KR101383356B1 - composite of ceramic dielectric with high dielectric constant and their manufacturing mehtod - Google Patents

composite of ceramic dielectric with high dielectric constant and their manufacturing mehtod Download PDF

Info

Publication number
KR101383356B1
KR101383356B1 KR1020120086324A KR20120086324A KR101383356B1 KR 101383356 B1 KR101383356 B1 KR 101383356B1 KR 1020120086324 A KR1020120086324 A KR 1020120086324A KR 20120086324 A KR20120086324 A KR 20120086324A KR 101383356 B1 KR101383356 B1 KR 101383356B1
Authority
KR
South Korea
Prior art keywords
composition
dielectric
barium titanate
dielectric constant
batio
Prior art date
Application number
KR1020120086324A
Other languages
Korean (ko)
Other versions
KR20140020011A (en
Inventor
김인성
김민수
송재성
정순종
노병호
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020120086324A priority Critical patent/KR101383356B1/en
Publication of KR20140020011A publication Critical patent/KR20140020011A/en
Application granted granted Critical
Publication of KR101383356B1 publication Critical patent/KR101383356B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/74Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials

Abstract

본 발명은 고유전율을 갖는 복합 세라믹유전체 조성물 및 그 제조방법에 관한 것으로, 티탄산 바륨(Barium Titanate, BaTiO3)에 수 ㎛의 입자 크기를 가지는 니켈(Nickel, Ni), 구리(Cu), 은(Ag) 중 하나 이상의 금속 원소를 첨가하여 출발원료로 사용하는 제1단계와; 상기 금속원소는 조성비 x(0<x≤20)wt% 범위 내에서 각 조성에 따른 시료를 증류수 또는 에탄올을 분산매로 하여 지르코니아볼을 사용하여 24시간 동안 볼밀하여 혼합, 분쇄하는 제2단계와; 상기 볼밀한 시료를 건조시키는 제3단계와; 상기 건조된 시료에 PVA(Polyvinyl Alcohol: 5wt% 수용액)을 첨가하고 압력을 가하는 방법으로 성형하여 시편을 형성시키는 제4단계와; 상기 시편을 도가니에 질소 가스(N2 atmosphere) 분위기 전기로에서 1300 ~ 1350℃ 온도 범위 내에서 소결하는 제5단계;를 포함하여 구성되는 고유전율을 갖는 복합 세라믹유전체 조성물 제조방법을 기술적 요지로 한다. 또한, 본원발명은 티탄산 바륨(Barium Titanate, BaTiO3)에 금속 원소를 첨가하여 형성시킨 티탄산 바륨(Barium Titanate, BaTiO3) 조성물에 아일랜드(island) 금속 코어(core)를 형성시키는 고유전율을 갖는 복합 세라믹유전체 조성물을 또한 기술적 요지로 한다. 이에 따라, 본 발명에 따른 복합 세라믹유전체 조성물은 순수 티탄산 바륨(Barium Titanate, BaTiO3) 보다 유전율이 높고, 손실계수는 작으며, 고전계로 충전 가능한 커패시터 유전체로써 활용이 가능하다. 특히 충전 커패시턴스(capacitance) 가 증가하면 충전 전압은 감소하는 것이 보통인데 본 발명에서는 비유전율은 증가하지만 충전전계도 일정하게 유지가 된다. 그러므로 높은 전압을 갖는 특성이 있어 정전용량을 키우면서 전압도 상승하는 전력 저장용 커패시터의 유전체로 활용할 수 있는 이점이 있다.The present invention relates to a composite ceramic dielectric composition having a high dielectric constant and a method for manufacturing the same, wherein nickel (Ni, Ni), copper (Cu), and silver (Barium Titanate, BaTiO 3 ) have a particle size of several μm. A first step of adding at least one metal element of Ag) as a starting material; The metal element is a second step of ball-mixing and grinding a sample according to each composition within a range of composition ratio x (0 <x ≤ 20) wt% by distilled water or ethanol as a dispersion medium for 24 hours using zirconia ball; A third step of drying the ball mill sample; A fourth step of forming the specimen by adding PVA (5 wt% aqueous solution) to the dried sample and molding it by applying a pressure; The fifth step of sintering the specimen in a crucible in a nitrogen gas (N 2 atmosphere) atmosphere electric furnace in the temperature range of 1300 ~ 1350 ℃; and a method of manufacturing a composite ceramic dielectric composition having a high dielectric constant comprising a technical gist. Further, the present invention is a compound having a high dielectric constant to form barium titanate Ireland (island) the metallic core (core) in the barium titanate was formed by adding a metal element (Barium Titanate, BaTiO 3) compositions in (Barium Titanate, BaTiO 3) Ceramic dielectric compositions are also a technical subject matter. Accordingly, the composite ceramic dielectric composition according to the present invention has a higher dielectric constant, a lower loss factor, and can be used as a high-charging capacitor dielectric than pure barium titanate (BaTiO 3 ). In particular, as the charging capacitance is increased, the charging voltage is usually decreased, but in the present invention, the relative dielectric constant is increased but the charging field is kept constant. Therefore, there is a high voltage characteristic has the advantage that can be utilized as a dielectric of the power storage capacitor to increase the voltage while increasing the capacitance.

Description

고유전율을 갖는 복합 세라믹 유전체 조성물 및 그 제조방법{composite of ceramic dielectric with high dielectric constant and their manufacturing mehtod}Composite ceramic dielectric composition having a high dielectric constant and a method of manufacturing the same {composite of ceramic dielectric with high dielectric constant and their manufacturing mehtod}

본 발명은 고유전율을 갖는 복합 세라믹유전체 조성물 및 그 제조방법에 관한 것으로, 티탄산 바륨(Barium Titanate, BaTiO3)에 금속을 첨가하여 소결시켜 아일랜드(island) 금속 코어(core)를 형성시킴에 의해 관투현상을 갖는 복합 강유전체 세라믹스를 제조하기 위한 고유전율을 갖는 복합 세라믹유전체 조성물 및 그 제조방법에 관한 것이다. The present invention relates to a composite ceramic dielectric composition having a high dielectric constant and a method for manufacturing the same, which is penetrated by forming an island metal core by sintering by adding a metal to barium titanate (BaTiO 3 ). The present invention relates to a composite ceramic dielectric composition having a high dielectric constant for producing a composite ferroelectric ceramic having a phenomenon and a method of manufacturing the same.

최근에 지구 온난화, 에너지 위기의 대응 방법으로 전기에너지의 저장과 생산이 다양화되어가는 추세이다. 전기 에너지의 저장은 밧데리와 커패시터가 있지만 용도에 따라 다르게 이용된다. 전력을 저장하거나 순간부하의 조절 또는 전력 보상으로 사용하기 위한 전력 저장용 대용량 커패시터는 SMPS(Switching Mode Power Supply), DC-DC 컨버터(convertor), 인버터(invertor), 형광등의 발라스터(ballaster), 각종 파워 서플라이(power supply) 등에 사용되고 있으며, 리드타입(lead type)의 디스크형 세라믹 커패시터, 필름 커패시터 등이 이용되고 있다.Recently, the storage and production of electric energy is diversifying in response to global warming and energy crisis. There are batteries and capacitors for storing electrical energy, but they are used differently depending on the application. Large-capacity capacitors for power storage to store power or to adjust them for momentary loads or power compensation include SMPS (Switching Mode Power Supply), DC-DC converters, inverters, ballasts of fluorescent lamps, It is used for a power supply and the like, and a lead type disk type ceramic capacitor and a film capacitor are used.

하지만 이들은 회로 내에서 등가 저항을 높여 리플전류(ripple current)를 증가시키며, 고주파 열손실이 발생하여 소비 전력을 증가시킨다. 또한 고전압화 될수록 부품의 크기가 증가하여 실장면적을 줄이기 어려우며, 특히 운송용 전원장치에 사용되는 인버터의 커패시터에서 그 중요성이 매우 높다.However, they increase the equivalent resistance in the circuit to increase ripple current, and high-frequency heat losses occur to increase power consumption. In addition, it is difficult to reduce the mounting area by increasing the size of the components as the voltage is increased, especially in the capacitor of the inverter used in the transportation power supply.

커패시터의 저장(Storage) 에너지는 아래의 수학식 1과 같이 식 E로써 표시할 수 있다. 즉, 충전에너지는 커패시터와 유전체의 충전전계(절연강도)의 제곱에 비례한다. The storage energy of the capacitor can be expressed by the following equation (1). That is, the charge energy is proportional to the square of the charging electric field (insulation strength) of the capacitor and the dielectric.

Figure 112012063095202-pat00001
Figure 112012063095202-pat00001

위의 수학식 1에서 설명한 봐와 같이 전력저장용 커패시터의 저장(Storage) 에너지 E는 커패시터 유전체의 충전전계(절연강도)의 제곱에 비례한다. 고전압 대용량형 커패시터의 개발을 위하여 충전전계 강도를 증가시키거나, 커패시턴스를 증가시켜야 하며, 결국, 고전압-대용량 커패시터를 만드는 방법은 결국 2가지가 가능하다. As described in Equation 1 above, the storage energy E of the power storage capacitor is proportional to the square of the charging field (insulation strength) of the capacitor dielectric. In order to develop high-voltage high-capacity capacitors, it is necessary to increase the charge field strength or increase the capacitance. Consequently, there are two ways to make a high-voltage-capacitor.

그러나 지금까지는 신소재를 개발하여 유전율을 증가시킨다는 이론을 바탕으로 상당 기간 동안 많은 연구자들에 의하여 추진되어 왔으나 한계에 부딪혔다. However, it has been pushed by many researchers for a long time based on the theory that the development of new materials increases the permittivity, but it has encountered limitations.

이에 본 연구에서는 신소재를 연구하여 유전율을 높이는 것 보다는 소재의 특성을 십분 이용하여 충전전계를 높임으로써 에너지 저장량을 증가시키는 방향으로 기술적인 문제점을 해결하고자 한다.Therefore, this study aims to solve the technical problem in the direction of increasing the energy storage by increasing the charging field by using the properties of the material rather than increasing the dielectric constant by studying new materials.

고유전율이 나타나는 현상은 모세관현상 또는 관투현상(Percolation phenomenon) 때문으로 알려져 있다. 관투현상이란, 두 가지 이상의 이질적인 재료를 섞었을 때 어떤 임계지점에서 재료의 특성이 지수 함수적으로 변화하는 것을 뜻한다. 즉, 부도체인 유전체 물질에 도체인 금속을 넣어서 소결하면 어느 임계지점에서 유전체 특성인 유전율이 급격히 증가하는 현상이다.The phenomenon of high dielectric constant is known due to capillary phenomenon or percolation phenomenon. Penetration refers to the exponential change in material properties at a critical point when two or more disparate materials are mixed. That is, when sintering by inserting a metal as a conductor into a dielectric material as a non-conductor, the dielectric constant, which is a dielectric property, increases rapidly at a critical point.

따라서 본 발명은 상기한 점에 착안하여 안출된 것으로, 티탄산 바륨(Barium Titanate, BaTiO3)에 금속을 첨가하여 소결시켜 아일랜드(island) 금속 코어(core)를 형성시킴에 의해 관투현상을 갖는 복합 강유전체 세라믹스를 제조함으로써, 전력 저장이 가능하고 충전전계가 큰 고유전율을 갖는 복합 세라믹유전체 조성물 및 그 제조방법을 제공하는 것을 목적으로 한다.Accordingly, the present invention has been made in view of the above-mentioned point, and a composite ferroelectric having a piercing phenomenon by forming a island metal core by sintering by adding a metal to barium titanate (BaTiO 3 ). An object of the present invention is to provide a composite ceramic dielectric composition capable of storing power and having a high dielectric constant having a high electric charge, and a method of manufacturing the ceramics.

상기한 목적을 달성하기 위한 본 발명은, 티탄산 바륨(Barium Titanate, BaTiO3)에 수 ㎛의 입자 크기를 가지는 니켈(Nickel, Ni), 구리(Cu), 은(Ag) 중 하나 이상의 금속 원소를 첨가하여 출발원료로 사용하는 제1단계와; 상기 금속원소는 조성비 x(0<x≤20)wt% 범위 내에서 각 조성에 따른 시료를 증류수 또는 에탄올을 분산매로 하여 지르코니아볼을 사용하여 24시간 동안 볼밀하여 혼합, 분쇄하는 제2단계와; 상기 볼밀한 시료를 건조시키는 제3단계와; 상기 건조된 시료에 PVA(Polyvinyl Alcohol: 5wt% 수용액)을 첨가하고 압력을 가하는 방법으로 성형하여 시편을 형성시키는 제4단계와; 상기 시편을 도가니에 질소 가스(N2 atmosphere) 분위기 전기로에서 1300 ~ 1350℃ 온도 범위 내에서 소결하는 제5단계;를 포함하여 구성되는 고유전율을 갖는 복합 세라믹유전체 조성물 제조방법을 기술적 요지로 한다.The present invention for achieving the above object, at least one metal element of nickel (Ni, Ni), copper (Cu), silver (Ag) having a particle size of several μm in barium titanate (BaTiO 3 ). A first step of adding and using the starting material; The metal element is a second step of ball-mixing and grinding a sample according to each composition within a range of composition ratio x (0 <x ≤ 20) wt% by distilled water or ethanol as a dispersion medium for 24 hours using zirconia ball; A third step of drying the ball mill sample; A fourth step of forming the specimen by adding PVA (5 wt% aqueous solution) to the dried sample and molding it by applying a pressure; The fifth step of sintering the specimen in a crucible in a nitrogen gas (N 2 atmosphere) atmosphere electric furnace in the temperature range of 1300 ~ 1350 ℃; and a method of manufacturing a composite ceramic dielectric composition having a high dielectric constant comprising a technical gist.

또한, 본원발명은 티탄산 바륨(Barium Titanate, BaTiO3)에 금속 원소를 첨가하여 형성시킨 티탄산 바륨(Barium Titanate, BaTiO3) 조성물에 아일랜드(island) 금속 코어(core)를 형성시키는 고유전율을 갖는 복합 세라믹유전체 조성물을 또한 기술적 요지로 한다.Further, the present invention is a compound having a high dielectric constant to form barium titanate Ireland (island) the metallic core (core) in the barium titanate was formed by adding a metal element (Barium Titanate, BaTiO 3) compositions in (Barium Titanate, BaTiO 3) Ceramic dielectric compositions are also a technical subject matter.

여기서 상기 금속원소는 수 ㎛의 입자 크기를 가지는 니켈(Nickel, Ni), 구리(Cu), 은(Ag) 중 하나 이상이 되는 것이 바람직하다.The metal element may be at least one of nickel (Ni), copper (Cu), and silver (Ag) having a particle size of several μm.

상기 금속원소의 첨가량은 조성비 x(0<x≤20)wt% 범위인 것이 바람직하다.The addition amount of the metal element is preferably in the composition ratio x (0 <x ≤ 20) wt% range.

상기 티탄산 바륨(Barium Titanate, BaTiO3) 조성물은 1300 ~ 1350℃ 온도 범위 내에서 소결처리되는 것이 바람직하다.The barium titanate (Barium Titanate, BaTiO 3 ) composition is preferably sintered in the temperature range of 1300 ~ 1350 ℃.

상기 소결은 산화 방지를 위하여 하이드라이진(Hydrazine, H2N·NH2·H2O)이 첨가되어 진행되는 것이 바람직하다.The sintering is preferably performed by adding hydrazine (H 2 N · NH 2 · H 2 O) to prevent oxidation.

이에 따라, 본 발명에 따른 복합 세라믹유전체 조성물은 순수 티탄산 바륨(Barium Titanate, BaTiO3) 보다 유전율이 높고, 손실계수는 작으며, 고전계로 충전 가능한 커패시터 유전체로써 활용이 가능하다. 특히 충전 커패시턴스(capacitance) 가 증가하면 충전 전압은 감소하는 것이 보통인데 본 발명에서는 비유전율은 증가하지만 충전전계도 일정하게 유지가 된다. 그러므로 높은 전압을 갖는 특성이 있어 정전용량을 키우면서 전압도 상승하는 전력 저장용 커패시터의 유전체로 활용할 수 있는 이점이 있다. Accordingly, the composite ceramic dielectric composition according to the present invention has a higher dielectric constant, a lower loss factor, and can be used as a high-charging capacitor dielectric than pure barium titanate (BaTiO 3 ). In particular, as the charging capacitance is increased, the charging voltage is usually decreased, but in the present invention, the relative dielectric constant is increased but the charging field is kept constant. Therefore, there is a high voltage characteristic has the advantage that can be utilized as a dielectric of the power storage capacitor to increase the voltage while increasing the capacitance.

상기의 구성에 의한 본 발명은, 복합 세라믹유전체 조성물을 제조함에 의해 순수 티탄산 바륨(Barium Titanate, BaTiO3) 보다 유전율이 높고, 손실계수는 작으며, 고전계로 충전 가능한 커패시터 유전체로써 활용이 가능하고, 특히 충전 커패시턴스(capacitance) 가 증가하면 충전 전압은 감소하는 것이 보통인데 본 발명에서는 비유전율은 증가하지만 충전전계도 일정하게 유지가 되므로, 높은 전압을 갖는 특성이 있어 정전용량을 키우면서 전압도 상승하는 전력 저장용 커패시터의 유전체로 활용할 수 있는 효과가 있다.According to the present invention, the composite ceramic dielectric composition has a higher dielectric constant than pure barium titanate (BaTiO 3 ), a low loss factor, and can be used as a high-chargeable capacitor dielectric. In particular, when the charging capacitance is increased, the charging voltage is usually decreased. However, in the present invention, the relative dielectric constant is increased but the charging field is kept constant, and thus the power has a characteristic of having a high voltage, thus increasing the voltage while increasing the capacitance. There is an effect that can be used as the dielectric of the storage capacitor.

도 1은 본 발명에 따른 아일랜드(island) 금속 코어(core)를 형성시키는 과정에 대한 간략 개념도.
도 2는 본 발명의 커패시터용 복합 유전체세라믹스 조성물의 제조과정을 간략하게 나타낸 흐름도.
도 3은 본 발명의 실시 예에 따라 최적의 소결 밀도인 1300 ~ 1350℃ 범위 중 1325℃의 온도에서 소결되어진 커패시터용 복합 유전체세라믹스의 조성물의 결정 구조 X선 회절 분석도.
도 4는 본 발명의 실시 예에 따라 1300 ~ 1350℃의 온도 범위에서 소결되어진 커패시터용 복합 유전체세라믹스 조성물의 비유전율 특성을 나타낸 도.
도 5는 본 발명의 실시 예에 따라 1300 ~ 1350℃의 온도 범위에서 소결되어진 커패시터용 복합 유전체세라믹스 조성물의 유전 손실 특성을 나타낸 도.
도 6은 본 발명의 실시 예에 따라 하이드라진(Hydrazine, H2N·NH2·H2O) 첨가된 조성비에 따라 1325℃의 온도 범위에서 소결 되어진 커패시터용 복합 강유전체 세라믹스의 조성물의 결정 구조 X선 회절 분석도.
도 7은 본 발명의 실시예에 따라 하이드라진(Hydrazine, H2N·NH2·H2O) 첨가된 조성비에 따라 1325℃의 온도 범위에서 소결되어진 커패시터용 복합 유전체 세라믹스 조성물의 비유전율 특성을 나타낸 도.
도 8은 본 발명의 실시 예에 따라 하이드라진(Hydrazine, H2N·NH2·H2O) 첨가된 조성비에 따라 1325℃의 온도 범위에서 소결되어진 커패시터용 복합 유전체 세라믹스 조성물의 유전 손실 특성을 나타낸 도.
도 9는 발명의 실시 예에 따라 1325℃의 온도 범위에서 소결되어진 커패시터용 복합 유전체 세라믹스의 조성물의 미세 구조 사진을 나타낸 도.
1 is a simplified conceptual diagram of a process for forming an island metal core in accordance with the present invention.
Figure 2 is a flow chart briefly showing the manufacturing process of the composite dielectric ceramic composition for a capacitor of the present invention.
Figure 3 is a crystal structure X-ray diffraction analysis of the composition of the composite dielectric ceramic for the capacitor sintered at a temperature of 1325 ℃ in the range of 1300 ~ 1350 ℃ optimum sintering density in accordance with an embodiment of the present invention.
4 is a view showing the dielectric constant of the composite dielectric ceramic composition for a capacitor sintered at a temperature range of 1300 ~ 1350 ℃ according to an embodiment of the present invention.
5 is a diagram illustrating dielectric loss characteristics of a composite dielectric ceramic composition for a capacitor sintered at a temperature range of 1300 to 1350 ° C. according to an embodiment of the present invention.
Figure 6 is in accordance with an embodiment of the invention hydrazine (Hydrazine, H 2 N · NH 2 · H 2 O) been sintered at a temperature of 1325 ℃ according to the addition ratio determining the composition of the capacitor composite ferroelectric ceramics for structural X-ray Diffractogram.
Figure 7 is showing a hydrazine (Hydrazine, H 2 N · NH 2 · H 2 O) the relative dielectric constant characteristics of been sintered at a temperature of 1325 ℃ following the addition composition ratio of the capacitor composite dielectric ceramic composition according to an embodiment of the present invention Degree.
Figure 8 is showing the hydrazine (Hydrazine, H 2 N · NH 2 · H 2 O) the dielectric loss characteristics of been sintered at a temperature of 1325 ℃ following the addition composition ratio of the capacitor composite dielectric ceramic composition according to an embodiment of the present invention Degree.
9 is a microstructure photograph of the composition of a composite dielectric ceramic for a capacitor sintered at a temperature range of 1325 ℃ in accordance with an embodiment of the invention.

이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 아일랜드(island) 금속 코어(core)를 형성시키는 과정에 대한 간략 개념 도이고, 도 2는 본 발명의 커패시터용 복합 유전체세라믹스 조성물의 제조과정을 간략하게 나타낸 흐름도이고, 도 3은 본 발명의 실시 예에 따라 최적의 소결 밀도인 1300 ~ 1350℃ 범위 중 1325℃의 온도에서 소결되어진 커패시터용 복합 유전체세라믹스의 조성물의 결정 구조 X선 회절 분석도이고, 도 4는 본 발명의 실시 예에 따라 1300 ~ 1350℃의 온도 범위에서 소결되어진 커패시터용 복합 유전체세라믹스 조성물의 비유전율 특성을 나타낸 도이고, 도 5는 본 발명의 실시 예에 따라 1300 ~ 1350℃의 온도 범위에서 소결되어진 커패시터용 복합 유전체세라믹스 조성물의 유전 손실 특성을 나타낸 도이고, 도 6은 본 발명의 실시 예에 따라 하이드라진(Hydrazine, H2N·NH2·H2O) 첨가된 조성비에 따라 1325℃의 온도 범위에서 소결 되어진 커패시터용 복합 강유전체 세라믹스의 조성물의 결정 구조 X선 회절 분석도 이고, 도 7은 본 발명의 실시예에 따라 하이드라진(Hydrazine, H2N·NH2·H2O) 첨가된 조성비에 따라 1325℃의 온도 범위에서 소결되어진 커패시터용 복합 유전체 세라믹스 조성물의 비유전율 특성을 나타낸 도이고, 도 8은 본 발명의 실시 예에 따라 하이드라진(Hydrazine, H2N·NH2·H2O) 첨가된 조성비에 따라 1325℃의 온도 범위에서 소결되어진 커패시터용 복합 유전체 세라믹스 조성물의 유전 손실 특성을 나타낸 도이고, 도 9는 발명의 실시 예에 따라 1325℃의 온도 범위에서 소결되어진 커패시터용 복합 유전체 세라믹스의 조성물의 미세 구조 사진을 나타낸 도이다. 1 is a schematic conceptual diagram of a process of forming an island metal core according to the present invention, and FIG. 2 is a flowchart briefly illustrating a process of manufacturing a composite dielectric ceramic composition for a capacitor of the present invention. 3 is a X-ray diffraction analysis of the crystal structure of the composition of the composite dielectric ceramic for the capacitor sintered at a temperature of 1325 ℃ in the range of 1300 ~ 1350 ℃ optimum sintering density according to an embodiment of the present invention, Figure 4 Figure 1 shows the dielectric constant of the composite dielectric ceramic composition for a capacitor sintered at a temperature range of 1300 ~ 1350 ℃ according to an embodiment, Figure 5 is a capacitor sintered at a temperature range of 1300 ~ 1350 ℃ according to an embodiment of the present invention Dielectric loss characteristics of the composite dielectric ceramic composition for Figure, Figure 6 is a hydrazine (Hydrazine, H 2 N · NH 2 · H 2 in accordance with an embodiment of the present invention) O) is a crystal structure X-ray diffraction analysis of the composition of the composite ferroelectric ceramics for the capacitor sintered at a temperature range of 1325 ℃ according to the added composition ratio, Figure 7 is a hydrazine (Hydrazine, H 2 N · NH 2 · H 2 O) is a diagram showing the relative dielectric constant characteristics of the composite dielectric ceramic composition for a capacitor sintered at a temperature range of 1325 ℃ according to the added composition ratio, Figure 8 is a hydrazine (Hydrazine, H according to an embodiment of the present invention) 2 N · NH 2 · H 2 O) A diagram showing dielectric loss characteristics of a composite dielectric ceramic composition for a capacitor sintered at a temperature range of 1325 ° C. according to an added composition ratio. A microstructure picture of a composition of a composite dielectric ceramic for a capacitor sintered in a temperature range.

도시된 바와 같이, 본 발명이 이루고자 하는 기술적 과제는 위에서 언급한 관투현상을 갖는 복합 세라믹유전체를 제조하기 위한 것으로, 도1과 같이, 티탄산 바륨(Barium Titanate, BaTiO3)에 수 ㎛ 싸이즈의 니켈(Nickel) 을 첨가하여 1300 ~ 1350℃에서 고상 소결방법으로 세라믹스를 소결하되, 소결중에 코어의 아일랜드는 금속성으로 남아있게 하기 위하여 산화를 방지시키는 방법으로 전력 저장이 가능하고 충전전계가 큰 복합 유전체세라믹스 제조가 가능한 조성물을 형성시키는 것이다.As shown, the technical problem to be achieved by the present invention is to manufacture a composite ceramic dielectric having the above-mentioned tube penetration phenomenon, as shown in Figure 1, barium titanate (Barium Titanate, BaTiO 3 ) of several micrometers of nickel ( Sintered ceramics by the solid state sintering method at 1300 ~ 1350 ℃ with the addition of Nickel), but during the sintering, composite dielectric ceramics with large charge field and electric power storage are possible to prevent oxidation so that island of core remains metallic Is to form a possible composition.

상기 기술적 과제를 달성하기 위하여, 본 발명에 따른 고유전율 강유전체 세라믹스 조성물은 안정한 페로브스카이트 ABO3 구조를 갖는 x wt% Ni + BaTiO3 이며, x(0<x≤20)wt% 범위를 갖는 점을 그 특징으로 한다. In order to achieve the above technical problem, the high dielectric constant ferroelectric ceramic composition according to the present invention is x wt% Ni + BaTiO 3 having a stable perovskite ABO 3 structure, having a range of x (0 <x ≤ 20) wt% The point is characterized by that.

또한 본 발명의 특징으로서, 본 발명에 의한 고유전율을 가지는 유전체세라믹스이 조성물의 제조 방법은 Ni, BaO, TiO2의 시료를 습식 혼합 및 분쇄 후 용매를 건조하여 결정화를 위한 소결하는 1단계와 소결된 시료를 성형하는 2단계를 특징으로 하며, 상기 소결온도는 1300 ~ 1350 ℃ 범위로 되는 것을 특징으로 한다.
In addition, as a feature of the present invention, the dielectric ceramic having a high dielectric constant according to the present invention is a method for producing the composition is a step of sintering for crystallization by drying the solvent after wet mixing and grinding the samples of Ni, BaO, TiO 2 and sintered Characterized by two steps of forming a sample, the sintering temperature is characterized in that the range of 1300 ~ 1350 ℃.

이하, 본 발명의 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한다. 다만, 본 발명이 서술하는 실시 예는 본 발명의 전반적인 이해를 돕기 위하여 제공되는 것이며, 본 발명은 상기 실시 예로만 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the embodiments described by the present invention are provided to help the overall understanding of the present invention, and the present invention is not limited only to the above embodiments.

본 발명에 있어서는 유전 특성을 향상시키기 위하여 티탄산 바륨(Barium titanate, BaTiO3)의 조성물을 기본 조성으로 하여, 이 조성물에 순수 니켈(Nickel, Ni) 금속 파우더를 첨가하고, 그 첨가량을 변화시키면서 각각의 시편을 제조하여, 그에 따른 입자 결정의 구조적 특성과 유전율 및 유전 손실율에 대하여 조사하였다.In the present invention, in order to improve the dielectric properties, a composition of barium titanate (BaTiO 3 ) is used as the basic composition, and pure nickel (Ni) metal powder is added to the composition, and the amount of each added is changed. Specimens were prepared and their structural properties, dielectric constants and dielectric losses were investigated.

이에 따라, 본 발명의 바람직한 실시 예에 따른 Ni이 첨가된 고유전율 강유전체 세라믹스 조성물 및 그 제조방법에 대하여 설명하면 다음과 같다.
Accordingly, a high dielectric constant ferroelectric ceramic composition to which Ni is added according to a preferred embodiment of the present invention and a manufacturing method thereof will be described below.

< 실시예 > < Example>

최초, 티탄산 바륨(Barium Titanate, BaTiO3)에 수 ㎛ 의 입자 크기를 가지는 니켈(Nickel, Ni)을 금속 파우더를 출발원료로 사용하여 Ni 조성비 x(0<x≤20)wt% 범위 내에서 각 조성에 따른 시료를 증류수 또는 에탄올을 분산매로 하여 지르코니아볼을 사용하여 24시간 동안 혼합, 분쇄하였으며, 상기 볼밀한 시료를 80℃에서 24시간 동안 건조하였다. First, nickel (Ni), which has a particle size of several μm in barium titanate (BaTiO 3 ), was used as a starting material, using a metal powder as a starting material, respectively, within a Ni composition ratio x (0 <x≤20) wt%. Samples according to the composition were mixed and ground for 24 hours using zirconia ball with distilled water or ethanol as a dispersion medium, and the ball mill sample was dried at 80 ° C. for 24 hours.

그리고, 상기 건조된 시료에 PVA(Polyvinyl Alcohol: 5wt% 수용액)을 5wt% 첨가하여 18mm의 직경으로 3ton/cm2 을 가하여 일축 성형하여 시편을 성형하였다.Then, 5 wt% of polyvinyl alcohol (5 wt% aqueous solution) was added to the dried sample, and 3 ton / cm 2 was added to a diameter of 18 mm to uniaxially shape the specimen.

상기 성형된 시편을 알루미나 도가니에 질소 가스(N2 atmosphere) 분위기 고온 전기로에서 1300 ~ 1350℃ 온도 범위 내에서 3시간 동안 소결한 후, 두께를 평균 1.0 mm 범위 내로 연마하였다. 그리고, 상기 시편의 표면에 은(Ag) 전극을 부착시키고, 700℃의 온도에서 30분간 하소 후에 제반 특성을 측정하였다.The molded specimen was sintered in an alumina crucible in a nitrogen gas (N 2 atmosphere) high temperature electric furnace for 3 hours in a temperature range of 1300 to 1350 ° C., and then the thickness was polished to an average range of 1.0 mm. Then, a silver (Ag) electrode was attached to the surface of the specimen, and various properties were measured after calcining at a temperature of 700 ° C. for 30 minutes.

최종 시편 및 소결된 시편을 X선 회절 분석(X-ray diffraction analysis) 을 통하여 Ni-BaTiO3 복합 세라믹스 구조를 확인하였고, SEM을 이용하여 미세조직을 관찰하였다. 이후, 임피던스 분석기로 유전 특성인 정전용량(C), 유전손실(tan δ)를 측정하였다.The final specimen and the sintered specimens were confirmed by the X-ray diffraction analysis (X-ray diffraction analysis) structure of the Ni-BaTiO 3 composite ceramics, and the microstructure was observed by SEM. After that, the capacitance (C) and the dielectric loss (tan δ), which are dielectric properties, were measured by an impedance analyzer.

본 발명의 고유전율을 갖는 강유전체 복합 세라믹스 조성물은 상기에서 기술한 바와 같이 Ni 첨가에 따른 복합 유전체 세라믹스 조성은 x wt% Ni + BaTiO3 이며, x(0<x≤20)wt% 범위의 값을 갖는다. In the ferroelectric composite ceramic composition having the high dielectric constant of the present invention, as described above, the composite dielectric ceramic composition according to Ni addition is x wt% Ni + BaTiO 3 , and has a value in the range of x (0 <x≤20) wt%. Have

이와 같은 본 발명의 고유전율을 갖는 강유전체 복합 세라믹스 조성물을 1300 ~ 1350℃ 범위에서 소결하였으며, 가장 소결 특성이 좋은 온도는 1325℃ 였다. Such a ferroelectric composite ceramic composition having a high dielectric constant of the present invention was sintered in the range of 1300 ~ 1350 ℃, the temperature of the most sintering characteristics was 1325 ℃.

전반적인 세라믹스 합성공정을 도 2에, 그 기본적인 구조 물성을 측정한 결과를 도 3에 각각 나타내었다.The overall ceramic synthesis process is shown in FIG. 2 and the results of measuring the basic structural properties thereof are shown in FIG. 3.

도 3에서 보는 바와 같이, 1300 ~ 1350℃ 범위에서 니켈(Nickel, Ni)의 첨가량에 따라 소결한 시편의 결정 구조 분석 물성을 X-선 회절 분석도이다. X-선 회절 분석에 의해 니켈(Nickel, Ni)의 첨가량이 증가할수록 니켈(Nickel, Ni)의 각 결정면에 나타나는 결정면 위치 피크(peak)의 결정성(Intensity)이 증가하는 것이 나타났다.As shown in Figure 3, the crystal structure analysis properties of the sintered specimens according to the addition amount of nickel (Nickel, Ni) in the range of 1300 ~ 1350 ℃ is X-ray diffraction analysis. X-ray diffraction analysis showed that as the addition amount of nickel (Nickel, Ni) increases, the crystallinity (Intensity) of the crystal surface position peak (peak) appearing on each crystal surface of nickel (Nickel, Ni) increases.

도 4에서는 각 1300 ~ 1350℃ 소결 온도 범위에서 니켈(Nickel, Ni)의 첨가량에 따라 소결한 시편의 비유전율(Dielectric constant, εr)을 측정한 결과를 비교한 것이다. 도 5에 나타낸 각 1300 ~ 1350℃ 소결 온도 범위에서 니켈(Nickel, Ni)의 첨가량에 따라 소결한 시편의 유전 손실(Dissipation factor, tanδ)과 함께 비교하였을 시 소결 온도 범위가 증가할수록 비유전율(Dielectric constant, εr)은 감소하는 경향을 나타내고 있으나, 유전 손실(Dissipation factor, tanδ)은 증가하였다.In FIG. 4, the results of measuring the dielectric constant (ε r ) of the sintered specimens according to the amount of nickel (Nickel, Ni) added in the sintering temperature range of 1300 to 1350 ° C. are compared. Dielectric constant (Dielectric) as the sintering temperature range is increased when compared with the dielectric loss (dissipation factor, tan δ) of the sintered specimens according to the addition amount of nickel (Nickel, Ni) in each 1300 ~ 1350 ℃ sintering temperature range shown in FIG. constant, ε r ) tended to decrease, but the dielectric loss factor (dissipation factor, tanδ) increased.

보다 자세히 살펴보기 위하여, 도 9에서는 본 발명의 고유전율 강유전체 복합 세라믹스 조성물에 소결 온도 범위를 1325℃로 고정하고, 첨가되는 니켈(Nickel, Ni)의 첨가량에 따른 미세 구조 변화를 나타내며, (a) , (b) 는 니켈(Nickel, Ni)의 첨가되는 조성비가 중량비 1.2 wt% 이고, (c) , (d) 는 니켈(Nickel, Ni)의 첨가되는 조성비가 중량비 20.0 wt% 일 때의 미세 구조 사진이다.In order to examine in more detail, Figure 9 is fixed to the high dielectric constant ferroelectric composite ceramic composition of the present invention fixed sintering temperature range to 1325 ℃, and shows the microstructure change according to the addition amount of nickel (Nickel, Ni) is added, (a) (b) is the microstructure when the compositional ratio of nickel (Nickel, Ni) is 1.2 wt%, and (c), (d) the compositional ratio of nickel (Nickel, Ni) is 20.0 wt% It is a photograph.

니켈(Nickel, Ni)의 첨가되는 조성비가 증가할수록 시편의 그레인(Grain) 크기 변화는 큰 차이를 보이지 않으나 첨가된 니켈(Nickel, Ni)의 부분적 응집 현상 발생으로 인하여 비유전율(Dielectric constant, εr) 감소 현상이 발생하였다.As the composition ratio of nickel (Ni) is increased, the grain size change of the specimen does not show a big difference, but due to the partial coagulation of nickel (Ni), the dielectric constant (ε r) ) A decrease occurred.

도 6에서 보는 바와 같이, 1325℃ 범위에서 하이드라진(Hydrazine, H2N·NH2·H2O)이 첨가된 상태에서, 니켈(Nickel, Ni)의 첨가량에 따라 소결한 시편의 결정 구조 분석 물성을 X-선 회절 분석도이다. X-선 회절 분석에 의해 니켈(Nickel, Ni)의 첨가량이 증가할수록 니켈(Nickel, Ni)의 각 결정면에 나타나는 결정면 위치 피크(peak)의 결정성(Intensity)이 증가하는 것이 나타났으며 이는 도3의 결과와 거의 일치하는 결과이다. As shown in Figure 6, in the state in which hydrazine (Hydrazine, H 2 N · NH 2 · H 2 O) is added in the range of 1325 ℃, crystal structure analysis properties of the specimen sintered according to the addition amount of nickel (Nickel, Ni) X-ray diffraction analysis. X-ray diffraction analysis showed that as the addition amount of nickel (Ni) increases, the crystallinity (Intensity) of the crystal surface position peak appearing on each crystal surface of nickel (Ni, Ni) increases. This is almost the same result as 3.

도 7, 8에서는 각 1300 ~ 1350℃ 소결 온도 범위에서 니켈(Nickel, Ni)의 첨가량에 따라 니켈(Nickel, Ni)의 산화 방지를 위하여 하이드라진(Hydrazine, H2N·NH2·H2O) 을 첨가하여 소결한 시편의 비유전율(Dielectric constant, εr)과 유전 손실(Dissipation factor, tanδ)을 측정한 결과를 나타내었다.In Figures 7 and 8, hydrazine (H 2 N · NH 2 · H 2 O) to prevent oxidation of nickel (Nickel, Ni) according to the amount of nickel (Ni) added in the sintering temperature range of 1300 to 1350 ° C. The relative dielectric constant (ε r ) and dielectric loss (Dissipation factor, tanδ) of the sintered specimens were measured.

산화 방지를 위하여 하이드라진(Hydrazine, H2N·NH2·H2O) 을 첨가하여 소결 온도 범위를 1325℃로 고정하고, 소결한 시편의 니켈(Nickel, Ni)의 첨가되는 조성비가 중량비 20.0 wt% 일 때의 비유전율(Dielectric constant, εr)은 가장 좋은 특성을 나타내었으며, 유전 손실(Dissipation factor, tanδ)은 니켈(Nickel, Ni)의 첨가되는 조성비에 있어 동일 중량 조성비에서는 변화에 큰 차이를 나타내지 않고 있으나, 니켈(Nickel, Ni)의 첨가되는 조성비에 있어 중량 조성비가 증가함에 따라 큰 유전 손실(Dissipation factor, tanδ) 측정값을 나타내었다.To prevent oxidation, hydrazine (H 2 N · NH 2 · H 2 O) was added to fix the sintering temperature range at 1325 ° C., and the composition ratio of nickel (Ni) added to the sintered specimen was 20.0 wt. Dielectric constant (ε r ) at% showed the best characteristics, and the dielectric loss (Dissipation factor, tanδ) showed a big difference in change at the same weight composition ratio in the composition ratio of nickel (Nickel, Ni) added. Although not shown, a large dielectric loss factor (tan δ) was measured as the weight composition ratio was increased in the composition ratio of nickel (Nickel, Ni).

이상에서와 같이, 티탄산 바륨(Barium Titanate, BaTiO3)에 금속 원소를 첨가하고, 금속원소의 조성비를 조정하고, 소결온도를 제어하여 소결시켜 복합 세라믹유전체 조성물을 제조함에 의해 순수 티탄산 바륨(Barium Titanate, BaTiO3) 보다 유전율이 높고, 손실계수는 작으며, 고전계로 충전 가능한 커패시터 유전체로써 활용이 가능한 복합 세라믹유전체 조성물을 형성할 수 있다. As described above, pure barium titanate is prepared by adding a metal element to barium titanate (BaTiO 3 ), adjusting the composition ratio of the metal element, and controlling the sintering temperature to produce a composite ceramic dielectric composition. , BaTiO 3 ) It is possible to form a composite ceramic dielectric composition having a higher dielectric constant, a lower loss factor, and a high dielectric field chargeable capacitor dielectric.

Claims (7)

티탄산 바륨(Barium Titanate, BaTiO3)에 수 ㎛의 입자 크기를 가지는 니켈(Nickel, Ni), 구리(Cu), 은(Ag) 중 하나 이상의 금속 원소를 첨가하여 출발원료로 사용하는 제1단계와; 상기 금속원소는 조성비 x(0<x≤20)wt% 범위 내에서 각 조성에 따른 시료를 증류수 또는 에탄올을 분산매로 하여 지르코니아볼을 사용하여 24시간 동안 볼밀하여 혼합, 분쇄하는 제2단계와; 상기 제2단계에서 볼밀하여 혼합, 분쇄된 시료를 건조시키는 제3단계와; 상기 건조된 시료에 PVA(Polyvinyl Alcohol: 5wt% 수용액)을 첨가하고 압력을 가하는 방법으로 성형하여 시편을 형성시키는 제4단계와; 상기 시편을 도가니에 질소 가스(N2 atmosphere) 분위기 전기로에서 1300 ~ 1350℃ 온도 범위 내에서 소결하는 제5단계;를 포함하여 구성되되,
상기 제5단계는 산화 방지를 위하여 하이드라이진(Hydrazine, H2N·NH2·H2O)이 첨가됨을 특징으로 하는 고유전율을 갖는 복합 세라믹유전체 조성물 제조방법.
The first step of using as a starting material by adding at least one metal element of nickel (Ni), copper (Cu), silver (Ag) having a particle size of several μm to barium titanate (BaTiO 3 ) and ; The metal element is a second step of ball-mixing and grinding a sample according to each composition within a range of composition ratio x (0 <x ≤ 20) wt% by distilled water or ethanol as a dispersion medium for 24 hours using zirconia ball; A third step of drying the sample milled and mixed by the ball mill in the second step; A fourth step of forming the specimen by adding PVA (5 wt% aqueous solution) to the dried sample and molding it by applying a pressure; And a fifth step of sintering the specimen in a crucible in a nitrogen gas (N 2 atmosphere) atmosphere electric furnace within a temperature range of 1300 to 1350 ° C .;
The fifth step is a method of producing a composite ceramic dielectric composition having a high dielectric constant, characterized in that hydrazine (Hydrazine, H 2 N · NH 2 · H 2 O) is added to prevent oxidation.
삭제delete 티탄산 바륨(Barium Titanate, BaTiO3)에 수 ㎛의 입자 크기를 가지는 니켈(Nickel, Ni), 구리(Cu), 은(Ag) 중 하나 이상의 금속원소를 첨가하여 형성시킨 티탄산 바륨(Barium Titanate, BaTiO3) 조성물을 1300 ~ 1350℃ 온도 범위 내에서 소결처리시키되, 상기 소결은 산화 방지를 위하여 하이드라이진(Hydrazine, H2N·NH2·H2O)이 첨가되어 진행됨에 의해 아일랜드(island) 금속 코어(core)를 형성시킴을 특징으로 하는 고유전율을 갖는 복합 세라믹유전체 조성물.Barium titanate (BaTiO 3 ) formed by adding at least one metal element of nickel (Ni), copper (Cu), or silver (Ag) having a particle size of several μm to barium titanate (BaTiO 3 ). 3 ) The composition is sintered in a temperature range of 1300 ~ 1350 ℃, the sintering is carried out by the addition of hydrazine (Hydrazine, H 2 N · NH 2 · H 2 O) to prevent oxidation A composite ceramic dielectric composition having a high dielectric constant, characterized by forming a metal core. 삭제delete 제3항에 있어서, 상기 금속원소의 첨가량은 조성비 x(0<x≤20)wt% 범위임을 특징으로 하는 고유전율을 갖는 복합 세라믹유전체 조성물.The composite ceramic dielectric composition of claim 3, wherein the amount of the metal element added is in the range of composition ratio x (0 <x ≦ 20) wt%. 삭제delete 삭제delete
KR1020120086324A 2012-08-07 2012-08-07 composite of ceramic dielectric with high dielectric constant and their manufacturing mehtod KR101383356B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120086324A KR101383356B1 (en) 2012-08-07 2012-08-07 composite of ceramic dielectric with high dielectric constant and their manufacturing mehtod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120086324A KR101383356B1 (en) 2012-08-07 2012-08-07 composite of ceramic dielectric with high dielectric constant and their manufacturing mehtod

Publications (2)

Publication Number Publication Date
KR20140020011A KR20140020011A (en) 2014-02-18
KR101383356B1 true KR101383356B1 (en) 2014-04-14

Family

ID=50267217

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120086324A KR101383356B1 (en) 2012-08-07 2012-08-07 composite of ceramic dielectric with high dielectric constant and their manufacturing mehtod

Country Status (1)

Country Link
KR (1) KR101383356B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194454A3 (en) * 2018-04-05 2019-12-12 주식회사 세븐킹에너지 Method for preparing ceramic solid electrolyte for lithium secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102584993B1 (en) * 2018-02-08 2023-10-05 삼성전기주식회사 Capacitor component and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11157925A (en) * 1997-11-21 1999-06-15 Murata Mfg Co Ltd Semiconductor ceramic
KR20060105933A (en) * 2005-04-01 2006-10-12 삼성전기주식회사 High capacitancy metal-ceramic-polymer dielectric material and preparing method for embedded capacitor using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11157925A (en) * 1997-11-21 1999-06-15 Murata Mfg Co Ltd Semiconductor ceramic
KR20060105933A (en) * 2005-04-01 2006-10-12 삼성전기주식회사 High capacitancy metal-ceramic-polymer dielectric material and preparing method for embedded capacitor using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194454A3 (en) * 2018-04-05 2019-12-12 주식회사 세븐킹에너지 Method for preparing ceramic solid electrolyte for lithium secondary battery

Also Published As

Publication number Publication date
KR20140020011A (en) 2014-02-18

Similar Documents

Publication Publication Date Title
Yan et al. Composition and structure optimized BiFeO3‐SrTiO3 lead‐free ceramics with ultrahigh energy storage performance
Yang et al. A novel lead-free ceramic with layered structure for high energy storage applications
Luo et al. Aliovalent A-site engineered AgNbO 3 lead-free antiferroelectric ceramics toward superior energy storage density
Hong et al. Perspectives and challenges in multilayer ceramic capacitors for next generation electronics
Zhao et al. High energy storage property and breakdown strength of Bi0. 5 (Na0. 82K0. 18) 0.5 TiO3 ceramics modified by (Al0. 5Nb0. 5) 4+ complex-ion
Yan et al. Excellent energy storage properties and superior stability achieved in lead-free ceramics via a spatial sandwich structure design strategy
Wang et al. Dielectric and ferroelectric properties of SrTiO3-Bi0. 54Na0. 46TiO3-BaTiO3 lead-free ceramics for high energy storage applications
US11292747B2 (en) Barium strontium titanate-based dielectric ceramic materials, preparation method and application thereof
Li et al. Lead‐free relaxor ferroelectric ceramics with ultrahigh energy storage densities via polymorphic polar nanoregions design
Li et al. Study of the structure, electrical properties, and energy storage performance of ZnO-modified Ba0. 65Sr0. 245Bi0. 07TiO3 Pb-free ceramics
ZHANG et al. Microstructure and electrical properties of sol–gel derived Ni-doped CaCu3Ti4O12 ceramics
Huang et al. Ultrahigh energy storage density, high efficiency and superior thermal stability in Bi 0.5 Na 0.5 TiO 3-based relaxor ferroelectric ceramics via constructing multiphase structures
Cui et al. Energy storage performance of BiFeO3–SrTiO3–BaTiO3 relaxor ferroelectric ceramics
CN107459350A (en) A kind of dielectric energy storage anti-ferroelectric ceramic material and preparation method thereof
Wang et al. Modified relaxor ferroelectrics in BiFeO3-(Ba, Sr) TiO3-BiScO3 ceramics for energy storage applications
Chen et al. Microstructure, dielectric and ferroelectric properties of (1− x) BaTiO 3–x BiYbO 3 ceramics fabricated by conventional and microwave sintering methods
Zhu et al. Boosting dielectric temperature stability in BNBST‐based energy storage ceramics by Nb2O5 modification
Liu et al. Achieving high energy storage density of PLZS antiferroelectric within a wide range of components
Yang et al. Superior energy storage performance in antiferroelectric multilayer ceramics via heterogeneous interface structure engineering
KR101383356B1 (en) composite of ceramic dielectric with high dielectric constant and their manufacturing mehtod
Shi et al. Enhanced energy storage performance achieved in Na0. 5Bi0. 5TiO3–Sr0. 7Bi0. 2TiO3 ceramics via domain structure and bandgap width tuning
Yan et al. Pulse energy-storage performance and temperature stability of Bi2O3-added BaTiO3 based ceramics
Peng et al. A new family of high temperature stability and ultra-fast charge–discharge KNN-based lead-free ceramics
CN108863349A (en) A kind of barium titanate-based lead-free height Jie temperature-stable ceramic material and preparation method thereof
Zhu et al. KNN+ Nb2O5 co-modified BNBST-based relaxor ferroelectric ceramics for X8R energy storage capacitors

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170124

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181210

Year of fee payment: 5

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20190319

Year of fee payment: 6