KR101393651B1 - Cathode active material for lithium secondary battery, manufacturing method for the same and lithium secondary battery comprising the same - Google Patents

Cathode active material for lithium secondary battery, manufacturing method for the same and lithium secondary battery comprising the same Download PDF

Info

Publication number
KR101393651B1
KR101393651B1 KR1020110055678A KR20110055678A KR101393651B1 KR 101393651 B1 KR101393651 B1 KR 101393651B1 KR 1020110055678 A KR1020110055678 A KR 1020110055678A KR 20110055678 A KR20110055678 A KR 20110055678A KR 101393651 B1 KR101393651 B1 KR 101393651B1
Authority
KR
South Korea
Prior art keywords
active material
group
carbon
secondary battery
lithium secondary
Prior art date
Application number
KR1020110055678A
Other languages
Korean (ko)
Other versions
KR20110134852A (en
Inventor
홍지준
변기택
김효원
Original Assignee
주식회사 루트제이제이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 루트제이제이 filed Critical 주식회사 루트제이제이
Publication of KR20110134852A publication Critical patent/KR20110134852A/en
Application granted granted Critical
Publication of KR101393651B1 publication Critical patent/KR101393651B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1235Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]2-, e.g. Li2Mn2O4, Li2[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/52Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [Mn2O4]2-, e.g. Li2(CoxMn2-x)O4, Li2(MyCoxMn2-x-y)O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/52Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O4]2-, e.g. Li2(NixMn2-x)O4, Li2(MyNixMn2-x-y)O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

리튬 이차전지용 양극 활 물질, 그 제조방법 및 이를 포함하는 리튬 이차전지가 제공된다.
본 발명에 따른 리튬 이차전지용 양극 활 물질은 LinMO4 / X의 복합체를 포함하며, 여기에서 M은 Mn, Fe, Co, Ni, Al, Mn, V, Cr, Fe, Co, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 원소이며, X는 탄소원 또는 리튬티탄산화물(Lithium Titanium Oxide, Li4Ti5O12) 또는 이들의 혼합물인 것을 특징으로 하며, 본 발명에 따르면, 경제적인 방식으로 우수한 전기 전도도 및 기계적 특성을 갖는 리튬이차전지용 양극 활 물질이 제조될 수 있다. 특히, 상기 LinMO4 입자상 표면에 균일하게 분산, 함유된 탄소원 또는 리튬티탄산화물(LTO)은 리튬이차전지용 양극 활 물질 복합체로 하여금 향상된 전기 전도도를 갖게 한다. 또한, 본 발명에 따른 양극 활 물질은 이차전지에 적용하기 적합한 에너지 밀도를 가지고, 안정성과 안전성이 뛰어나며, 우수한 전지특성을 유지하면서도 사이클 수명이 긴 장점을 갖는다.
A cathode active material for a lithium secondary battery, a production method thereof, and a lithium secondary battery comprising the same are provided.
The positive electrode active material for a lithium secondary battery according to the present invention comprises Li n MO 4 / X < / RTI > complex, Wherein M is at least one element selected from the group consisting of Mn, Fe, Co, Ni, Al, Mn, V, Cr, Fe, Co, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ba, W and Pb, and X is a carbon source or a lithium titanium oxide (Li 4 Ti 5 O 12 ) or a mixture thereof. , A cathode active material for a lithium secondary battery having excellent electrical conductivity and mechanical characteristics in an economical manner can be produced. In particular, the Li n MO 4 A carbon source or lithium titanium oxide (LTO), which is uniformly dispersed on the surface of the particle, contains a cathode active material composite for a lithium secondary battery to have improved electric conductivity. In addition, the cathode active material according to the present invention has an energy density suitable for application to a secondary battery and is excellent in stability and safety, and has an advantage of long cycle life while maintaining excellent battery characteristics.

Description

리튬 이차전지용 양극 활 물질, 그 제조방법 및 이를 포함하는 리튬 이차전지{Cathode active material for lithium secondary battery, manufacturing method for the same and lithium secondary battery comprising the same}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cathode active material for a lithium secondary battery, a method for manufacturing the same, and a lithium secondary battery including the cathode active material,

본 발명은 리튬 이차전지용 양극 활 물질 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 Li2MM'O4 입자상 표면에 균일하게 분산, 함유된 탄소원 또는 리튬티탄산화물(LTO)에 의하여 향상된 비용량과 전기전도도를 갖는 리튬이차전지용 양극 활 물질 복합체, 그 제조방법 및 이를 포함하는 리튬이차전지에 관한 것이다.The present invention relates to a lithium secondary battery positive electrode active material and a method of manufacturing the same, and more particularly, Li 2 MM'O 4 To a cathode active material composite for a lithium secondary battery having a specific capacity and an electric conductivity improved by a carbon source or lithium titanium oxide (LTO) contained uniformly dispersed on a particle surface, a method for producing the same, and a lithium secondary battery comprising the same.

최근 휴대전화, 휴대용 개인정보단말기(PDA), 노트북 PC, MP3 등의 휴대용 소형 전자기기 및 전기 자동차 등의 전원 및 동력원으로서의 리튬 이차전지의 수요가 급격히 늘어나고 있다. 이에 따라 리튬 이차전지의 고용량화와 사이클 수명 연장에 대한 요구도 증가하고 있다.2. Description of the Related Art In recent years, demand for lithium secondary batteries as power sources and power sources for portable electronic devices such as portable telephones, portable personal digital assistants (PDAs), notebook PCs, MP3 players, and electric vehicles has been rapidly increasing. Accordingly, there is a growing demand for high capacity and longer cycle life of lithium secondary batteries.

리튬 이차전지의 양극 활 물질로서는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 및 리튬 복합금속 산화물 등이 사용되고 있다. 그 외에도 저가격 고안정성의 스피넬형 리튬 망간 산화물(LiMn2O4), 올리빈형 인산철, 인산 망간 및 인산 복합금속 리튬 화합물도 주목받고 있다.As the cathode active material of the lithium secondary battery, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium composite metal oxide are used. In addition, spinel-type lithium manganese oxide (LiMn 2 O 4 ) of low cost and high stability, olivine type iron phosphate, manganese phosphate, and lithium phosphate compound metal compound are attracting attention.

하지만, 리튬 코발트 산화물이나 리튬 니켈 산화물, 리튬 복합금속 산화물은 기본적인 전지 특성은 우수하지만, 열 안정성과 과충전 안전성 등이 충분하지 않다. 따라서 이를 개선하기 위한 별도의 안전장치가 추가로 필요하며, 또한 활 물질 자체의 가격이 비싼 단점이 있다. However, lithium cobalt oxide, lithium nickel oxide, and lithium composite metal oxide are excellent in basic battery characteristics but insufficient in thermal stability and overcharge safety. Therefore, there is a disadvantage that an additional safeguard device is needed to improve it, and the price of the active material itself is high.

또한, 리튬 망간 산화물 LiMn2O4의 경우 +3가의 망간 양이온에 기인하는 얀-텔러 뒤틀림 (Jahn-Teller distortion)이라는 구조변이 때문에 수명 특성이 좋지 않다는 치명적인 단점을 나타낸다. 이는 또한 낮은 전기용량으로 인해 고에너지 밀도에 대한 요구를 충분히 만족시키지 못한다. 올리빈형 인산철 및 인산망간 리튬 화합물은 전기 전도성이 상당히 낮기 때문에 우수한 전지 특성을 기대하기 어렵고 또한 평균 작동전위가 낮아 고용량화에 대한 요구를 충분히 만족시키지 못한다.In addition, LiMn 2 O 4 of lithium manganese oxide shows a fatal disadvantage that life characteristics are poor due to the structure of the Jang-Teller distortion due to the +3 manganese cation. It also fails to adequately meet the demand for high energy density due to low electrical capacity. The olivine-type ferric phosphate and manganese phosphate lithium compounds have low electric conductivity and thus are not expected to exhibit excellent battery characteristics and have low average operating potentials, failing to satisfy the demand for high capacity.

이에 반해 오르쏘실리케이트계 화합물(orthosilicate, Li2MSiO4, M=Fe, Mn, Ni, Co)은 가격이 저렴할 뿐만 아니라 높은 열안정성을 가지며 및 환경친화적인 물질로 여겨지고 있다. 더 나아가, Li2MSiO4는 330 mAh/g로 올리빈형 보다 높은 이론적 용량을 가지고 있다고 알려져 있지만, 전기전도성이 나쁘다는 단점을 가지고 있다.On the other hand, orthosilicate compounds (orthosilicate, Li 2 MSiO 4 , M = Fe, Mn, Ni and Co) are considered to be not only inexpensive, but also have high thermal stability and are environmentally friendly. Furthermore, Li 2 MSiO 4 is known to have a theoretical capacity higher than olivine type at 330 mAh / g, but it has the disadvantage of poor electrical conductivity.

따라서, 본 발명이 해결하려는 과제는 높은 전기 전도성을 갖는 Li2MM'SiO4 기반의 리튬이차전지용 양극 활 물질을 제공하는 것이다.Therefore, a problem to be solved by the present invention is to provide Li 2 MM'SiO 4 Based cathode active material for a lithium secondary battery.

본 발명이 해결하려는 또 다른 과제는 높은 전기 전도성을 갖는 Li2MM'SiO4 기반의 리튬이차전지용 양극 활 물질의 경제적인 제조방법을 제공하는 것이다.Another object to be solved by the present invention is to provide Li 2 MM'SiO 4 Based cathode active material for a lithium secondary battery.

본 발명이 해결하려는 또 다른 과제는 높은 전도성 및 기계적 특성의 양극 활 물질을 포함하는 리튬이차전지를 제공하는 것이다.Another object to be solved by the present invention is to provide a lithium secondary battery comprising a cathode active material of high conductivity and mechanical properties.

상기 과제를 해결하기 위하여, 본 발명은 리튬이차전지용 양극 활 물질로서, 상기 양극 활 물질은 LinMO4 / X의 복합체를 포함하며, 여기에서 M은 Mn, Fe, Co, Ni, Al, Mn, V, Cr, Fe, Co, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 원소이며, X는 탄소원 또는 리튬티탄산화물(Lithium Titanium Oxide, Li4Ti5O12) 또는 이들의 혼합물이고, n은 정수인 것을 특징으로 하는 리튬이차전지용 양극 활 물질을 제공한다. In order to solve the above problems, the present invention provides a cathode active material for a lithium secondary battery, wherein the cathode active material is Li n MO 4 / X < / RTI > complex, Wherein M is at least one element selected from the group consisting of Mn, Fe, Co, Ni, Al, Mn, V, Cr, Fe, Co, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ba, W and Pb, X is a carbon source or a lithium titanium oxide (Li 4 Ti 5 O 12 ) or a mixture thereof, and n is an integer A positive electrode active material for a lithium secondary battery.

본 발명의 일 실시예에서 상기 M은 mm'이며, 여기에서 m은 Mn, Fe, Co 및 Ni로 이루어진 군으로부터 선택되며, m'는 Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 원소이며, 상기 탄소원은 탄소나노튜브, 탄소나노와이어, 탄소나노섬유, 흑연, 활성탄 및 그래핀으로 이루어진 군으로부터 선택된 1종 이상이다 .In one embodiment of the present invention, M is mm 'where m is selected from the group consisting of Mn, Fe, Co and Ni, m' is selected from the group consisting of Al, V, Cr, Zn, Zr, Nb, Mo, Ag Wherein the carbon source is at least one element selected from the group consisting of Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W and Pb. The carbon source may be carbon nanotube, carbon nanowire, Activated carbon, and graphene.

본 발명의 또 다른 일 실시예에서 상기 탄소원은 탄소나노튜브, 탄소나노와이어, 탄소나노섬유, 흑연, 활성탄 및 그래핀으로 이루어진 군으로부터 선택된 1종 이상의 물질 및 글루코스(glucose), 수크로스(scurose), 폴리에틸렌글리콜(poly ethylene glycol), 폴리비닐알콜(poly vinyl alcohol), 폴리비닐클로라이드(poly vinyl chloride), 구연산(citric acid)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 모두 포함하며, 상기 탄소원 또는 리튬티탄산화물은 LinMO4 입자 표면을 코팅한다.In another embodiment of the present invention, the carbon source includes at least one material selected from the group consisting of carbon nanotubes, carbon nanowires, carbon nanofibers, graphite, activated carbon, and graphene, glucose, , Poly ethylene glycol, poly vinyl alcohol, poly vinyl chloride, and citric acid, and the carbon source or lithium The titanium oxide is Li n MO 4 Coat the particle surface.

본 발명은 또한 상술한 리튬이차전지용 양극 활 물질을 포함하는 리튬이차전지용 양극 활 물질을 제공한다.The present invention also provides a cathode active material for a lithium secondary battery comprising the above-mentioned cathode active material for a lithium secondary battery.

본 발명은 상기 또 다른 과제를 해결하기 위하여, (a) LinMO4 중 MO4 를 이루는 금속 또는 무기 염 또는 이들의 혼합 염과 탄소원 또는 리튬티탄산화물 또는 이들의 혼합물을 용액에 혼합하여, 분산시키는 단계; (b) 상기 혼합물을 세척하는 단계; (c) 상기 세척된 혼합물에 리튬염을 혼합하는 단계; (d) 상기 리튬염이 혼합된 상기 혼합물을 용액에 분산시킨 후, 반응시키는 단계; (e) 상기 반응의 반응물을 건조하는 단계; 및 (f) 상기 건조된 반응물을 열처리 하는 단계를 포함하며, 여기에서 (a) 단계의 M은 Mn, Fe, Co, Ni, Al, Mn, V, Cr, Fe, Co, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 원소이고, n은 정수인 것을 특징으로 하는 리튬이차전지용 양극 활 물질 제조방법을 제공한다. To the present invention is to solve the above other problem, (a) Li n MO 4 Mixing a metal or inorganic salt or a mixed salt thereof constituting MO 4 with a carbon source or lithium titanium oxide or a mixture thereof in a solution and dispersing the mixture; (b) washing said mixture; (c) mixing the washed mixture with a lithium salt; (d) dispersing the mixture in which the lithium salt is mixed into a solution, and then reacting; (e) drying the reaction product of the reaction; And (f) heat treating the dried reactant, wherein M in step (a) is selected from the group consisting of Mn, Fe, Co, Ni, Al, Mn, V, Cr, Fe, Co, Zn, Zr, Nb And at least one element selected from the group consisting of Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W and Pb, and n is an integer. And a manufacturing method thereof.

본 발명은 또 다른 일 실시예에서 상기 (a) 및 (d) 단계 중 적어도 어느 하나의 단계에서 상기 분산은 초음파 가진 또는 기계적 교반 방식으로 수행되며, 상기 M은 mm'이며, 여기에서 m은 Mn, Fe, Co 및 Ni로 이루어진 군으로부터 선택되며, m'는 Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 원소이다. In another embodiment of the present invention, in at least one of steps (a) and (d), the dispersion is performed by ultrasonic wave excitation or mechanical stirring, wherein M is mm ', wherein m is Mn , Fe, Co and Ni and m 'is at least one element selected from the group consisting of Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, W and Pb.

본 발명의 일 실시예에서 상기 탄소원은 탄소나노튜브, 탄소나노와이어, 탄소나노섬유, 흑연, 활성탄 및 그래핀으로 이루어진 군으로부터 선택된 1종 이상이며, 상기 탄소원은 탄소나노튜브, 탄소나노와이어, 탄소나노섬유, 흑연, 활성탄 및 그래핀으로 이루어진 군으로부터 선택된 1종 이상의 물질 및 글루코스(glucose), 스쿠로스(scurose), 폴리에틸렌글리콜(poly ethylene glycol), 폴리비닐알콜(poly vinyl alcohol), 폴리비닐클로라이드(poly vinyl chloride), 구연산(citric acid)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함한다. In one embodiment of the present invention, the carbon source is at least one selected from the group consisting of carbon nanotubes, carbon nanowires, carbon nanofibers, graphite, activated carbon, and graphenes, and the carbon sources include carbon nanotubes, carbon nanowires, carbon At least one material selected from the group consisting of nano fibers, graphite, activated carbon and graphene, and at least one material selected from the group consisting of glucose, scurose, poly ethylene glycol, poly vinyl alcohol, polyvinyl chloride polyvinyl chloride, citric acid, and the like.

본 발명에 따르면, 경제적인 방식으로 우수한 전기 전도도 및 기계적 특성을 갖는 리튬이차전지용 양극 활 물질이 제조될 수 있다. 특히, 상기 LinMO4 입자상 표면에 균일하게 분산, 함유된 탄소원 또는 리튬티탄산화물(LTO)은 리튬이차전지용 양극 활 물질 복합체로 하여금 향상된 전기 전도도를 갖게 한다. 또한, 본 발명에 따른 양극 활 물질은 이차전지에 적용하기 적합한 에너지 밀도를 가지고, 안정성과 안전성이 뛰어나며, 우수한 전지특성을 유지하면서도 사이클 수명이 긴 장점을 갖는다.According to the present invention, a cathode active material for a lithium secondary battery having excellent electrical conductivity and mechanical properties in an economical manner can be produced. In particular, the Li n MO 4 A carbon source or lithium titanium oxide (LTO), which is uniformly dispersed on the surface of the particle, contains a cathode active material composite for a lithium secondary battery to have improved electric conductivity. In addition, the cathode active material according to the present invention has an energy density suitable for application to a secondary battery and is excellent in stability and safety, and has an advantage of long cycle life while maintaining excellent battery characteristics.

도 1은 본 발명의 일 실시예에 따른 리튬이차전지용 양극 활 물질 제조방법의 단계도이다.
도 2는 본 발명에 따라 제조된 복합 양극 활물질의 구조를 X선 회절계(XRD, Rigaku)를 사용하여 분석한 결과이다.
도 3 내지 6은 본 발명에 따라 제조된 복합 양극 활물질의 입자형태를 FE-SEM(전계 주사현미경)으로 관찰한 결과이다.
도 7은 본 발명에 따라 제조된 복합 양극 활물질을 포함하는 리튬 이차전지에 대한 충방전 특성 분석 결과이다.
1 is a diagram illustrating a method of manufacturing a cathode active material for a lithium secondary battery according to an embodiment of the present invention.
2 shows the results of analysis of the structure of the composite cathode active material prepared according to the present invention using an X-ray diffractometer (XRD, Rigaku).
Figs. 3 to 6 show the results of FE-SEM (field scanning microscope) observation of the particle shape of the composite cathode active material produced according to the present invention.
FIG. 7 is a graph illustrating the charge / discharge characteristics of a lithium secondary battery including the composite cathode active material according to the present invention.

이하, 본 발명을 도면을 참조하여 상세하게 설명하고자 한다. 다음에 소개되는 실시예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있으며, 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the drawings. The following embodiments are provided by way of example so that those skilled in the art can fully understand the spirit of the present invention. Therefore, the present invention is not limited to the embodiments described below, but may be embodied in other forms. In the drawings, the width, length, thickness, etc. of components may be exaggerated for convenience, and like reference numerals designate like elements throughout.

본 발명은 상술한 바와 같이 리튬이차전지용 양극 활 물질로서 LinMO4 / X 형태의 복합체를 제공한다. 특히 본 발명은 Li 계열의 활성 입자 상에 X로 표시되는 탄소원(여기에서 탄소원은 탄소를 구성원소로 포함하는 임의의 탄소 화합물을 모두 지칭하며, 예를 들면, 탄소나노튜브, 탄소나노섬유, 탄소나노와이어, 그래핀, 흑연 등이 상기 탄소원에 속한다) 또는 리튬티탄산화물(Li4Ti5O12) 또는 이들의 혼합물을 코팅시킴으로써, 활성 입자로 하여금 높은 전도성을 갖게 한다. 여기에서 M은 Mn, Fe, Co, Ni, Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 원소이다. 본 발명의 일 실시예에서 상기 M은 두 종류의 원소(mm')로 이루어지며, 여기에서 m은 Mn, Fe, Co 및 Ni로 이루어진 군으로부터 선택된 1종 이상의 원소이고, m'는 Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 원소이며, 본 발명의 일 실시예에서 상기 m'는 실리콘(Si), m은 Mn, Fe, Co 및 Ni로 이루어진 군으로부터 선택되었으나, 본 발명의 범위는 이에 제한되지 않는다. 또한 n은 정수로서, 1, 2, 3 등을 포함한다. The present invention provides a Li n MO 4 / X complex as a cathode active material for a lithium secondary battery as described above. In particular, the present invention relates to a carbon source represented by X on a Li-based active particle (here, the carbon source refers to any carbon compound containing carbon as a constituent element and includes, for example, carbon nanotubes, carbon nanofibers, (Li 4 Ti 5 O 12 ), or a mixture thereof, in order to make the active particles have high conductivity. Here, M is at least one element selected from the group consisting of Mn, Fe, Co, Ni, Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, And at least one element selected from the group consisting of In one embodiment of the present invention, M is composed of two kinds of elements (mm '), where m is one or more elements selected from the group consisting of Mn, Fe, Co and Ni, m' At least one element selected from the group consisting of Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W and Pb. In the example, m 'is selected from the group consisting of silicon (Si) and m is selected from the group consisting of Mn, Fe, Co and Ni, but the scope of the present invention is not limited thereto. N is an integer and includes 1, 2, 3, and so on.

본 발명의 일 실시예에서 상기 탄소원은 상술한 바와 같이 탄소를 구성원소로 하는 임의 형태의 화합물로, 예를 들면 탄소나노튜브, 탄소나노와이어, 탄소나노섬유 및 그래핀으로 이루어진 군으로부터 선택된 1종 이상이 될 수 있다. 본 발명의 또 다른 일 실시예에서 상기 탄소원은 탄소를 구성성분으로 포함하는 전구체 형태로서 글루코스(glucose), 스쿠로스(scurose), 폴리에틸렌글리콜(poly ethylene glycol), 폴리비닐알콜(poly vinyl alcohol), 폴리비닐클로라이드(poly vinyl chloride), 구연산(citric acid)의 일종 또는 이종 이상, 바람직하게는 글루코스, 스쿠로스 및 구연산으로 이루어진 군으로부터 선택된 하나 이상일 수 있다. 본 발명의 일 실시예에서는 탄소나노튜브, 탄소나노와이어, 탄소나노섬유 및 그래핀으로 이루어진 군에서 선택되는 제 1 탄소원과 글루코스(glucose), 스쿠로스(scurose), 폴리에틸렌글리콜(poly ethylene glycol), 폴리비닐알콜(poly vinyl alcohol), 폴리비닐클로라이드(poly vinyl chloride), 구연산(citric acid)으로 이루어진 군에서 선택되는 제 2 탄소원을 혼합 사용하여, 활성 입자를 코팅하는 경우, 매우 우수한 전지 특성을 나타내었다. In one embodiment of the present invention, the carbon source is an arbitrary compound having carbon as a constituent as described above. For example, the carbon source includes at least one kind selected from the group consisting of carbon nanotubes, carbon nanowires, carbon nanofibers, . In another embodiment of the present invention, the carbon source may be a precursor containing carbon as a constituent, such as glucose, scurose, polyethylene glycol, polyvinyl alcohol, Polyvinyl chloride, citric acid or more, and preferably at least one selected from the group consisting of glucose, sucrose and citric acid. In an embodiment of the present invention, the first carbon source selected from the group consisting of carbon nanotubes, carbon nanowires, carbon nanofibers, and graphenes, glucose, scurose, polyethylene glycol, When the active particles are coated by mixing a second carbon source selected from the group consisting of polyvinyl alcohol, poly vinyl chloride, and citric acid, excellent cell characteristics are exhibited .

본 발명은 상기 또 다른 과제를 해결하기 위하여, 상술한 양극 활 물질의 제조방법을 제공한다.In order to solve the above-described problems, the present invention provides a method for manufacturing the above-mentioned cathode active material.

도 1은 본 발명의 일 실시예에 따른 양극 활 물질의 단계도이다.FIG. 1 is a step diagram of a cathode active material according to an embodiment of the present invention.

도 1을 참조하면, 먼저 상술한 LinMO4 중 MO4 를 이루는 금속 또는 무기 염 또는 이들의 혼합 염과 탄소원 또는 리튬티탄산화물 또는 이들의 혼합물을 용액에 혼합하여, 분산시킨다. 이때 상기 분산은 초음파의 가진 또는 기계적 교반 방식 또는 이 둘 다가 모두 사용될 수 있다. 즉, 본 발명에서 전구체 분말(금속염 등)은 탄소원 또는 리튬티탄산화물과 습식혼합되는 단계로부터 양극 활 물질이 제조된다. Referring to FIG. 1, first, Li n MO 4 A metal or inorganic salt or mixed salt thereof constituting MO 4 and a carbon source or lithium titanium oxide or a mixture thereof are mixed and dispersed in a solution. The dispersion may be either an ultrasonic wave excitation or a mechanical stirring method or both. That is, in the present invention, the cathode active material is prepared from the step of wet mixing the precursor powder (metal salt or the like) with a carbon source or lithium titanium oxide.

이후, 상기 분산되어 습식 혼합된 혼합물은 세척된다. 다시, 상기 세척된 혼합물에 리튬염이 혼합되며, 상기 리튬염이 혼합된 상기 혼합물은 다시 용액에 혼입되어, 분산된 후, 반응과정을 거치게 된다. 본 발명의 일 실시예에서 상기 리튬염은 Li2NO3, Li2CO3, LiOH 등을 사용하였다. 특히 본 발명의 일 실시예에서는 상기 분산 및 반응 과정에서 일정한 에너지를 음파 형태로 공급하는 음향화학(Sonochemistry) 기반의 초음파 가진 공정이 독립적으로 또는 기계적 교반과 함께 사용되어, 입자상에 탄소원 등이 코팅된 양극 활 물질 복합체를 효과적이고 경제적인 방식으로 제조하였다. 이후, 상기 반응물은 건조되며, 상기 건조된 반응물은 열처리된다. The dispersed, wet mixed mixture is then washed. Again, the washed mixture is mixed with a lithium salt, and the mixture in which the lithium salt is mixed is mixed again in the solution, dispersed, and then subjected to a reaction process. In one embodiment of the present invention, the lithium salt is Li 2 NO 3 , Li 2 CO 3 , LiOH, or the like. In particular, in an embodiment of the present invention, a sonochemical-based ultrasonic vibration process for supplying a constant energy in the form of sound waves in the dispersion and reaction processes is used independently or with mechanical stirring, The positive electrode active material composite was prepared in an effective and economical manner. Thereafter, the reactant is dried and the dried reactant is heat treated.

본 발명에 따른 상기 습식 혼합은 전구체 분말을 수용액에 혼입한 후, 이를 분산시키는 방식인데, 상기 분산은 초음파 가진(음향화학, Sonochemistry), 또는 기계적 교반 방식으로 수행될 수 있다. 상기 열처리 공정은 비활성 또는 환원분위기에서 수행되어 상기 금속 화합물, 예를 들면 철이 산화되는 것을 억제하는 것이 바람직하며, 온도 조건은 500~1000 ℃에서 0.5~10 시간 열처리하여 얻어지는 입자 크기가 500nm 이하가 되도록 하는 것이 바람직하다. 왜냐하면, 500nm를 초과하는 경우, 각 성분들간의 균일한 밀도를 얻기 어렵기 때문이다.
The wet mixing according to the present invention is a method of mixing precursor powder into an aqueous solution and then dispersing it. The dispersion may be performed by ultrasonic wave excitation (sonochemistry), or mechanical stirring. Preferably, the heat treatment is performed in an inert or reducing atmosphere to inhibit oxidation of the metal compound, for example, iron, and the temperature is preferably 500 to 1000 ° C for 0.5 to 10 hours to obtain a particle size of 500 nm or less . This is because, when it exceeds 500 nm, it is difficult to obtain a uniform density between the respective components.

실시예Example 1 One

Mn(Ac)2·6H2O 0.3M 수용액 중에 나노 중공 섬유형 탄소인 탄소나노튜브(CNT) 2 중량%를 균일하게 분산시켜 분산액을 제조한다. 나노 중공 섬유형 탄소의 분산은 초음파 분산 방법과 고압분산 방법을 이용하였다. 이어서 상기 분산액을 연속적으로 흘려주면서 Na2SiO3·12H2O 0.15M을 이용, 분사하여 MnSiO3를 형성시키며, 원심분리기를 이용하여 Na을 제거하였다. Na가 제거된 염에 LiOH 0.1M, 수크로스(sucrose), 구연산(citric acid(Li2MnSiO3:citricacid:sucrose=1:0.3:0.05)) 수용액을 MnSiO3 수용액에 첨가한 후 1시간 교반 후, 반응기 내의 반응계를 저속으로 충분히 교반하거나 또는 상기 반응계에 초음파를 1시간 가진(음향화학, Sonochemistry)하였다. 이때 순환식항온조를 이용하여 반응기 내 온도를 30℃로 유지하고, 운전 주파수는 200 kHz 강도는 300 W, 반응기 내의 압력을 3 atm으로 일정하게 가압하였으며, 반응기 내부에는 아르곤 가스를 이용하였다. 반응 후 스프레이 건조기에서 150도에서 건조하였다. 건조 후 질소 분위기에서 750℃에서 24시간 소성하였다. 이로써, Li2MnSiO4 활성입자 상에 탄소가 코팅된 복합 양극 활 물질을 제조하였다.
2% by weight of carbon nanotubes (CNTs) of nano hollow fiber type carbon are uniformly dispersed in an aqueous solution of Mn (Ac) 2 .6H 2 O 0.3M to prepare a dispersion. Ultrasonic dispersion and high pressure dispersion method were used for dispersion of nano hollow fiber carbon. The dispersion was then continuously sprayed using 0.15 M Na 2 SiO 3 .12H 2 O to form MnSiO 3 , and Na was removed using a centrifuge. An aqueous solution of LiOH 0.1M, sucrose, citric acid (Li 2 MnSiO 3 : citric acid: sucrose = 1: 0.3: 0.05) was added to the Na-depleted salt solution to the aqueous solution of MnSiO 3 and stirred for 1 hour , The reaction system in the reactor was sufficiently stirred at a low speed or the reaction system was sonicated for 1 hour (acoustical chemistry, sonochemistry). At this time, the temperature in the reactor was maintained at 30 ° C by using a circulating-type constant temperature bath, and the operation frequency was constantly 300 W at 300 kHz and the pressure in the reactor was 3 atm, and argon gas was used in the reactor. After the reaction, it was dried at 150 ° C in a spray drier. Dried and then calcined at 750 ° C for 24 hours in a nitrogen atmosphere. Thus, composite cathode active material coated with carbon on Li 2 MnSiO 4 active particles was prepared.

실시예Example 2 2

Mn(Ac)2·6H2O 0.28M에 Fe(NO3) 0.02M을 소량 첨가한 것을 제외하고는 실시예 1과 동일한 방식으로 리튬 이차전지용 복합 양극 활 물질을 제조하였다.
A composite cathode active material for a lithium secondary battery was prepared in the same manner as in Example 1, except that a small amount of 0.02M Fe (NO 3 ) was added to 0.28M Mn (Ac) 2 .6H 2 O.

실시예Example 3 3

탄소나노튜브 대신 LiOH, TiO2를 넣은 것을 제외하고는 실시예 1과 동일한 방법으로 복합 양극 활 물질을 제조하였다.
A composite cathode active material was prepared in the same manner as in Example 1, except that LiOH and TiO 2 were used instead of carbon nanotubes.

비교예Comparative Example 1 One

실시예 1에서 sucrose, citric acid, CNT와 같은 탄소원을 넣지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 복합 양극 활 물질을 제조하였다.
In Example 1 The composite cathode active material was prepared in the same manner as in Example 1 except that carbon sources such as sucrose, citric acid, and CNT were not added.

시험예Test Example 1 One

X선 X-ray 회절diffraction 분석 analysis

실시예에서 제조된 복합 양극 활물질의 구조를 X선 회절계(XRD, Rigaku)를 사용하여 분석하고, 그 결과를 도 2에 나타내었다. 도 2의 결과로부터 알 수 있는 바와 같이, 본 발명에 따라 제조된 복합 양극 활물질에서 Li2MnSiO4의 특성 피크와 아주 잘 일치하는 것을 알 수 있다.
The structure of the composite cathode active material prepared in the examples was analyzed using an X-ray diffractometer (XRD, Rigaku), and the results are shown in FIG. As can be seen from the results of FIG. 2, it can be seen that the characteristic peak of Li 2 MnSiO 4 coincides very well with that of the composite cathode active material produced according to the present invention.

시험예Test Example 2 2

FE-SEMFE-SEM

FE-SEM(전계 주사현미경)으로 실시예에서 제조된 복합 양극 활물질의 입자형태를 관찰하였으며, 그 결과를 도 3 내지 도 6에 나타내었다. 도 3 내지 6에서 보는 바와 같이 복합 양극 활물질의 입자에 CNT가 잘 분산되어 있으며, 입자 평균 입자 크기가 약 10 마이크로 나타나는 것을 알 수 있다.
The particle shape of the composite cathode active material prepared in the examples was observed by FE-SEM (field scanning microscope), and the results are shown in FIG. 3 to FIG. As shown in FIGS. 3 to 6, it can be seen that CNTs are well dispersed in the particles of the composite cathode active material, and the average particle size of the particles is about 10 micro.

시험예Test Example 3 3

입도 분석Particle size analysis

레이져회절식의 입도 분포계를 이용하여 재료의 입도 분석을 하였다. 누적 입도 분포의 결과로부터 누적 제적이 10%, 50% 및 90%에 도달하는 지점에서의 입도를 확인하여, 각각 d10, d50, 및 d90으로 하였으며, 이에 대한 결과는 표 1에 나타내었다. The particle size of the material was analyzed by using a laser diffraction particle size distribution meter. From the results of the cumulative particle size distribution, the particle sizes at the points where the cumulative particle sizes reached 10%, 50% and 90% were determined to be d10, d50 and d90, respectively, and the results are shown in Table 1.

SampleSample 입자 크기
(μm)
Particle size
(μm)
탭 밀도
(g/cc)
Tap density
(g / cc)
실시예 1Example 1 d10d10 6.06.0 1.21.2 d50d50 10.410.4 d90d90 14.214.2 실시예 2Example 2 d10d10 5.55.5 1.21.2 d50d50 10.010.0 d90d90 13.013.0 실시예 3Example 3 d10d10 5.45.4 1.31.3 d50d50 9.29.2 d90d90 12.312.3 비교예 1Comparative Example 1 d10d10 4.54.5 1.31.3 d50d50 11.011.0 d90d90 12.512.5

시험예Test Example 4 4

탭 밀도Tap density

탭 밀도는 실린더에 재료 50g을 투입하고, 탭 횟수 2000회 후의 부피를 측정하여 탭 밀도를 계산하였으며, 그 결과를 상기 표 1에 나타내었다. 복합 양극 활물질에 탄소물질과 CNT가 포함될수록 탭 밀도는 다소 감소하나, 최종적인 전지 평가에 나타난 전지 성능은 제 1 탄소원(수크로스)과 제 2 탄소원인 CNT가 포함될수록 전지 성능은 증가하였다. 따라서, 상기 결과는 본 발명에 따른 양극 활 물질은 망간의 문제점인 전기 전도성을 향상시켜, 우수한 전지 성능을 발생시키는 점을 나타낸다. 특히 탄소나노튜브와 탄소원인 수크로스를 함께 사용한 경우, 그 효과는 보다 명확해진다.
The tap density was calculated by adding 50 g of material to the cylinder, measuring the volume after 2000 times of tapping, and calculating the tap density. The results are shown in Table 1 above. The cell performance decreased as the carbon material and CNT were added to the composite cathode active material. However, as the cell performance including the first carbon source (sucrose) and the second carbon source was included in the final battery evaluation, the cell performance increased. Therefore, the above results show that the cathode active material according to the present invention improves the electric conductivity, which is a problem of manganese, and produces excellent battery performance. Especially, when the carbon nanotubes and the carbon source sucrose are used together, the effect becomes clearer.

시험예Test Example 5 5

전지 평가Battery evaluation

전지 평가를 위하여 본 발명에 따라 제조된 복합 양극 활물질 : 도전재 : 바인더를 85 : 8 : 7의 중량 비율로 칭량하였다. 혼합된 물질을 슬러리화한 후 알루미늄 박막에 도포 후 120℃에서 8시간 건조 하여 극판을 제조하였으며, 제조된 극판을 프레스 하였다. 음극으로는 Li 메탈을 이용하고, 2030 형 코인 셀을 제조하였으며, 전해액으로 1M-LiPF6를 EC-DEC(체적비1 : 1)에 용해시킨 것을 이용하였다. 충전 조건을 4.4V, 방전 조건을 3.0V로 충방전을 실시하였고, 그 결과를 도 7에 나타내었다. For the battery evaluation, the composite cathode active material: conductive material: binder prepared according to the present invention was weighed at a weight ratio of 85: 8: 7. The mixed material was made into a slurry, applied to an aluminum thin film, and then dried at 120 ° C for 8 hours to prepare an electrode plate, and the produced electrode plate was pressed. A 2030-type coin cell was prepared using Li metal as the cathode, and 1M-LiPF6 dissolved in EC-DEC (volume ratio 1: 1) was used as the electrolyte solution. Charging and discharging were performed at a charging condition of 4.4 V and a discharging condition of 3.0 V, and the results are shown in FIG.

도 7에서 나타난 바와 같이 탄소물질과 CNT를 동시에 포함하지 않는 양극 활물질은 방전 비용량이 아주 좋지 않음을 알 수 있으며, CNT와 탄소물질이 동시에 포함 복합 양극 활물질이 아주 좋은 방전 비용량을 가진다. 이는 탄소물질과 CNT가 전기 전도성을 향상 시켜 주는 것을 알 수 있다. 또한, 탄소 물질과 LTO가 동시에 첨가된 실시예 1에서 아주 좋은 비용량을 보였다. 이는 LTO가 전극물질의 안정성을 높여 일어난 현상으로 보인다.As shown in FIG. 7, it can be seen that the cathode active material which does not contain the carbon material and CNT at the same time has a very low discharge cost, and the composite cathode active material including the CNT and the carbon material simultaneously has a very good discharge specific capacity. It can be seen that the carbon material and CNT improve the electrical conductivity. In addition, in Example 1 in which the carbon material and LTO were simultaneously added, a very good specific capacity was shown. This seems to be the phenomenon that LTO increased the stability of the electrode material.

Claims (11)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete (a) LinMO4 중 MO4 를 이루는 금속 염, 무기 염 또는 이들의 혼합 염을 포함하는 수용액에 탄소원, 리튬티탄산화물 또는 이들의 혼합물을 혼합하여 분산시키는 단계;
(b) 상기 혼합물을 세척하는 단계;
(c) 상기 세척된 혼합물에 리튬염을 혼합하는 단계;
(d) 상기 리튬염이 혼합된 상기 혼합물을 용액에 분산시킨 후, 반응시키는 단계;
(e) 상기 반응의 반응물을 건조하는 단계; 및
(f) 상기 건조된 반응물을 열처리하는 단계를 포함하며,
여기에서 (a) 단계의 M은 Mn, Co, Ni, Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 원소, Mn, Co, Ni, Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 이상과 Fe를 포함하는 원소, Mn, Co, Ni, Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 이상과 Si 및 Fe를 포함하는 원소, 또는 Fe이고, n은 정수인 것을 특징으로 하는 리튬이차전지용 양극 활 물질 제조방법.
(a) mixing and dispersing a carbon source, lithium titanium oxide or a mixture thereof in an aqueous solution containing a metal salt, an inorganic salt or a mixed salt thereof constituting MO 4 in Li n MO 4 ;
(b) washing said mixture;
(c) mixing the washed mixture with a lithium salt;
(d) dispersing the mixture in which the lithium salt is mixed into a solution, and then reacting;
(e) drying the reaction product of the reaction; And
(f) heat treating the dried reactant,
In step (a), M is at least one element selected from the group consisting of Mn, Co, Ni, Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, And at least one element selected from the group consisting of Pb, Mn, Co, Ni, Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, S, Ca, Ti, W and Pb and at least one element selected from the group consisting of Mn, Co, Ni, Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, At least one element selected from the group consisting of Ti, Cu, Ba, W and Pb, an element containing Si and Fe, or Fe, and n is an integer.
제 7항에 있어서,
상기 (a) 및 (d) 단계 중 적어도 어느 하나의 단계에서 상기 분산은 초음파 가진(ultrasonic vibration) 또는 기계적 교반 방식으로 수행되는 것을 특징으로 하는 리튬이차전지용 양극 활 물질 제조방법.
8. The method of claim 7,
Wherein the dispersion is performed by ultrasonic vibration or mechanical stirring in at least one of the steps (a) and (d).
제 7항에 있어서,
상기 M은 mm'이며, 여기에서 m은 Mn, Co 및 Ni로 이루어진 군으로부터 선택된 1종 이상의 원소, 또는 Mn, Co 및 Ni로 이루어진 군으로부터 선택된 1종 이상과 Fe를 포함하는 원소이며, m'는 Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 원소인 것을 특징으로 하는 리튬이차전지용 양극 활 물질 제조방법.
8. The method of claim 7,
Wherein M is mm ', wherein m is at least one element selected from the group consisting of Mn, Co and Ni, or at least one element selected from the group consisting of Mn, Co and Ni and Fe, Is at least one element selected from the group consisting of Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W and Pb By weight based on the weight of the positive electrode active material.
제 7항에 있어서,
상기 탄소원은 탄소나노튜브, 탄소나노와이어, 탄소나노섬유, 흑연, 활성탄 및 그래핀으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 리튬이차전지용 양극 활 물질 제조방법.
8. The method of claim 7,
Wherein the carbon source is at least one selected from the group consisting of carbon nanotubes, carbon nanowires, carbon nanofibers, graphite, activated carbon, and graphene.
제 7항에 있어서,
상기 탄소원은 탄소나노튜브, 탄소나노와이어, 탄소나노섬유, 흑연, 활성탄 및 그래핀으로 이루어진 군으로부터 선택된 1종 이상의 물질, 그리고 글루코스(glucose), 스쿠로스(sucrose), 폴리에틸렌글리콜(poly ethylene glycol), 폴리비닐알콜(poly vinyl alcohol), 폴리비닐클로라이드(poly vinyl chloride), 구연산(citric acid)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함하는 것을 특징으로 하는 리튬이차전지용 양극 활 물질 제조방법.
8. The method of claim 7,
The carbon source may be at least one material selected from the group consisting of carbon nanotubes, carbon nanowires, carbon nanofibers, graphite, activated carbon and graphene, glucose, sucrose, poly ethylene glycol, Wherein the positive electrode active material comprises at least one material selected from the group consisting of polyvinyl alcohol, polyvinyl chloride, and citric acid.
KR1020110055678A 2010-06-09 2011-06-09 Cathode active material for lithium secondary battery, manufacturing method for the same and lithium secondary battery comprising the same KR101393651B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100054224 2010-06-09
KR20100054224 2010-06-09

Publications (2)

Publication Number Publication Date
KR20110134852A KR20110134852A (en) 2011-12-15
KR101393651B1 true KR101393651B1 (en) 2014-05-13

Family

ID=45098542

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110055678A KR101393651B1 (en) 2010-06-09 2011-06-09 Cathode active material for lithium secondary battery, manufacturing method for the same and lithium secondary battery comprising the same

Country Status (2)

Country Link
KR (1) KR101393651B1 (en)
WO (1) WO2011155781A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539131A (en) * 2018-03-27 2018-09-14 宁夏汉尧石墨烯储能材料科技有限公司 A kind of graphene is modified the preparation method of nickelic system's positive electrode
CN109449439A (en) * 2018-11-12 2019-03-08 吉林大学 Cobalt molybdenum sulphur/graphene composite material preparation method and applications

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016548A1 (en) * 2013-07-30 2015-02-05 주식회사 엘지화학 Cathode mix for secondary battery having irreversible additive
CN104549201A (en) * 2013-10-11 2015-04-29 天津大学 Photocatalyst graphene oxide-doped titanium dioxide nanofiber and preparation method and application thereof
CN103682278B (en) * 2013-12-26 2016-05-11 山东精工电子科技有限公司 The preparation method of the coated lithium titanate anode material of a kind of nanometer carbon
KR102272265B1 (en) 2014-11-21 2021-07-05 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
DE112017002507T5 (en) * 2016-07-05 2019-03-07 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for producing the positive electrode active material and secondary battery
KR20230101939A (en) 2016-10-12 2023-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material particle and manufacturing method of positive electrode active material particle
US11489151B2 (en) 2017-05-12 2022-11-01 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
CN110574193B (en) 2017-05-19 2023-08-29 株式会社半导体能源研究所 Positive electrode active material, method for producing positive electrode active material, and secondary battery
KR102588500B1 (en) 2017-06-26 2023-10-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of positive active material and secondary battery
CN108922795B (en) * 2018-07-15 2019-09-03 重庆文理学院 A kind of preparation method of the excellent graphene-based composite conductive thin film of electric conductivity
KR101985372B1 (en) * 2018-10-24 2019-06-03 한국지질자원연구원 Manufacturing method of lithium-nickel oxide from lithium compounds

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110035003A (en) * 2009-09-29 2011-04-06 한국과학기술연구원 Method for preparing cathode materials for lithum ion secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2270771A1 (en) * 1999-04-30 2000-10-30 Hydro-Quebec New electrode materials with high surface conductivity
CA2534276A1 (en) * 2006-01-26 2007-07-26 Hydro Quebec Co-ground mixture composed of an active material and a conducting material, its preparation methods and applications
KR20100015432A (en) * 2007-03-09 2010-02-12 바스프 에스이 Nitroxides for lithium-ion batteries
EP2171791A4 (en) * 2007-07-12 2014-09-10 A123 Systems Inc Multifunctional mixed metal olivines for lithium ion batteries

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110035003A (en) * 2009-09-29 2011-04-06 한국과학기술연구원 Method for preparing cathode materials for lithum ion secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Materials Chemistry and Physics. 120 (2010) pp14-17 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539131A (en) * 2018-03-27 2018-09-14 宁夏汉尧石墨烯储能材料科技有限公司 A kind of graphene is modified the preparation method of nickelic system's positive electrode
CN109449439A (en) * 2018-11-12 2019-03-08 吉林大学 Cobalt molybdenum sulphur/graphene composite material preparation method and applications
CN109449439B (en) * 2018-11-12 2022-05-24 吉林大学 Preparation method and application of cobalt-molybdenum-sulfur/graphene composite material

Also Published As

Publication number Publication date
WO2011155781A3 (en) 2012-04-19
WO2011155781A2 (en) 2011-12-15
KR20110134852A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
KR101393651B1 (en) Cathode active material for lithium secondary battery, manufacturing method for the same and lithium secondary battery comprising the same
Li et al. In situ sol-gel synthesis of ultrafine ZnO nanocrystals anchored on graphene as anode material for lithium-ion batteries
Wang et al. Graphene/Co 9 S 8 nanocomposite paper as a binder-free and free-standing anode for lithium-ion batteries
JP5623544B2 (en) Cathode active material precursor for lithium secondary battery containing nano hollow fiber type carbon, active material and method for producing the same
EP3203551B1 (en) Positive electrode active material and method for manufacturing same
Xia et al. Ultrafine LiMn2O4/carbon nanotube nanocomposite with excellent rate capability and cycling stability for lithium-ion batteries
Rahman et al. Enhanced lithium storage in a VO2 (B)-multiwall carbon nanotube microsheet composite prepared via an in situ hydrothermal process
JP4971387B2 (en) Transition metal oxide / multi-wall carbon nanotube nanocomposite and method for producing the same
Zhang et al. Coating of α-MoO3 on nitrogen-doped carbon nanotubes by electrodeposition as a high-performance cathode material for lithium-ion batteries
KR20110124728A (en) Active material for secondary lithium battery, manufacturing method thereof, and secondary lithium battery comprising the same
Yuan et al. Porous CoO/C polyhedra as anode material for Li-ion batteries
Hou et al. Facile synthesis of ZnFe 2 O 4 with inflorescence spicate architecture as anode materials for lithium-ion batteries with outstanding performance
Pandit et al. Hexagonal δ-MnO2 nanoplates as efficient cathode material for potassium-ion batteries
JP2009129587A (en) Electrode active material for battery and its manufacturing method
JPWO2016076393A1 (en) Carbon nanotube, method for producing the same, and lithium ion secondary battery using carbon nanotube
Lyu et al. Carbon composite spun fibers with in situ formed multicomponent nanoparticles for a lithium-ion battery anode with enhanced performance
Liu et al. Microstructure and superior electrochemical activity of Cu3P/reduced graphene oxide composite for an anode in lithium-ion batteries
WO2017082338A1 (en) Iron oxide-carbon composite particle powder and method for producing same
Ma et al. Three-dimensional MnO/reduced graphite oxide composite films as anode materials for high performance lithium-ion batteries
Ding et al. Nanoscale MnO and natural graphite hybrid materials as high-performance anode for lithium ion batteries
Wei et al. Synthesis of a High-Capacity α-Fe2O3@ C Conversion Anode and a High-Voltage LiNi0. 5Mn1. 5O4 Spinel Cathode and Their Combination in a Li-Ion Battery
Xu et al. Hydrothermal synthesis of manganese oxides/carbon nanotubes composites as anode materials for lithium ion batteries
Chen et al. Integrated structure of tin-based anodes enhancing high power density and long cycle life for lithium ion batteries
Ma et al. Synthesis of MnO@ multi-walled CNTs composite film electrodes for lithium-ion batteries by an improved electrostatic spray deposition method
KR101907240B1 (en) Method for preparing electrode materials and electrode materials produce therefrom

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170502

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180222

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee