.For a better understanding of the present invention, a preferred embodiment of the present invention will be described with reference to the accompanying drawings. The embodiments of the present invention may be modified into various forms, and the scope of the present invention should not be construed as being limited to the embodiments described in detail below. The present embodiments are provided to enable those skilled in the art to more fully understand the present invention. Therefore, the shapes and the like of the elements in the drawings can be exaggeratedly expressed to emphasize a clearer description. It should be noted that the same members in the respective drawings may be denoted by the same reference numerals. Detailed descriptions of well-known functions and constructions which may be unnecessarily obscured by the gist of the present invention are omitted.

도 1은 본 발명의 바람직한 실시예에 따른 유도 결합 플라즈마 반응기의 구성도이다. 도 1을 참조하여, 본 발명의 유도 결합 플라즈마 반응기는 반응 챔버(10)와 다중 무선 주파수 안테나(30, 32)를 구비한다. 다중 무선 주파수 안테나(30, 32)는 예를 들어, 제1 무선 주파수 안테나(30)와 제2 무선 주파수 안테나(32)로 구성된다. 제1 무선 주파수 안테나(30)와 제2 무선 주파수 안테나(32)는 전원 공급원(40)으로부터 제공되는 무선 주파수 전력에 의해 구동되어 반응 챔버(10)의 내부 영역으로 플라즈마 발생을 위한 유도 기전력을 제공한다. 특히, 제1 및 제2 무선 주파수 안테나(30, 32)는 전력 가변 분배기(44)에 의해서 전력 분배 비율이 조절될 수 있으며, 이에 따라 보다 향상된 고균일한 플라즈마를 반응 챔버(10)의 내부에 형성할 수 있다. 이에 대한 구체적인 설명은 후술한다.1 is a configuration diagram of an inductively coupled plasma reactor according to a preferred embodiment of the present invention. 1, the inductively coupled plasma reactor of the present invention includes a reaction chamber 10 and multiple radio frequency antennas 30 and 32. [ The multiple radio frequency antennas 30 and 32 are composed of a first radio frequency antenna 30 and a second radio frequency antenna 32, for example. The first radio frequency antenna 30 and the second radio frequency antenna 32 are driven by radio frequency power provided from a power source 40 to provide an induction electromotive force for generating plasma to the inner region of the reaction chamber 10 do. Particularly, the power distribution ratio of the first and second radio frequency antennas 30 and 32 can be adjusted by the power variable distributor 44, and accordingly, a more highly uniform plasma can be supplied to the inside of the reaction chamber 10 . A detailed description thereof will be described later.

반응 챔버(10)는 플라즈마 방전 영역을 형성하는 챔버 하우징(12)과 챔버 하우징(12)의 천정을 형성하는 유전체 윈도우(20)를 구비한다. 유전체 윈도우(20)는 다중 무선 주파수 안테나(30, 32)와 반응 챔버(10)의 내부 영역 사이에 위치한다. 반응 챔버(10)의 내부에는 피처리 기판(18)을 지지하기 위한 기판 지지대(16)가 구비된다. 피처리 기판(18)은 예를 들어, 반도체 장치를 제조하기 위한 실리콘 웨이퍼 기판 또는 액정 디스플레이나 플라즈마 디스플레이 등의 제조를 위한 유리 기판이다. 구체적으로 도시하지는 안았으나 챔버 하우징(12)의 하단에는 가스 배기를 위해 진공 펌프에 연결되는 가스 출구가 구비된다. 챔버 하우징(12)은 알루미늄, 스테인리스, 구리와 같은 금속 물질로 재작된다. 또는 코팅된 금속 예를 들어, 양극 처리된 알루미늄이나 니켈 도금된 알루미늄으로 재작될 수 있다. 또는 내화 금속(refractory metal)로 재작될 수 있다. 또 다른 대안으로 챔버 하우징(12)을 전체적으로 석영, 세라믹과 같은 전기적 절연 물질로 재작하는 것도 가능하며, 의도된 플라즈마 프로세스가 수행되기에 적합한 다른 물질로도 재작될 수 있다. 이러한 경우에는 별도의 유전체 윈도우(20)를 구성할 필요가 없을 수 있다.The reaction chamber 10 has a chamber housing 12 forming a plasma discharge region and a dielectric window 20 forming a ceiling of the chamber housing 12. [ The dielectric window 20 is located between the multiple radio frequency antennas 30, 32 and the interior region of the reaction chamber 10. Inside the reaction chamber 10, a substrate support 16 for supporting the substrate 18 is provided. The substrate 18 to be processed is, for example, a silicon wafer substrate for manufacturing a semiconductor device or a glass substrate for manufacturing a liquid crystal display, a plasma display or the like. Although not shown in detail, a gas outlet connected to the vacuum pump is provided at the lower end of the chamber housing 12 for gas exhaustion. The chamber housing 12 is made of a metal material such as aluminum, stainless steel, or copper. Or a coated metal such as anodized aluminum or nickel plated aluminum. Or a refractory metal. Alternatively, the chamber housing 12 may be entirely rewritten with an electrically insulating material such as quartz, ceramic, or other material suitable for the intended plasma process to be performed. In this case, it may not be necessary to construct a separate dielectric window 20.

반응 챔버(10)의 내부에는 기판 지지대(16)가 구비되며, 이 기판 지지대(16)는 하나 이상의 바이어스 전원 공급원(50, 52)으로부터 임피던스 정합기(54)를 통하여 바이어스 전력을 공급 받아 바이어스 된다. 도면에 도시되지 않았으나 직류 전원 공급원으로부터 직류 전원이 기판 지지대(16)로 공급될 수 있다. 둘 이상의 바이어스 전원 공급원(50, 52)으로부터 바이어스 전력이 공급되는 경우 각각의 바이어스 전력은 서로 다른 주파수를 갖는다. 또한 공정 특성에 따라 기판 지지대(18)는 바이어스가 전혀 인가되지 않을 수 있다.Inside the reaction chamber 10 is a substrate support 16 which is biased from one or more bias power sources 50 and 52 by bias power via an impedance matcher 54 . Although not shown in the drawings, a DC power source may be supplied to the substrate support 16 from a DC power source. When bias power is supplied from two or more bias power sources 50 and 52, each bias power has a different frequency. Also, depending on the process characteristics, the substrate support 18 may not be biased at all.

도 2는 유도 결합 플라즈마 소스를 구성하는 다중 무선 주파수 안테나의 배치 구조 및 전기적 연결 구성도이다. 도 2를 참조하여, 다중 무선 주파수 안테나(30, 31)는 에지 영역에 배치되는 제1 무선 주파수 안테나(30)와 중앙 영역에 배치되는 제2 무선 주파수 안테나(32)로 구성될 수 있다. 제1 및 제2 무선 주파수 안테나(30, 32)는 원형의 평판 나선형으로 구성될 수 있다. 또는 첨부도면 도 3에 도시된 바와 같이, 사각형의 평판 나선형 구조의 안테나(30a, 32a)로 구성될 수도 있다. 제1 무선 주파수 안테나(30)와 제2 무선 주파수 안테나(32)는 각각의 전원 입력단이 대칭된 구조로 배치된다. 제1 및 제2 무선 주파수 안테나(30, 32)의 전원 입력단은 각기 나선형의 외측 일단이 전원 입력단으로 구성되거나 또는 도 4에 도시된 바와 같이 내측 일단이 전원 입력단이 될 수 있다. 이와 같은 전원 입력단의 대칭된 구조와 나선형의 외측 도는 내측에서 선택되는 것은 플라즈마 효율을 향상시키기 위해 선택될 수 있다.FIG. 2 is a diagram showing the arrangement and electrical connection of multiple radio frequency antennas constituting an inductively coupled plasma source. Referring to FIG. 2, the multiple radio frequency antennas 30 and 31 may include a first radio frequency antenna 30 disposed in an edge region and a second radio frequency antenna 32 disposed in a central region. The first and second radio frequency antennas 30 and 32 may be configured as a circular flat spiral. Or may be constituted by antennas 30a and 32a having a rectangular flat plate spiral structure, as shown in FIG. The first radio frequency antenna 30 and the second radio frequency antenna 32 are arranged in such a structure that the respective power input terminals are symmetrical. Each of the power input ends of the first and second radio frequency antennas 30 and 32 may have a helical outer end as a power input end or an inner end as a power input end as shown in FIG. The symmetrical structure of such a power input terminal and the inner side of the helical outer view can be selected to improve the plasma efficiency.

도 5는 평판형 구조의 유전체 윈도우(20)을 보여주는 도면이고, 도 6은 돔형 구조의 유전체 윈도우(20a)를 보여주는 도면이다. 도 5에 도시된 바와 같이, 유전체 윈도우(20)는 평판형 구조를 갖거나 또는 도 6에 도시된 바와 같이 돔형 구조의 유전체 윈도우(20b)로 구성될 수 있다. 균일한 플라즈마 처리를 위해서 유전체 윈도우(20)의 구조는 평판형 구조나 돔형 구조와 또는 그 외 다른 구조로부터 가작 적합한 효율적인 구조가 선택될 수 있다.Fig. 5 is a view showing a dielectric window 20 of a planar structure, and Fig. 6 is a view showing a dielectric window 20a of a dome-shaped structure. As shown in FIG. 5, the dielectric window 20 may have a planar structure or may comprise a dielectric window 20b of a dome-shaped structure as shown in FIG. For a uniform plasma process, the structure of the dielectric window 20 may be selected from a planar structure, a domed structure, or any other structure suitable for an efficient structure.

도 7은 다중 무선 주파수 안테나에 마그네틱 코어 커버를 설치한 예를 보여주는 부분 단면도이다. 도 7을 참조하여, 보다 향상된 플라즈마 균일성과 고밀도의 플라즈마를 생성하기 위하여 다중 무선 주파수 안테나(30, 32)는 코어 커버(34)에 의해 덮여질 수 있다. 예를 들어, 첨부도면 도 8에는 평판형 구조의 유전체 윈도우(20)에 마그네틱 코어 커버(34)가 설치된 예를 보여준다. 첨부도면 도 9에는 돔형 구조의 유전체 윈도우(20)에 마그네틱 코어 커버가 설치된 예를 보여준다.7 is a partial cross-sectional view showing an example in which a magnetic core cover is installed in a multiple radio frequency antenna. Referring to FIG. 7, multiple radio frequency antennas 30 and 32 may be covered by a core cover 34 to produce a more plasma uniformity and high density plasma. For example, FIG. 8 shows an example in which a magnetic core cover 34 is installed in a dielectric window 20 having a flat structure. 9 shows an example in which a magnetic core cover is installed in a dielectric window 20 having a dome-shaped structure.

코어 커버(34)는 자속 출입구가 반응 챔버(10)의 내부를 지향하면서 다중 무선 주파수 안테나(30, 32)를 덮는다. 코어 커버(34)는 페라이트 재질로 제작되지 만 다른 대안의 재료로 제작될 수 도 있다. 코어 커버(34)는 다수의 말편자 형상의 페라이트 코어 조각들을 조립하여 구성할 수 있다. 여러 개의 조각을 사용하여 구성하는 경우 각 조각의 조립면에 절연 물질과 같은 비자성 물질층을 삽입하여 연결할 수 있다. 또는 일체형의 페라이트 코어를 사용할 수도 있다.The core cover 34 covers the multiple radio frequency antennas 30 and 32 while the magnetic flux entrance points toward the inside of the reaction chamber 10. The core cover 34 is made of ferrite material but may be made of other alternative materials. The core cover 34 can be constructed by assembling a plurality of pieces of ferrite core pieces in the shape of a horseshoe. In the case of using multiple pieces, a nonmagnetic material layer such as an insulating material may be inserted and connected to the assembly surface of each piece. Or an integral ferrite core may be used.

다중 무선 주파수 안테나(30, 32)가 코어 커버(34)에 의해 덥혀짐으로 유도되는 자속은 세기가 강화되어 반응 챔버(10)의 내부에 발생된 플라즈마와 커플링 효과가 매우 향상된다. 그럼으로 비교적 낮은 주파수를 사용하여도 보다 고밀도의 플라즈마가 형성될 수 있으며 평면적으로도 균일한 플라즈마 발생 분포를 얻을 수 있다. 도면에는 도시하지 않았으나 유전체 윈도우(20)와 다중 무선 주파수 안테나(30, 32) 사이에는 페러데이 실드를 선택적으로 구성할 수도 있다.The magnetic flux induced by the multiple radio frequency antennas 30 and 32 being heated by the core cover 34 is intensified and the plasma and coupling effect generated inside the reaction chamber 10 is greatly improved. Therefore, even if a relatively low frequency is used, a higher density plasma can be formed and a uniform plasma generation distribution in plan view can be obtained. Although not shown in the drawing, a Faraday shield may be selectively formed between the dielectric window 20 and the multiple radio frequency antennas 30 and 32.

도 10은 유전체 윈도우 상부에 가스 공급부를 설치한 예를 보여주는 도면이다. 도 10을 참조하여, 유전체 윈도우(20b)의 상부는 다중 무선 주파수 안테나(30, 32)가 설치되는 트렌치(trench) 영역(22)이 구비된 요철 구조를 가질 수 있다. 트렌치 영역(22)은 다중 무선 주파수 안테나(30, 32)의 평면 배치 구조와 동일하게 형성된다. 다중 무선 주파수 안테나(30, 32)와 트렌치 영역(22)의 구조는 예를 들어, 평판 나선 구조일 수 있으며 플라즈마 효율을 높이기 위하여 여타의 다른 구조로 변형이 가능하다. 유전체 윈도우(20b)는 전체적으로 평판 구조를 갖지만, 돔형 구조를 가질 수도 있다. 또는 플라즈마의 균일한 발생을 위하여 다른 어떠한 형태의 구조로 변형이 가능하다. 유전체 윈도우(20b)는 반응 챔버(10)의 내부로 개구된 하나 이상 바람직하게는 복수개의 가스 공급홀(24)이 트렌치 영역(22) 사이의 융기된 부분에 구성된다.10 is a view showing an example in which a gas supply unit is provided above the dielectric window. 10, the upper portion of the dielectric window 20b may have a concave-convex structure with a trench region 22 in which the multiple radio frequency antennas 30 and 32 are installed. The trench region 22 is formed in the same manner as the planar arrangement structure of the multiple radio frequency antennas 30 and 32. The structure of the multiple radio frequency antennas 30 and 32 and the trench region 22 can be, for example, a flat spiral structure and can be transformed into other structures to increase the plasma efficiency. The dielectric window 20b has a planar structure as a whole, but may have a dome-shaped structure. Or any other type of structure for uniform generation of the plasma. The dielectric window 20b is configured at one or more preferably a plurality of gas supply holes 24 open into the interior of the reaction chamber 10 at raised portions between the trench regions 22. [

유전체 윈도우(20)의 상부에는 가스 공급부(60)가 구비된다. 가스 공급부(60)는 가스 공급원(미도시)에 연결되는 가스 입구(62)와 하나 이상의 가스 분배판(64)을 구비하며 유전체 윈도우(20)의 상부에서 복수개의 가스 공급홀(24)을 통하여 반응 챔버(10)의 내부로 공정 가스를 입력한다. 가스 공급부(60)의 하단은 복수개의 가스 공급홀(24)과 대응된 복수개의 개구부(66)가 형성되어 있다. 그리고 공정 가스가 반응 챔버(10)의 내부로 전달되는 과정에서 가스 누설을 방지하기 위한 구조와 그에 따른 필요한 구성들은 구체적으로 도시하지 않았지만 예들 들어, 오링과 같은 가스 누설 방지를 위한 구성과 이를 유도 결합 플라즈마 반응기에 설치하기 위한 적절한 설치 구조가 유도 결합 플라즈마 반응기에 제공될 것이다. 이와 같은 가스 공급부(60)와 유전체 윈도우(20b)의 복수개의 가스 공급홀(24)을 통하여 반응 챔버(10)의 내부 영역으로 고르게 가스 분사가 이루어진다.A gas supply portion 60 is provided on the upper portion of the dielectric window 20. The gas supply portion 60 has a gas inlet 62 connected to a gas supply source (not shown) and one or more gas distribution plates 64 and is provided at the upper portion of the dielectric window 20 through a plurality of gas supply holes 24 The process gas is input into the reaction chamber 10. The lower end of the gas supply part 60 is formed with a plurality of openings 66 corresponding to the plurality of gas supply holes 24. [ The structure for preventing the gas leakage in the process of transferring the process gas to the inside of the reaction chamber 10 and the necessary structures thereof are not specifically shown. For example, a structure for preventing gas leakage such as O- Appropriate installation structures for installation in a plasma reactor will be provided in the inductively coupled plasma reactor. Gas is uniformly injected into the inner region of the reaction chamber 10 through the gas supply portion 60 and the plurality of gas supply holes 24 of the dielectric window 20b.

도 11은 가스 공급부를 분리된 이중 가스 공급 구조로 변형한 예를 보여주는 도면이다. 도 11을 참조하여, 가스 공급부(60a)는 공정 가스를 분리 공급할 수 있는 두 개의 가스 공급 채널(60-1, 60-2)을 구성할 수 있다. 즉, 유전체 윈도우(20b)의 에지 영역에 개구된 제1 그룹의 가스 공급홀(24-1)을 통하여 공정 가스를 공급하는 제1 가스 공급 채널(60-1) 및 유전체 윈도우(20b)의 중앙 영역에 개구된 제2 그룹의 가스 공급홀(24-2)을 통하여 공정 가스를 공급하는 제2 가스 공급 채널(60-2)을 포함한다. 제1 및 제2 가스 공급 채널(60-1, 60-2)에는 하나 이상의 가스 분배판(64-1, 64-2)이 구비될 수 있다. 각각의 하단은 제1 및 제2 그룹의 가 스 공급홀(24-1, 24-2)과 대응된 복수개의 개구부(66-1, 66-2)가 형성되어 있다.11 is a view showing an example in which the gas supply portion is modified into a separate double gas supply structure. Referring to Fig. 11, the gas supply portion 60a may constitute two gas supply channels 60-1 and 60-2 capable of separately supplying the process gas. That is, the first gas supply channel 60-1 for supplying the process gas through the first group of gas supply holes 24-1 opened in the edge region of the dielectric window 20b and the center of the dielectric window 20b And a second gas supply channel 60-2 for supplying the process gas through the second group of gas supply holes 24-2 opened in the region. The first and second gas supply channels 60-1 and 60-2 may be provided with one or more gas distribution plates 64-1 and 64-2. Each of the lower ends thereof is formed with a plurality of openings 66-1 and 66-2 corresponding to the gas supply holes 24-1 and 24-2 of the first and second groups.

도 12는 내지 도 19는 전력 가변 분배기의 회로 구성의 다양한 에들을 보여주는 도면이다. 전력 가변 분배기(44)는 다음과 같이 다양한 형태 실시예들 중에서 선택적으로 실시될 수 있다.Figures 12 to 19 are diagrams showing various aspects of the circuit configuration of the power variable divider. The power variable distributor 44 may be selectively implemented among various forms of embodiments as follows.

도 12 및 도 13을 참조하여, 전력 가변 분배기(44)는 다중 무선 주파수 안테나(30, 32)로 공급되는 전력 비율을 조절할 수 있도록 다중 무선 주파수 안테나에 전기적으로 연결되는 권선비 조절이 가능한 하나 이상의 트랜스포머(45, 46)로 구성될 수 있다. 트랜스포머(45, 46)의 일차측은 직렬로 연결되며, 각기 권선비 조절이 가능한 멀티탭 구조를 갖는다. 이차측은 각기 대응된 무선 주파수 안테나(30, 32)에 연결된다. 전력 가변 분배기(44)는 트랜스포머(45, 46)의 일차측에 구성된 멀티탭(47, 48)의 권선비를 조절하는 것에 의해서 다중 무선 주파수 안테나(30, 32)로의 전력 분배 비율을 가변시킬 수 있다. 트랜스포머(45, 46)의 이차측의 전기적인 연결 구조는 도 12 또는 도 13과 같은 구조의 연결 방식을 취할 수 있다.12 and 13, the power variable divider 44 may include one or more transformers (not shown) electrically adjustable in the ratio of turns to be connected to the multiple radio frequency antennas so as to adjust the power ratio supplied to the multiple radio frequency antennas 30, (45, 46). The primary sides of the transformers 45 and 46 are connected in series and have a multi-tap structure capable of controlling the turns ratio. The secondary sides are connected to corresponding radio frequency antennas 30 and 32, respectively. The power variable divider 44 can vary the power distribution ratio to the multiple radio frequency antennas 30 and 32 by adjusting the turns ratio of the multi tap 47 and 48 formed on the primary side of the transformers 45 and 46. [ The electrical connection structure on the secondary side of the transformers 45 and 46 can take the connection structure of the structure shown in FIG. 12 or FIG.

도 14를 참조하여, 전력 가변 분배기(44a)는 다중 무선 주파수 안테나(30, 32)로 공급되는 전력 비율을 조절할 수 있도록 다중 무선 주파수 안테나(30, 32)에 전기적으로 연결되는 하나 이상의 가변 인덕터(VL1, VL2)로 구성될 수 있다. 또 다른 변형예의 전력 가변 분배기(44c, 44e)는 다중 무선 주파수 안테나(30, 32)가 직렬로 연결된 구조에서 각 안테나의 양단에 가변 인덕터(VL1, VL2)가 연결(도 16 참조)되거나 또는 전원 입력단과 접지 연결단 사이에 각기 연결(도 18 참조)될 수 있다.14, the power variable divider 44a includes one or more variable inductors (not shown) electrically connected to the multiple radio frequency antennas 30 and 32 so as to adjust the power ratio supplied to the multiple radio frequency antennas 30 and 32 VL1, VL2). Variable inductors VL1 and VL2 are connected to both ends of each antenna (refer to FIG. 16) in the structure in which the multiple radio frequency antennas 30 and 32 are connected in series, (See Fig. 18) between the input terminal and the ground connection terminal.

도 15를 참조하여, 전력 가변 분배기(44b)는 다중 무선 주파수 안테나(30, 32)로 공급되는 전력 비율을 조절할 수 있도록 다중 무선 주파수 안테나(30, 32)에 전기적으로 연결되는 하나 이상의 가변 커패시터(VC1, VC2)로 구성될 수 있다. 또 다른 변형예의 전력 가변 분배기(44c, 44e)는 다중 무선 주파수 안테나(30, 32)가 직렬로 연결된 구조에서 각 안테나의 양단에 가변 커패시터(VC1, VC2)가 연결(도 17 참조)되거나 또는 전원 입력단과 접지 연결단 사이에 각기 연결(도 19 참조)될 수 있다.15, the power variable divider 44b includes one or more variable capacitors (not shown) electrically connected to the multiple radio frequency antennas 30 and 32 so as to adjust the power ratio supplied to the multiple radio frequency antennas 30 and 32 VC1, and VC2. The variable power distributors 44c and 44e of the other modification are configured such that the variable capacitors VC1 and VC2 are connected to both ends of each antenna in the structure in which the multiple radio frequency antennas 30 and 32 are connected in series, (See Fig. 19) between the input terminal and the ground connection terminal.

유도 결합 플라즈마 반응기는 에지 영역에서 구동되는 제1 무선 주파수 안테나(30)와 중앙 영역에서 구동되는 제2 무선 주파수 안테나(32)의 전력 분배 비율이 가변적으로 제어될 수 있음으로 반응 챔버(10)의 내부에 발생되는 유도 결합 플라즈마의 에지 영역과 중앙 영역의 플라즈마 커플링 에너지에 대한 개별적인 조절이 가능하다. 그럼으로 에지 영역과 중앙 영역의 플라즈마 밀도를 균일하도록 제어할 수 있어서 보다 향상된 고균일한 고밀도의 플라즈마를 발생할 수 있다.The inductively coupled plasma reactor can control the power distribution ratio of the first radio frequency antenna 30 driven in the edge region and the second radio frequency antenna 32 driven in the central region to be variable, Individual adjustments can be made to the plasma coupling energy in the edge region and the central region of the inductively coupled plasma generated therein. Thus, it is possible to control the plasma density in the edge region and the central region to be uniform so that a more uniform high density plasma can be generated.

또한, 반응 챔버(10)의 내부로 공급되는 공정 가스의 경우 에지 영역과 중앙 영역으로 공정 가스를 공급하는 두 개의 가스 공급 채널(60-1, 60-2)을 통하여 가스 유량을 각기 제어할 수 있어서 보다 균일한 가스 공급이 가능하다. 또한, 다중 무선 주파수 안테나(30, 32)의 전력 분배 비율과 두 개의 가스 공급 채널(60-1, 60-2)을 통하여 공급되는 가스 유량은 플라즈마 밀도와 균일성을 향상시키기 위하여 서로 상관되어 조절될 수 있다.Further, in the case of the process gas supplied to the inside of the reaction chamber 10, the gas flow rate can be controlled through the two gas supply channels 60-1 and 60-2 that supply the process gas to the edge region and the central region So that more uniform gas supply is possible. Further, the power distribution ratio of the multiple radio frequency antennas 30 and 32 and the gas flow rate supplied through the two gas supply channels 60-1 and 60-2 are correlated to each other to improve the plasma density and uniformity .

또한, 다중 무선 주파수 안테나(30, 32)가 코어 커버(34)에 의해 덥혀짐으로 유도되는 자속은 세기가 강화되어 반응 챔버(10)의 내부에 발생된 플라즈마와 커플링 효과가 매우 향상된다. 그럼으로 비교적 낮은 주파수를 사용하여도 보다 고밀도의 플라즈마가 형성될 수 있으며 평면적으로도 균일한 플라즈마 발생 분포를 얻을 수 있다.Further, the magnetic flux induced by the multiple radio frequency antennas 30 and 32 being heated by the core cover 34 is intensified and the plasma and coupling effect generated inside the reaction chamber 10 is greatly improved. Therefore, even if a relatively low frequency is used, a higher density plasma can be formed and a uniform plasma generation distribution in plan view can be obtained.

이상에서 설명된 본 발명의 다중 무선 주파수 안테나를 갖는 유도 결합 플라즈마 반응기의 실시예는 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있을 것이다. 그럼으로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.The embodiments of the inductively coupled plasma reactor having multiple radio frequency antennas of the present invention described above are merely illustrative and those skilled in the art will appreciate that various modifications and equivalent implementations You can see that examples are possible. Accordingly, it is to be understood that the present invention is not limited to the above-described embodiments. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims. It is also to be understood that the invention includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

본 발명의 다중 무선 주파수 안테나를 갖는 유도 결합 플라즈마 반응기는 반도체 집적 회로의 제조나 평판 디스플레이 제조를 위한 박막 형성을 위한 플라즈마 처리 공정에 매우 유용하게 이용될 수 있다. INDUSTRIAL APPLICABILITY The inductively coupled plasma reactor having multiple radio frequency antennas of the present invention can be very usefully used in plasma processing processes for forming thin films for the manufacture of semiconductor integrated circuits and flat panel displays.

도 1은 본 발명의 바람직한 실시예에 따른 유도 결합 플라즈마 반응기의 구성도이다.1 is a configuration diagram of an inductively coupled plasma reactor according to a preferred embodiment of the present invention.

도 2는 유도 결합 플라즈마 소스를 구성하는 다중 무선 주파수 안테나의 배치 구조 및 전기적 연결 구성도이다.FIG. 2 is a diagram showing the arrangement and electrical connection of multiple radio frequency antennas constituting an inductively coupled plasma source.

도 3은 다중 무선 주파수 안테나를 평판 사각 구조로 변형한 예를 보여주는 도면이다.3 is a view showing an example in which a multi-radio frequency antenna is transformed into a flat plate square structure.

도 4는 다중 무선 주파수 안테나의 전원 인가 방식을 변형한 예를 보여주는 도면이다.4 is a view showing an example of a modification of a power application method of a multiple radio frequency antenna.

도 5는 평판형 구조의 유전체 윈도우를 보여주는 도면이다.5 is a view showing a dielectric window of a planar structure.

도 6은 돔형 구조의 유전체 윈도우를 보여주는 도면이다.6 is a view showing a dielectric window of a dome-shaped structure.

도 7은 다중 무선 주파수 안테나에 마그네틱 코어 커버를 설치한 예를 보여주는 부분 단면도이다.7 is a partial cross-sectional view showing an example in which a magnetic core cover is installed in a multiple radio frequency antenna.

도 8은 평판형 구조의 유전체 윈도우에 마그네틱 코어 커버가 설치된 예를 보여주는 도면이다.8 is a view showing an example in which a magnetic core cover is installed in a dielectric window of a flat plate structure.

도 9는 돔형 구조의 유전체 윈도우에 마그네틱 코어 커버가 설치된 예를 보여주는 도면이다.9 is a view showing an example in which a magnetic core cover is installed in a dielectric window of a dome-shaped structure.

도 10은 유전체 윈도우 상부에 가스 공급부를 설치한 예를 보여주는 도면이다.10 is a view showing an example in which a gas supply unit is provided above the dielectric window.

도 11은 가스 공급부를 분리된 이중 가스 공급 구조로 변형한 예를 보여주는 도면이다.11 is a view showing an example in which the gas supply portion is modified into a separate double gas supply structure.

도 12는 내지 도 19는 전력 가변 분배기의 회로 구성의 다양한 에들을 보여주는 도면이다.Figures 12 to 19 are diagrams showing various aspects of the circuit configuration of the power variable divider.

*도면의 주요 부분에 대한 부호의 설명*Description of the Related Art [0002]

10: 반응 챔버 12: 챔버 하우징10: reaction chamber 12: chamber housing

16: 기판 지지대 20: 유전체 윈도우16: substrate support 20: dielectric window

22: 트랜치 영역 24: 가스 공급홀22: trench region 24: gas supply hole

30: 제1 무선 주파수 안테나 32: 제2 무선 주파수 안테나30: first radio frequency antenna 32: second radio frequency antenna

34: 코어 커버 40: 전원 공급원34: core cover 40: power source

42: 임피던스 정합기 44: 전력 가변 분배기42: Impedance Matcher 44: Power Variable Dispenser

50: 전원 공급원 52: 전원 공급원50: power source 52: power source

54: 임피던스 정합기 60: 가스 공급부54: impedance matcher 60: gas supply part

64: 가스 분배판 66: 개구부64: gas distribution plate 66: opening

Claims (17)

플라즈마 방전 영역과 피처리 기판이 놓이는 기판 지지대를 갖는 반응 챔버;A reaction chamber having a plasma discharge region and a substrate support on which the substrate to be processed is placed; 상기 기판 지지대에 대향된 반응 챔버의 천정을 구성하도록 설치되며 에지 영역에 개구된 제1 그룹의 가스 공급홀과 중앙 영역에 개구된 제2 그룹의 가스 공급홀을 갖는 유전체 윈도우;A dielectric window provided to constitute a ceiling of a reaction chamber opposite to the substrate support and having a first group of gas supply holes opened in the edge region and a second group of gas supply holes opened in the central region; 상기 유전체 윈도우의 상부 에지 영역에 설치되는 제1 무선 주파수 안테나;A first radio frequency antenna disposed at an upper edge region of the dielectric window; 상기 유전체 윈도우의 상부 중앙 영역에 설치되는 제2 무선 주파수 안테나; 및A second radio frequency antenna disposed in an upper central region of the dielectric window; And 상기 제1 그룹의 가스 공급홀과 상기 제2 그룹의 가스 공급홀을 통하여 공정 가스를 공급하는 가스 공급부를 포함하며,And a gas supply unit for supplying a process gas through the first group of gas supply holes and the second group of gas supply holes, 상기 가스 공급부는The gas supply part 상기 제1 그룹의 가스 공급홀을 통하여 공정 가스를 공급하는 제1 가스 공급 채널; 및A first gas supply channel for supplying a process gas through the first group of gas supply holes; And 상기 제2 그룹의 가스 공급홀을 통하여 공정 가스를 공급하는 제2 가스 공급 채널을 포함하고,And a second gas supply channel for supplying a process gas through the second group of gas supply holes, 상기 제1 무선 주파수 안테나와 상기 제2 무선 주파수 안테나로 구동 전력을 제공하는 전원 공급원; 및A power supply for providing driving power to the first radio frequency antenna and the second radio frequency antenna; And 상기 전원 공급원으로부터 제공되는 구동 전력을 상기 제1 및 제2 무선 주파수 안테나로 제공하되 상기 제1 및 제2 무선 주파수 안테나로 제공되는 전력 비율을 가변시킬 수 있는 전력 가변 분배기를 포함하고,And a power variable divider providing the driving power provided from the power source to the first and second radio frequency antennas and varying a power ratio provided to the first and second radio frequency antennas, 상기 제1 및 제2 가스 공급 채널을 통하여 공급되는 가스 유량과 전력 가변 분배기의 전력 분배 비율은 서로 상관되어 조절되는 유도 결합 플라즈마 반응기.Wherein the gas flow rate supplied through the first and second gas supply channels and the power distribution ratio of the power variable distributor are adjusted in correlation with each other. 제1항에 있어서,The method according to claim 1, 상기 전력 가변 분배기는The power variable divider 상기 제1 및 제2 무선 주파수 안테나로 공급되는 전력 비율을 조절할 수 있도록 제1 및 제2 무선 주파수 안테나에 전기적으로 연결되는 권선비 조절이 가능한 하나 이상의 트랜스포머를 포함하는 유도 결합 플라즈마 반응기.And at least one transformer electrically connected to the first and second radio frequency antennas to adjust the ratio of power supplied to the first and second radio frequency antennas. 제1항에 있어서,The method according to claim 1, 상기 전력 가변 분배기는The power variable divider 상기 제1 및 제2 무선 주파수 안테나로 공급되는 전력 비율을 조절할 수 있도록 제1 및 제2 무선 주파수 안테나에 전기적으로 연결되는 하나 이상의 가변 인덕터를 포함하는 유도 결합 플라즈마 반응기.And at least one variable inductor electrically connected to the first and second radio frequency antennas to adjust the power ratio to the first and second radio frequency antennas. 제1항에 있어서,The method according to claim 1, 상기 전력 가변 분배기는The power variable divider 상기 제1 및 제2 무선 주파수 안테나로 공급되는 전력 비율을 조절할 수 있도록 제1 및 제2 무선 주파수 안테나에 전기적으로 연결되며 전극간의 간격이나 면적을 변화시켜 용량을 변화시키는 것이 가능한 하나 이상의 가변 커패시터를 포함하는 유도 결합 플라즈마 반응기.And at least one variable capacitor electrically connected to the first and second radio frequency antennas so as to control a power ratio to be supplied to the first and second radio frequency antennas, / RTI > 삭제delete 제1항에 있어서,The method according to claim 1, 상기 제1 무선 주파수 안테나와 상기 제2 무선 주파수 안테나는 각각의 전원 입력단이 대칭된 구조로 배치되는 유도 결합 플라즈마 반응기.Wherein the first radio frequency antenna and the second radio frequency antenna are disposed such that power input ends thereof are symmetrically arranged. 제1항에 있어서,The method according to claim 1, 상기 반응 챔버는The reaction chamber 상기 제1 및 제2 무선 주파수 안테나와 상기 반응 챔버의 방전 영역 사이에 설치되는 유전체 윈도우를 포함하는 유도 결합 플라즈마 반응기.And a dielectric window disposed between the first and second radio frequency antennas and a discharge region of the reaction chamber. 제1항에 있어서,The method according to claim 1, 상기 유전체 윈도우는The dielectric window 상기 제1 및 제2 무선 주파수 안테나가 설치되는 트랜치 영역; 및A trench region in which the first and second radio frequency antennas are installed; And 상기 반응 챔버 내부로 개구된 하나 이상의 가스 공급홀을 포함하는 유도 결합 플라즈마 반응기.And at least one gas supply hole opened into the reaction chamber. 제1항 내지 제4항 및 제6항 내지 제8항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4 and 6 to 8, 자속 출입구가 상기 반응 챔버의 내부를 지향하면서 상기 제1 및 제2 무선 주파수 안테나를 덮는 코어 커버를 포함하는 유도 결합 플라즈마 반응기.And a core cover covering the first and second radio frequency antennas while a magnetic flux entrance is directed toward the inside of the reaction chamber. 삭제delete 제1항에 있어서,The method according to claim 1, 상기 가스 공급부는 둘 이상의 분리된 가스 공급 구조를 갖는 유도 결합 플라즈마 반응기.Wherein the gas supply has two or more separate gas supply structures. 삭제delete 제1항에 있어서,The method according to claim 1, 상기 반응 챔버는The reaction chamber 피처리 기판을 지지하는 기판 지지대를 포함하고, 상기 기판 지지대는 하나 이상의 무선 주파수를 공급받아서 바이어스 되거나 또는 전혀 바이어스가 되지 않는 것 중 어느 하나인 유도 결합 플라즈마 반응기.And a substrate support for supporting a substrate to be processed, wherein the substrate support is either biased with one or more radio frequencies and is not biased at all. 삭제delete 삭제delete 삭제delete 삭제delete
KR1020070088035A 2007-08-31 2007-08-31 Inductively coupled plasma reactor having multi rf antenna KR101424487B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070088035A KR101424487B1 (en) 2007-08-31 2007-08-31 Inductively coupled plasma reactor having multi rf antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070088035A KR101424487B1 (en) 2007-08-31 2007-08-31 Inductively coupled plasma reactor having multi rf antenna

Publications (2)

Publication Number Publication Date
KR20090022564A KR20090022564A (en) 2009-03-04
KR101424487B1 true KR101424487B1 (en) 2014-07-31

Family

ID=40692419

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070088035A KR101424487B1 (en) 2007-08-31 2007-08-31 Inductively coupled plasma reactor having multi rf antenna

Country Status (1)

Country Link
KR (1) KR101424487B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190104080A (en) * 2018-02-28 2019-09-06 주식회사 인포비온 High Density Linear ICP Source and antenna structure for ICP source

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101965573B1 (en) * 2017-04-26 2019-04-08 세메스 주식회사 Apparatus for supplying power, and apparatus for treating substrate comprising the same
JP7061264B2 (en) * 2018-03-20 2022-04-28 日新電機株式会社 Programs for plasma control systems and plasma control systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125496A (en) * 1996-10-16 1998-05-15 Adtec:Kk Inductive coupling type flat surface plasma generating device having magnetically permeable core
KR20000023689A (en) * 1996-07-10 2000-04-25 메르다드 엠. 모슬레히 Apparatus and method for multi-zone high-density inductively-coupled plasma generation
KR20070033222A (en) * 2005-09-21 2007-03-26 주성엔지니어링(주) Antenna for plasma generation
KR20070041220A (en) * 2005-10-14 2007-04-18 세메스 주식회사 Plasma treatment apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000023689A (en) * 1996-07-10 2000-04-25 메르다드 엠. 모슬레히 Apparatus and method for multi-zone high-density inductively-coupled plasma generation
JPH10125496A (en) * 1996-10-16 1998-05-15 Adtec:Kk Inductive coupling type flat surface plasma generating device having magnetically permeable core
KR20070033222A (en) * 2005-09-21 2007-03-26 주성엔지니어링(주) Antenna for plasma generation
KR20070041220A (en) * 2005-10-14 2007-04-18 세메스 주식회사 Plasma treatment apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190104080A (en) * 2018-02-28 2019-09-06 주식회사 인포비온 High Density Linear ICP Source and antenna structure for ICP source
KR102045059B1 (en) 2018-02-28 2019-12-03 주식회사 인포비온 High Density Linear ICP Source

Also Published As

Publication number Publication date
KR20090022564A (en) 2009-03-04

Similar Documents

Publication Publication Date Title
EP1860680A1 (en) Inductively coupled plasma reactor
KR101463934B1 (en) Compound plasma reactor
KR101615492B1 (en) Compound plasma reactor
KR100753868B1 (en) Compound plasma reactor
KR101496847B1 (en) Inductively coupled plasma reactor
KR101358780B1 (en) Plasma reactor having inductively coupled plasma source with heater
KR101468730B1 (en) Inductively coupled plasma reactor having multi rf antenna
KR101572100B1 (en) Plasma reactor using multi-frequency
KR101424487B1 (en) Inductively coupled plasma reactor having multi rf antenna
KR100806522B1 (en) Inductively coupled plasma reactor
KR20080028848A (en) Inductively coupled plasma reactor for wide area plasma processing
KR101585893B1 (en) Compound plasma reactor
KR100845917B1 (en) Inductively coupled plasma reactor for wide area plasma processing
KR101384583B1 (en) Inductively coupled plasma reactor having multi rf antenna
KR101236206B1 (en) Inductively coupled plasma reactor for generating high density uniform plasma
KR101281188B1 (en) Inductively coupled plasma reactor
KR100772452B1 (en) Inductively coupled plasma reactor having multi rf antenna
KR101585891B1 (en) Compound plasma reactor
KR101383247B1 (en) Method for etching thin film using advanced inductively coupled plasma source
KR101609319B1 (en) Compound plasma reactor
KR101585890B1 (en) Plasma reactor with vertical dual chamber
KR101281191B1 (en) Inductively coupled plasma reactor capable
KR20090022117A (en) Heater having inductively coupled plasma source and plasma process chamber
KR101446185B1 (en) Hgh efficiency inductively coupled plasma reactor
KR20090021913A (en) Susceptor having inductively coupled plasma source and plasma process chamber

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170724

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180720

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190702

Year of fee payment: 6