KR101360975B1 - Adsorption cooling system using marine engine waste heat - Google Patents

Adsorption cooling system using marine engine waste heat Download PDF

Info

Publication number
KR101360975B1
KR101360975B1 KR1020120041195A KR20120041195A KR101360975B1 KR 101360975 B1 KR101360975 B1 KR 101360975B1 KR 1020120041195 A KR1020120041195 A KR 1020120041195A KR 20120041195 A KR20120041195 A KR 20120041195A KR 101360975 B1 KR101360975 B1 KR 101360975B1
Authority
KR
South Korea
Prior art keywords
reactor
valve
pipe
cooling
adsorption
Prior art date
Application number
KR1020120041195A
Other languages
Korean (ko)
Other versions
KR20130118181A (en
Inventor
최정하
이호준
고연수
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to KR1020120041195A priority Critical patent/KR101360975B1/en
Publication of KR20130118181A publication Critical patent/KR20130118181A/en
Application granted granted Critical
Publication of KR101360975B1 publication Critical patent/KR101360975B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • B63H21/383Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like for handling cooling-water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • B63J2002/125Heating; Cooling making use of waste energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

본 발명은 엔진의 냉각수를 고온수관(11)과 저온수관(12)으로 유도하여 흡착식으로 냉방하는 시스템에 있어서: 흡착과 탈착을 교번하도록 제1반응기(21)와 제2반응기(22)를 구비하는 반응수단; 상기 제1반응기(21)와 제2반응기(22) 중 하나에서 공급된 냉매를 액상화하는 응축기(24); 상기 응축기(24)에서 공급된 냉매의 기화열로 냉방용 냉수를 생성하는 증발기(25); 및 상기 반응수단의 흡착/탈착 사이클을 교번하도록 배관 상에 설치되는 절환수단(50);을 포함하여 이루어지는 것을 특징으로 한다.
이에 따라, 선박의 엔진과 발전기 등에서 폐열을 회수하여 냉방을 제공하므로 친환경적이고 에너지효율적인 것은 물론 냉방 부하량 변동에 무관하게 연속적이고 안정적인 작동이 가능한 효과가 있다.
The present invention is directed to a system in which cooling water of an engine is guided to a high-temperature water pipe (11) and a low-temperature water pipe (12) for cooling by adsorption: a first reactor (21) and a second reactor (22) are provided to alternate adsorption and desorption. Reaction means; A condenser (24) for liquefying the refrigerant supplied from one of the first reactor (21) and the second reactor (22); An evaporator 25 for producing cooling water for cooling by heat of vaporization of the refrigerant supplied from the condenser 24; And switching means 50 installed on the pipe to alternate the adsorption / desorption cycle of the reaction means.
Accordingly, since the waste heat is recovered from the engine and the generator of the ship to provide cooling, it is not only environmentally friendly and energy efficient, but also has an effect of enabling continuous and stable operation regardless of cooling load variation.

Description

선박의 엔진 폐열을 이용한 흡착식 냉방시스템{Adsorption cooling system using marine engine waste heat}Adsorption cooling system using marine engine waste heat

본 발명은 선박의 엔진 폐열을 이용한 흡착식 냉방시스템에 관한 것으로서, 보다 구체적으로는 선박의 엔진과 발전기 등에서 폐열을 회수하여 냉방을 제공하므로 친환경적이고 에너지효율적인 것은 물론 냉방 부하량 변동에 무관하게 연속적이고 안정적인 작동이 가능한 선박의 엔진 폐열을 이용한 흡착식 냉방시스템에 관한 것이다.The present invention relates to an adsorption-type cooling system using waste heat of the engine of a ship, and more specifically, to provide cooling by recovering waste heat from an engine and a generator of the ship, which is environmentally friendly and energy efficient, as well as continuous and stable operation regardless of cooling load variation. This relates to an adsorptive cooling system utilizing the engine waste heat of a ship.

상선, 해양, 특수선 등 대부분의 선박에 공기조화 및 냉동을 위하여 설치되는 칠링플랜트(Chilling Plant)는 기계식 냉방시스템으로서 압축기를 이용하여 증발기에서 증발된 냉매를 고온 고압으로 압축하여 응축기에서 응축시킨 후 팽창밸브를 거쳐 냉방에 이용하는 구조상 전력 부하를 요하여 에너지 효율이 높지 않으며 진동과 소음의 발생을 수반한다. Chilling Plant, which is installed for air conditioning and refrigeration on most vessels such as commercial vessels, oceans, and special vessels, is a mechanical cooling system that uses a compressor to compress the refrigerant evaporated from the evaporator at high temperature and high pressure to condense it in the condenser and expand it. It requires a power load due to the structure used for cooling through the valve, so it is not energy efficient and involves vibration and noise.

최근 친환경, 저소음/저진동, 에너지의 효율적인 이용 등에 대한 관심이 높아 기계식보다 흡수식/흡착식 냉방시스템의 선호도가 높아지면서 실제 육상에서는 그 적용 사례가 증가되고 있는 추세이다. 특히 선박에서는 엔진 및 발전기의 고온의 폐열을 가까운 곳에서 바로 얻을 수 있으므로 흡착식 냉방 시스템의 적용가능성이 높을 것으로 전망된다. Recently, as interest in eco-friendly, low noise / low vibration, and efficient use of energy is high, the preference of absorption / adsorption cooling system is higher than that of mechanical type, and the application cases are increasing in actual land. Especially in ships, high-temperature waste heat from engines and generators can be directly obtained from nearby places, so the applicability of adsorption cooling system is expected to be high.

선행특허의 일예로서, 한국 등록특허공보 제1096056호는 엔진 폐열을 열원으로 사용하고, 가열로 상기 냉매와 상기 흡수제를 분리시켜 추출하는 재생기; 상기 분리된 기상의 상기 냉매를 냉각수를 이용하여 응축시키는 응축기; 상기 응축된 액상의 상기 냉매를 저압에서 증발시키는 증발기; 상기 증발기에서 증발된 냉매를 흡수제로 흡수하여 상기 혼합물을 생성시키되, 냉각수를 이용하여 냉각하는 흡수기;를 포함하는 구성을 제안한다. As an example of the prior patent, Korean Patent No. 1096056 discloses a regenerator using engine waste heat as a heat source and separating and extracting the refrigerant and the absorbent by heating; A condenser to condense the separated gaseous refrigerant using cooling water; An evaporator for evaporating the refrigerant of the condensed liquid phase at low pressure; The absorber which absorbs the refrigerant evaporated in the evaporator as an absorbent to generate the mixture, and cools using a coolant;

전자는 친환경성과 경세성에 더하여 상대적으로 비용이 저렴한 상온 압축기를 활용할 수 있는 장점을 기대하지만 다수의 열교환기를 사용하여 설치공간을 넓게 차지하고 근본적으로 압축기에 의존하므로 에너지 효율성의 한계가 있다.The former expects the advantage of utilizing a relatively inexpensive room temperature compressor in addition to eco-friendliness and lightness, but uses a large number of heat exchangers to occupy a large amount of installation space and fundamentally depends on the compressor, thereby limiting energy efficiency.

선행특허의 다른 예로서, 한국 등록특허공보 제1095601호는 선박 엔진의 폐열을 이용한 냉동시스템으로서: 선박 엔진 냉각수의 열을 이용하여 흡수제에 냉매가 흡수된 희용액을 가열하여 냉매를 분리하는 발생기; 상기 발생기로부터 전달되는 증기상태의 냉매를 액체상태로 응축하는 응축기; 상기 냉매의 증발을 통한 냉수와의 열교환을 발생시키는 증발기; 상기 증발기의 냉매를 전달받아 흡수제에 흡수시켜서 희용액을 생성하여 상기 발생기로 제공하는 흡수기; 및 상기 흡수제와 함께 수용된 다수개의 교반보조요소를 포함하는 구성을 제안한다.As another example of the prior patent, Korean Patent No. 1095601 discloses a refrigeration system using waste heat of a ship engine, comprising: a generator for separating a refrigerant by heating a rare solution in which a refrigerant is absorbed into an absorbent by using heat of the ship engine coolant; A condenser for condensing the vapor refrigerant delivered from the generator into a liquid state; An evaporator for generating heat exchange with cold water through evaporation of the refrigerant; An absorber that receives the refrigerant of the evaporator and absorbs the absorbent into the absorbent to generate a rare solution to the generator; And a plurality of stirring aids housed together with the absorbent.

이는 전체적으로 작은 사이즈로 구현될 수 있으면서 전체 시스템의 신속하고 신뢰성있는 동작을 도모하지만, 다양한 선박에서 지속적이고 효율적으로 냉방부하를 감당하는 작동의 신뢰성을 확보하기 미흡하다.While this can be implemented in a small size as a whole, it promotes rapid and reliable operation of the entire system, but it is insufficient to ensure the reliability of the operation to sustain the cooling load continuously and efficiently in various vessels.

1. 한국 등록특허공보 제1096056호 "엔진 폐열을 이용한 흡수식 냉동기"(공개일자 : 2011. 3. 30.)1. Korean Registered Patent Publication No. 1096056 "Adsorption Refrigerator Using Engine Waste Heat" (published date: March 30, 2011) 2. 한국 등록특허공보 제1095601호 "선박 엔진의 폐열을 이용하는 흡수식 냉동시스템"(공개일자 : 2011. 12. 19.)2. Korean Patent Publication No. 1095601 "Absorbent refrigeration system using waste heat from ship engine" (published date: December 19, 2011)

상기와 같은 종래의 문제점들을 개선하기 위한 본 발명의 목적은, 선박의 엔진과 발전기 등에서 폐열을 회수하여 냉방을 제공하므로 친환경적이고 에너지효율적인 것은 물론 냉방 부하량 변동에 무관하게 연속적이고 안정적인 작동이 가능한 선박의 엔진 폐열을 이용한 흡착식 냉방시스템을 제공하는 데 있다.An object of the present invention for improving the conventional problems as described above, by providing the cooling by recovering the waste heat from the engine and generator of the ship, such as environmentally friendly and energy-efficient as well as cooling of the ship that can be operated continuously and stable regardless of the cooling load variation It is to provide an adsorption cooling system using engine waste heat.

상기 목적을 달성하기 위하여, 본 발명은 엔진의 냉각수를 고온수관과 저온수관으로 유도하여 흡착식으로 냉방하는 시스템에 있어서: 흡착과 탈착을 교번하도록 제1반응기와 제2반응기를 구비하는 반응수단; 상기 제1반응기와 제2반응기 중 하나에서 공급된 냉매를 액상화하는 응축기; 상기 응축기에서 공급된 냉매의 기화열로 냉방용 냉수를 생성하는 증발기; 및 상기 반응수단의 흡착/탈착 사이클을 교번하도록 배관 상에 설치되는 절환수단;을 포함하여 이루어지는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a system for cooling the engine's cooling water to the hot water pipe and the cold water pipe by adsorption cooling: reaction means having a first reactor and a second reactor to alternate adsorption and desorption; A condenser to liquefy the refrigerant supplied from one of the first reactor and the second reactor; An evaporator that generates cooling water for cooling by heat of vaporization of the refrigerant supplied from the condenser; And switching means installed on the pipe so as to alternate the adsorption / desorption cycle of the reaction means.

또, 본 발명에 따르면 상기 제1반응기와 제2반응기는 고온수관에 고온밸브를 개재하여 연결되는 동시에 저온수관에 저온밸브를 개재하여 연결되는 것을 특징으로 한다.In addition, according to the present invention, the first reactor and the second reactor are connected via a high temperature valve to a high temperature water pipe, and a low temperature valve is connected to a low temperature water pipe.

이때, 상기 고온밸브와 저온밸브는 3방향밸브를 사용하는 것을 특징으로 한다.At this time, the high temperature valve and the low temperature valve is characterized by using a three-way valve.

또, 본 발명에 따르면 상기 제1반응기와 제2반응기는 엔진의 정지시, 고온수의 온도가 탈착에 필요한 온도가 되지 않을 경우 열원을 제공받도록 보조히터를 더 구비하는 것을 특징으로 한다.In addition, according to the present invention, the first reactor and the second reactor may further include an auxiliary heater to receive a heat source when the temperature of the hot water does not become a temperature required for desorption when the engine is stopped.

또, 본 발명에 따르면 상기 절환수단은 제1반응기와 응축기에 제1밸브를 개재하여 연결되는 제1냉매관, 제2반응기와 증발기에 제2밸브를 개재하여 연결되는 제2냉매관, 제2냉매관의 하류측과 제1냉매관의 상류측에 제3밸브를 개재하여 연결되는 제1도관, 제2냉매관의 상류측과 제1냉매관의 하류측에 제4밸브를 개재하여 연결되는 제2도관을 구비하는 것을 특징으로 한다.Further, according to the present invention, the switching means includes a first refrigerant pipe connected to the first reactor and the condenser via a first valve, a second refrigerant pipe connected to the second reactor and the evaporator via a second valve, and a second The first conduit connected to the downstream side of the refrigerant pipe and the upstream side of the first refrigerant pipe via the fourth valve and the upstream side of the second refrigerant pipe and the downstream side of the first refrigerant pipe via the fourth valve. And a second conduit.

이때, 상기 절환수단은 제1반응기와 제2반응기의 용량에 의하여 설정된 주기로 밸브를 동시에 작동하는 것을 특징으로 한다.At this time, the switching means is characterized in that for operating the valve at the same time set by the capacity of the first reactor and the second reactor.

이상과 같이 본 발명에 의하면, 선박의 엔진과 발전기 등에서 폐열을 회수하여 냉방을 제공하므로 친환경적이고 에너지효율적인 것은 물론 냉방 부하량 변동에 무관하게 연속적이고 안정적인 작동이 가능한 효과가 있다.As described above, according to the present invention, since the waste heat is recovered from the engine and the generator of the ship to provide cooling, it is possible to operate continuously and stably regardless of environmentally friendly and energy efficient as well as cooling load variation.

또한, 압축기 구동이 없기 때문에 소음/진동 발생이 거의 없으며, 외형적으로 크기를 축소하여 공간활용성이 증대된다.In addition, since there is no compressor driving, noise / vibration is hardly generated, and the size is reduced in appearance and space utilization is increased.

도 1은 본 발명에 따른 시스템의 제1작동 상태를 나타내는 다이아그램
도 1은 본 발명에 따른 시스템의 제2작동 상태를 나타내는 다이아그램
1 is a diagram showing a first operating state of a system according to the invention
1 is a diagram showing a second operating state of the system according to the invention

이하, 첨부된 도면에 의거하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 엔진의 냉각수를 고온수관(11)과 저온수관(12)으로 유도하여 흡착식으로 냉방하는 시스템에 관련된다. 흡착식 냉방시스템의 일예에 있어서 흡착제로 활성탄, 실리카겔, 제올라이트 중 하나를 사용하고 냉매로 물, 수소불화탄소(HFC), 메탄올, 암모니아 중의 하나를 사용할 수 있다. 고온수관(11)은 엔진 또는 발전기의 폐열을 회수하는 관로로서, 고온의 폐열 냉각수(고온수)를 회수하여 흡착제/냉매의 탈착을 위한 열원으로 사용한다. 저온수관(12)은 엔진의 냉각 청수(fresh water)(저온수)를 공급받는 관로로서, 흡착제/냉매의 흡착을 위한 냉각수로 사용한다. 저온수관(12)은 경우에 따라서 해수를 공급받도록 구성할 수도 있다.The present invention relates to a system for guiding the cooling water of an engine to a high temperature water pipe (11) and a low temperature water pipe (12) for cooling by adsorption. In one example of an adsorption cooling system, one of activated carbon, silica gel, and zeolite may be used as an adsorbent, and one of water, hydrofluorocarbon (HFC), methanol, and ammonia may be used as a refrigerant. The high temperature water pipe 11 is a pipe for recovering waste heat of an engine or a generator, and recovers high temperature waste heat cooling water (hot water) and uses it as a heat source for desorption of an adsorbent / refrigerant. The low temperature water pipe 12 is a pipe for receiving cooling fresh water (low temperature water) of the engine and is used as cooling water for adsorption of an adsorbent / refrigerant. The cold water pipe 12 may be configured to receive seawater in some cases.

본 발명에 따르면 반응수단이 흡착과 탈착을 교번하도록 제1반응기(21)와 제2반응기(22)를 구비하는 구조이다. 반응수단은 흡착반응과 탈착반응을 독립적으로 수행하는 2개의 흡착기로서 동일한 규격의 제1반응기(21)와 제2반응기(22)를 병렬로 배치한다. 고온수관(11)에 공급되는 선박 엔진/발전기의 냉각수(Jacket Water)는 출구 온도가 90℃ 정도로 흡착반응을 유발하기에 충분한 온도이다.According to the present invention, the reaction means is provided with a first reactor 21 and a second reactor 22 to alternate adsorption and desorption. The reaction means are two adsorbers which independently perform the adsorption reaction and the desorption reaction, and arrange the first reactor 21 and the second reactor 22 of the same standard in parallel. Cooling water (Jacket Water) of the ship engine / generator supplied to the hot water pipe (11) is a temperature sufficient to cause an adsorption reaction at an outlet temperature of about 90 ℃.

이때, 상기 제1반응기(21)와 제2반응기(22)는 고온수관(11)에 고온밸브(33)를 개재하여 연결되는 동시에 저온수관(12)에 저온밸브(43)를 개재하여 연결된다. 고온수관(11)은 고온밸브(33)를 통하여 제1반응기(21)와 제2반응기(22)에 병렬로 분기되고, 저온수관(12)은 저온밸브(43)를 통하여 제1반응기(21)와 제2반응기(22)에 병렬로 분기된다.At this time, the first reactor 21 and the second reactor 22 are connected to the high temperature water pipe 11 through the high temperature valve 33 and at the same time, the low temperature water pipe 12 to the low temperature valve 43. . The high temperature water pipe 11 is branched in parallel to the first reactor 21 and the second reactor 22 through the high temperature valve 33, and the low temperature water pipe 12 is connected to the first reactor 21 through the low temperature valve 43. ) And the second reactor 22 in parallel.

이때, 상기 고온밸브(33)와 저온밸브(43)는 3방향밸브를 사용하는 것을 특징으로 한다. 3방향밸브인 고온밸브(33)는 고온수관(11)의 고온수를 제1반응기(21) 또는 제2반응기(22)로 선택적으로 공급하고, 3방향밸브인 저온밸브(43)는 저온수관(12)의 저온수를 제1반응기(21) 또는 제2반응기(22)로 선택적으로 공급한다. 이에 따라, 어느 일측의 반응기(21)(22)가 열을 제공받아 탈착반응을 수행하는 동안 타측의 반응기(21)(22)는 반대로 열을 방출하여 흡착반응을 수행한다.At this time, the high temperature valve 33 and the low temperature valve 43 is characterized by using a three-way valve. The high temperature valve 33, which is a three-way valve, selectively supplies the high temperature water of the high temperature water pipe 11 to the first reactor 21 or the second reactor 22, and the low temperature valve 43, which is a three-way valve, is a low temperature water pipe. The low temperature water of (12) is selectively supplied to the first reactor 21 or the second reactor 22. Accordingly, while one of the reactors 21 and 22 receives heat and performs the desorption reaction, the other reactors 21 and 22 release heat to perform the adsorption reaction.

한편, 상기 제1반응기(21)와 제2반응기(22)는 엔진의 정지시, 고온수의 온도가 탈착에 필요한 온도가 되지 않을 경우 열원을 제공받도록 보조히터(28)를 더 구비하는 것이 바람직하다. 보조히터(28)는 만약 엔진/발전기의 폐열을 이용할 수 없을 때 냉방이 필요한 경우에 사용할 수 있도록 제1반응기(21)와 제2반응기(22)에 각각 구비된다. 보조히터(28)의 열원은 전기력 외에 태양열 등의 다른 열원도 사용할 수 있다. 태양열을 이용할 경우에는 엔진/발전기가 완전 고장시에도 선박을 냉방할 수 있어 특히 여객선이나 상선 등에서 선박 사고시에 유용하게 대처할 수 있다.Meanwhile, the first reactor 21 and the second reactor 22 may further include an auxiliary heater 28 to receive a heat source when the temperature of the hot water does not become a temperature required for desorption when the engine is stopped. Do. The auxiliary heater 28 is provided in the first reactor 21 and the second reactor 22, respectively, to be used when cooling is required when waste heat of the engine / generator is not available. The heat source of the auxiliary heater 28 may use other heat sources such as solar heat in addition to the electric force. If solar power is used, the engine / generator can cool the vessel even when the engine is completely out of order, which makes it particularly useful in case of a ship accident, such as a passenger ship or a commercial ship.

또, 본 발명에 따르면 응축기(24)가 상기 제1반응기(21)와 제2반응기(22) 중 하나에서 공급된 냉매를 액상화한다. 응축기(24)는 반응기(21)(22) 중 탈착반응을 거쳐 발생한 냉매증기를 응축하도록 배관 연결된다. 응축기(24)의 냉각을 위하여 연결되는 저온수관(12)은 전술한 반응기(21)(22)의 저온수관(12)과 동일한 라인으로 연결할 수 있다.According to the present invention, the condenser 24 liquefies the refrigerant supplied from one of the first reactor 21 and the second reactor 22. The condenser 24 is piped to condense the refrigerant vapor generated through the desorption reaction in the reactors 21 and 22. The cold water pipe 12 connected for cooling the condenser 24 may be connected in the same line as the cold water pipe 12 of the reactors 21 and 22 described above.

또, 본 발명에 따르면 증발기(25)가 상기 응축기(24)에서 공급된 냉매의 기화열로 냉방용 냉수를 생성한다. 증발기(25)는 펌프(27)와 팽창밸브(29)를 개재하여 응축기(24)에 연결되고, 응축기(24)와 팽창밸브(29)를 거친 냉매를 증발시켜 저열원으로 작용한다. 증발기(25)에 급수관(14)과 출수관(15)을 연결하고 급수관(14)에 12~15℃의 냉수를 공급하면 출수관(15)으로 5~7℃의 냉수가 제공되어 소요처인 AHU(Air Handling Unit), FCU(Fan Coil Unit) 등에서 냉방이 수행된다. 미설명 부호 47은 증발기(25)에 수집된 액상 냉매의 순환을 위한 관로이다.In addition, according to the present invention, the evaporator 25 generates cold water for cooling by heat of vaporization of the refrigerant supplied from the condenser 24. The evaporator 25 is connected to the condenser 24 via the pump 27 and the expansion valve 29, and evaporates the refrigerant passing through the condenser 24 and the expansion valve 29 to serve as a low heat source. When the water supply pipe 14 and the water discharge pipe 15 are connected to the evaporator 25 and cold water of 12 to 15 ° C. is supplied to the water supply pipe 14, cold water of 5 to 7 ° C. is provided to the water discharge pipe 15 so that AHU is required. Cooling is performed in the Air Handling Unit (FCU) and the Fan Coil Unit (FCU). Reference numeral 47 is a conduit for circulation of the liquid refrigerant collected in the evaporator 25.

또, 본 발명에 따르면 상기 반응수단의 흡착/탈착 사이클을 교번하도록 절환수단(50)이 배관 상에 설치된다. 절환수단(50)은 다수의 배관과 밸브를 기반으로 하여 일측 반응기(21)(22)의 흡착반응과 타측 반응기(21)(22)의 탈착반응을 동시에 순간적으로 전환하는 기능을 수행한다.Further, according to the present invention, the switching means 50 is installed on the pipe so as to alternate the adsorption / desorption cycle of the reaction means. The switching means 50 performs a function of instantaneously converting the adsorption reaction of the one side reactors 21 and 22 and the desorption reaction of the other side reactors 21 and 22 based on a plurality of pipes and valves.

이때, 상기 절환수단(50)은 제1반응기(21)와 응축기(24)에 제1밸브(36)를 개재하여 연결되는 제1냉매관(35), 제2반응기(22)와 증발기(25)에 제2밸브(46)를 개재하여 연결되는 제2냉매관(45), 제2냉매관(45)의 하류측과 제1냉매관(35)의 상류측에 제3밸브(54)를 개재하여 연결되는 제1도관(51), 제2냉매관(45)의 상류측과 제1냉매관(35)의 하류측에 제4밸브(55)를 개재하여 연결되는 제2도관(52)을 구비한다. 제1냉매관(35)은 제1밸브(36)를 기준으로 상측관(35a)와 하측관(35b)로 구분되고, 제2냉매관(45)은 제2밸브(46)를 기준으로 상측관(45a)와 하측관(45b)로 구분된다. 제1냉매관(35)의 상측관(35a)과 제2냉매관(45)의 하측관(45b)은 제1도관(51)으로 연결하면서 제3밸브(54)를 유로상에 두고, 제2냉매관(45)의 상측관(45a)과 제1냉매관(35)의 하측관(35b)은 제2도관(52)으로 연결하면서 제4밸브(55)를 유로상에 둔다. 제1밸브(36), 제2밸브(46), 제3밸브(54), 제4밸브(55)는 공히 솔레노이드 구동식 개폐밸브(2웨이 밸브)를 사용한다.At this time, the switching means 50 is the first refrigerant pipe 35, the second reactor 22 and the evaporator 25 are connected to the first reactor 21 and the condenser 24 via the first valve 36. A third valve 54 at a downstream side of the second refrigerant pipe 45, a second refrigerant pipe 45, and an upstream side of the first refrigerant pipe 35 connected to each other via a second valve 46). Second conduit 52 connected via an upstream side of the first conduit 51 and the second refrigerant pipe 45 and a downstream side of the first refrigerant pipe 35 connected through the fourth valve 55. It is provided. The first refrigerant pipe 35 is divided into an upper pipe 35a and a lower pipe 35b based on the first valve 36, and the second refrigerant pipe 45 is upper side based on the second valve 46. It is divided into a pipe 45a and a lower pipe 45b. The upper pipe 35a of the first refrigerant pipe 35 and the lower pipe 45b of the second refrigerant pipe 45 are connected to the first conduit 51 with the third valve 54 on the flow path. The upper pipe 45a of the two refrigerant pipes 45 and the lower pipe 35b of the first refrigerant pipe 35 are connected to the second conduit 52 to place the fourth valve 55 on the flow path. The first valve 36, the second valve 46, the third valve 54, and the fourth valve 55 all use solenoid-driven on / off valves (two-way valves).

한편, 상기 절환수단(50)은 제1반응기(21)와 제2반응기(22)의 용량에 의하여 설정된 주기로 밸브(36)(46)(54)(55)를 동시에 작동한다. 도 1은 제1밸브(36)와 제2밸브(46)가 오프되고 제3밸브(54)와 제4밸브(55)가 온되어 제2반응기(22)에서 제1반응기(21)까지 실선의 화살표와 같은 냉방 사이클을 수행한다. 도 2는 제1밸브(36)와 제2밸브(46)가 온되고 제3밸브(54)와 제4밸브(55)가 오프되어 제1반응기(21)에서 제2반응기(22)까지 실선의 화살표와 같은 냉방 사이클을 수행한다. 도 1과 도 2의 상태는 전술한 밸브(36)(46)(54)(55)를 동시에 작동하여 전환되며, 그 전환 타이밍은 제1반응기(21)와 제2반응기(22)를 비롯한 시스템 용량에 의하여 이미 결정된다.On the other hand, the switching means 50 operates the valves 36, 46, 54, 55 at the same time set by the capacity of the first reactor 21 and the second reactor 22. 1 shows a solid line from the second reactor 22 to the first reactor 21 with the first valve 36 and the second valve 46 turned off and the third valve 54 and the fourth valve 55 turned on. Perform a cooling cycle as shown by the arrow. 2 shows a solid line from the first reactor 21 to the second reactor 22 with the first valve 36 and the second valve 46 turned on and the third valve 54 and the fourth valve 55 turned off. Perform a cooling cycle as shown by the arrow. The states of FIGS. 1 and 2 are switched by simultaneously operating the valves 36, 46, 54, 55 described above, the switching timing being of a system including the first reactor 21 and the second reactor 22. Already determined by the dose.

작동에 있어서, 도 1은 고온수관(11)이 제2반응기(22)에 연결되어 탈착반응을 유발하는 동시에 제1반응기(21)에서 흡착반응이 진행되고, 냉매가 제2반응기(22), 제2도관(52), 응축기(24), 증발기(25), 제1도관(51), 제1반응기(21)로 유동하면서 출수관(15)에서 냉수를 생성한다. 도 2는 고온수관(11)이 제1반응기(21)에 연결되어 탈착반응을 유발하는 동시에 제2반응기(22)에서 흡착반응이 진행되고, 냉매가 제1반응기(21), 제1냉매관(35), 응축기(24), 증발기(25), 제2냉매관(45), 제2반응기(22)로 유동하면서 출수관(15)에서 냉수를 생성한다. 도 1과 도 2의 상태 전환은 제어기(도시 생략)가 전술한 것처럼 설정된 주기로 수행한다.In operation, FIG. 1 shows that the hot water pipe 11 is connected to the second reactor 22 to cause a desorption reaction, and at the same time, the adsorption reaction proceeds in the first reactor 21, and the refrigerant is supplied to the second reactor 22, Cold water is generated in the outlet pipe 15 while flowing to the second conduit 52, the condenser 24, the evaporator 25, the first conduit 51, and the first reactor 21. 2 shows that the hot water pipe 11 is connected to the first reactor 21 to induce a desorption reaction, and at the same time, the adsorption reaction proceeds in the second reactor 22, and the refrigerant is the first reactor 21 and the first refrigerant pipe. Cold water is produced in the outlet pipe 15 while flowing to the condenser 24, the evaporator 25, the second refrigerant pipe 45, and the second reactor 22. The state transitions of FIGS. 1 and 2 are performed at a set period by the controller (not shown) as described above.

이와 같이 본 발명은 엔진/발전기의 폐열을 이용한 흡착식 냉방시스템을 선박에 구성하여, 일반적인 흡수식 냉방시스템 비하더라도 보다 에너지 효율적인 냉방 작동을 가능하게 한다. As described above, the present invention configures the adsorption cooling system using the waste heat of the engine / generator in a ship, thereby enabling more energy efficient cooling operation even in comparison with a general absorption cooling system.

본 발명은 기재된 실시예에 한정되는 것은 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 변형예 또는 수정예들은 본 발명의 특허청구범위에 속한다 해야 할 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention as defined by the appended claims. It is therefore intended that such variations and modifications fall within the scope of the appended claims.

11: 고온수관 12: 저온수관
21: 제1반응기 22: 제2반응기
24: 응축기 25: 증발기
27: 펌프 28: 보조히터
31: 제1고온관 32: 제2고온관
33: 고온밸브 35: 제1냉매관
36: 제1밸브 37: 제1증발관
41: 제1저온관 42: 제2저온관
43: 저온밸브 45: 제2냉매관
46: 제2밸브 47: 제2증발관
50: 절환수단 51: 제1도관
52: 제2도관 54: 제3밸브
55: 제4밸브
11: high temperature water pipe 12: low temperature water pipe
21: first reactor 22: second reactor
24: condenser 25: evaporator
27: pump 28: auxiliary heater
31: The first high temperature tube 32: The second high temperature tube
33: high temperature valve 35: the first refrigerant pipe
36: first valve 37: first evaporation pipe
41: first low temperature tube 42: second low temperature tube
43: low temperature valve 45: second refrigerant pipe
46: second valve 47: second evaporator
50: switching means 51: first conduit
52: second conduit 54: third valve
55: fourth valve

Claims (6)

엔진의 냉각수를 고온수관(11)과 저온수관(12)으로 유도하고, 저온수관(12)은 해수를 공급받도록 구성되어 흡착식으로 냉방하는 시스템에 있어서:
흡착과 탈착을 교번하도록 제1반응기(21)와 제2반응기(22)를 구비하는 반응수단;
상기 제1반응기(21)와 제2반응기(22) 중 하나에서 공급된 냉매를 액상화하는 응축기(24);
상기 응축기(24)에서 공급된 냉매의 기화열로 냉방용 냉수를 생성하는 증발기(25); 및
상기 반응수단의 흡착/탈착 사이클을 교번하도록 배관 상에 설치되는 절환수단(50);을 포함하여 이루어지고,
상기 제1반응기(21)와 제2반응기(22)는 고온수관(11)에 3방향밸브인 고온밸브(33)를 개재하여 연결되는 동시에 저온수관(12)에 3방향밸브인 저온밸브(43)를 개재하여 연결되며,
상기 절환수단(50)은 제1반응기(21)와 응축기(24)에 제1밸브(36)를 개재하여 연결되는 제1냉매관(35), 제2반응기(22)와 증발기(25)에 제2밸브(46)를 개재하여 연결되는 제2냉매관(45), 제2냉매관(45)의 하류측과 제1냉매관(35)의 상류측에 제3밸브(54)를 개재하여 연결되는 제1도관(51), 제2냉매관(45)의 상류측과 제1냉매관(35)의 하류측에 제4밸브(55)를 개재하여 연결되는 제2도관(52)을 구비하고,
상기 절환수단(50)은 제1반응기(21)와 제2반응기(22)의 용량에 의하여 설정된 주기로 밸브(36)(46)(54)(55)를 동시에 작동하며,
상기 제1반응기(21)와 제2반응기(22)는 엔진의 정지시, 고온수의 온도가 탈착에 필요한 온도가 되지 않을 경우 전기력 또는 태양열의 열원을 제공받도록 보조히터(28)를 구비하는 것을 특징으로 하는 선박의 엔진 폐열을 이용한 흡착식 냉방시스템.
In a system in which cooling water of an engine is led to a hot water pipe (11) and a cold water pipe (12), and the cold water pipe (12) is configured to receive seawater and is cooled by adsorption:
Reaction means including a first reactor (21) and a second reactor (22) to alternate adsorption and desorption;
A condenser (24) for liquefying the refrigerant supplied from one of the first reactor (21) and the second reactor (22);
An evaporator 25 for producing cooling water for cooling by heat of vaporization of the refrigerant supplied from the condenser 24; And
It comprises a; switching means 50 is installed on the pipe to alternate the adsorption / desorption cycle of the reaction means,
The first reactor 21 and second reactor 22 is a low-temperature valve (43 a three-way valve in the high-temperature water tube 11, the three-way valve in the high temperature valve 33, the low-temperature water tube 12 at the same time is connected via the in ), And connect via
The switching means 50 is connected to the first refrigerant pipe 35, the second reactor 22, and the evaporator 25, which are connected to the first reactor 21 and the condenser 24 via the first valve 36. The second refrigerant pipe 45 connected through the second valve 46, the downstream side of the second refrigerant pipe 45 and the upstream side of the first refrigerant pipe 35 via the third valve 54. A second conduit 52 connected to an upstream side of the first conduit 51 and a second refrigerant pipe 45 and a downstream side of the first refrigerant pipe 35 to be connected via a fourth valve 55. and,
The switching means 50 operates the valves 36, 46, 54, 55 at the same time set by the capacity of the first reactor 21 and the second reactor 22,
The first reactor 21 and the second reactor 22 is provided with an auxiliary heater 28 to be provided with a heat source of electric force or solar heat when the temperature of the hot water does not reach the temperature required for desorption when the engine is stopped. Adsorption cooling system using engine waste heat of ship.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020120041195A 2012-04-19 2012-04-19 Adsorption cooling system using marine engine waste heat KR101360975B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120041195A KR101360975B1 (en) 2012-04-19 2012-04-19 Adsorption cooling system using marine engine waste heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120041195A KR101360975B1 (en) 2012-04-19 2012-04-19 Adsorption cooling system using marine engine waste heat

Publications (2)

Publication Number Publication Date
KR20130118181A KR20130118181A (en) 2013-10-29
KR101360975B1 true KR101360975B1 (en) 2014-02-12

Family

ID=49636640

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120041195A KR101360975B1 (en) 2012-04-19 2012-04-19 Adsorption cooling system using marine engine waste heat

Country Status (1)

Country Link
KR (1) KR101360975B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160102809A (en) * 2015-02-23 2016-08-31 대우조선해양 주식회사 Topside cooling system using adsorption type refrigerator and offshore platform including the same
KR20190052452A (en) 2017-11-08 2019-05-16 한국생산기술연구원 Adsorption cooling device having multi adsorption tower and methdo for cooling using the same
KR102144454B1 (en) * 2019-07-25 2020-08-13 한국해양과학기술원 Combined system of power generation, desalination and cooling system using ship waste heat
KR20200140575A (en) * 2019-06-07 2020-12-16 한국조선해양 주식회사 Heat exchange system and offshore structure having the same
KR20210155062A (en) * 2020-06-15 2021-12-22 한국해양과학기술원 Combined plant of power generation, desalination and cooling system using ship unused heat

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101787943B1 (en) * 2017-02-09 2017-10-19 주식회사 구성이엔드씨 Three way valve for independently controlling flow path, refrigeration apparatus of adsorption type comprising the same and refrigeration system of adsorption type
KR20230057701A (en) 2021-10-22 2023-05-02 삼성중공업 주식회사 Portable sensor heating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2808488B2 (en) * 1990-11-27 1998-10-08 三菱重工業株式会社 Adsorption cooling device
JP2008518835A (en) * 2004-11-05 2008-06-05 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ Automotive air conditioner with absorption heat pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2808488B2 (en) * 1990-11-27 1998-10-08 三菱重工業株式会社 Adsorption cooling device
JP2008518835A (en) * 2004-11-05 2008-06-05 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ Automotive air conditioner with absorption heat pump

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160102809A (en) * 2015-02-23 2016-08-31 대우조선해양 주식회사 Topside cooling system using adsorption type refrigerator and offshore platform including the same
KR101709571B1 (en) * 2015-02-23 2017-02-23 대우조선해양 주식회사 Topside cooling system using adsorption type refrigerator and offshore platform including the same
KR20190052452A (en) 2017-11-08 2019-05-16 한국생산기술연구원 Adsorption cooling device having multi adsorption tower and methdo for cooling using the same
KR20200140575A (en) * 2019-06-07 2020-12-16 한국조선해양 주식회사 Heat exchange system and offshore structure having the same
KR102198070B1 (en) * 2019-06-07 2021-01-04 한국조선해양 주식회사 Heat exchange system and offshore structure having the same
KR102144454B1 (en) * 2019-07-25 2020-08-13 한국해양과학기술원 Combined system of power generation, desalination and cooling system using ship waste heat
KR20210155062A (en) * 2020-06-15 2021-12-22 한국해양과학기술원 Combined plant of power generation, desalination and cooling system using ship unused heat
KR102344835B1 (en) * 2020-06-15 2021-12-28 한국해양과학기술원 Combined plant of power generation, desalination and cooling system using ship unused heat

Also Published As

Publication number Publication date
KR20130118181A (en) 2013-10-29

Similar Documents

Publication Publication Date Title
KR101360975B1 (en) Adsorption cooling system using marine engine waste heat
Wang et al. Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures
Kojok et al. Hybrid cooling systems: A review and an optimized selection scheme
Khan et al. Study on solar/waste heat driven multi-bed adsorption chiller with mass recovery
Askalany et al. Hybrid adsorption cooling systems–An overview
JP6028799B2 (en) Carbon dioxide supply device
Pang et al. Liquid absorption and solid adsorption system for household, industrial and automobile applications: A review
Al-Mousawi et al. Different bed configurations and time ratios: Performance analysis of low-grade heat driven adsorption system for cooling and electricity
JP4946894B2 (en) Waste heat utilization system
JP2012510601A (en) Cooling method and cooling device
Dawoud A hybrid solar-assisted adsorption cooling unit for vaccine storage
Mohammed et al. Productivity improvements of adsorption desalination systems
Jiang et al. Investigation on an innovative cascading cycle for power and refrigeration cogeneration
JP5730028B2 (en) Heat source system
KR100827570B1 (en) Heatpump for waste heat recycle of adsorption type refrigerator
CN114322354A (en) Absorption type circulating refrigeration system and process thereof
JP2003075014A (en) Absorption refrigerating machine
Song et al. Study on gradient thermal driven adsorption cycle with freezing and cooling output for food storage
JP4430363B2 (en) Combined air conditioner
Hassan et al. Numerical simulation of cascaded absorption-two-stage 4-bed adsorption cooling cycles for efficient low-grade heat utilization
JP5402186B2 (en) Refrigeration equipment
KR100981672B1 (en) Two-stage driven hot water absorption chiller
JP2004190885A (en) Absorption compression refrigerating machine and refrigerating system
US10837682B2 (en) Devices with hybrid vapour compression-adsorption cycle and method for implementation thereof
KR20120103100A (en) Hybrid absorption type air conditioning system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170203

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190201

Year of fee payment: 6