KR101378780B1 - Method for manufacturing transparent conducting oxide thin film by using the reducted indium indium-zinc-tin oxide target and thereof, method for fabricating the applied device - Google Patents

Method for manufacturing transparent conducting oxide thin film by using the reducted indium indium-zinc-tin oxide target and thereof, method for fabricating the applied device Download PDF

Info

Publication number
KR101378780B1
KR101378780B1 KR1020110126573A KR20110126573A KR101378780B1 KR 101378780 B1 KR101378780 B1 KR 101378780B1 KR 1020110126573 A KR1020110126573 A KR 1020110126573A KR 20110126573 A KR20110126573 A KR 20110126573A KR 101378780 B1 KR101378780 B1 KR 101378780B1
Authority
KR
South Korea
Prior art keywords
indium
thin film
target
transparent conductive
reduced
Prior art date
Application number
KR1020110126573A
Other languages
Korean (ko)
Other versions
KR20130060488A (en
Inventor
최병현
지미정
안용관
안용태
최진훈
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020110126573A priority Critical patent/KR101378780B1/en
Publication of KR20130060488A publication Critical patent/KR20130060488A/en
Application granted granted Critical
Publication of KR101378780B1 publication Critical patent/KR101378780B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

발명은 현재 아이티오 투명전도성 산화물에서 인듐을 18.6~28.7% 아연과 주석으로 대체한 인듐 저감 조성(In1 .6Zn0 .2Sn0 .2O3 ~ In1 .2Zn0 .4Sn0 .4O3)으로 단일상의 인듐 산화물 타겟을 제조한 후 투명 전도막을 성막하여 유기전계발광소자나 유기태양전지용 박막으로 적용하는 것이다.
위 발명에 따라 유기전계발광소자나 유기태양전지용으로 현재 사용하고 있는아이티오 타겟을 대체할수 있는 인듐 저감 대체 타겟을 개발함에 따라 인듐 고갈에 대비하는 효과 외에도 인듐 저감으로 원재료 가격 절감, 아이티오 타겟 합성에서의 폐수발생 문제를 해결할 수 있었을 뿐만 아니라 현 아이티오보다 더 치밀화한 나노 크기 분말의 고밀도화 방법 제시 및 인듐저감으로 투명전도성 타겟의 가격을 30%이상 절감할 수 있는 효과가 있다.
Present invention is a child reduced indium composition replace indium from thio transparent conductive oxide to 18.6 ~ 28.7% zinc and tin (In 1 .6 Zn 0 .2 Sn 0 .2 O 3 ~ In 1 .2 Zn 0 .4 Sn 0 .4 O 3) as to then manufacture an indium oxide target on the transparent conductive film is formed by a single application of the organic EL device or an organic thin film solar cell.
According to the above invention, the development of an indium reduction alternative target that can replace the Ithio target currently used for an organic light emitting device or an organic solar cell, in addition to the effect of indium depletion, raw material price reduction and indium reduction synthesis In addition to being able to solve the wastewater generation problem in Esau, it is possible to reduce the price of the transparent conductive target by more than 30% by suggesting a method for densifying nano-sized powder denser than the current Ithio and reducing the indium.

Description

인듐저감 박막을 적용한 유기전계발광소자 및 유기태양전지디바이스 제조방법{Method for manufacturing transparent conducting oxide thin film by using the reducted indium indium-zinc-tin oxide target and thereof, method for fabricating the applied device}Method for manufacturing transparent conducting oxide thin film by using the reducted indium indium-zinc-tin oxide target and about, method for fabricating the applied device}

본 발명은 현재 분말합성 시 다량의 폐수를 생성하고 타겟이 고가이면서 원 소재가 고갈 위기에 있는 평판패널 디스플레이용 아이티오 전도체를 인듐 사용량을 줄이고 저가이면서 현 아이티오와 동등 성능을 갖는 투명 도전체로 인듐 대신 주석과 아연을 고용한 조성으로 분말을 청정공정으로 합성하고, 그 분말을 이용 고밀도타겟을 제조한 후, 박막화한 후 이 박막을 이용 유기전계발광소자 및 유기태양전지의 디바이스에 적용 했을 때 현 아이티오와 동등의 성능을 갖는 투명도전체에 관한 것이다.The present invention is to produce a large amount of waste water during powder synthesis, the target is expensive and the raw material is in danger of exhaustion of the indium as a transparent conductor having a low cost and equivalent performance to the current Ithio in the indium used for flat panel display Instead, the powder is synthesized in a clean process using a composition containing tin and zinc, a high-density target is prepared using the powder, thinned, and then applied to the device of an organic light emitting device and an organic solar cell using the thin film. The present invention relates to a transparent conductor having a performance equivalent to that of itio.

자세히 언급하면 현재의 아이티오 성분(ITO, 인듐 90~95중량%, 주석 5~10중량%)에서 인듐에 아연과 주석을 고용시켜 인듐량을 18.6~28.7중량%(산화물 기준) 저감한 인듐 산화물 타겟을 청정공정으로 나노크기 분말을 합성 한 후, 나노크기 분말의 뭉침 현상을 잘 분산시켜 고밀도로 타겟을 제조한 후, 유기전계발광소자나 유기태양전지디바이스용 박막으로 사용할 수 있게 박막 제조 방법을 제어하여 현 아이티오 성능과 대등한 값을 얻게 하고 위에서 제조한 박막을 이용하여 유기전계발광소자나 유기태양전지 디바이스로서 사용할 수 있게끔 실제 응용 디바이스에 적용해 봄으로써 평판패널 디스플레이에 적용할 수 있는 인듐이 저감된 투명전도체를 발명한 것이다.
In detail, indium oxide is reduced in the amount of indium by 18.6 to 28.7 wt% (based on oxide) by incorporating zinc and tin into indium in the current Ithio component (ITO, indium 90 to 95 wt% and tin 5 to 10 wt%). After synthesizing the nano-sized powder in a clean process, the agglomeration phenomenon of the nano-sized powder is well dispersed to prepare the target with high density, and then the thin film manufacturing method can be used as a thin film for an organic light emitting device or an organic solar cell device. Indium that can be applied to flat panel displays by controlling them to obtain values comparable to the current IoT performance and applying them to actual application devices so that they can be used as organic electroluminescent devices or organic solar cell devices using the thin film prepared above. This reduced transparent conductor is invented.

최근 주로 피디피(PDP), 엘시디(LCD), 유기전계발광소자 (오엘이디,OLED), 터치패널, 유기태양전지디바이스용에 사용되는 투명전도체로서 인듐-주석산화물인 아이티오가 대부분 사용되고 있으나 인듐을 주성분으로 하는 투명전도체의 수요가 디스플레이(FPD), 아이티(IT) 산업발달과 함께 급격히 증가하고 있다. 이러한 아이티오 주성분인 인듐은 몇 년 내에 고갈 위기에 놓여있고, 가격은 고가로 급등할 것이 예측되나 이를 대체할 만한 소재가 현재 나타나지 않고 있다.
Recently, indium tin oxide ithio is mostly used as a transparent conductor mainly used for PDP, LCD, OLED, touch panel, and organic solar cell devices. The demand for transparent conductors, which are the main component, is rapidly increasing with the development of display (FPD) and IT (IT) industries. Indium, which is a major component of Ithio, is in danger of being depleted within a few years, and the price is expected to skyrocket to a high price, but there is currently no substitute material.

본 발명의 목적은 첫째 현재 사용 중인 투명전도막인 아이티오에서 인듐에 아연과 주석을 고용시켜 인듐량을 18.6~28.7중량%(산화물 기준) 저감하는 최적 청정공정을 발명하여, 고전도 산화물을 나노크기로 합성하고, 그 합성분말을 잘 분산시켜 고밀도 타겟을 제조하는 것이고, 두 번째는 인듐이 저감된 타겟을 이용 유기전계발광소자나 유기태양전지디바이스로 응용해 보고자 박막의 성능을 아이티오와 거의 유사 또는 동등한 것이 되게끔 제조 공정을 제어하는 것이며, 세 번째는 위 인듐저감 타겟으로 만들어진 박막을 유기전계발광소자와 유기태양전지디바이스의 구조에서 현재 사용하고 있는 아이티오 층에 대체하였을 경우 아이티오와 유사 또는 동등 이상 성능을 내는 타겟 적용 박막을 제공하는 것이다.
The object of the present invention is to first invent an optimal cleaning process to reduce the amount of indium by 18.6 to 28.7 wt% (based on oxides) by incorporating zinc and tin in indium in Ithio, a transparent conductive film that is currently in use. Synthesis by size and dispersing the synthetic powder well to produce a high density target, and secondly, to apply the organic light emitting device or organic solar cell device using targets with reduced indium, the performance of thin film is almost The third step is to control the manufacturing process to be similar or equivalent, and the third is that if the thin film made of the above indium reduction target is replaced with the Ithio layer currently used in the structure of the organic light emitting device and the organic solar cell device, It is to provide a target application thin film having a similar or equivalent performance.

상기와 같은 목적을 달성하기 위해, 본 발명에서는 사전책으로 인듐을 저감할 수 있는 방법이 필요하고 더 나아가가서는 전량 대체 할 수 있는 새로운 소재의 개발 요구되어 많은 발명가들이 연구하고 있으나 현재 까지는 나타나지 않고 있다. 설령 이를 재활용을 한다 하더라도 그 수요를 향후 충당할 수 없게 될 것이다. In order to achieve the above object, in the present invention, a method for reducing indium is required as a preliminary measure, and furthermore, there is a demand for development of a new material that can be replaced in its entirety. have. Even if it is recycled, it will not be able to meet its demand in the future.

따라서 투명전도체로서 인듐의 사용량을 적게 하면서도, 화학적 반응으로 폐수가 거의 없으면서, 나노분말을 잘 분산시켜 고밀도화한 경우 성능은 아이티오와 대등하여 유기전계발광소자와 유기태양전지디바이스에 사용 가능한 타겟을 발명할 필요가 있었다.Therefore, when the amount of indium used as a transparent conductor is reduced, and there is little waste water by chemical reaction, and the nano powder is well dispersed, the performance is comparable with that of Ithio, and thus, the target which can be used for organic light emitting devices and organic solar cell devices is invented. I needed to.

그래서 본 발명에서는 인듐 사용량을 18.6~28.7중량%(산화물 기준) 감소시키면서 간단한 청정공정으로, 나노크기로 분말을 합성하되, 합성된 나노분말의 뭉침 현상이 없게 하기 위하여, 잘 분산시켜 고밀도 타겟을 제조하는 것을 발명했을 뿐만 아니라, 이 고밀도 타겟을 이용하여 기판의 온도를 상온에서 500℃로 하여 스파터링 증착으로 투명 전도체 박막을 형성하였다.Thus, in the present invention, while using a simple clean process while reducing the amount of indium used 18.6 ~ 28.7% by weight (oxide basis), in order to synthesize the powder in nano size, in order to avoid agglomeration of the synthesized nano powder, it is well dispersed to prepare a high-density target In addition to the invention, the transparent conductor thin film was formed by sputtering deposition using the high-density target at a temperature of 500 ° C. at room temperature.

이때 박막의 표면조도는 최대 7.22nm로 투과도는 400nm 파장대역에서 50 ~ 150W 파워 범위가 거의 비슷하게 80%로 현재 사용중인 아이티오와 성능이 동등하였다. 또한 파워 50W로 박막화하였을 때 박막의 전기전도도는 7.4x10-4Ω.㎝로 현 아이티오와 비슷하였고 홀 모빌리트(Hall mobility)는 22x10㎝3/v5이고, 캐리어 농도는 0.3x1020cm-3으로 아이티오와 동등하였다.At this time, the surface roughness of the thin film was up to 7.22nm and the transmittance was 80% in the range of 50 ~ 150W power in the 400nm wavelength band, which is equivalent to that of the current Ithio. Also the electrical conductivity of the thin film when the thin film as a power 50W is 7.4x10 -4, and the current was similar to the children thio Ω.㎝ mobile discrete hole (Hall mobility) is 22x10㎝ 3 / v 5, the carrier concentration is 0.3x10 20 cm - 3 was equivalent to Ithio.

위의 박막을 이용은 유기전계 발광소자 구조의 아이티오가 들어갈 위치에 대체한 결과 최대휘도가 도판트(Dopant) 농도가 3%일 때 35,570cd/㎠이었고 최대효율은 4.53cd/A로 현재 아이티오보다 우수한 성능을 나타내었다. 이는 인듐저감 타겟을 유기전계 발광소자에 적용될 수 있음을 확인시켜 주는 결과이다 Using the above thin film, the organic light emitting device structure was replaced with Ithio in the position. As a result, when the dopant concentration was 3%, the maximum luminance was 35,570 cd / ㎠ and the maximum efficiency was 4.53 cd / A. It showed better performance than thio. This is a result confirming that the indium reduction target can be applied to the organic light emitting device.

또한, 유기태양전지 디바이스 구조에 적용할 결과 <도 8>과 같이 최대 휘도와 최대 효율은 각각 20,585cd/㎡ 2.29cd/A로서 현아이티오 보다 약간 낮은 값을 나타냈으나 적용했을 때 디바이스화가 가능하였다.
In addition, as a result of applying to the structure of the organic solar cell device, as shown in FIG. It was.

이것에 의해, 본발명은 우선 아이티오에서 인듐을 저감하고자 아연과 주석을 인듐에 고용시킨 산화물을 제조함으로서 인듐 사용량을 18.6~28.7중량%(산화물 기준)로 저감할 수 있었고, 또한 분말을 청정공정으로 합성함으로서 폐수 발생 없이 합성할 수 있었으며, 수십 나노크기 합성물의 뭉침 현상을 잘 분산시킴으로서 현재 아이티오 타겟 이상의 고밀도인 상대밀도가 99.7%이상의 인듐이 저감된 주석-아연-인듐 산화물 타겟을 제조 할 수 있었다. 또한 아이티오와 대등한 비저항 특성을 갖는 투명전도체 박막을 얻을 수 있었으며, 이를 이용 유기전계발광소자나 유기태양전지디바이스의 아이티오 박막 층을 대체 적용 가능한 효과가 있었다.
Thus, the present invention was able to reduce the amount of indium to 18.6 to 28.7% by weight (based on oxide) by first preparing an oxide in which zinc and tin were dissolved in indium in order to reduce indium in Ithio. It was able to synthesize without waste water generation, and by dispersing the aggregation phenomenon of tens of nano-size composite well, it is possible to prepare a tin-zinc-indium oxide target with a high relative density of 99.7% or more, which is higher than the current Ithio target. there was. In addition, it was possible to obtain a transparent conductor thin film having a specific resistance similar to that of Ithio, and it was possible to substitute the Ithio thin film layer of an organic light emitting device or an organic solar cell device using the same.

도 1은 인듐양을 18.6~28.7% 저감하여 제작한 인듐-주석-아연계 타겟을 이용하여 기판 온도에 따른 박막 형태
도 2는 인듐저감 타겟을 이용 기판온도에 따른 박막의 표면조도 사진
도 3은 인듐저감 조성 타겟을 이용 제조한 박막의 박막형성 증착 파워(power)에 따른 투과율
도 4는 인듐저감 박막의 전기전도도, 홀이동도 및 모빌리티
도 5는 인듐저감 조성타겟 이용 박막을 적용한 유기전계발광소자의 구조
도 6은 인듐저감 조성으로 제조한 박막 이용 유기전계발광소자의 최대휘도 및 최대 효율
도 7은 인듐저감 조성으로 제조한 박막이용 유기태양전지디바이스의 구조
도 8은 인듐저감 조성으로 제조한 태양전지 박막의 최대휘도, 최대효율, 및 전력 효율
도 9는 인듐저감 조성으로 산소분압에 따라 제조한 박막의 엑스선 회절분석패턴
도 10은 산소분압에 따른 박막의 미세구조 이미지
도 11은 진공도에 따른 박막의 엑스선 회절분석패턴(비정질 상태)
도 12는 인듐저감 조성으로 제조한 과립
1 is a thin film form according to substrate temperature using an indium-tin-zinc-based target prepared by reducing the amount of indium by 18.6 to 28.7%
2 is a surface roughness photograph of the thin film according to the substrate temperature using the indium reduction target
3 is a transmittance according to thin film formation deposition power of a thin film manufactured using an indium reduction composition target;
4 is an electrical conductivity, hole mobility and mobility of the indium reducing thin film
5 is a structure of an organic light emitting diode to which an indium reducing composition target thin film is applied
6 is the maximum luminance and maximum efficiency of the organic light emitting device using a thin film prepared with an indium reduction composition
7 is a structure of a thin film organic solar cell device manufactured with an indium reduction composition
8 is the maximum brightness, maximum efficiency, and power efficiency of the solar cell thin film prepared with an indium reduction composition
FIG. 9 is an X-ray diffraction pattern of a thin film prepared according to oxygen partial pressure with an indium reduction composition.
10 is a microstructure image of a thin film according to oxygen partial pressure
11 is an X-ray diffraction pattern of the thin film according to the degree of vacuum (amorphous state)
12 is a granule prepared by the indium reduction composition

첫 번째는 인듐저감 조성의 분말은 원료로 아세테이트와 용매로 부탄올을 혼합한 습식 청정공정으로 합성하였다. 이때 각각의 아세테이트로 부터 해리된 착이온이 부탄올에서 해리된 수소 착이온과의 결합하고, 부산물로 부틸아세테이트를 생성하였다. 따라서 본 발명에서는 폐수 없이 아연과 주석이 고용된 단일상인 빅스바이트(bixbyite)상을 갖는 인듐저감산화물을 나노크기 분말로 합성하고, 이 합성방법을 제공하는 것이다First, the powder of indium reduction composition was synthesized by a wet clean process of mixing butanol with acetate and solvent as a raw material. At this time, the complex ion dissociated from each acetate was combined with the hydrogen complex ion dissociated in butanol, and butyl acetate was produced as a by-product. Therefore, the present invention synthesizes indium low oxide having a bixbyite phase, a single phase in which zinc and tin are dissolved without waste water, to provide a nano-size powder, and to provide the synthesis method.

두 번째는 위에서와 같이 합성한 분말을 저온에서 고밀도 타겟으로 제조하기 위해 분산제로 도데실라민 또는 암모늄폴리메타아크릴레이트 단독 또는 도데실라민과 하이드록실프로필셀룰로오즈(HPC) 또는 도데실라민과 폴리에틸렌글리콜(PEG)과 혼합한 것 중 하나를 고형분의 1~10중량% 사용하여 잘 분산시킨 슬러리를 제조하고 이를 분무건조하여 제조한 과립을 일축 성형한 후 등가압 성형하는 것과 타겟의 성능향상 및 저온소결을 위해 수십 나노 크기를 갖는 인듐저감 산화물 분말을 산소가압분위기에서 저온인 1350℃로 4시간 유지한 후 5부피% 수소와 95부피% 아르곤이 혼합된 가스분위기에서 1150℃로 열처리함으로써 상대밀도는 99.7%로 아이티오 99.5%보다 높게 고밀도로 타겟을 제조하는 방법을 제공하는 것이다.Second, dodecylamine or ammonium polymethacrylate alone or dodecylamine and hydroxylpropyl cellulose (HPC) or dodecylamine and polyethylene glycol as a dispersant to prepare the powder synthesized as above at high temperature and high density target. PEG) to prepare a slurry that is well dispersed by using one to 10% by weight of the solid content, and uniaxially molding the granules prepared by spray drying, and then to equi-pressure molding, and to improve the performance of the target and low temperature sintering In order to maintain an indium-reduced oxide powder having a size of several tens of nanometers for 4 hours in an oxygen pressurized atmosphere at 1350 ° C. at a low temperature, the relative density was 99.7% by heat-treating at 1150 ° C. in a gas atmosphere containing 5% by volume hydrogen and 95% by volume argon. It is to provide a method for producing a target at a higher density than 99.5% of Ithio.

세 번째는 인듐저감타겟을 이용 유기전계발광소자나 유기태양전지디바이스로 사용하기 위해서는 박막의 제조공정에서 성능을 향상시켜야 되기 때문에 고주파 스파타링 방법으로 박막을 제조할 때 기판의 온도, 증착파워 진공도 및 산소농도 공정변수를 제어하여 투명박막을 제작하는 방법을 제공하는 것이다. 특히 In1.2Zn0.4Sn0.4O3의 조성에서 산소분압을 변화시켜 박막을 제조한 경우 상온에서도 <도 9>, <도 10> 및 <도 11>과 같이 투명전도막이 결정화 되지 않고, 완전 비정질 형태를 나타냄으로서 박막의 표면균일도는 현재 상용 아이티오 보다 우수했으며, 비저항, 캐리어밀도, 캐리어이동도 및 광투과도는 아이티오와 동등한 특성을 확보하게 되었다.Thirdly, in order to use organic light emitting device or organic solar cell device using Indium Reduction Target, performance should be improved in the manufacturing process of thin film. Therefore, substrate temperature, deposition power vacuum degree and It is to provide a method for manufacturing a transparent thin film by controlling the oxygen concentration process variables. In particular, when the thin film is manufactured by changing the oxygen partial pressure in the composition of In 1.2 Zn 0.4 Sn 0.4 O 3, the transparent conductive film does not crystallize as shown in FIGS. 9, 10, and 11 even at room temperature, and is completely amorphous. As a result, the surface uniformity of the thin film was superior to that of the current commercially available Ithio, and the specific resistance, carrier density, carrier mobility and light transmittance have secured properties equivalent to those of Ithio.

네 번째는 세 번째에서 제작한 인듐저감 투명전도막 위에 피알(photo resist)을 인쇄한 후 노광 에칭 처리하여 회로화 한 다음 그 위에 정공수송층, 발광층(또는 광활성층), 이아이엘층 및 전극층을 박막으로 코팅하여 유기전계발광소자 및 유기태양전지디바이스로 사용할 수 있는 제작방법과 특성 확보 방법의 정보를 제공하는 것이다.
Fourth, the photoresist is printed on the indium-reduced transparent conductive film prepared in the third, and then subjected to exposure etching to make a circuit, and then the hole transport layer, the light emitting layer (or photoactive layer), the IEL layer and the electrode layer are thin films. It is to provide information on the manufacturing method and the method of securing the characteristics that can be used as an organic light emitting device and an organic solar cell device by coating.

(실시 예 1)(Example 1)

아연과 주석을 고용한 수십 나노크기의 인듐저감 산화물 분말의 합성은 청정공정으로 반응용기에 부탄올 용매를 넣고 교반하는 상태에서 아세테이트계 금속염을 1:2~10의 몰비로 서서히 투하하여 110℃로 24시간 유지하여 합성한 후, 혼합물을 진공 회전증발기를 이용, 부탄올과 부틸아세테이트를 증발응축시켜 건조된 분말을 얻었다. 상기 부탄올은 엔(n)-부탄올, 테트(tert)-부탄올, 2-부탄올 및 아이소(Iso)-부탄올 중 어느 하나이고, 인듐아세테이트 1.2몰~1.6몰, 아연아세테이트 0.4몰 이하 및 주석아세테이트 0.4몰 이하의 비율로 하였다.Synthesis of dozens of nanoscale indium reducing oxide powders using zinc and tin is a clean process, in which the acetate-based metal salts are slowly dropped in a molar ratio of 1: 2 to 10 with a butanol solvent added to the reaction vessel and stirred. After the synthesis was carried out for a while, the mixture was evaporated to condense butanol and butyl acetate using a vacuum rotary evaporator to obtain a dried powder. The butanol is any one of en (n) -butanol, tert-butanol, 2-butanol and iso-butanol, and 1.2 mol to 1.6 mol of indium acetate, 0.4 mol or less of zinc acetate, and 0.4 mol of tin acetate. It was made into the following ratios.

건조된 합성물을 300℃에서 10시간 하소 한 후 이 하소물 100g에 물 70g과 분산제인 데실라민 2.5g과 하이드록실프로필셀룰로오즈 2.5g을 함께 넣고 어트리션밀(Attrition mill)에서 6시간 해쇄하고 여기에 결합제, 이형제 등을 투입하여 슬러리(slurry)를 제조한 후 분무건조기를 이용하여 인입온도190℃, 배출온도 110℃ 및 분무속도 9500rpm으로 <도 12>과 같이 과립(granule)화 하였다.The dried composite was calcined at 300 ° C. for 10 hours, and then, 100 g of the calcined product was mixed with 70 g of water, 2.5 g of desilamin, and 2.5 g of hydroxylpropyl cellulose, and then pulverized for 6 hours in an Attrition mill. After preparing a slurry by adding a binder, a releasing agent, and the like, the mixture was granulated at a draw temperature of 190 ° C., a discharge temperature of 110 ° C., and a spray rate of 9500 rpm as shown in FIG. 12.

과립은 일축 가압프레스를 사용 200kg/㎠의 압력으로 1차 성형한 후, 2차로 2,000kg/cm2의 압력으로 등가압성형(Isostactec pressing)하여 타겟 성형체(green body)를 제조한 후, 산소가압전기로에 넣고 산소압력을 0.5바(bar)로 하여 시간당 300℃로 승온하여 600℃에서 3시간 유지하여 유기물을 완전히 제거한 후 고상반응 소성온도보다 150~200℃ 낮은 1350℃에서 4시간 소성하여 상대밀도가 99.7%인 아연과 주석이 고용된 인듐저감 타겟을 제조하였다.
The granules were first molded using a uniaxial pressure press at a pressure of 200 kg / cm 2, and then subjected to isostactec pressing at a pressure of 2,000 kg / cm 2 to produce a target green body, followed by oxygen pressure. It is put in an electric furnace and the oxygen pressure is 0.5 bar and the temperature is raised to 300 ° C per hour and maintained at 600 ° C for 3 hours to completely remove the organic matter, and then fired for 4 hours at 1350 ° C, which is 150 ~ 200 ° C lower than the solid-state reaction firing temperature. An indium reduction target containing 99.7% of zinc and tin was prepared.

(실시 예 2)(Example 2)

위에서 제조한 인듐저감 In1.8~1.2Zn0.1~0.4Sn0.1~0.4O3조성을 타겟으로 사용하여 삼성코닝 1737 유리를 2.0× 2.0cm 크기로 절단 한 후, 탈지와 표면의 불순물 제거를 위해 1차적으로 계면활성제를 사용하여 표면의 불순물을 1차 제거하고, 초음파 세척기로 아세톤, 이소프로필알코올, 증류수에 시편을 담가 각각 5분씩 세척한 후, 고주파 마그네트론 스파터링 박막제조장치를 이용하여 기판거리 5cm, 증착파워 50W ~ 150W로, 산소의 부피분율을 0.0 ~ 4.0부피% (O2 /Ar+O2 )(각 기체의 순도는 99.99부피%)를 유량 10sccm으로 흘려주면서, 증착 온도는 상온에서 100 ~ 500℃, 진공도 10-6~10-7 토르(Torr)로 하여 인듐저감 투명전도 박막을 성막(제조)하였다.After cutting the Samsung Corning 1737 glass into 2.0 × 2.0cm size using the Indium Reduction In 1.8 ~ 1.2 Zn 0.1 ~ 0.4 Sn 0.1 ~ 0.4 O 3 composition prepared above as a target, it is primarily used for degreasing and removing impurities on the surface. After removing the impurities on the surface by using a surfactant and immersing the specimen in acetone, isopropyl alcohol, and distilled water for 5 minutes with an ultrasonic cleaner, and then using a high-frequency magnetron spattering thin film manufacturing apparatus, substrate distance 5 cm, deposition With 50W to 150W of power, the volume fraction of oxygen flows from 0.0 to 4.0% by volume (O 2 / Ar + O 2 ) (the purity of each gas is 99.99% by volume) at a flow rate of 10 sccm, and the deposition temperature is 100 to 500 at room temperature. The indium reduced transparent conductive thin film was formed into a film at the temperature of 10 ° C. and the vacuum degree of 10 −6 to 10 −7 Torr.

제조된 투명전도 박막의 균일도는 0.3nm 이하(AFM 결과) 이었고, 두께 200nm에서 비저항은 1.35×10-3~5.06×10-4Ωcm, 캐리어 밀도는1.9~6.5×1020 cm-3,캐리어 이동도는 7.5~44.6cm2/Vs, 광투과도는 78~85% 이상이었다.Uniformity of the prepared transparent conductive film was 0.3nm or less (AFM results), the specific resistance is 1.35 × 10 -3 ~ 5.06 × 10 -4 Ωcm, the carrier density is 1.9 ~ 6.5 × 10 20 cm -3 , carrier movement at 200nm thickness The degree was 7.5-44.6 cm 2 / Vs and the light transmittance was 78-85% or more.

이 경우 증착파워는 50W 이상이 필요하였고 60W에서 가장 낮은 비저항이 나타났으며, 증착파워가 증가하면 그에 따라 스파터링 수율이 증가하였고, 비저항은 작아졌다. 기판온도는 온도가 400℃ 까지 증가할수록 비저항이 감소하고 캐리어농도와 이동도는 증가하는 경향을 나타내었다. 하지만 기판온도가 500℃에 도달하면 비저항은 증가하고 캐리어농도와 이동도는 감소하였다. 이는 기판온도가 증가하면 박막의 결정성이 증가되어 (222)의 주 피크(peck)가 감소하고 결정성장이 [111] 방향인 (400) 피크가 성장되었기 때문이다. 따라서 가장 우수한 특성을 나타내는 기판온도가 400℃ 였을 때 였으며, 이때 비저항은 6.34×10-4Ωcm, 캐리어 밀도는 4.6×1020 cm-3,캐리어 이동도는 15cm2/Vs로 현 상용아이티오와 유사한 값을 나타내었다.
In this case, the deposition power required 50W or more and the lowest resistivity was shown at 60W. As the deposition power increased, the spattering yield increased, and the resistivity decreased. As the substrate temperature increased up to 400 ° C, the resistivity decreased and the carrier concentration and mobility increased. However, when the substrate temperature reached 500 ℃, the specific resistance increased and the carrier concentration and mobility decreased. This is because, as the substrate temperature increases, the crystallinity of the thin film increases, and the main peak of 222 is decreased, and the peak of 400, in which the crystal growth is in the [111] direction, is grown. Therefore, when the substrate temperature exhibited the best characteristics at 400 ℃, the specific resistance was 6.34 × 10 -4 Ωcm, the carrier density was 4.6 × 10 20 cm -3 , and the carrier mobility was 15cm 2 / Vs. Similar values were shown.

(실시 예 3)(Example 3)

(실시 예 2)에서 제작된 인듐저감 In1 .8~1.2Zn0 .1~0.4Sn0 .1~0.4O3조성을 갖는 투명전도막을 유기전계발광소자나 유기태양전지디바이스에 응용하기 위해 우선 유리기판 위에 피알(photo resist) 인쇄(patterning)를 행하였다. 이 때 인쇄조건은 두께를 조절하기 위해 1000rpm~5000rpm 범위에서 피알을 행하였고, 피알에 노광시간은 50~90초로, 현상시간은 50~70초로, 에칭시간은 30~180초까지 실시하였다. 최적조건은 피알을 321nm로 코팅하고 노광시간을 60초, 현상을 70초, 에칭을 1분 실시하였을 때였다.(Example 2) produced by reducing the indium In 1 .8 ~ 1.2 Zn 0 .1 ~ 0.4 Sn 0 .1 ~ 0.4 O 3 composition having a transparent conductive film for application to an organic light emitting element and the organic solar cell device first glass Photo resist printing was carried out on the substrate. At this time, the printing conditions were carried out in the range of 1000rpm ~ 5000rpm to control the thickness, the exposure time to the fiel 50 ~ 90 seconds, the development time 50 ~ 70 seconds, the etching time was carried out up to 30 ~ 180 seconds. The optimum conditions were when the PAL was coated at 321 nm, the exposure time was 60 seconds, the development was 70 seconds, and the etching was performed for 1 minute.

이렇게 피알이 코팅된 투명전도막 위로 <도 5>와 같이 정공수송층(HTL)으로 폴리에틸렌디오시디오필렌(3,4-ethylene dioxythiophene, PEDOT) : 폴리스틸렌설포네이트(styrene sulfonate, PSS)를 글로브 박스 내에서 박막화하였다. 폴리에틸렌디오시디오필렌 : 폴리스틸렌설포네이트는 0.45㎛ 피브이디에프(PVDF) 실린지 필터를 이용하여 여과한 후, 쉐이커(shaker)로 교반하여 폴리에틸렌디오시디오필렌과 폴리스틸렌설포네이트가 상분리 또는 뭉치는 것을 방지하였다. 그 위에 폴리머 발광층을 올리고, 그 위에 이아이엘(EIL)과 캐소드(cathode)를 박막화하는 구조로 인듐저감 박막을 적용한 유기전계발광소자를 제작하였다. 고분자발광층은 클로로벤젠(chlorobenzene)에 0.5wt%의 농도로 용해시켜 24시간 교반한 후, 5㎛ 피티에프이(PTFE) 실린지 필터를 이용하여 여과한 후, 정공수송층이 코팅된 기판 위에 1000rpm으로 10초, 3000rpm으로 20초 동안 스핀코팅(spin coating)한 후, 80~90℃ 열판(hot plate)에서 1시간동안 열처리하여 잔류용매를 제거하였으며, 발광면을 제외한 전극부분의 발광고분자 및 정공수송층을 지워 80~85nm의 박막을 제조하였다. 4000rpm으로 30초 스핀코팅하여 약 40nm의 박막을 형성한 후, 열판에서 110℃로 20분동안 열처리하여 잔류 용매를 제거하였다.As shown in FIG. 5, the PTL-coated transparent conductive film was used as a hole transport layer (HTL). Polyethylenedioxythiophene (PEDOT): Polystyrene sulfonate (PSS) in a glove box. Thinned at. Polyethylenediothiopylene: Polystyrenesulfonate is filtered using a 0.45㎛ PVDF syringe filter, and then stirred with a shaker to separate the polyethylenediosidylene and polystyrenesulfonate from phase separation or agglomeration. To prevent it. A polymer light emitting layer was placed thereon, and an organic light emitting display device in which an indium reduced thin film was applied was fabricated in such a manner that a thin film of EIL and a cathode was formed thereon. The polymer light emitting layer was dissolved in chlorobenzene at a concentration of 0.5wt%, stirred for 24 hours, filtered using a 5 μm PTFE filter, and then, at 1000 rpm on the substrate coated with a hole transport layer. After spin coating at 3000rpm for 20 seconds, the residual solvent was removed by heat treatment at 80 ~ 90 ℃ hot plate for 1 hour, and the light emitting polymer and hole transport layer except for the light emitting surface were removed. Cleared to produce a thin film of 80 ~ 85nm. After spin coating at 4000 rpm for 30 seconds to form a thin film of about 40 nm, the remaining solvent was removed by heat treatment at 110 ° C. for 20 minutes on a hot plate.

전자포집층과 전극물질의 증착은 고진공 챔버(5×10-7torr 이하)를 갖는 열증착기(thermal evaporator)에서 수행하였는데, 바륨플로라이드(BaF2)를 0.1Å/s의 속도로 2nm, 바륨(Ba)을 0.2Å/s의 속도로 2nm, 알루미늄(Al)을 5Å/s의 속도로 200nm 증착하여 전극을 형성하여 유기전계발광소자로 하였다.The deposition of the electron collecting layer and the electrode material was carried out in a thermal evaporator having a high vacuum chamber (5 × 10 −7 torr or less). The barium fluoride (BaF 2 ) was 2 nm and barium at a rate of 0.1 μs / s. An electrode was formed by depositing (Ba) 2 nm at a rate of 0.2 mA / s and 200 nm of aluminum (Al) at a rate of 5 mA / s to form an organic electroluminescent device.

제작된 소자는 소스미터(source meter - 키슬러2400)와 스펙트로 스캔(spectro scan - PR670)을 이용 최대휘도(cd/㎡)와 최대효율(cd/A)을 측정하였다.The fabricated device was measured for maximum luminance (cd / ㎡) and maximum efficiency (cd / A) using a source meter (Kiesler 2400) and a spectro scan (PR670).

그 결과 상용품인 아이티오의 최대휘도는 24,228cd/㎡ 이었으나, 주석과 아연이 고용된 인듐저감 타겟의 경우 3.0%의 산소분압의 분위기에서 스파터링된 박막의 경우 최대휘도가 35,370cd/㎡로, 아이티오보다 높게 나타났다.
As a result, the maximum brightness of the commercial product, Ithio, was 24,228 cd / m2, but the maximum brightness was 35,370 cd / m2 for the thin film sputtered in an oxygen partial pressure of 3.0% for the indium reduction target containing tin and zinc. , Higher than Haitian.

(실시 예 4)(Example 4)

주석과 아연이 고용된 인듐저감 조성 In1 .2Zn0 .4Sn0 .4O3 투명전도박막을 유기태양전지디바이스로 사용코자 앞의 (실시 예 2)와 유사하게 제작하였다. 우선 유리기판 위에 인듐저감 투명전도층, 피알층, 정공수송층은 (실시 예 3)과 동일하였으며, 광활성층은 P3HT(poly[3-hexylthiophene-2,5-diyl])와 PC61BM([6,6]-phenyl-C61 butyric acid methyl ester)을 각각의 정해진 비율에 따라 혼합하고 일정 비율의 올소디클로로벤젠(ortho-dichlorobenzene)에 용해시켜 24시간 교반한 후, 0.45㎛ 피브이디에프(PVDF) 실린지 필터로 여과하여 상온에서 박막을 형성하였다. 박막 형성 후 160℃의 열판에서 10분 동안 열처리하여 잔류 용매 제거 및 결정성을 증가시켰다. 전자포집층과 전극물질의 증착은 (실시 예 3)의 공정과 같으나 유기전계발광소자에서 사용한 물질의 경우와는 달리 일부 추가되는 물질로 BaF2, LiF(2nm), Ca, Ba(2nm), Al(100nm)를 증착하여 디바이스를 제작하였다.Wishes to use the tin and zinc are employed indium reduction composition In 1 .2 Zn 0 .4 Sn 0 .4 O 3 transparent conductive thin film of an organic solar cell device was produced similarly to the preceding Example 2. First, the indium reduced transparent conductive layer, PAL layer, and hole transport layer on the glass substrate were the same as in Example 3, and the photoactive layer was composed of P3HT (poly [3-hexylthiophene-2,5-diyl]) and PC 61 BM ([6]. , 6] -phenyl-C 61 butyric acid methyl ester was mixed according to the respective ratios, dissolved in a proportion of ortho-dichlorobenzene, stirred for 24 hours, and then 0.45 µm (PVDF). ) Filtered with a syringe filter to form a thin film at room temperature. After formation of the thin film, heat treatment was performed for 10 minutes on a hot plate at 160 ° C. to increase residual solvent removal and crystallinity. The deposition of the electron collecting layer and the electrode material is the same as the process of (Example 3), but unlike the material used in the organic light emitting device, some additional materials are BaF 2 , LiF (2 nm), Ca, Ba (2 nm), A device was fabricated by depositing Al (100 nm).

제작된 디바이스의 특성평가는 전류-전압밀도는 소스미터(키슬러2400)과 태양광 모의 실험장치(Oriel 150W solar simulator)를 사용하여 표준조건(AM 1.5(Air Mass 1.5 Global), 100mW/cm2, 25℃)에서 측정한 결과 에너지 변환효율은 0.015~0.153%로 아이티오를 적용한 소자의 에너지변환효율인 3.6%보다 낮고, 또한 소자의 Jsc 값도 낮게 나타났다. 이는 In1 .2Zn0 .4Sn0 .4O3 조성 타겟의 낮은 전기전도도 때문이므로 유기태양전지박막으로 사용되기 위한 조성은 인듐 량이 1.4몰이상 주석과 아연 량이 0.3몰 이하인 경우에 사용가능 할 것으로 기대되고 있다.
The characteristics of the fabricated device were measured using a source meter (Kiesler 2400) and a solar simulator (Oriel 150W solar simulator) under standard conditions (AM 1.5 (Air Mass 1.5 Global), 100mW / cm 2). , 25 ℃), the energy conversion efficiency is 0.015 ~ 0.153%, which is lower than 3.6%, which is the energy conversion efficiency of the ITIO device. This can be used when the In 1 .2 Zn 0 .4 Sn 0 .4 O 3 because it is due to low electrical conductivity of the composition of the target amount of indium composition is for use in organic thin film solar cells or less than the amount of 0.3 1.4 mol tin and zinc mol It is expected to be.

Claims (6)

삭제delete 삭제delete 삭제delete 삭제delete 반응용기에서 부탄올과 금속 아세테이트를 혼합 및 합성하고, 상기 합성물을 진공 회전증발기를 이용하여 하여 건조함으로써, 아연과 주석이 고용된 단일 결정상 빅스바이트를 갖는 인듐을 저감한 인듐 산화물을 생성하는 공정과,
상기 인듐을 저감한 인듐 산화물에 분산제로 도데실라민, 또는 암모늄폴리메타아크릴레이트, 도데실라민과 하이드록실프로필 셀룰로오즈 혼합물, 도데실라민과 폴리에틸렌글리콜 혼합물 중 어느 하나를 첨가하고, 결합제 및 이형제를 투입하여 슬러리를 제조한 후, 분무 건조기를 이용하여 과립을 제조하는 공정과,
상기 과립을 1차 일축성형, 2차 등가압 성형을 하여 타겟 성형체를 제조한 후, 산소가압전기로에서 타겟 성형체의 소결온도보다 150~200℃ 낮은 1350℃에서 소성한 후, 아르곤 가스분위기 하에서 열처리하여 상대밀도가 99.7%인 고밀도 타겟을 제조하는 공정과,
상기 타겟을 고주파 마그네트론 스파터링 박막제조장치를 이용하여 기판거리 5cm, 증착파워 50W ~ 150W로, 산소의 부피분율을 0.0 ~ 4.0부피% (O2/Ar+O2 )를 유량 10sccm으로 흘려주면서, 증착 온도는 상온에서 100 ~ 500℃, 진공도 10-6~10-7 토르(Torr)로 하여 인듐저감 투명전도 박막을 제조하는 공정과,
상기 인듐저감 투명전도 박막에 피알(photo resist)을 인쇄하고, 피알이 코팅된 투명전도막 위에 정공수송층(HTL)으로 폴리에틸렌디오시디오필렌(3,4-ethylene dioxythiophene, PEDOT) : 폴리스틸렌설포네이트(styrene sulfonate, PSS)를 글로브 박스 내에서 박막화한 후, 그 위에 폴리머 발광층을 올리고, 그 위에 이아이엘(EIL)과 캐소드(cathode)를 박막화하는 구조로 유기전계발광소자를 제조하는 공정
으로 구성되는 것을 특징으로 하는 인듐저감 박막을 적용한 유기전계발광소자 제조방법.
Mixing and synthesizing butanol and metal acetate in a reaction vessel, and drying the composite using a vacuum rotary evaporator to produce indium oxide having reduced indium having a single crystalline bixbite in which zinc and tin are dissolved;
Dodecylamine or ammonium polymethacrylate, dodecylamine and hydroxylpropyl cellulose mixture, dodecylamine and polyethylene glycol mixture are added to the indium oxide with reduced indium, and a binder and a release agent are added. To prepare a slurry, and then preparing granules using a spray dryer,
The granules were first uniaxially formed and secondly subjected to isostatic pressing to produce a target molded body, and then calcined at 1350 ° C., which is 150 to 200 ° C. lower than the sintering temperature of the target molded body in an oxygen pressurizing furnace, and then heat-treated under an argon gas atmosphere. A process for producing a high density target having a relative density of 99.7%,
The target is a high-frequency magnetron spattering thin film manufacturing apparatus using a substrate distance of 5 cm, deposition power of 50 W to 150 W, while flowing a volume fraction of oxygen at 0.0 to 4.0 volume% (O 2 / Ar + O 2 ) at a flow rate of 10 sccm, The deposition temperature is 100 ~ 500 ℃ at room temperature, the vacuum degree 10 -6 ~ 10 -7 Torr (Torr) to prepare a process for producing an indium reduced transparent conductive thin film,
A photoresist is printed on the indium-reduced transparent conductive thin film, and polyethylene dioxythiophene (PEDOT) is a polystyrene sulfonate (HTL) as a hole transport layer (HTL) on the PAL coated transparent conductive film. styrene sulfonate (PSS) in a glove box and a thin film, and then a polymer light emitting layer thereon, an organic EL device having a structure to thin EIL (cathode) and a thin film thereon
The organic light emitting device manufacturing method to which the indium reducing thin film is applied, characterized in that consisting of.
반응용기에서 부탄올과 금속 아세테이트를 혼합 및 합성하고, 상기 합성물을 진공 회전증발기를 이용하여 하여 건조함으로써, 아연과 주석이 고용된 단일 결정상 빅스바이트를 갖는 인듐을 저감한 인듐 산화물을 생성하는 공정과,
상기 인듐을 저감한 인듐 산화물에 분산제로 도데실라민, 또는 암모늄폴리메타아크릴레이트, 도데실라민과 하이드록실프로필 셀룰로오즈 혼합물, 도데실라민과 폴리에틸렌글리콜 혼합물 중 어느 하나를 첨가하고, 결합제 및 이형제를 투입하여 슬러리를 제조한 후, 분무 건조기를 이용하여 과립을 제조하는 공정과,
상기 과립을 1차 일축성형, 2차 등가압 성형을 하여 타겟 성형체를 제조한 후, 산소가압전기로에서 타겟 성형체의 소결온도보다 150~200℃ 낮은 1350℃에서 소성한 후, 아르곤 가스분위기 하에서 열처리하여 상대밀도가 99.7%인 고밀도 타겟을 제조하는 공정과,
상기 타겟을 고주파 마그네트론 스파터링 박막제조장치를 이용하여 기판거리 5cm, 증착파워 50W ~ 150W로, 산소의 부피분율을 0.0 ~ 4.0부피% (O2/Ar+O2 )를 유량 10sccm으로 흘려주면서, 증착 온도는 상온에서 100 ~ 500℃, 진공도 10-6~10-7 토르(Torr)로 하여 인듐저감 투명전도 박막을 제조하는 공정과,
상기 인듐저감 투명전도 박막에 피알(photo resist)을 인쇄하고, 피알이 코팅된 투명전도막 위에 정공수송층(HTL)으로 폴리에틸렌디오시디오필렌(3,4-ethylene dioxythiophene, PEDOT) : 폴리스틸렌설포네이트(styrene sulfonate, PSS)를 글로브 박스 내에서 박막화한 후, 그 위에 광활성층인 P3HT(poly[3-hexylthiophene-2,5-diyl ])와 PC61BM([6,6]-phenyl-C61 butyric acid methyl ester)을 각각의 정해진 비율에 따라 혼합하고 일정 비율의 올소디클로로벤젠(ortho-dichlorobenzene)에 용해시켜 24시간 교반한 후, 0.45㎛ 피브이디에프(PVDF) 실린지 필터로 여과하여 상온에서 박막을 형성시키고 160℃의 열판에서 10분 동안 열처리한 다음 그 위에 이아이엘(EIL)과 캐소드(cathode)를 박막화하는 구조로 유기태양전지디바이스를 제조하는 공정
으로 구성되는 것을 특징으로 하는 인듐저감 박막을 적용한 유기태양전지디바이스 제조방법.
Mixing and synthesizing butanol and metal acetate in a reaction vessel, and drying the composite using a vacuum rotary evaporator to produce indium oxide having reduced indium having a single crystalline bixbite in which zinc and tin are dissolved;
Dodecylamine or ammonium polymethacrylate, dodecylamine and hydroxylpropyl cellulose mixture, dodecylamine and polyethylene glycol mixture are added to the indium oxide with reduced indium, and a binder and a release agent are added. To prepare a slurry, and then preparing granules using a spray dryer,
The granules were first uniaxially formed and secondly subjected to isostatic pressing to produce a target molded body, and then calcined at 1350 ° C., which is 150 to 200 ° C. lower than the sintering temperature of the target molded body in an oxygen pressurizing furnace, and then heat-treated under an argon gas atmosphere. A process for producing a high density target having a relative density of 99.7%,
The target is a high-frequency magnetron spattering thin film manufacturing apparatus using a substrate distance of 5 cm, deposition power of 50 W to 150 W, while flowing a volume fraction of oxygen at 0.0 to 4.0 volume% (O 2 / Ar + O 2 ) at a flow rate of 10 sccm, The deposition temperature is 100 ~ 500 ℃ at room temperature, the vacuum degree 10 -6 ~ 10 -7 Torr (Torr) to prepare a process for producing an indium reduced transparent conductive thin film,
A photoresist is printed on the indium-reduced transparent conductive thin film, and polyethylene dioxythiophene (PEDOT) is a polystyrene sulfonate (HTL) as a hole transport layer (HTL) on the PAL coated transparent conductive film. After styrene sulfonate (PSS) was thinned in a glove box, the photoactive layer P3HT (poly [3-hexylthiophene-2,5-diyl]) and PC 61 BM ([6,6] -phenyl-C 61 butyric were formed on the film. acid methyl ester) was mixed according to the respective ratios, dissolved in a certain ratio of ortho-dichlorobenzene, stirred for 24 hours, and then filtered through a 0.45 μm PVDF syringe filter at room temperature. Forming a thin film and heat-treating for 10 minutes on a hot plate at 160 ° C. and then manufacturing an organic solar cell device with a structure of thinning EIL and cathode thereon.
Organic solar cell device manufacturing method applying the indium reducing thin film, characterized in that consisting of.
KR1020110126573A 2011-11-30 2011-11-30 Method for manufacturing transparent conducting oxide thin film by using the reducted indium indium-zinc-tin oxide target and thereof, method for fabricating the applied device KR101378780B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110126573A KR101378780B1 (en) 2011-11-30 2011-11-30 Method for manufacturing transparent conducting oxide thin film by using the reducted indium indium-zinc-tin oxide target and thereof, method for fabricating the applied device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110126573A KR101378780B1 (en) 2011-11-30 2011-11-30 Method for manufacturing transparent conducting oxide thin film by using the reducted indium indium-zinc-tin oxide target and thereof, method for fabricating the applied device

Publications (2)

Publication Number Publication Date
KR20130060488A KR20130060488A (en) 2013-06-10
KR101378780B1 true KR101378780B1 (en) 2014-03-31

Family

ID=48858908

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110126573A KR101378780B1 (en) 2011-11-30 2011-11-30 Method for manufacturing transparent conducting oxide thin film by using the reducted indium indium-zinc-tin oxide target and thereof, method for fabricating the applied device

Country Status (1)

Country Link
KR (1) KR101378780B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160093962A (en) 2015-01-30 2016-08-09 영남대학교 산학협력단 Indium Zinc Tin Oxide and method for fabricating the same, Organic Photovolaic comoprising the Indium Zinc Tin Oxide and method for fabricating the Organic Photovolaic
KR20160093959A (en) 2015-01-30 2016-08-09 영남대학교 산학협력단 Method for fabricating the same, Organic Photovolaic comoprising the Indium Zinc Tin Oxide and method for fabricating the Organic Photovolaic
CN109417020A (en) * 2016-04-12 2019-03-01 璐米斯塔尔有限公司 The manufacturing method of nitride semiconductor base plate including semi-insulating nitride semiconductor layer and the nitride semiconductor base plate manufactured using this method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013851A1 (en) 1992-12-15 1994-06-23 Idemitsu Kosan Co., Ltd. Transparent conductive film, transparent conductive base material, and conductive material
KR100702164B1 (en) * 2005-10-20 2007-03-30 경상대학교산학협력단 Process for synthesizing lithium manganese oxide as anode material for secondary lithium ion cell by precipitation-evaporation method
KR100876947B1 (en) 2007-10-24 2009-01-07 연세대학교 산학협력단 Method of fabricating liquid for oxide thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013851A1 (en) 1992-12-15 1994-06-23 Idemitsu Kosan Co., Ltd. Transparent conductive film, transparent conductive base material, and conductive material
KR100306565B1 (en) * 1992-12-15 2001-11-30 도미나가 가즈토 Transparent conductive film and manufacturing method thereof, conductive transparent film with transparent conductive film, conductive transparent glass, and conductive material
KR100702164B1 (en) * 2005-10-20 2007-03-30 경상대학교산학협력단 Process for synthesizing lithium manganese oxide as anode material for secondary lithium ion cell by precipitation-evaporation method
KR100876947B1 (en) 2007-10-24 2009-01-07 연세대학교 산학협력단 Method of fabricating liquid for oxide thin film

Also Published As

Publication number Publication date
KR20130060488A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
Xue et al. Metallohalide perovskite–polymer composite film for hybrid planar heterojunction solar cells
Xia et al. Management of perovskite intermediates for highly efficient inverted planar heterojunction perovskite solar cells
Rong et al. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells
Guo et al. The growth of a CH 3 NH 3 PbI 3 thin film using simplified close space sublimation for efficient and large dimensional perovskite solar cells
Peng et al. Fully doctor-bladed planar heterojunction perovskite solar cells under ambient condition
Longo et al. Perovskite solar cells prepared by flash evaporation
Cao et al. Metal oxide alternatives for efficient electron transport in perovskite solar cells: Beyond TiO 2 and SnO 2
Zhang et al. Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process
Huang et al. Boosting the ultra-stable unencapsulated perovskite solar cells by using montmorillonite/CH 3 NH 3 PbI 3 nanocomposite as photoactive layer
Fan et al. Deposition temperature effect of RF magnetron sputtered molybdenum oxide films on the power conversion efficiency of bulk-heterojunction solar cells
Zhang et al. Efficient and stable polymer solar cells with annealing-free solution-processible NiO nanoparticles as anode buffer layers
Ye et al. Single-crystalline lead halide perovskite arrays for solar cells
Zhang et al. Graphene oxide as an additive to improve perovskite film crystallization and morphology for high-efficiency solar cells
Liang et al. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition
Chen et al. Facile preparation of organometallic perovskite films and high-efficiency solar cells using solid-state chemistry
Naz et al. Niobium doped zinc oxide nanorods as an electron transport layer for high-performance inverted polymer solar cells
Shahiduzzaman et al. Interface engineering of compact-TiOx in planar perovskite solar cells using low-temperature processable high-mobility fullerene derivative
Zhang et al. Enhanced perovskite morphology and crystallinity for high performance perovskite solar cells using a porous hole transport layer from polystyrene nanospheres
KR101378780B1 (en) Method for manufacturing transparent conducting oxide thin film by using the reducted indium indium-zinc-tin oxide target and thereof, method for fabricating the applied device
Jeon et al. Room temperature-processed inverted organic solar cells using high working-pressure-sputtered ZnO films
Ongul et al. Influences of annealing temperature and thickness on ZnS buffer layers for inverted hybrid solar cells
Ali et al. Elucidating the Roles of Hole Transport Layers in p‐i‐n Perovskite Solar Cells
Chaudhary et al. Impact of CH3NH3PbI3-PCBM bulk heterojunction active layer on the photovoltaic performance of perovskite solar cells
Qin et al. Cesium-lead-bromide perovskites with balanced stoichiometry enabled by sodium-bromide doping for all-vacuum deposited silicon-based light-emitting diodes
Miao et al. Effect of oxygen vacancies in the electron transfer layer SiZnSnO on the performance of perovskite solar cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
N231 Notification of change of applicant
FPAY Annual fee payment
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170321

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180313

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190314

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200302

Year of fee payment: 7