KR101373104B1 - 스트레스 유도성 형질전환 식물체 - Google Patents

스트레스 유도성 형질전환 식물체 Download PDF

Info

Publication number
KR101373104B1
KR101373104B1 KR1020110113814A KR20110113814A KR101373104B1 KR 101373104 B1 KR101373104 B1 KR 101373104B1 KR 1020110113814 A KR1020110113814 A KR 1020110113814A KR 20110113814 A KR20110113814 A KR 20110113814A KR 101373104 B1 KR101373104 B1 KR 101373104B1
Authority
KR
South Korea
Prior art keywords
plant
promoter
gene
rice
ospox1
Prior art date
Application number
KR1020110113814A
Other languages
English (en)
Other versions
KR20130048905A (ko
Inventor
김성룡
Original Assignee
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교산학협력단 filed Critical 서강대학교산학협력단
Priority to KR1020110113814A priority Critical patent/KR101373104B1/ko
Publication of KR20130048905A publication Critical patent/KR20130048905A/ko
Application granted granted Critical
Publication of KR101373104B1 publication Critical patent/KR101373104B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/823Reproductive tissue-specific promoters
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/008Methods for regeneration to complete plants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Botany (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)
  • Environmental Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 벼의 OsPOX1의 프로모터를 이용한 저온 유도성 형질전환 식물체에 관한 것으로, 서열목록 제 1 서열에 기재된 뉴클레오타이드 서열로 이루어진 식물의 꽃에 특이적으로 발현하는 스트레스 유도성 프로모터를 제공한다. 본 발명에 따르면, 식물체의 꽃에 외래 유전자를 발현할 수 있는 프로모터를 제공함으로써, 식물체의 생식학적 특성을 조절하는데 유용하게 이용될 수 있다.

Description

스트레스 유도성 형질전환 식물체{Stress Inducible Transgenic plants}
본 발명은 벼의 OsPOX1 프로모터를 이용한 저온 유도성 형질전환 식물체에 관한 것이다.
온도는 수많은 작물 종의 생산을 제한하는 주요한 요소 중 하나이다(Toenniessen 1991). 생식 단계(reproductive stage)동안, 벼에 4일 동안 12℃의 저온 처리를 할 경우 손상을 유도한다(Satake 및 Hayase 1970). 화분 발생동안의 저온 스트레스는 화분 모세포가 영양분을 받을 수 없어 사멸하거나 수-불임(male-sterility)와 같은 포자낭막(tapetum)의 비정상화를 유도한다(Hoshikawa 1989). 식물은 이동성이 없기 때문에 스트레스에 대하여 생존하기 위해서는 그들의 대사를 변화시킬 필요가 있다. 이러한 저온 반응성 기전은 시그널 트랜스덕션과 관련된 키나아제의 발현의 변화, 삼투압인자(osmolyte)의 축적 또는 막지질 조성의 변화 등과 관련이 있다(Thomashow, 1999). cor(cold-regulated) 유전자, lea(late-embryogenesis abundant) 유전자, 조절 유전자, 항동결 단백질 유전자 및 신호 전달 단백질을 코딩하는 유전자(Thomashow, 1998, 1999; Shinozaki & Yamaguchi-Shinozaki, 2000; Zhu, 2001)와 같은 많은 저온-반응성 유전자들이 다양한 식물종에서 발견이 되었다.
생식 단계에서 저온 민감성이 중요하므로, 벼 꽃에 존재하는 저온 반응성 유전자/단백질을 규명하는 몇몇 연구가 보고되었다. mRNA 분별 디스플레이(differential display)를 이용하여 벼 꽃의 8 종류 저온 반응성 유전자를 규명하였다(Kim et al., 2007). 애기장대(arabidopsis) RCI2와 상동하는 OsLti6b는 저온 스트레스에 의해 꽃밥(anther) 벽에 많이 축적하였다(Kim et al., 2007). 저온 스트레스를 받은 미성숙 벼 꽃의 저온 반응성 유전자 및 단백질을 규명하기 위하여 각각 cDNA 마이크로어레이(Yamaguchi et al., 2004) 및 프로테오믹스(Imin et al., 2006)를 활용하였다. 이러한 클론의 추가적인 분석이 필요한 실정이다.
유전자의 비특이적 발현은 왜소능과 같은 의도하지 않은 표현형을 유도할 수 있기 때문에 유용한 형질전환체를 개발하기 위해서는 특정 유전자의 조직 특이- 또는 발생 단계 특이적 발현의 요구가 증가하고 있다. 벼 및 애기장대에서 콜리플라워(cauliflower) 모자익 바이러스 35S 유전자의 스트롱 프로모터 및 옥수수(maize) 유비퀴틴 유전자에 의해 각각 조절되는 C/DREB(C-repeat/Dehydration Responsive Element Binding) 유전자는 이소적으로(ectopically) 발현한다. 이러한 형질전환체는 저온 반응성 유전자의 상향 조절을 보여주지만, 종종 심한 왜소증을 나타낸다(Kasuga et al., 1999; Lee et al., 2004). 그러므로, 유전자의 조절 발현을 위해 미세조절 할 수 있는 프로모터에 대한 발굴 및 연구해야 할 것이다(Kasuga et al., 1999; Yi et al., 2010; Saad et al., 2010).
퍼옥시다제는 H2O2 및 다양한 환원제 간의 산화환원반응을 촉매하는 헴-함유 당단백질이다(H2O2 + AH2 → 2H2O + A). 효소는 1차 구조의 차이를 기반으로 클래스Ⅰ, Ⅱ 및 Ⅲ의 3 종류로 분류할 수 있다(Welinder, 1992). 클래스Ⅰ 퍼옥시다제는 세포내 효소이고, 클래스Ⅱ 퍼옥시다제는 리그닌(lignin) 퍼옥시다제 및 Mn2 +-의존 퍼옥시다제와 같은 세포외 효소이다. 클래스Ⅲ 효소는 식물-특이 및 외부로 분비되거나 액포로 수송되는 효소이다(Hiraga et al., 2001). 클래서Ⅲ 퍼옥시다제는 목질화(lignification), 코르크화(suberization), 세포벽 단백질의 교차-결합(cross-linking), 옥신 이화작용, 병원체에 대한 방어, 염 내성 및 노쇠(senescence)와 관련한 역할을 하는 것으로 생각된다. 애기장대 및 벼의 식물 퍼옥시다제를 암호화하는 유전자는 각각 73 및 138의 다유전자(multigene) 패밀리로 구성된다(Valerio et al., 2004; Passardi et al., 2004). 인 비트로(in vitro)에서 많은 동위효소(isoenzyme)의 존재 및 이의 낮은 기질 특이성으로 인해, 각 퍼옥시다제의 정확한 기능을 정의하기는 쉽지 않다(Hiraga et al., 2001).
42종의 비의존적 벼 POX 발현 서열 태그(Expression Sequence Tags; ESTs) 중, 22종의 유전자를 확인하고 특성화하였다(Sasaki et al., 2004). 최근, Sato et al.(2001)은 아스코르브산염 퍼옥시다제 유전자인 OsAPXα를 과발현하는 저온 내성이 개선된 벼 형질전환체를 보고하였다.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 발명자들은 유전자를 식물체의 꽃에서 특이적으로 발현하도록 조절하는 기능을 갖는 프로모터를 발굴하고자 예의 노력하였다. 그 결과, 벼( O ryza s ativa)의 퍼옥시다제(Peroxidase) 유전자인 OsPOX1을 클로닝하였고, 이 유전자의 프로모터와 GUS 유전자의 융합유전자로 형질전환 하여 벼 식물체의 생식기관에서 GUS 활성을 확인함으로써, 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 식물의 꽃에 특이적으로 발현하는 스트레스 유도성 프로모터를 제공하는 데 있다.
본 발명의 다른 목적은 본 발명의 프로모터와 작동가능하게 연결된 외래유전자를 포함하는 벡터를 제공하는 데 있다.
본 발명의 또 다른 목적은 형질전환 식물체를 제공하는 데 있다.
본 발명의 다른 목적은 식물 형질전환체의 제조방법을 제공하는 데 있다.
본 발명의 또 다른 목적은 비생물성 스트레스에 대한 내성이 증진된 형질전환 식물체를 제공하는 데 있다.
삭제
삭제
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
본 발명의 일 양태에 따르면, 유전자를 스트레스 유도성식물의 꽃에서 특이적으로 발현하는 특성을 갖는 서열번호 1에 기재된 뉴클레오타이드 서열로 이루어진 프로모터를 제공한다.
본 발명자들은 유전자를 식물체의 꽃에서 특이적으로 발현하도록 조절하는 기능을 갖는 프로모터를 찾기 위해 노력한 결과, 벼( O ryza s ativa)의 퍼옥시다제(Peroxidase) 유전자인 OsPOX1을 클로닝하였고, 이 유전자의 프로모터와 GUS 유전자의 융합유전자로 형질전환 하여 벼 식물체의 생식기관에서 GUS 활성을 확인하였다.
본 명세서에서의 용어“특이적으로”라는 용어는 프로모터의 발현 활성이 동일한 식물체내의 적어도 하나 이상의 다른 조직보다 특정한 조직 내에서 더 높다는 것을 의미한다. 프로모터의 발현 활성의 수준은 일반적으로 사용되는 방법을 이용하여 미리 측정된 조직 내에서의 프로모터의 발현수준을 다른 조직내에서의 것과 비교함으로써 평가된다. 일반적으로 프로모터의 발현수준은 프로모터의 조절 하에서 발현된 유전자 생성물, 예를 들어 단백질 및 RNA 등의 생성량에 의해 측정된다.
본 명세서에서의 용어“프로모터”는 코딩 서열 또는 기능적 RNA의 발현을 조절할 수 있는 DNA 서열을 의미한다. 프로모터 부위는 당업자라면 용이하게 인식할 수 있다. 즉, ATG 모티프를 포함하는 추정의 개시코돈이 확인되어 있고, 이 개시코돈으로부터 업스트림이 추정 프로모터 부위이다. 프로모터는 인접 및 원거리의 업스트림 엘리먼트(element)들로 구성되어 있다. 인접 엘리먼트로서는 통상적으로 RNA 중합효소 II가 적합한 전사 개시 위치에서 RNA의 합성을 개시할 수 있게 하는 TATA 박스를 포함한다. 원 거리 엘리먼트은 인헨서(enhancer)라고도 불리우는 조절 서열을 포함하는데, 이는 TATA 박스의 업스트림 부위에 조직 특이적 또는 시간 특이적 발현에 관여하는 추가 조절 엘리먼트이다. 인헨서는 프로모터의 활성을 촉진할 수 있는 DNA 서열이고, 프로모터의 고유의 엘리먼트이거나, 프로모터의 조직-특이성이나 발현 수준을 향상시키기 위해서 삽입되는 이종기원(heterologous)의 엘리먼트일 수 있다. 프로모터는 본래의 유전자로부터 그 전체가 유래한 것일 수 있고, 또는 자연계에서 발견된 상이한 프로모터들로부터 유래한 상이한 엘리먼트들로 구성될 수도 있고, 심지어 합성 DNA를 포함할 수도 있다. 당업자라면 각각 상이한 프로모터는 각각 상이한 조직 또는 세포 타입에서, 또는 발달단계의 상이한 단계에서, 또는 상이한 환경조건에 대응하여서 유전자의 발현을 지시할 수 있다는 것을 이해할 것이다. 유전자를 대부분의 세포타입에서 대부분의 시간동안 발현시키는 프로모터를 "구성성(constitutive) 프로모터"라고 한다. 식물체 세포내에서 유용한 다양한 타입의 새로운 프로모터들이 계속적으로 발견되고 있다; 다수의 프로모터 예들이 Okamuro and Goldberg에 의한 편집물에 개시되어 있다(1989, Biochemistry of Plants 15:1-82). 대부분의 경우에서 조절 서열의 정확한 경계부분이 완벽하게 정해지지 않기 때문에 일정한 변이의 DNA 단편들이 동일한 프로모터 활성을 갖는다고 인식되어 있다.
본 발명의 다른 양태에 따르면, 상기 서열목록 제 1 서열에 기재된 뉴클레오타이드 서열로 이루어진 프로모터 및 상기 프로모터와 작동가능하게 연결된(operatively linked) 외래유전자를 포함하는 벡터를 제공한다.
본 명세서에서의 용어“작동가능하게 연결된”은 핵산 발현 조절 서열 (예: 프로모터, 시그널 서열, 또는 전사조절인자 결합위치의 배열)과 다른 핵산 서열사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절 서열은 상기 다른 핵산 서열의 전사 및/또는 트랜스레이션을 조절하게 된다.
본 명세서에서의 용어“원하는 외래 유전자”는 특정의 유전자로 한정되지 않고, 원하는 적용 또는 달성하고자하는 표현형에 따라 선택할 수 있다. 본 발명에서는 바람직하게는 꽃의 특성, 예를 들어 식물체의 생식학적 특성, 꽃의 색깔 또는 조직을 개선하는 데 유용한 유전자를 선택할 수 있다.
본 발명에서의 벡터는 당업계에 공지된 다양한 방법을 통해 구축될 수 있으며, 이에 대한 구체적인 방법은 Sambrook et al., Molecular Cloning, A Laboratory Manual , Cold Spring Harbor Laboratory Press (2001)에 개시되어 있으며, 이 문헌은 본 명세서에 참조로서 삽입된다.
본 발명의 벡터는 전형적으로 클로닝 또는 발현을 위한 벡터로서 구축될 수 있다. 또한, 본 발명의 벡터는 원핵 세포 또는 진핵 세포를 숙주로 하여 구축될 수 있다.
예를 들어, 본 발명의 벡터가 발현 벡터이고, 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터 (예컨대, pLλ프로모터, trp 프로모터, lac 프로모터, T7 프로모터, tac 프로모터 등), 해독의 개시를 위한 라이보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 숙주 세포로서 E. coli가 이용되는 경우, E. coli 트립토판 생합성 경로의 프로모터 및 오퍼레이터 부위 (Yanofsky, C., J. Bacteriol., 158:1018-1024(1984)) 그리고 파아지 λ의 좌향 프로모터 (pLλ프로모터, Herskowitz, I. and Hagen, D., Ann. Rev. Genet., 14:399-445(1980))가 조절 부위로서 이용될 수 있다.
한편, 본 발명에 이용될 수 있는 벡터는 당업계에서 종종 사용되는 플라스미드 (예: pSC101, ColE1, pBR322, pUC8/9, pHC79, pGEX 시리즈, pET 시리즈 및 pUC19 등), 파지 (예: λgt4·λB, λ-Charon, λΔz1 및 M13 등) 또는 바이러스 (예: SV40 등)를 조작하여 제작될 수 있다.
한편, 본 발명의 벡터가 발현 벡터이고, 진핵 세포를 숙주로 하는 경우에는, 포유동물 세포의 지놈으로부터 유래된 프로모터 (예: 메탈로티오닌 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터 (예: 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, 사이토메갈로바이러스 프로모터 및 HSV의 tk 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 일반적으로 갖는다.
본 발명의 벡터는 선택표지로서, 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함할 수 있으며, 예를 들어 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자가 있다.
본 발명의 바람직한 구현예에 따르면, 본 발명에 적합한 프로모터는, 식물체의 유전자 도입을 위해 당업계에서 통상적으로 이용되는 어떠한 것도 이용될 수 있으며, 예를 들어, 옥수수의 유비퀴틴 프로모터, 콜리플라우어 모자이크 바이러스 (CaMV) 35S 프로모터, 노팔린 씬타아제 (nos) 프로모터, 피그워트 모자이크 바이러스 35S 프로모터, 수가크레인 바실리 폼 바이러스 프로모터, 콤멜리나 엘로우 모틀 바이러러스 프로모터, 리불로오스-1,5-비스-포스페이트 카르복실라아제 스몰 서브유티트 (ssRUBISCO)의 광유도성 프로모터, 벼 사이토졸 트리오스포스페이트 이소머라아제 (TPI) 프로모터, 아라비돕시스의 아데닌 포스포리보실트랜스퍼라아제 (APRT) 프로모터 및 옥토파인 신타아제 프로모터를 포함한다.
본 발명의 바람직한 구현예에 따르면, 본 발명에 적합한 폴리아데닐화를 야기시키는 3'-비-해독화 부위는 아그로박테리움 튜머페이션스의 노팔린 신타아제 유전자로부터 유래된 것 (nos 3' end) (Bevan et al., Nucleic Acids Research, 11(2):369-385(1983)), 아그로박테리움 튜머페이션스의 옥토파인 신타아제 유전자로부터 유래된 것, 토마토 또는 감자의 프로테아제 억제자 I 또는 Ⅱ 유전자의 3' 말단 부분, 또는 CaMV 35S 터미네이터를 포함한다.
선택적으로, 본 발명의 벡터는 리포터 분자(예: 루시퍼라아제 및 β-글루쿠로니다아제)를 코딩하는 유전자를 추가적으로 운반한다. 또한, 본 발명의 벡터는 선택 표지로서 항생제(예: 네오마이신, 카베니실린, 카나마이신, 스펙티노마이신, 하이그로마이신 등) 내성 유전자 (예: 네오마이신 포스포트랜스퍼라아제 (nptⅡ), 또는 하이그로마이신 포스포트랜스퍼라아제 (hpt), 등)를 포함한다.
본 발명의 다른 양태에 따르면, 본 발명은 (a) 식물 세포 또는 식물 조직을 상기 본 발명의 벡터로 형질전환하는 단계; (b) 형질전환된 식물세포 또는 식물조직을 선별하는 단계; 및 (c) 상기 형질전환된 식물세포 또는 식물조직으로부터 식물체를 재분화시켜 형질전환 식물체를 수득하는 단계를 포함하는 비생물성 스트레스 내성이 증진된 형질전환 식물체의 제조방법을 제공한다.
본 명세서에서 용어 “비생물성 스트레스”는 저온, 염 및 건조, 바람직하게는 저온 및 염, 가장 바람직하게는 저온과 같은 비생물학적 요인에 의해 유도되는 스트레스를 의미한다.
본 발명의 또 다른 양태에 따르면, 상기 벡터에 의해 형질전환된 형질전환 식물체를 제공한다.
본 발명의 벡터를 안정되면서 연속적으로 클로닝 및 발현시킬 수 있는 숙주 세포는 당업계에 공지되어 어떠한 숙주 세포도 이용할 수 있으며, 예컨대, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, 바실러스 서브틸리스, 바실러스 츄린겐시스와 같은 바실러스 속 균주, 그리고 살모넬라 티피무리움, 세라티아 마르세슨스 및 다양한 슈도모나스 종과 같은 장내균과 균주 등이 있다.
또한, 본 발명의 벡터를 진핵 세포에 형질전환시키는 경우에는 숙주 세포로서, 이스트 (Saccharomyce cerevisiae), 곤충 세포, 사람 세포 (예컨대, CHO 세포주 (Chinese hamster ovary), W138, BHK, COS-7, 293, HepG2, 3T3, RIN 및 MDCK 세포주) 및 식물세포 등이 이용될 수 있다. 한편, 본 발명의 벡터는 식물에서 유용성이 크기 때문에, 상기 형질전환체는 세포 뿐만 아니라, 식물 세포 또는 조직으로부터 유래된 캘러스를 포함한다.
본 발명의 벡터를 숙주 세포 내로 운반하는 방법은, 숙주 세포가 원핵 세포인 경우, CaCl2 방법 (Cohen, S.N. et al., Proc. Natl. Acac. Sci. USA, 9:2110-2114(1973)), 하나한 방법 (Cohen, S.N. et al., Proc. Natl. Acac. Sci. USA, 9:2110-2114(1973); 및 Hanahan, D., J. Mol. Biol., 166:557-580(1983)) 및 전기 천공 방법(Dower, W.J. et al., Nucleic.Acids Res., 16:6127-6145(1988)) 등에 의해 실시될 수 있다. 또한, 숙주 세포가 진핵 세포인 경우에는, 미세 주입법(Capecchi, M.R., Cell, 22:479(1980)), 칼슘 포스페이트 침전법(Graham, F.L. et al., Virology, 52:456(1973)), 전기 천공법(Neumann, E. et al., EMBO J., 1:841(1982)), 리포좀-매개 형질감염법(Wong, T.K. et al., Gene, 10:87(1980)), DEAE-덱스트란 처리법(Gopal, Mol. Cell Biol., 5:1188-1190(1985)), 및 유전자 밤바드먼트(Yang et al., Proc.Natl. Acad. Sci., 87:9568-9572(1990)) 등에 의해 벡터를 숙주 세포 내로 주입할 수 있다.
본 발명의 방법에 있어서, 식물세포의 형질전환은 당업계에 공지된 통상의 방법에 따라 실시될 수 있으며, 이는 전기천공(Neumann, E. et al., EMBO J., 1:841(1982)), 입자 밤바드먼트(Yang et al., Proc. Natl. Acad. Sci., 87:9568-9572 (1990)) 및 아그로박테리움-중재 형질전환(미합중국 특허 제 5,004,863, 5,349,124 및 5,416,011 호)을 포함한다. 이 중에서, 아그로박테리움-중재 형질전환이 가장 바람직하다.
쌍떡잎 식물을 아그로박테리움 튜머페이션스를 이용하여 형질전환시키고 형질전환된 식물체를 얻는 방법은 공지되어 있고, 이 외에 다른 다양한 식물에 대해서 형질전환 식물체를 얻는 방법이 공지되어 있는 데, 목화(cotton)에 대해서는 미합중국 특허 제 5,004,863 및 5,159135호; 콩에 대해서는 미합중국 특허 제 5,569,834 및 5,416011호; 브라시카(Brassica ) 에 대해서는 미합중국 특허 제 5,463,174호; 땅콩(peanut)에 대해서는 Cheng et al. (1996) Plant Cell Rep . 15:653-657, McKently et al. (1995) Plant Cell Rep . 14:699-703)에; 파파야(papaya)에 대해서는 Ling, K. et al. (1991) Bio/technology 9:752-758); and pea (Grant et al. (1995) Plant Cell Rep . 15:254-258에 개시되어 있다.
형질전환된 식물세포의 선별은 형질전환 배양물을 선택제(예컨데, 대사 억제제, 항생제 및 제초제)에 노출시켜 실시될 수 있다. 형질전환되고 선택제 내성을 부여하는 표지 유전자를 안정되게 포함하고 있는 식물 세포는 상기한 배양물에서 성장하고 분할한다. 예시적인 표지는, 하이그로마이신 포스포트랜스퍼라아제 유전자, 글리코포스페이트 내성 유전자 및 네오마이신 포스포트랜스퍼라아제 (nptII) 시스템을 포함하나, 이에 한정되는 것은 아니다.
식물 원형질 또는 다양한 익스플랜트로부터 식물체의 발달 또는 재분화시키는 방법은 당업계에 잘 알려져 있다. 아그로박테리움에 의해 도입된 외래 유전자를 포함하는 식물체의 발달 또는 재분화는 당업계에 공지된 방법에 따라 달성될 수 있다 (미합중국 특허 제 5,004,863, 5,349,124 및 5,416,011 호).
본 발명에 있어서, 바람직한 형질전환 방법은 아그로박테리움 시스템을 이용하여 실시되며, 보다 바람직하게는 아그로박테리움 튜머페이션스 (Agrobacterium tumefaciens)-바이너리 벡터 시스템을 이용하여 실시된다.
식물 세포의 형질전환은 Ti 플라스미드를 포함하는 아그로박테리움 튜머페이션스를 가지고 실시된다 (Depicker, A. etal., Plant cell transformation by Agrobacterium plasmids. In Genetic Engineering of Plants, Plenum Press, New York (1983)). 보다 바람직하게는, pBin19, pRD400, pRD320, pGA1611 및 pGA1991과 같은 바이너리 벡터 시스템이 이용된다 (An, G. et al., Binary vectors" In Plant Gene Res. Manual, Martinus Nijhoff Publisher, New York(1986); An et al., 1988; 및 Lee et al., 1999).
본 발명에 적합한 바이너리 벡터는 (i) 식물에서 작동하는 프로모터; (ⅱ) 상기 프로모터에 작동적으로 연결된 구조 유전자; 및 (ⅲ) 폴리아데닐화 시그널 서열을 포함한다. 선택적으로, 상기 벡터는 리포터 분자 (예:루시퍼라아제 및 글루쿠로니다아제)를 코딩하는 유전자를 추가적으로 운반한다. 바이너리 벡터에 이용되는 프로모터의 예는 CaMV 35S 프로모터, 1 프로모터, 2 프로모터 및 노팔린 씬타아제 (nos) 프로모터를 포함하나, 이에 한정되는 것은 아니다.
아그로박테리움 튜머페이션스에 의한 익스플랜트의 감염은 당업계에 공지된 방법을 포함한다. 가장 바람직하게는, 상기 감염 과정은 아그로박테리움 튜머페이션스의 배양물에 익스플랜트를 함침시켜 공동배양하는 과정을 포함한다. 이에 의해 아그로박테리움 튜머페이션스는 식물내로 감염된다.
아그로박테리움 튜머페이션스에 의해 형질전환된 익스플랜트는 재분화 배지에서 재분화되며, 이는 최종적으로 형질전환 식물체를 형성한다.
본 발명에 따라 형질전환된 식물은 당업계에 공지된 방법에 의해 형질전환 여부가 확인된다. 예를 들어, 형질전환된 식물의 조직으로부터 얻은 DNA 시료를 이용하여, PCR을 실시하면 형질전환 식물의 지놈에 삽입된 외래 유전자가 규명될 수 있다. 택일적으로, 노던 또는 서던 블롯팅을 실시하여 형질전환 여부를 확인할 수 있다(Maniatis et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.(1989).)
본 발명의 다른 양태에 따르면, 서열목록 제 4 서열에 기재된 서열을 가지는 벼(oryza satina) 스트레스 유도성 OsPOX1 단백질을 제공한다.
본 발명의 서열목록 제 2 서열은 상기 OsPOX1 단백질을 코딩하는 뉴클레오타이드 서열이다.
본 발명의 또 다른 양태에 따르면, 서열목록 제 4 서열에 기재된 아미노산 서열을 가지는 OsPOX1를 코딩하는 핵산 분자를 제공한다.
본 발명의 다른 양태에 따르면, 본 발명의 OsPOX1를 코딩하는 핵산 분자를 포함하는 재조합 벡터를 제공한다.
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(a) 본 발명은 꽃에서 발현하는 스트레스 유도성 신규한 유전자 프로모터를 제공한다.
(b) 본 발명은 식물체의 꽃에 외래 유전자를 발현할 수 있는 프로모터를 제공함으로써, 식물체의 생식학적 특성을 조절하는데 유용하게 이용될 수 있다.
도 1은 OsPOX1의 지노믹 구조 및 그의 cDNA 서열을 보여준다. 도 1a는 1번 염색체의 OsPOX1의 지노믹 구조이며, ATG 및 화살표는 각각 개시코돈 및 번역의 방향을 나타낸다. OsPOX1 고팅 부분을 흑색 박스로, 인트론을 백색 박스로 나타낸다. 바(bar)는 OsPOX1 유전자의 0.5 kb ddOs319 프래그먼트 부분을 가리키다. 도 1b는 OsPOX1의 뉴클레오타이드 및 추정상 아미노산 서열을 보여준다. 네스티드 PCR의 정방향 프라이머 및 역방향 프라이머를 밑줄로 표시하였다.
도 2는 다양한 스트레스에 대한 OsPOX1의 반응을 노던 블랏으로 확인한 결과이다. 도 2a는 저온 스트레스(12℃, 4일)에 대한 생식단계의 OsPOX1 반응을 노던 분석한 결과이다. 스트레스 비처리 잎(L) 또는 꽃(F) 및 저온-처리 잎(CL) 또는 꽃(CF)의 총 RNA를 분리하여 아가로즈 젤상에서 분리하고 나일론 막에 블랏한 후 방사능-표지된 OsPOX1 cDNA를 혼성화 하였다. EtBr-염색된 rRNA 밴드를 보여준다. 도 2b는 저온 스트레스(12℃, 4일)에 대한 생식단계의 OsPOX1의 반응을 노던 분석한 결과이다. 저온(4℃), 물리적 상처, 100 μM ABA(abscisic acid), 건조 및 250 mM 염과 같은 다양한 스트레스를 처리한 묘목으로부터 총 RNA를 분리하여 아가로즈 젤상에서 분리하고 나일론 막에 블랏한 후 방사능-표지된 OsPOX1 cDNA를 혼성화 하였다.
도 3은 OsPOX1 프로모터 및 POsPOX1-GUS의 구조를 나타낸다. 도 3a는 OsPOX1 프로모터 ca. 1.8 kb 부분의 뉴클레오타이드 서열을 나타낸다. 추정상 CAAT, TATA 박스 및 개시코돈은 밑줄로 표시하였다. 도 3b는 OsPOX1 프로모터 하에 GUS 의 키메라(chimeric) 유전자 컨스트럭트를 나타낸다. OsPOX1 프로모터 부분을 바이너리 벡터의 GUS 유전자와 융합하여 pSK228을 제조하여 아그로박테리움-매개 공동배양법을 통해 벼 지놈에 도입하였다. RB는 T-DNA의 오른쪽 보더(right border), POsPOX1는 OsPOX1의 프로모터, GUS는 β-글루크로니다제(glucronidase) 유전자, TNOS는 노팔린 신타아제 터미네이터(nopaline synthase terminator), P35S는 CaMV 35S 프로모터, hph는 하이그로마이신 포스포트랜스퍼라제(hygromycin phosphotransferase) 유전자, 7'는 pTiA6의 전사7 종결 부분 및 LB는 T-DNA의 왼쪽 보더(left border)를 가리킨다.
도 4는 PsPOX1-GUS 형질전환 식물체에서 GUS 활성의 조직화학적 위치를 분석한 결과이다. 도 4a는 정상 성장 조건 하의 발아 종자를 보여준다. 도 4b는 저온 스트레스(4℃, 6시간) 처리한 발아 종자를 보여준다. 도 4c는 정상 성장 조건 하에 ca. 10일 재배한 묘목을 보여준다. 도 4d는 정상 성장 조건 하에 초기 어린 소포자 단계의 꽃을 나타낸다. 도 4e는 정상 성장 조건 하에 액호가 있는 화분 단계의 꽃을 나타낸다. 도 4f는 저온 스트레스(12℃, 4일) 처리한 액포가 있는 화분 단계의 꽃을 나타낸다. 도 4f의 윗부분을 가로로 자른 단면이 도 4g 및 도 4g'(도 4g의 붉은색 박스 부분의 확대)이고, 도 4f의 중간부분을 가로로 자른 단면이 도 4h 및 도 4h'(도 4h의 붉은색 박스 부분의 확대)이며, 도 4f의 아랫부분을 가로로 자른 단면이 도 4i 및 도 4i'(도 4i의 붉은색 박스 부분의 확대)를 나타낸다. 도 4a 내지 도 4f의 바(bar)는 1 ㎜를 나타내며, 도 4g 내지 도 4i는 0.5 ㎜, 도 4g’내지 도 4i’는 0.2 ㎜를 나타낸다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
재료 및 방법
식물 샘플 및 박테리아 균주
재배지-성장 벼(Oryza sativa cv. Dongjin)를 김 등이 기재한 방법과 같이 처리하였다(Kim et al., 2007). 저온-스트레스 처리 후에, 식물 샘플을 즉시 액체 질소로 동결하고 -70 ℃에 보관하였다. GUS 분석을 위해, 다른 단계의 다양한 조직을 X-글루 용액에 즉시 침지하였다.
E.coli 주인 XL-1 블루 MRF' 및 MC1000을 분자클로닝의 숙주로 이용하였다. λ UNI-Zap XR 벡터(Stratagene, 미국)에서 pBluescript 파아지미드(phagemid)를 삭제하기 위해 F1 헬퍼 파아지 R408을 사용하였다.
OsPOX1의 전체 서열
ddOs319의 전체 cDNA를 얻기 위해, ddOs319 서열을 기반으로 디자인한 특이 프라이머 및 NCBI 데이터베이스에서 그에 상응하는 서열을 사용하여 역전사-PCR을 수행하였다. 총 RNA를 Koh(2007) 등이 기재한 방법과 같이 분리하고, 저온-처리 꽃의 총 RNA 중 5 ㎍, 0.5 mM dNTP, 0.1 μM 프라이머(POX-A1, 5'-TAG AAC AAC CAA ATG AAC TC-3') 및 200 U 슈퍼스크립트TM(Ⅱ) 역전사효소(invitrogen, 미국)을 이용하여 cDNA를 합성하였다. 역전사-PCR은 2 ㎕ cDNA, 0.2 μM 특이 프라이머(POX-S1, 5'-AGT GCA GTG TGC AGT GC-3'; POX-A1), 0.2 mM dNTPs 및 5 units Ex-Taq DNA 폴리머라제(Takara, 일본)를 포함하는 50 ㎕ 반응액으로 수행하였다. 반응은 초기 94℃ 3분 변성(denaturation) 단계, PCR 30 사이클(94℃ 1분 - 54℃ 1분30초 - 72℃ 1분30초) 및 최종 72℃ 10분 신장(extension) 단계로 진행하였다. 초기 PCR 반응산물 1 ㎕를 0.2 μM 특정 프라이머(POX-S2, 5'-GCG AAG GTT TAC TTG GCG AC-3'; POX-A2, 5'-TGA ACT CAT TTT ATA TAT TG-3'), 0.2 mM dNTPs 및 5 units Ex-Taq DNA 폴리머라제(Takara, 일본)와 혼합하여 네스티드(nested) PCR 반응에 사용하였다. 반응은 초기 94℃ 3분 변성(denaturation) 단계, PCR 30 사이클(94℃ 1분 - 47℃ 1분30초 - 72℃ 1분30초) 및 최종 72℃ 10분 신장(extension) 단계로 진행하였다.
노던 블랏 분석
10 ㎍ RNA를 변성하고 1.3% 아가로즈 젤 전기영동을 통해 분리하여, 나일론 막에 블랏 하였다. 32P-표지된 OsPOX1 프로브를 42℃에서 16-24시간 동안 혼성화(hybridization)하였다(Sambrook et al., 1989). 나일론 막을 0.1×SSC(Saline-Sodium Citrate), 0.1% SDS(Sodium Dodecyl Sulfate)로 실온에서 세척하고 하이퍼필름TM MP 필름(Amersham, 영국) 또는 BAS 1500의 포스포이미지 플레이트(Fuji, 일본)에 감광하였다.
OsPOX1 프로모터의 분리
OsPOX1의 프로모터 부분을 얻기 위해, NCBI 데이터베이스의 지놈 서열에 기반하여 디자인한 프라이머를 사용해 지노믹 DNA의 PCR을 수행하였다. 50 ㎕ 반응액에 0.1 ㎍ 벼 지노믹 DNA, 0.2 μM 프라이머(POX1-P5, 5'-GAT CTA CAT CAG AAC AAG G-3'; POX1-P7, 5'-AGC ATC AAC AGG CAA CC-3'), 0.2 mM dNTPs 및 2.5 units Ex-Taq DNA 폴리머라제(Takara, 일본)을 혼합하여 1차 PCR을 수행하였다. 반응은 초기 94℃ 5분 변성(denaturation) 단계, PCR 30 사이클(94℃ 1분 - 53℃ 1분30초 - 72℃ 2분10초) 및 최종 72℃ 10분 신장(extension) 단계로 진행하였다. 상기 PCR 반응산물을 20배 희석하여 그 중 1 ㎕로 네스티드 PCR 반응을 수행하였다. 50 ㎕의 반응액에 0.2 μM 프라이머(POX1-P6, 5'-GTT CTA GAG CTA TAC ACG-3'; POX1-P8, 5'-AAG GTA CCG GAA GTC GCC AAG-3'), 0.2 mM dNTPs 및 2.5 units Ex-Taq DNA 폴리머라제(Takara, 일본)와 혼합하여 실시하였다. 반응은 초기 94℃ 5분 변성(denaturation) 단계 및 PCR 4 사이클(94℃ 1분 - 42℃ 1분30초 - 72℃ 2분10초) 후에 PCR 26 사이클(94℃ 1분 - 59℃ 1분30초 - 72℃ 2분10초) 및 최종 72℃ 10분 신장(extension) 단계로 진행하였다.
DNA 서열 분석
PCR 증폭된 프로모터 및 cDNA의 양 가닥을 ABI-PRISM 자동시퀀서(Perkin-Elmer, 미국)으로 다이디옥시뉴클레오타이드 사슬 종결법(Sanger et al., 1977)을 통해 시퀀싱 하였다. 서열은 블라스트 프로그램(Altschul et al., 1990)을 이용하여 NCBI 데이터베이스의 서열과 비교하고 뉴클레오타이드/아미노산 서열을 ClustalX(Thomspson et al., 1997) 및 GeneDoc(Nicholas et al., 1997) 소프트웨어를 이용하여 분석하였다.
벼 형질전환벡터 컨스트럭트
OsPOX1 프로모터의 네스티드 PCR 반응산물을 PCR 클린 UP-MTM 키트(Viogene, 미국)를 이용하여 정제하고 Xba Kpn 로 제한효소 처리하였다. 1.8 kb의 OsPOX1 프로모터를GUS 리포터 유전자를 포함하는 프로모터-결핍 식물 형질전환 바이너리(binary) 벡터에 라이게이션(ligation) 하여 pSK228을 제조하였다. 벡터를 아그로박테리움 튜머페이션스주 LBA4404에 동결-해동법(freeze-thaw method)을 통해 전송(transfer)하였다(An et al., 1988).
벼 형질전환
아그로박테리움-매개 공동배양법(cocultivation method)을 통해 벼를 형질전환 하였다(Hiei et al., 1994; Lee et al., 1999). 모든 형질전환식물을 40 ㎎ L-1 하이그로마이신(hygromycin) B-포함 배지에서 배양하고 후에 온실에서 배양하였다. 식물체가 형질전환 되었는지 확인하기 위해, GUS를 프라이머을 이용하여 PCR 증폭하였다(GUS5', 5'-CTA CAC CAC GCC GAA CAC CT-3'; GUS3', 5'- GAC GCA CAG CAC ATC AAA GA-3'). 종자를 수확한 후에, 각 고랑에 15 종자를 파종하였다. T2 세대의 종자를 3일은 SDW(Sterilized Distilled Water)를 포함하는 페트리디시에서, 이후, 4일은 하이그로신 B 배지를 포함하는 배지에서 발아시켰다. 추가 1주 이후에, 하이그로마이신 내성 식물체를 비-하이그로마이신 배지를 갖는 마젠타-박스(Magenta-box)로 옮겨심었다. 그 후, 묘목 식물체를 GUS 분석을 위해 온실로 이식하였다.
GUS 분석
GUS 분석은 Jefferson et al.의 방법과 동일하게 수행하였다(1997). 출수 5-10일 전에, 형질전환 식물체의 다양한 조직을 0.1%(w/v) 5-브로모-4-클로로-3-인도릴-β-D-글루쿠로니드(X-Gluc), 10 mM EDTA(ethylenediaminetetraacetic acid), 0.5% (v/v) 트리톤 X-100, 5 mM 칼륨 페로시아니드 및 10% 메틸올을 포함하는 100 mM 나트륨 포스페이트 버퍼(pH 7.0)에서 37℃로 빛 차단 하에 10-13시간 동안 배양하였다. 기질의 침투능을 좋게 하기 위해, 샘플을 X-Gluc 용액에서 2분 동안 진공상태로 두었다. 염색 후에, 조직을 50℃ 에탄올로 수차례 세척하고 암시야 조명 하에 현미경(Leica, 독일) 관찰하였다.
결과
OsPOX1 cDNA 의 분리 및 분석
전-개화 단계의 벼의 저온-반응 기작을 연구하기 위해, 저온-반응성 유전자를 mRNA 분별 디스플레이 기술을 이용하여 분리하였다(Kim et al., 2007). 분리한 유전자 중에서 추가적인 분석을 위해 꽃-특이적(preferential) 저온-유도성 발현을 보이는 전사체인 ddOs319 프래그먼트를 선별하였다(Kim et al., 2007). NCBI 데이터베이스 검색 결과, ddOs319는 1번 염색체의 4종류의 엑손을 구성하는 유전자이다(도 1a). ddOs319는 0.5 kb의 부분 클론이므로, ddOs319의 프라이머를 이용해 네스티드(nested) PCR을 실시하여 전체 cDNA를 분리하여 전체 서열을 얻었다. 네스티드 PCR 프래그먼트 1.2 kb를 클로닝하여 선별된 클론인 Os319의 전체 서열을 확인하였다(도 1b). 추정된 Os319 단백질은 335 아미노산의 ORF(open reading frame)를 가지며, 벼, 애기장대(Arabidopsis), 아스파라거스(접근번호. BAA94962), 담배(접근번호. AAK52085) 및 대두(접근번호. ACG44598.1)의 퍼옥시다제와 77-98% 의 유사성을 보여주었다. 옥수수(maize) 퍼옥시다제 72(접근번호. ACG44598.1)은 Os319 단백질과 94%의 유사성을 보여주었다. Os319 단백질의 구조분석을 통해 21 아미노산의 N-말단 신호 펩타이드, 말단(distal) 헴(heme) 도메인, 중앙 보존적 도메인, 중심부(proximal) 헴-결합 도메인, 8 보존적 Cys 잔기 및 산/염기 촉매작용 및 헴 안정화와 관련된 3 His 잔기를 갖고 있는 것을 예상하였다(Welinder, 1992). 다른 퍼옥세다제와의 상동 관계 및 Os319 단백질 내의 보존적 도메인의 존재에 근거하여, OsPOX1( Oryza sativa peroxidase gene 1)이라 명명하였다. OsPOX1 단백질의 분자 질량은 36 kDa 이며 pI 값은 7.9로 예상되었다. OsPOX1 단백질의 위치는 PSORT(http://psort.hgc.jp/form.html)에 따르면 아포프라스트(apoplast)로 예상되었다. 노던 분석에 따르면, OsPOX1 cDNA는 꽃에서 저온-반응성을 나타내는 것을 확인하였다(도 2a). 그러나, 묘목에서 OsPOX1는 도 2b에서 보여주는 다양산 스트레서 처리에 따라 변함없이 발현되었다.
OsPOX1 프로모터 서열의 분리 및 분석
저온-처리 꽃에서 OsPOX1이 상향-조절되므로, OsPOX1의 프로모터 부분을 클로닝하여 추가적으로 분석하였다. 1.8 kb의 네스티드 PCR 프래그먼트를 시퀀싱하였다(도 3a). 추정상 CAAT 박스 및 TATA 박스 서열은 전사 개시 지점의 -265 및 -240에 각각 위치하는 것으로 예상되었고, 다른 추정상 조절 모티브를 표 1에 나타내었다(도 3a). 프로모터에서 4종류의 ABA-반응 요소(ABRE), 저온-반응성 DRE/CRT(dehydration- responsive element/C-repeat) 및 3 화분-특이적 조절 요소를 발견하였다(Dolferus et al., 1994, Baker et al., 1994, Yamaguchi-Shinozaki 및 Shinozaki, 1994, Weterings et al., 1995). 표 1은 OsPOX1의 번역 개시 지점의 1,787 bp 업스트림에서 관찰된 추측성 시스(cis)-요소를 나타내고, b 다른 식물체의 프로모터에서 보고되는 보존적 뉴클레오타이드 서열이며, c OsPOX1 ORF의 방향과 비교하여 역전 개시(reverse orientation)에서 발견된 서열을 가리킨다.
ABA-반응 요소(ACGT) b 화분-특이적 조절 요소 (AAATGA) DRE/CRT (CCGAC) b
ACACGTAGC
(-1774 to -1766)
TAACGTTTC
(-1297 to -1289)
TGACGTTTG
(-1132 to -1124)
TAACGTTCT
(- 631 to -623)
TTAAATGAGC
(-1255 to -1246)
AAAAATGAAG c
(-403 to -394)
TCAAATGACT
(-335 to -326)
TCTCCGACCAT
(-1434 to -1424)
벼 형질전환 벡터의 구조 및 형질전환 식물체의 제조
OsPOX1 프로모터의 조절 역할을 이해하기 위해, 1.8 kb의 OsPOX1 프로모터 부분(POsPOX1)을 GUS 유전자와 융합하여 식물 형질전환 바이너리 벡터 pSK228을 제조하였다. 융합 유전자를 아그로박테리움-매개 형질전환법으로 벼 배반 캘러스에 도입하였다(Hiei et al., 1994, Lee et al., 1999). 재생 후에, 형질전환 식물체를 GUS 유전자의 프라이머를 이용해 PCR로 확인하였다. 총 14 개체의 1차 형질전환 식물체를 논에서 성숙단계까지 배양하고 종자를 수확하였다. 자손 식물체의 증폭 후에, T2 식물체의 100% 하이그로마이신 내성을 GUS 분석을 통해 확인하였다.
P OsPOX1 - GUS 형질전환 벼의 인 시추 GUS 분석
정상 성장 또는 저온-스트레스 조건 하에 재배한 형질전환 벼의 조직화학 GUS 분석을 수행하였다. T2 세대의 3 독립적인 라인에서 하이그로마이신 배지에 대해 100% 발아를 나타내었다. 발아 종자에서, GUS 발현은 주로 발아 뿌리의 맥관계(vascular system)에서 약하게 검출되었고 저온 스트레스에 의해 약간 유도되었다(도 4a). 묘목에서, GUS 발현은 잎마디(lamina joint) 및 소맥관계에서 검출되었다(도 4c). 저온-스트레스 처리에 의해 GUS 발현의 검출 할 수 있는 어떠한 변화도 나타나지 않았다. 발명진은 염, 건조와 같은 다른 스트레스를 발아 종자 및 묘목에 처리하였으나, GUS 발현은 발견되지 않았다. 생장 단계의 순 및 뿌리에서 GUS 활성은 거의 나타나지 않았다.
개화기에, 초기 소포자(microspore) 단계에서 액포가 있는 화분(vacuolated pollen) 단계까지 소포자 발생단계의 GUS 분석을 수행하였다. GUS 활성을 초기 소포자 단계의 생식 조직에서 검출하였다(도 4d). 그러나, 꽃의 정맥에서 약하게 발현하는 것이 검출되었지만, 후기 소포자 및 액포가 있는 화분 단계의 생식 조직에서는 GUS 활성은 거의 검출되지 않았다. 이는 OsPOX1의 발생단계 특이적 발현을 나타낸다는 것을 말한다.
또한, OsPOX1 프로모터의 활성에 대해 스트레스의 영향을 시험하기 위해 형질전환 식물체에 저온 스트레스를 처리하였다. 개화 이전의 전체(whole) 형질전환 식물체를 식물 성장용 챔버로 이식하고, 12℃를 4일 동안 처리한 후에 GUS 분석하였다. 흥미롭게도, 저온 스트레스를 처리하였을 때, 꽃은 생식 조직 및 내화영(palea) 및 렘마(lemma)의 관다발에서 향상된 GUS 발현을 보여주었다(도 4f). 어떤 조직에서 저온-유도 GUS 발현을 나타내는지 조사하기 위해, 꽃을 가로로 절개하여 GUS 염색을 조사하였다. 도 4g 및 도 4i에서 나타나듯이, 꽃의 윗부분 및 아랫부분, 각각 GUS 발현이 주로 잎맥에서 검출되었다. 꽃의 중간부분에서는, 내측벽(endothecium), 소포자 및 꽃밥의 관다발에서 GUS가 검출되었다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
참조 문헌
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403-411
An G, Ebert PR, Mitra A and Ha SB (1988) Binary vectors; in Plant Molecular Biology Manual, Gelvin SB and Schilperoort RA (eds), pp A3/1-A3/19, Kluwer Academic Publishers, Dordrecht
Baker SS, Wilhelm KS, Thomashow MF (1994) The 5'-region of Arabidopsis thaliana cor15ahas cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24:1701-713
Dolferus R, Jacobs M, Peacock WJ, Dennis ES (1994) Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene. Plant Physiol 105:1075-1087
Hoshikawa K (1989) The Growing Rice Plant: An Anatomical Monograph (1st ed), Nobunkyo, Minato-ku, Tokyo
Hiei Y, Ohta S, Komari T and Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271-282
Hiraga S, Sasaki K, Ito H, Ohashi Y and Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462-468
Imin N, Kerim T, Weinman JJ, Rolfe BG, (2006) Low temperature treatment at the young microspore stage induces protein changes in rice anthers. Mol Cell Proteom 5:1274-292
Ito H, Hiraga S, Tsugawa H, Matsui H, Honma M, Otsuki Y, Murakami T, Ohashi Y (2000) Xylem-specific expression of wound-inducible rice peroxidase genes in transgenic plants. Plant Sci 155:85-100
Jefferson RA, Kavanagh TA and Bevan MW (1987) GUS fusions: -glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901-3907
Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287-91
Kim SH, Kim JY, Kim SJ, An K, An G and Kim SR (2007) Isolation of cold stress-responsive genes in the reproductive organs, and characterization of the OsLti6b gene from rice (Oryza sativa L.). Plant Cell Rep 26:1097-1110
KimYH, Yang KS, Kim CY, Ryu SH, Song WK, Kwon SY, Lee HS, Bang JW and Kwak SS (2008) Molecular cloning of peroxidase cDNAs from dehydration-treated fibrous roots of sweetpotato and their differential expression in response to stress J Biochem Mol Biol 41:259-265
Koh S, Lee S-C, Kim M-K, Koh JH, Lee S, An G, Choe S and Kim S-R. (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65:453-466
Lee S, Jeon JS, Jung KH and An G (1999) Binary vectors for efficient transformation of rice. J Plant Biol 42:310-316
Lee SC, Huh KW, An K, An G, Kim SR. (2004) Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.). Mol Cells 18:107-14
Llorente F, Lopez-Cobollo RM, Catala R, Martinez-Zapater JM and Salinas J (2002) A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J 32:13-24
Martin T, Wohner R, Hummel S, Willmitzer L, Frommer WB (1991) The GUS reporter system as a tool to study plant gene expression; inGUS protocols- Using the GUS gene as a reporter of gene expression, Gallagher SR (ed) Academic Press Inc, New York
Nicholas KB, Nicholas HBJ and Deerfield DW II (1997) GeneDoc: analysis and visualization of genetic variation. EMBNEW NEWS 4:14
Passardi F, Longet D, Penel C and Dunand C (2004) The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry 65:1879-1893
Saad RB, Romdhan WB, Zouari N, Azaza J, Mieulet D, Verdeil JL, Guiderdoni E, Hassairi A. Promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs developmental-regulated, stress-inducible, and organ-specific gene expression in transgenic tobacco.Transgenic Res 2010 DOI: 10.1007/s11248-010-9474-6
Sambrook J, Fritsch EF and Maniatis T (1989) Molecular cloning: A laboratory Manual 2nd ed, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Sanger F, Nicklen S and Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463-5467
Sasaki K, Hiraga S, Ito H, Seo S, Matsui H and Ohashi Y (2002) A wound-inducible tobacco peroxidase gene expresses preferentially in the vascular system. Plant Cell Physiol 43:108-11
Sasaki K, Iwai T, Hiraga S, Kuroda K, Seo S, Mitsuhara I, Miyasaka A, Iwano M, Ito H, Matsui H and Ohashi Y (2004) Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus. Plant Cell Physiol 45:1442-1452
Satake T andHayase H (1970) Male sterility caused by cooling treatment at the young microspore stage in rice plants. V. Estimation of pollen developmental stage to coolness. Proc Crop Sci Soc Jpn 39:468-473
Sato Y, Masuta Y, Saito K, Murayama S and Ozawa K (2011) Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Rep 30:399-406
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F and Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876-4882
Valerio L, De Meyer M, Penel C and Dunand C (2004) Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry 65:1331-1342
Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388-393
Weterings K, Schrauwen J, Wullems G, Twell D (1995) Functional dissection of the promoter of the pollen-specific gene NTP303 reveals a novel pollen-specific, and conserved cis-regulatory element. Plant J 8:55-63
Yamaguchi T, Nakayama K, Hayashi T, Yazaki J, Kishimoto N, Kikuchi S, Koike S. cDNA microarray analysis of rice anther genes under chilling stress at the microsporogenesis stage revealed two genes with DNA transposon Castaway in the 5'-flanking region. (2004) Biosci Biotechnol Biochem 68:1315-23
Yamaguchi-Shinozaki K and Shinozaki K (1994) A novel cis-acting element in an Arabidopsisgene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251-264
Yi N, Kim YS, Jeong MH, Oh SJ, Jeong JS, Park SH, Jung H, Choi YD, Kim JK(2010) Functional analysis of six drought-inducible promoters in transgenic rice plants throughout all stages of plant growth Planta. 232:743-54
Yi SY and Hwang BK (1998) Molecular cloning and characterization of a new basic peroxidase cDNA from soybean hypocotyls infected with Phytophthora sojae f.sp. glycines. Mol Cells 8:556-564
Toenniessen GH (1991) Potentially useful genes for rice genetic engineering. In: Khush GS, Toenniessen GH (eds) Rice Biotechnology. International Rice Research Institute and Wallingford (United Kingdom), CAB International, Manila.
Thomashow MF (1999) Plant cold acclimation, freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571-599
Tokunaga N, Kaneta T, Sato S and Sato Y (2009) Analysis of expression profiles of three peroxidasegenes associated with lignification in Arabidopsis thaliana. Physiol Plant 136:237-49
Zhu JK (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401-406.
서열목록 전자파일 첨부

Claims (9)

  1. 서열목록 제 1 서열에 기재된 뉴클레오타이드 서열로 이루어진 식물의 꽃에 특이적으로 발현하는 저온 스트레스 유도성 프로모터.
  2. (a) 제 1 항의 프로모터 및 (b) 상기 프로모터와 작동가능하게 연결된(operatively linked) 외래유전자를 포함하고, 꽃에 특이적으로 발현하는 저온 스트레스 유도성 발현 벡터.
  3. 제 2 항의 벡터에 의해 형질전환되고, 꽃에 특이적으로 발현되고 저온 스트레스에 의해 발현이 유도되는 발현 양상을 나타내는 형질전환 벼.
  4. 제 2 항의 벡터로 형질전환되어 상기 외래유전자를 저온 스트레스에 의해 식물체의 꽃에서 발현시키는, 다음의 단계를 포함하는 형질전환 식물체의 제조방법:
    (a) 식물 세포 또는 식물 조직을 제 2 항의 벡터로 형질전환 하는 단계;
    (b) 형질전환된 식물세포 또는 식물조직을 선별하는 단계; 및
    (c) 상기 형질전환된 식물세포 또는 식물조직으로부터 식물체를 재분화시켜 형질전환 식물체를 수득하는 단계.
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
KR1020110113814A 2011-11-03 2011-11-03 스트레스 유도성 형질전환 식물체 KR101373104B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110113814A KR101373104B1 (ko) 2011-11-03 2011-11-03 스트레스 유도성 형질전환 식물체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110113814A KR101373104B1 (ko) 2011-11-03 2011-11-03 스트레스 유도성 형질전환 식물체

Publications (2)

Publication Number Publication Date
KR20130048905A KR20130048905A (ko) 2013-05-13
KR101373104B1 true KR101373104B1 (ko) 2014-03-12

Family

ID=48659799

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110113814A KR101373104B1 (ko) 2011-11-03 2011-11-03 스트레스 유도성 형질전환 식물체

Country Status (1)

Country Link
KR (1) KR101373104B1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990082127A (ko) * 1996-01-29 1999-11-15 밀러 길버트 엔. 식물 내의 트랜스유전자의 조절 발현을 위한 식물 조직/단계 특이적 프로모터
JP2008099634A (ja) 2006-10-20 2008-05-01 Institute Of Physical & Chemical Research 環境ストレス応答性プロモーター及びこれを用いた組織特異的遺伝子発現方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990082127A (ko) * 1996-01-29 1999-11-15 밀러 길버트 엔. 식물 내의 트랜스유전자의 조절 발현을 위한 식물 조직/단계 특이적 프로모터
JP2008099634A (ja) 2006-10-20 2008-05-01 Institute Of Physical & Chemical Research 環境ストレス応答性プロモーター及びこれを用いた組織特異的遺伝子発現方法

Also Published As

Publication number Publication date
KR20130048905A (ko) 2013-05-13

Similar Documents

Publication Publication Date Title
AU2008286583B2 (en) A plant height regulatory gene and uses thereof
US8034992B2 (en) Gibberellin 2-oxidase genes and uses thereof
US20210102218A1 (en) Expression of transcription regulators that provide heat tolerance
WO2011050281A2 (en) A method of controlling plant growth and architecture by controlling expression of gibberellin 2-oxidase
Kim et al. Cold-responsive regulation of a flower-preferential class III peroxidase gene, OsPOX1, in rice (Oryza sativa L.)
AU2019261797A1 (en) Plants having enhanced abiotic stress resistance
US5731419A (en) Freezing tolerance proteins Wcs19 and Wcor410 from gramineae
AU2010255488B2 (en) Methods and compositions for stress tolerance in plants
WO2000075359A2 (en) Gene encoding short integuments and uses thereof
KR101373104B1 (ko) 스트레스 유도성 형질전환 식물체
CN113666993B (zh) 紫花苜蓿MsSPL12蛋白及其相关生物材料与它们在提高植物抗逆性中的应用
KR100599211B1 (ko) 비생물성 스트레스에 대한 내성을 증진시키는스트레스-유도성 Oslti32 유전자 및 단백질
WO2004016775A2 (en) Plants having modified growth and a method for making the same
CN116768991A (zh) 与油脂代谢调控相关的大豆四跨膜区蛋白GmTET270及其编码基因与应用
US20030032777A1 (en) Precursor polypeptide of phytosulfokine derived from Arabidopsis thaliana and a gene encoding said polypeptide
CN112048490A (zh) 棉花丝/苏氨酸蛋白磷酸酶GhTOPP6及其编码基因和应用
WO2008021397A1 (en) Materials and methods for improving quality and characteristics of grasses
KR20140052626A (ko) 식물의 건조 스트레스 저항성을 증가시키는 조성물 및 이를 이용한 형질전환 식물체

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170306

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180226

Year of fee payment: 5