KR101418983B1 - Method for processing homogeneously well dispersed carbon nanotube-aluminum composite powder by nano particles - Google Patents

Method for processing homogeneously well dispersed carbon nanotube-aluminum composite powder by nano particles Download PDF

Info

Publication number
KR101418983B1
KR101418983B1 KR1020110091887A KR20110091887A KR101418983B1 KR 101418983 B1 KR101418983 B1 KR 101418983B1 KR 1020110091887 A KR1020110091887 A KR 1020110091887A KR 20110091887 A KR20110091887 A KR 20110091887A KR 101418983 B1 KR101418983 B1 KR 101418983B1
Authority
KR
South Korea
Prior art keywords
aluminum
composite powder
powder
cnt
carbon nanotube
Prior art date
Application number
KR1020110091887A
Other languages
Korean (ko)
Other versions
KR20130028378A (en
Inventor
권한상
권헌성
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Priority to KR1020110091887A priority Critical patent/KR101418983B1/en
Publication of KR20130028378A publication Critical patent/KR20130028378A/en
Application granted granted Critical
Publication of KR101418983B1 publication Critical patent/KR101418983B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide

Abstract

본 발명은 환경에 무해하고 대량생산에 적합하면서 일괄공정으로 생산 비용이 저렴하며 이산화탄소 발생량이 낮은 알루미늄 카본나노튜브 복합분말의 제조방법에 관한 것이다. 본 발명은 CNT가 알루미늄분말 중에 균일하게 분산 혼합된 복합분말을 단일공정으로 단시간에 대량으로 제조할 수 있다.
본 발명에 의해 제조된 알루미늄-카본나노튜브 복합분말은, 고강도의 고온성질과 화학적 안정성이 우수한 나노SiC 입자를 첨가하고 있어, 이러한 복합분말로 제조되어지는 복합체는 CNT의 강화효과 이외에도 균질 분산된 나노SiC입자 자체에 의한 미세입자강화효과와 분산강화 등의 시너지 효과에 따른 기계적 특성의 향상을 얻을 수 있다.
The present invention relates to a process for producing an aluminum carbon nanotube composite powder which is harmless to the environment and which is suitable for mass production and which is low in production cost in a batch process and low in the amount of generated carbon dioxide. The present invention can produce a composite powder in which CNTs are uniformly dispersed and mixed in aluminum powder in a short time by a single process.
The aluminum-carbon nanotube composite powder produced by the present invention contains nano SiC particles having high strength and high temperature properties and excellent chemical stability, and the composite made from such a composite powder can be used for a CNT- It is possible to obtain an improvement in mechanical properties due to synergistic effects such as strengthening fine particles by SiC particles themselves and strengthening dispersion.

Description

나노입자를 이용한 균질 분산 카본나노튜브-알루미늄 복합분말의 제조방법 {METHOD FOR PROCESSING HOMOGENEOUSLY WELL DISPERSED CARBON NANOTUBE-ALUMINUM COMPOSITE POWDER BY NANO PARTICLES}METHOD FOR PROCESSING HOMOGENEOUSLY WELL DISPERSED CARBON NANOTUBE-ALUMINUM COMPOSITE POWDER BY NANO PARTICLES [0002]

본 발명은 나노 실리콘 카바이드(SiC)를 이용하여 카본나노튜브를 순수 또는 합금 알루미늄 분말에 균질하게 혼합시키는 방법에 관한 것으로, 더욱 상세하게는 일반적으로 사용되는 기계적 볼밀링보다 카본나노튜브의 응집이 없고 균질하게 분산된 알루미늄 카본나노튜브 혼합 분말 제조방법에 관한 것이다.
The present invention relates to a method of uniformly mixing carbon nanotubes with pure water or alloy aluminum powder using nanosilicon carbide (SiC), and more particularly, to a method of uniformly mixing carbon nanotubes with pure water or alloy aluminum powder using nanosilicon carbide The present invention relates to a method for producing a homogeneously dispersed mixed powder of aluminum carbon nanotubes.

카본나노튜브(Carbon Nanotube, 이하, 'CNT'라 함)는 탄소 6개로 이루어진 육각 모양이 서로 연결되어 튜브형상을 이루고 있고, 전기전도도는 CNT의 순도에 따라 다소 차이가 있으나 대체로 구리보다 1000배 높으며, 열전도율은 자연계에서 다이아몬드와 유사하며, 강도는 강철의 100배 정도 뛰어난 특징이 있다.Carbon nanotubes (hereinafter referred to as "CNTs") have a hexagonal shape with six carbon atoms connected to each other to form a tube shape. The electric conductivity of the carbon nanotube is 1000 times higher than that of copper although it varies slightly depending on the purity of CNTs , The thermal conductivity is similar to diamond in nature, and the strength is about 100 times better than steel.

일 예로 탄소섬유는 1%만 변형시켜도 끊어지지만 CNT는 15%를 변형시켜도 견딜 수 있는 인장강도를 지니고 있다.For example, carbon fibers can be broken even when only 1% is deformed, but CNT has a tensile strength that can withstand 15% deformation.

또한 CNT는 기계적, 전기적, 화학적, 열적 특성이 매우 우수한 특성이 있다는 사실이 보고되고 있어 학계나 산업분야에서는 향후 차세대 복합재료 강화재로 크게 주목받고 있는 신물질이라 할 수 있다.CNT has been reported to have excellent mechanical, electrical, chemical, and thermal properties. Therefore, CNT is a new material that is attracting much attention as a next-generation composite material reinforcement material in academic and industrial fields.

이러한 배경으로 CNT를 금속 세라믹 폴리머 등과 복합화하면 자동차, 우주 항공, 항공기 등과 같은 다양한 분야에서 슈퍼신소재로 매우 유용하게 활용될 수 있는 효과가 있다.As a result, when CNTs are combined with a metal ceramic polymer or the like, they are very useful as super new materials in various fields such as automobiles, aerospace, aircraft, and the like.

그러나 CNT는 상호간의 강한 반데발스 힘에 의해서 응집되기 쉬워 특히 CNT를 알루미늄 입자에 균일하게 분산시키고 벌크상태로 제조하기 위해서는 CNT를 효과적으로 균질 분산시키는 공정이 반듯이 수반되어야 한다.However, the CNTs tend to agglomerate due to strong van der Waals forces. In order to uniformly disperse the CNTs in the aluminum particles and to produce them in a bulk state, CNTs must be uniformly dispersed effectively.

일반적으로 CNT를 알루미늄분말 중에 분산시키기 위해서는 대부분 기계적 볼밀링법, 산처리(Acid treatment)에 의한 CNT의 기능화법 또는 천연고무액, 페놀, 폴리머 또는 PP, PE, PVC 등의 플라스틱재로 첨가제를 이용하여 분산시켜 왔다.Generally, in order to disperse CNTs in aluminum powder, mechanical ball milling, functionalization of CNT by acid treatment, or plastic materials such as natural rubber liquid, phenol, polymer or PP, PE, PVC are used .

유기물 첨가제를 이용한 분산법의 경우는 공정이 복잡하고 알루미늄 CNT 유기물 혼합체를 제조 후 첨가제를 제거하기 위한 디바인딩 공정등과 같은 후처리 공정이 필수적이며 비용이 많이 든다. 또한 후처리 공정중 발생되는 가스는 환경에 유해하여 그 취급시 주의를 요한다.In the case of the dispersion method using an organic additive, a post-treatment process such as a debinding process for removing additive after manufacturing the aluminum CNT organic compound mixture is complicated and requires a complicated process, which is costly. In addition, the gas generated during the post-treatment process is harmful to the environment, so care must be taken in its handling.

CNT를 산처리하여 알루미늄 분말과 혼합하는 방법 역시 산처리와 세척 등의 반복적인 공정으로 인해서 복잡하며 비용이 많이 들고, 인체와 환경에 유해한 강한 산을 사용함으로 전문가의 주의 깊은 처리가 필요하다.The method of acid treatment of CNT and mixing with aluminum powder is complicated and expensive due to repetitive processes such as acid treatment and washing, and requires careful treatment by experts because it uses strong acid which is harmful to human body and environment.

기계적 볼 밀링법에 의한 카본나노튜브 알루미늄 혼합분말 제조방법은 알루미늄과 카본나노튜브를 동시에 용기에 넣고 혼합하는 방법으로서 단순하고 대량 생산이 가능한 공정이지만 밀링공정 중 카본나노튜브가 파괴되고, 또한 장시간의 밀링공정으로 인해서 알루미늄 분말에 가공경화 현상이 생겨 후 가공이 어려워지는 단점이 있다.A method of manufacturing a carbon nanotube aluminum mixed powder by a mechanical ball milling method is a method in which aluminum and a carbon nanotube are put into a container at the same time and mixed, and a simple and mass-production process is possible. However, the carbon nanotubes are destroyed during the milling process, There is a disadvantage that post-processing becomes difficult due to the occurrence of work hardening phenomenon in the aluminum powder due to the milling process.

이러한 배경으로 인해서 알루미늄 카본나노튜브 벌크제품을 제조하기 위한 원료로 사용되는 카본나노튜브가 균질 분산된 알루미늄 혼합 분말을 제조하는 것이 어려운 실정이다.Due to such a background, it is difficult to produce an aluminum mixed powder in which carbon nanotubes are homogeneously dispersed, which is used as a raw material for manufacturing an aluminum carbon nanotube bulk product.

한편 나노 실리콘카바이드(Silicon carbide, 이하 `SiC`라 함)는 인장강도가 높고 날카로우며 일정한 도전성과 도열성을 갖고 있으며 높은 경도, 고내화성과 열충격에 강화며 고온성질과 화학적 안정성이 우수하여 연마재, 내화재로서 사용되고 있다.On the other hand, silicon carbide (hereinafter referred to as `SiC`) has high tensile strength, sharpness, constant conductivity and heat conductivity, and has high hardness, high fire resistance and thermal shock resistance and excellent high temperature property and chemical stability, , And is used as a refractory material.

전술한 바와 같이 분말야금 공정을 통해서 알루미늄 CNT 복합체를 제조하기 위해서는 원료로 사용되는 CNT-알루미늄 혼합분말의 제조가 필수적이며 CNT는 알루미늄 분말중에 균일하게 분산 혼합되어야 하나, CNT가 지닌 강한 반데발스 응력에 의한 응집성으로 인해 알루미늄분말과의 혼합이 어려우나 화학적으로 안정한 나노SiC 입자를 첨가하여 기계적 물리적으로 혼합하여 CNT가 효과적으로 알루미늄 분말에 균질하게 분산 혼합된 복합분말을 제조할 수 있을 것으로 예측되는 바, 본 발명자에 의한 연구결과가 일정수준에 도달하여 그 결과를 본 명세서를 통해 제안하고자 한다.As described above, in order to produce an aluminum CNT composite through a powder metallurgy process, it is essential to prepare a CNT-aluminum mixed powder used as a raw material. CNTs must be uniformly dispersed and mixed in the aluminum powder. However, It is predicted that it is possible to prepare a composite powder in which CNTs are effectively dispersed and mixed homogeneously in aluminum powder by mixing mechanically and physically by adding nano SiC particles which are chemically stable, And the results are presented in this specification.

본 발명에 의해 제조된 미량의 나노SiC 입자를 분산유도제로 첨가한 CNT 알루미늄 혼합 분말은 Al-CNT 나노 복합체 제조시의 원료 분말로 이용될 수 있고, 기존의 기계적 혼합방법의 제반시설을 그대로 사용하는 공법으로써 간단한 공정이면서 대량생산에 적합하며 저가의 신뢰성 높은 혼합분말의 제조가 예측된다.
The CNT aluminum mixed powder added with a small amount of nano SiC particles prepared by the present invention as a dispersion inducing agent can be used as a raw material powder in the production of Al-CNT nanocomposite, and the conventional mechanical mixing method is used as it is It is predicted that the process will be simple process, suitable for mass production, and low cost, reliable mixed powder.

본 발명은 전술한 바와 같이 CNT가 지닌 강한 반데발스 응력에 의한 응집성으로 인해 알루미늄분말과의 균질 분산 혼합이 어려움을 화학적으로 안정한 나노SiC 입자를 첨가하여 기계적 물리적으로 혼합하여 CNT가 효과적으로 알루미늄 분말에 균질하게 분산 혼합된 복합분말을 제조하는 방법을 제공하는데 목적이 있다.
As described above, because of the cohesive nature of CNTs due to strong Van der Waals stress, it is difficult to homogeneously disperse and mix with aluminum powder. The nanosized SiC particles, which are chemically stable, are added to mechanically and physically mix CNTs, The present invention also provides a method for producing a composite powder which is dispersed and mixed in the presence of a catalyst.

발명에 따른 알루미늄 및 카본나노튜브를 이용한 균질 분산 복합분말 제조방법의 구현수단은;According to another aspect of the present invention, there is provided an apparatus for manufacturing a homogeneously dispersed composite powder using aluminum and carbon nanotubes, comprising:

CNT를 균일하게 알루미늄입자에 분산시키기 위해 CNT: 0.5~30체적%와, 알루미늄분말: 40~99체적% 및 분산유도제인 나노SiC0: 5~30체적%를 불활성 분위기의 스테인리스 용기에 넣고 플래너터리 볼밀기로 혼합하여 복합분말을 제조하는 공정에 의해 구현할 수 있다.In order to uniformly disperse the CNTs in the aluminum particles, 0.5 to 30% by volume of CNT, 40 to 99% by volume of aluminum powder and 5 to 30% by volume of nano-SiCO as a dispersion inducing agent are put into a stainless steel container of inert atmosphere, And mixing the mixture to produce a composite powder.

상기한 분산유도제 고상의 나노입자는 CNT가 알루미늄분말의 계면에 균질하게 분산되도록 하기 위한 것으로, 나노SiC, 나노SiO2 나노Al2O3, 나노TiO2, 나노Fe3O4, 나노MgO, 나노ZrO2 세라믹 군 중에서 어느 하나를 선택적으로 채택될 수 있다. 본 발명에서는 예시적으로 나노SiC 입자를 채용하였다.The above-mentioned dispersion inducing solid phase nanoparticles are used for uniformly dispersing CNTs at the interface of aluminum powder. The dispersion inducing agents are nano SiC, nano SiO 2 nano Al 2 O 3 , nano TiO 2 , nano Fe 3 O 4 , nano MgO, Of ZrO 2 Any one of the ceramic groups can be selectively adopted. In the present invention, nano SiC particles are exemplarily employed.

또한 상기한 분산유도제인 나노입자의 분산유도 효과를 극대화하기 위해서 공정제어제(Process Control Agent)로써 헵탄(Heptane)을 20중량부를 첨가하는 것이 효과적이다.It is also effective to add 20 parts by weight of heptane as a process control agent in order to maximize the dispersion inducing effect of the dispersion inducing nanoparticles.

밀링시 상기한 용기내의 분말을 산화되지 않기 위해서는 불활성분위기의 조성이 필요하며, 아르곤가스나 질소가스 또는 진공분위기 중 어느 하나라도 선택적으로 적용할 수 있다. 본 발명에서는 예시적으로 아르곤 가스를 채용하였다.In order to prevent the powder in the vessel from being oxidized at the time of milling, an inert atmosphere composition is required, and either argon gas, nitrogen gas or vacuum atmosphere can be selectively applied. In the present invention, argon gas is used as an example.

상기 플래니터리 볼 밀기의 운전조건은 상온에서 360rpm으로, 30분 이내로 밀링하는 것이 유용하다.
The operating conditions of the planetary ball pushing mill are 360 rpm at room temperature and it is useful to mill within 30 minutes.

본 발명에 의하면, CNT가 알루미늄분말 중에 균일하게 분산 혼합된 복합분말을 단일공정으로 단시간에 대량으로 제조할 수 있다.According to the present invention, a composite powder in which CNTs are uniformly dispersed and mixed in aluminum powder can be mass-produced in a short time by a single process.

따라서, 본 발명에 의해 제조된 알루미늄-카본나노튜브 복합 분말은 알루미늄 및 카본나노튜브 복합체 제조시 유용한 원료로 사용이 가능하며 기존에 사용되고 있는 기계적 밀링 공정을 그대로 사용이 가능하여 시공에 따른 제반비용을 크게 절감할 수 있을 뿐만 아니라 단일공정으로 제조설비가 간소하고 용이하여 탄소배출량이 저감됨으로 환경 친화적인 특징이 있다.Therefore, the aluminum-carbon nanotube composite powder produced by the present invention can be used as a useful raw material in the production of aluminum and carbon nanotube composite, and the conventional mechanical milling process can be used as it is, It can be greatly reduced, and the manufacturing facility is simplified and facilitated by a single process, so that carbon emission is reduced, thereby being environmentally friendly.

또한 본 발명에 의해 제조된 알루미늄-카본나노튜브 복합분말은, 고강도의 고온성질과 화학적 안정성이 우수한 나노SiC 입자를 첨가하고 있어, 이러한 복합분말로 제조되어지는 복합체는 CNT의 강화효과 이외에도 균질 분산된 나노SiC입자 자체에 의한 미세입자강화효과와 분산강화 등의 시너지 효과에 따른 기계적 특성의 향상을 얻을 수 있는 특징이 있다.In addition, the aluminum-carbon nanotube composite powder produced by the present invention contains nano SiC particles having high strength and high temperature properties and chemical stability, and the composite made from such a composite powder has a uniformly dispersed It is possible to obtain an improvement in mechanical properties due to synergistic effects such as strengthening fine particles due to nano SiC particles themselves and strengthening dispersion.

또한 본 발명에 의해 제조된 알루미늄 카본나노튜브 복합분말은 고강도, 고경도, 고연성, 초경량 특성을 요구하는 자동차, 우주 항공, 항공기 등과 같은 다양한 분야에서 슈퍼 신소재를 제조하는 원료로써 매우 유용하게 활용될 수 있는 효과가 있다.
Also, the aluminum carbon nanotube composite powder produced by the present invention is very useful as a raw material for manufacturing a super new material in various fields such as automobile, aerospace, aircraft and the like requiring high strength, high hardness, high ductility and light weight characteristics There is an effect that can be.

도 1은 본 발명에 따른 나노SiC 입자를 이용하여 혼합된 알루미늄및 카본나노튜브 복합분말의 제조방법을 나타낸 그림이다.
도 2는 밀링 공정중 나노SiC입자가 응집된 CNT와 Al입자 사이로 침투하여 CNT가 균일하게 분산된 복합분말이 제조되는 예시도이다.
도 3은 본 발명에 사용된 원료 알루미늄, CNT 그리고 나노SiC 입자를 FE-SEM으로 촬영한 사진이며, (d), (e), (f)는 고배율 FE-SEM과 TEM으로 촬영한 사진이다.
도 4는 Al-CNT복합분말의 CNT와 분산유도제인 나노SiC의 함량에 따른 복합분말의 FE-SEM으로 촬영한 사진이다.
도 5는 Al-CNT복합분말의 CNT와 분산유도제인 나노SiC의 함량에 따른 복합분말을 TEM으로 촬영한 사진이다.
FIG. 1 is a view showing a method of producing composite aluminum and carbon nanotube powders mixed with nano SiC particles according to the present invention.
FIG. 2 is an example of a composite powder in which nano SiC particles penetrate between CNTs and Al particles agglomerated during the milling process and CNTs are uniformly dispersed.
FIG. 3 is a photograph of the raw aluminum, CNT and nano SiC particles used in the present invention, and FIG. 3 (d), (e) and (f) are photographs taken with a high magnification FE-SEM and TEM.
Fig. 4 is a photograph of FE-SEM of composite powder according to the contents of CNT of Al-CNT composite powder and nano SiC as a dispersion inducing agent.
5 is a TEM photograph of a composite powder according to the content of CNT of Al-CNT composite powder and nano SiC as a dispersion inducing agent.

이하에서는 본 발명에 따른 나노 SiC 입자를 이용하여 혼합된 알루미늄 및 카본나노튜브 복합분말의 제조방법에 대하여 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, a method for producing composite aluminum and carbon nanotube composite powders using nano SiC particles according to the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 사용된 CNT는 화학적기상성장법으로 제조된 순도 95%, 평균 직경과 길이는 각각 80㎚와 20㎛(일본 호도가야 케미컬 제조)이고, 알루미늄분말은 평균 입경 63㎛, 순도 99.5%(일본 ECKA 그래뉼 제팬사 제조)이며, 분산유도제로 사용한 나노 SiC 입자는 순도 99.8%, 평균입경 20nm(스위스 Empa 제조)를 채용하였다. 또한 본 발명에서 사용된 볼밀기는 플래너터리 볼밀기(독일 Retsch사 모델 PM400)를 사용하였다. 분말을 장입하기 위해 사용한 용기는 500ml 용량의 스테인리스 재질이며, 직경 10mm의 스테인리스 볼을 사용하였다.The CNTs used in the present invention had a purity of 95%, an average diameter and a length of 80 nm and 20 탆 (manufactured by Hodogaya Chemical Co., Ltd.) manufactured by chemical vapor deposition, an aluminum powder having an average particle size of 63 탆, a purity of 99.5% Manufactured by ECKA Granules Japan Co., Ltd.), and nano SiC particles used as a dispersion inducing agent had a purity of 99.8% and an average particle diameter of 20 nm (manufactured by Empa, Switzerland). The ball mill used in the present invention was a planetary ball mill (Retsch Model PM400, Germany). The container used to charge the powder was a stainless steel material having a capacity of 500 ml and a stainless steel ball having a diameter of 10 mm.

일반적으로, 마이크로사이즈의 알루미늄입자는 나노사이즈의 CNT와 사이즈차이가 커서 분산이 어렵다. 또한 CNT는 강한 반데발스힘에 의해서 응집되기 쉬워 CNT를 알루미늄 입자에 균일하게 분산시키기 위해서 분산유도제가 요구된다.In general, micro-sized aluminum particles have a large size difference from nano-sized CNTs and are difficult to disperse. In addition, CNTs tend to agglomerate due to a strong Van der Waals force, and a dispersion inducing agent is required to uniformly disperse CNTs into aluminum particles.

분산유도제는 나노SiC, 나노SiO2 나노Al2O3,나노TiO2, 나노Fe3O4,나노MgO, 나노ZrO2 의 세라믹 군 중에서 어느 하나를 선택하여 알루미늄과 카본나노튜브와 함께 혼합하는 것이 바람직하다. 본 발명의 채용예로서는 나노SiC 입자를 분산유도제로 채용하였다.The dispersion inducing agent may be any one selected from the group consisting of nano-SiC, nano-SiO 2 nano-Al 2 O 3 , nano-TiO 2 , nano-Fe 3 O 4 , nano-MgO and nano-ZrO 2 and mixing them together with aluminum and carbon nanotubes desirable. As an embodiment of the present invention, nano SiC particles were employed as a dispersion inducing agent.

도 1에 예시한 바와 같이 CNT: 0.5~30체적%와, 알루미늄분말: 40~99체적%를 분산유도제인 나노SiC를 0.5~30체적%의 비율로 아르곤 분위기의 용기에 장입한 후 플레너터리 볼밀기를 이용하여 360rpm, 볼과 분말의 비율은 10:1, 밀링시 마찰계수를 감소시키기 위해서 공정제어제로 헵탄(Heptane)을 20중량부를 첨가하고, 30분 이내로 혼합하여 알루미늄 카본나노튜브 복합분말을 제조하는 단계(100)를 수행한다.
As shown in FIG. 1, 0.5 to 30% by volume of CNT and 40 to 99% by volume of aluminum powder were charged into a container of argon atmosphere at a rate of 0.5 to 30% by volume of nano SiC as a dispersion inducing agent, 20 parts by weight of heptane as a process control agent was added in order to reduce the friction coefficient at the time of milling and the mixture was mixed within 30 minutes to prepare an aluminum carbon nanotube composite powder (Step 100).

또한 상기한 분산유도제인 나노입자의 분산유도 효과를 극대화하기 위해서 공정제어제(Process Control Agent)로써 헵탄(Heptane)을 20중량부를 첨가하는 것이 효과적이다.It is also effective to add 20 parts by weight of heptane as a process control agent in order to maximize the dispersion inducing effect of the dispersion inducing nanoparticles.

CNT는 목적물의 형상에는 영향을 미치지 않으나 CNT함량이 적으면 분산유도제인 나노SiC의 함량을 줄이고, 반대로 CNT를 많이 첨가할수록 효과적인 분산을 위해 나노SiC의 함량을 증가시키는 것이 필요하다.CNT does not affect the shape of the target, but if the content of CNT is small, it is necessary to reduce the content of nano SiC, which is a dispersion inducing agent, and conversely, the more CNT is added, to increase the content of nano SiC for effective dispersion.

따라서, 본 발명을 응용하여 다양한 조성의 알루미늄 카본나노튜브 복합분말의 제조가 가능하며 CNT함량은 증감될 수 있으나, 본 발명에서 제안하는 CNT의 함량은 본 발명에 의해 제조된 복합분말이 기존의 분산법에 의해 제조된 복합분말보다 가장 좋은 분산도를 나타내는 것을 목표로 연구되었다.Accordingly, the present invention can be applied to the production of aluminum carbon nanotube composite powders of various compositions, and the CNT content can be increased or decreased. However, the content of CNTs proposed in the present invention is not limited to the conventional dispersion The aim of this study is to show the best dispersion of composite powders prepared by the method.

도 2의 예시한 바와 같이 상기한 분산유도제인 나노SiC입자는, 일반적으로 기계적 밀링 공정시 발생되는 회전력에 의해 볼이 회전하면서 장입된 분말 내부로 침투하여 분말을 혼합하는 것과 같은 효과처럼 극미세한 나노크기의 SiC입자가 밀링볼과 같은 역할로 CNT 내부로 침투하여 물리적으로 응집된 CNT를 분리하고 유동성을 촉진시켜 알루미늄 표면에 균일하게 분산 혼합된다.As illustrated in FIG. 2, the nano-SiC particles as the dispersion inducing agent described above are generally formed by a rotating force generated in a mechanical milling process, Sized SiC particles penetrate into the CNTs in the same manner as the milling balls to separate the physically agglomerated CNTs and promote fluidity so that they are uniformly dispersed and mixed on the aluminum surface.

도 4의 Al-CNT 복합분말의 CNT와 분산유도제인 나노SiC의 함량에 따른 복합분말의 FE-SEM 사진에서 알 수 있듯이 함유량과 상관없이 CNT와 함께 나노SiC가 균일하게 알루미늄 표면에 분산되었음을 보여준다. 본 발명의 채용예로서는 CNT: 10체적%에 나노SiC: 30체적%와 CNT: 30체적%에 나노SiC: 10체적%를 첨가한 Al복합분말을 제조하였다.As can be seen from the FE-SEM photographs of the composite powder according to the content of CNT of the Al-CNT composite powder and the nano SiC as the dispersion inducing agent, it is shown that the nano SiC is uniformly dispersed on the aluminum surface together with the CNT regardless of the content. As an embodiment of the present invention, an Al composite powder prepared by adding 30 volume% of nano SiC to 10 volume% of CNT and 10 volume% of nano SiC to 30 volume% of CNT was prepared.

알루미늄 입자 역시 밀링공정을 통해서 미세화되지만, CNT: 30체적% 경우는 CNT: 10체적%의 경우보다 입자가 큰 것을 도 4에서 확인되었다. 이는 윤활성이 우수한 CNT가 마찰계수를 감소시켜 밀링볼에 의한 알루미늄 입자의 그라인딩 효율을 떨어뜨린 것에 기인한 것으로 판단된다.Aluminum particles are also refined through the milling process, but in CNT (30 vol.%), CNT (10 vol.%) Is larger than that of CNT (10 vol.%). This is because CNTs with excellent lubricity decreased the friction coefficient and the grinding efficiency of the aluminum particles by the milling balls was lowered.

또한 알루미늄 표면에 균일 분산되어있는 CNT와 나노SiC입자는 도 4의 TEM 레벨의 사진에서도 알 수 있듯이 높은 분산성을 보여준다. 특히 Al입자 표면에 존재하는 나노SiC입자는 CNT와 Al의 직접적인 접촉을 억제하여 일반적으로 알려져 있는 CNT와 Al의 반응에 의해서 생성될 수 있는 불건전상인 알루미늄카바이드의 생성을 억제하는 역할 역시 수행할 것으로 예측된다. In addition, the CNT and nano SiC particles uniformly dispersed on the aluminum surface exhibit high dispersibility, as can be seen from the TEM-level photograph of FIG. In particular, the nano SiC particles present on the surface of Al particles inhibit the direct contact between CNT and Al, so that they will also play a role in inhibiting the formation of aluminum carbide, which is an unstable phase, do.

이상에서 설명한 바와 같이 알루미늄분말과 CNT의 효과적인 분산을 위해서 나노SiC입자를 분산유도제로 혼합하여 기계적 볼 밀링공정을 통해서 나노SiC와 CNT가 균일하게 분산된 Al-CNT 복합분말을 제조할 수 있다.As described above, in order to effectively disperse the aluminum powder and CNT, nano SiC particles can be mixed with a dispersion inducing agent, and a nano SiC and CNTs can be uniformly dispersed in an Al-CNT composite powder through a mechanical ball milling process.

또한 본 발명의 실시예는 본 발명의 이해를 돕기 위한 것일 뿐 당해 기술 분야에 통상의 지식을 가진 자라면 본 발명을 통해 다양한 변경이나 응용예를 실시할 수 있을 것이나, 이는 본 발명자가 의도하는 진정한 의미의 기술적 사상과 이하에서 정의하는 특허청구범위의 범주에 포함된다는 것을 미리 밝혀주는 바이다.While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, And the scope of the claims is defined in the following claims.

100: 복합분말 제조공정100: Composite powder manufacturing process

Claims (4)

CNT 0.5~30체적%와, 알루미늄분말 40~99체적% 및 분산유도제 나노SiC 0.5~30체적%의 비율로 아르곤 분위기의 용기에 장입한 후 플래너터리 볼밀기를 이용하여 상온에서 360rpm 볼과 분말의 비율은 10:1, 밀링시 마찰계수를 감소시키기 위해서 공정제어제로 헵탄 20중량부를 첨가하고, 30분 이내로 혼합하여 알루미늄-카본나노튜브 복합분말을 제조한 것을 특징으로 하는 나노입자를 이용한 균질 분산 카본나노튜브-알루미늄 복합분말의 제조방법.The mixture was charged into a container of argon at a ratio of 0.5 to 30% by volume of CNT, 40 to 99% by volume of aluminum powder and 0.5 to 30% by volume of a dispersion inducing agent, and the ratio of balls and powder at 360 rpm at room temperature using a planetary ball mill Carbon nanotube composite powder was prepared by adding 20 parts by weight of heptane as a process control agent to reduce the friction coefficient at the time of milling and mixing them within 30 minutes to obtain a homogeneously dispersed carbon nano- A method for producing a tube-aluminum composite powder. 삭제delete 삭제delete 삭제delete
KR1020110091887A 2011-09-09 2011-09-09 Method for processing homogeneously well dispersed carbon nanotube-aluminum composite powder by nano particles KR101418983B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110091887A KR101418983B1 (en) 2011-09-09 2011-09-09 Method for processing homogeneously well dispersed carbon nanotube-aluminum composite powder by nano particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110091887A KR101418983B1 (en) 2011-09-09 2011-09-09 Method for processing homogeneously well dispersed carbon nanotube-aluminum composite powder by nano particles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020140044120A Division KR101686973B1 (en) 2014-04-14 2014-04-14 Method for processing homogeneously well dispersed carbon nanotube-aluminum composite powder by nano particles

Publications (2)

Publication Number Publication Date
KR20130028378A KR20130028378A (en) 2013-03-19
KR101418983B1 true KR101418983B1 (en) 2014-07-11

Family

ID=48178918

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110091887A KR101418983B1 (en) 2011-09-09 2011-09-09 Method for processing homogeneously well dispersed carbon nanotube-aluminum composite powder by nano particles

Country Status (1)

Country Link
KR (1) KR101418983B1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104726734B (en) * 2013-12-20 2016-09-07 中国科学院上海硅酸盐研究所 The preparation method of Aluminum Matrix Composites Strengthened by SiC
CN103924172B (en) * 2014-05-05 2015-11-18 河北工业大学 A kind of preparation method of reinforced aluminum matrix composites
KR101650342B1 (en) * 2016-07-06 2016-08-23 부경대학교 산학협력단 Functionally graded dual-nanoparticlate-reinforced aluminum matrix bulk materials and preparation method thereof
KR101850934B1 (en) * 2016-09-22 2018-04-20 부경대학교 산학협력단 Method for preparing single wall carbon nanotube reinforced metal matrix composite materials using spark plasma sintering process and single wall carbon nanotube reinforced metal matrix composite materials prepared thereby
CN109133765A (en) * 2018-08-25 2019-01-04 太和县鑫泰高科新型建筑材料有限公司 A method of with the modified enhancing cement-base composite material of thermal reduction graphene-carbon nano tube
KR102266847B1 (en) * 2019-04-15 2021-06-21 부경대학교 산학협력단 Method for manufacturing billet for plastic working used for preparing composite material and billet manufactured thereby
KR102228431B1 (en) * 2019-04-16 2021-03-16 부경대학교 산학협력단 Method for manufacturing aluminum-based clad heat sink and aluminum-based clad heat sink manufactured thereby
CN110669956A (en) * 2019-11-21 2020-01-10 吉林大学 Preparation method of carbon nano tube reinforced aluminum-based composite material with surface coated with aluminum oxide
CN111500911A (en) * 2020-06-03 2020-08-07 上海鑫烯复合材料工程技术中心有限公司 Preparation method of high-toughness nano reinforced metal matrix composite material
CN112301298B (en) * 2020-09-22 2022-08-02 哈尔滨工业大学(威海) Light heat-resistant high-rigidity multi-element reinforced aluminum-based composite material and preparation method thereof
CN113088744B (en) * 2021-02-20 2022-03-22 南昌大学 Preparation method of modified carbon nanotube reinforced aluminum alloy semi-solid slurry
CN113088745B (en) * 2021-02-20 2022-05-20 南昌大学 Preparation method of zirconium oxide coated carbon nanotube reinforced aluminum matrix composite

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100024230A (en) * 2008-08-25 2010-03-05 한국과학기술원 Carbon nanotube reinforced metal alloy nanocomposite and fabrication process thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100024230A (en) * 2008-08-25 2010-03-05 한국과학기술원 Carbon nanotube reinforced metal alloy nanocomposite and fabrication process thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Materials Science and Engineering A Vol.508, 2009, pages 167-173 (2009.05.20.) *
Materials Science and Engineering A Vol.508, 2009, pages 167-173 (2009.05.20.)*

Also Published As

Publication number Publication date
KR20130028378A (en) 2013-03-19

Similar Documents

Publication Publication Date Title
KR101418983B1 (en) Method for processing homogeneously well dispersed carbon nanotube-aluminum composite powder by nano particles
KR101686973B1 (en) Method for processing homogeneously well dispersed carbon nanotube-aluminum composite powder by nano particles
Wang et al. Rapid and low temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites
Duan et al. Effect of CNTs content on the microstructures and properties of CNTs/Cu composite by microwave sintering
Munir et al. Effect of dispersion method on the deterioration, interfacial interactions and re-agglomeration of carbon nanotubes in titanium metal matrix composites
Kwon et al. Dual-nanoparticulate-reinforced aluminum matrix composite materials
JP6490253B2 (en) Method for preparing graphene / silver composite material
Kim et al. Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites
Varol et al. Microstructure, electrical conductivity and hardness of multilayer graphene/copper nanocomposites synthesized by flake powder metallurgy
Xue et al. Preparation and elevated temperature compressive properties of multi-walled carbon nanotube reinforced Ti composites
Tjong Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets
Jiang et al. Electroless Ni-plated graphene for tensile strength enhancement of copper
KR101583916B1 (en) Nano-carbon reinforced aluminium composite materials and method for manufacturing the same
Yoo et al. Synergistic outstanding strengthening behavior of graphene/copper nanocomposites
KR101091272B1 (en) Fabrication method of nanocomposite powders consisted with carbon nanotubes and metal
Goyat et al. Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite
US9878370B2 (en) Bimodal metal matrix nanocomposites and methods of making
Wei et al. High strength and electrical conductivity of copper matrix composites reinforced by carbon nanotube-graphene oxide hybrids with hierarchical structure and nanoscale twins
Sarkar et al. Processing and properties of carbon nanotube/alumina nanocomposites: a review
KR101722582B1 (en) Method for processing Composite Wire for Electrical Cable using Carbon NanoTube - Aluminum Composite Powder
Li et al. Fabrication and properties of magnesium matrix composite reinforced by urchin-like carbon nanotube-alumina in situ composite structure
Hu et al. Preparation and mechanical properties of Si3N4 nanocomposites reinforced by Si3N4@ rGO particles
Nyanor et al. Improved ductility of spark plasma sintered aluminium-carbon nanotube composite through the addition of titanium carbide microparticles
Li et al. In-situ homogeneous synthesis of carbon nanotubes on aluminum matrix and properties of their composites
JP5709239B2 (en) Method for producing titanium matrix composite material and titanium matrix composite material produced by the method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
N231 Notification of change of applicant
N231 Notification of change of applicant
A107 Divisional application of patent
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170517

Year of fee payment: 4