KR101360419B1 - Casting aluminum alloy with dispersed cnt and method for producing the same - Google Patents

Casting aluminum alloy with dispersed cnt and method for producing the same Download PDF

Info

Publication number
KR101360419B1
KR101360419B1 KR1020110122884A KR20110122884A KR101360419B1 KR 101360419 B1 KR101360419 B1 KR 101360419B1 KR 1020110122884 A KR1020110122884 A KR 1020110122884A KR 20110122884 A KR20110122884 A KR 20110122884A KR 101360419 B1 KR101360419 B1 KR 101360419B1
Authority
KR
South Korea
Prior art keywords
cnt
alloy
molten metal
dispersed
aluminum alloy
Prior art date
Application number
KR1020110122884A
Other languages
Korean (ko)
Other versions
KR20130057118A (en
Inventor
민병호
박훈모
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020110122884A priority Critical patent/KR101360419B1/en
Priority to CN2012102199947A priority patent/CN103131902A/en
Priority to DE102012211463A priority patent/DE102012211463A1/en
Priority to US13/600,680 priority patent/US20140037493A1/en
Publication of KR20130057118A publication Critical patent/KR20130057118A/en
Application granted granted Critical
Publication of KR101360419B1 publication Critical patent/KR101360419B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof

Abstract

Al-Ti-B계 합금의 용탕에 산화물로 코팅된 CNT 1~5 vol%가 장입 후 교반되어 성형되며, 조직내 TiB2 화합물이 형성되어 탄성이 향상된 CNT가 분산된 주조용 알루미늄 합금 및 그 제조방법이 소개된다.1-5 vol% of CNT coated with oxide is added to the molten Al-Ti-B-based alloy, and then agitated and molded, and a TiB 2 compound is formed in the tissue to form a cast aluminum alloy in which CNTs having improved elasticity are dispersed. The method is introduced.

Description

CNT가 분산된 주조용 알루미늄 합금 및 그 제조방법 {CASTING ALUMINUM ALLOY WITH DISPERSED CNT AND METHOD FOR PRODUCING THE SAME}Aluminum alloy for casting with dispersion of CNC and its manufacturing method {CASTING ALUMINUM ALLOY WITH DISPERSED CNT AND METHOD FOR PRODUCING THE SAME}

본 발명은 대량생산을 위한 주조용 고탄성 CNT가 분산된 주조용 알루미늄 합금 및 그 제조방법에 관한 것이다.
The present invention relates to a cast aluminum alloy dispersed in a cast high elastic CNT for mass production and a method of manufacturing the same.

탄소나노튜브(Carbon Nanotube,CNT)는 6각형 고리로 연결된 탄소들이 긴 대롱 모양을 이루는 지름 1나노미터(1나노미터는 10억분의 1m) 크기의 미세한 분자이다. 탄소원자가 3개씩 결합해 벌집 모양의 구조를 갖게 된 탄소평면이 도르르 말려서 튜브모양이 됐다고 해서 붙여진 이름이다. Carbon Nanotubes (CNTs) are tiny molecules of 1 nanometer in diameter (one nanometer equal to one billionth of a meter), in which long carbons connected by hexagonal rings form a long shape. The carbon plane, which has three carbon atoms bonded together and has a honeycomb structure, is rolled up to form a tube.

CNT는 인장력이 강철보다 1백배 강하고 유연성이 뛰어난 미래형 신소재다. 속이 비어있어 가볍고, 전기도 구리만큼 잘 통하며, 열전도도 다이아몬드 만큼이나 좋은 것으로 알려져 있다. CNT is a futuristic new material that is 100 times stronger than steel and has excellent flexibility. It is known to be hollow, light, well connected to copper, and as thermally conductive as diamond.

또한, 태초부터 존재했는지 실험실에서 우연히 합성됐는지는 규명되지 않았지만 탄소나노튜브가 처음으로 세상에 알려진 것은 1991년으로서, 일본NEC연구소의 이지마박사가 전자현미경을 들여다 보다가 이 튜브형태의 탄소분자를 발견했다.In addition, the existence of carbon nanotubes was first known to the world for the first time in 1991, when Dr. Ijima of the Japan NEC Research Institute looked into the electron microscope and found the carbon molecules in the form of tubes. .

탄소나노튜브는 그 튜브의 지름이 얼마나 되느냐에 따라 도체가 되기도 하고 반도체가 되는 성질이 있음이 밝혀지면서 차세대 반도체 물질로 각광을 받고 있다. 단중벽 튜브, 다중벽 튜브, 다발등 형태에 따라 다양한 물성을 띠어 반도체 메모리소자, 수소저장 및 수소전지전극 등으로 이용할 수 있는 것으로 알려져 왔다. Carbon nanotubes are attracting attention as the next generation of semiconductor materials as it turns out to be conductors and semiconductors depending on the diameter of the tube. It has been known that it can be used as a semiconductor memory device, a hydrogen storage, and a hydrogen cell electrode due to various physical properties depending on the shape of a single wall tube, a multi wall tube, a bundle, and the like.

예컨대 탄소나노튜브로 반도체 칩을 만들면 현재 기가(10억)바이트의 한계를 뛰어넘는 테라(1조)바이트급의 집적도가 가능해진다. 비어있는 관 속에 수소를 저장해 배터리로 쓰거나 고순도 정화필터로 활용할 수도 있다. 뭐든지 잘 흡수하기 때문에 레이더파까지 흡수, 감시망에 걸리지 않는 비행기 도료로 개발하려는 움직임도 있다.
For example, if semiconductor chips are made of carbon nanotubes, tera (one trillion) bytes of integration can be achieved, which exceeds the current giga (1 billion) byte limit. Hydrogen can be stored in an empty tube for use as a battery or as a high purity purification filter. There is a move to develop airplane paint that absorbs anything and absorbs radar waves and does not get caught in the surveillance network.

본 발명은 대량생산을 위한 주조용 고탄성 알루미늄 소재를 개발하기 위한 것으로서, 종래에 본 출원인에 의해 개발된 CNT(탄소나노튜브) 분산 알루미늄 복합재 등은 분말 성형을 통한 소결 및 압출 공정으로 제조되고, 분산 및 CNT함량의 한계로 인해 강도 향상에 한계가 있었다.The present invention is to develop a high-elastic aluminum material for casting for mass production, CNT (carbon nanotube) dispersed aluminum composite, etc. developed by the applicant of the prior art is manufactured by the sintering and extrusion process through powder molding, dispersion And there is a limit to the strength improvement due to the limitation of the CNT content.

CNT 복합재의 제조시에는 CNT 응집에 의한 불균일 분산 등의 문제로 많은 양의 분산 어려우며, 분말성형 공정으로 제조되어 원가경쟁력 및 생산성의 한계가 있었던 것이다.At the time of manufacturing the CNT composite material, it is difficult to disperse a large amount due to problems such as non-uniform dispersion due to CNT agglomeration, and was manufactured by a powder molding process, thereby limiting cost competitiveness and productivity.

종래에는 금속계 화합물 강화 알루미늄 합금, CNT분산 알루미늄 복합재 등이 개발되고 있으나, 탄성 물성 향상에 있어 주철(120GPa) 대비 100GPa 이하로 부족한 수준이었다. 또한, CNT 복합재 제조시 CNT응집에 의한 불균일 분산 등의 문제로 5 vol%이상 분산이 어려우며, 분말성형 공정으로 제조되어 원가경쟁력 및 생산성의 한계가 있었던 것이다.
Conventionally, metal-based compound-reinforced aluminum alloys, CNT-dispersed aluminum composites, etc. have been developed. However, in the improvement of elastic properties, the level was insufficient to less than 100 GPa compared to cast iron (120 GPa). In addition, it is difficult to disperse more than 5 vol% due to non-uniform dispersion due to CNT agglomeration when manufacturing the CNT composite material, it was produced by a powder molding process, there was a limit of cost competitiveness and productivity.

상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.
It should be understood that the foregoing description of the background art is merely for the purpose of promoting an understanding of the background of the present invention and is not to be construed as an admission that the prior art is known to those skilled in the art.

본 발명은 이러한 문제점을 해결하기 위하여 제안된 것으로, 강성 및 NVH 특성 향상 및 대량생산을 위한 주조용 고탄성 알루미늄 합금을 제공하는데 그 목적이 있다.
The present invention has been proposed to solve the above problems, and an object thereof is to provide a high elastic aluminum alloy for casting for improving rigidity and NVH characteristics and mass production.

상기의 목적을 달성하기 위한 본 발명에 따른 CNT가 분산된 주조용 알루미늄 합금은, Al-Ti-B계 합금의 용탕에 산화물로 코팅된 CNT 1~5 vol%가 장입 후 교반되어 성형되며, 조직내 TiB2 화합물이 형성되어 탄성이 향상된다.In order to achieve the above object, the CNT-dispersed cast aluminum alloy according to the present invention is formed by stirring 1 to 5 vol% of CNT-coated with an oxide in a molten Al-Ti-B-based alloy, followed by stirring. The TiB 2 compound is formed to improve elasticity.

상기 Al-Ti-B계 합금의 용탕은 Al-Ti계 합금 용탕과 Al-B계 합금 용탕이 in-situ 방식에 의해 교반되어 형성될 수 있다.The molten Al-Ti-B-based alloy may be formed by stirring the Al-Ti-based alloy molten metal and the Al-B-based alloy molten metal by an in-situ method.

상기 Al-Ti계 합금은 Ti가 2~7 wt% 포함되고, Al-B계 합금은 B가 1~3 wt% 포함될 수 있다.
The Al-Ti alloy may contain 2 to 7 wt% Ti, and the Al-B alloy may include 1 to 3 wt% B.

한편, 본 발명에 따른 CNT가 분산된 주조용 알루미늄 합금의 제조방법은, Al-Ti계 합금 용탕과 Al-B계 합금 용탕을 in-situ 방식에 의해 교반하여 기지용탕을 형성하는 용탕형성단계; 및 상기 형성된 용탕에 산화물로 코팅된 CNT 1~5 vol%를 장입하고 교반하는 장입단계;를 포함한다.On the other hand, the manufacturing method of the aluminum alloy for casting in which the CNT is dispersed according to the present invention, the molten Al-Ti alloy molten metal and the Al-B alloy molten metal by stirring in the in-situ method to form a molten metal; And a charging step of charging and stirring CNT 1 to 5 vol% coated with an oxide on the formed melt.

상기 용탕형성단계는 Al-Ti계 합금은 Ti를 2~7 wt% 포함하고, Al-B계 합금은 B를 1~3 wt% 포함하는 용탕을 혼합할 수 있다.In the forming of the molten metal, the Al-Ti alloy may include 2 to 7 wt% of Ti, and the Al-B alloy may include a molten metal including 1 to 3 wt% of B.

상기 용탕형성단계는 in-situ 방식에 의한 교반을 통하여 조직내 TiB2 화합물을 형성할 수 있다.
The molten metal forming step may form a TiB 2 compound in the tissue through stirring by the in-situ method.

상술한 바와 같은 구조로 이루어진 CNT가 분산된 주조용 알루미늄 합금 및 그 제조방법에 따르면, In-situ반응을 통한 기지합금의 TiB2상과 분산된 CNT로 인하여 탄성계수가 증가한다(120GPa 이상으로서 주철 동등 수준임).According to the CNT-dispersed cast aluminum alloy having a structure as described above and a manufacturing method thereof, the modulus of elasticity increases due to the TiB 2 phase of the matrix alloy and the dispersed CNTs through in-situ reaction (cast iron as 120GPa or more) Equivalent level).

또한, 기지 자체의 탄성계수 증가로 CNT 함량 최소화가 가능하여 원가 절감 효과가 크다.In addition, the CNT content can be minimized by increasing the elastic modulus of the base itself.

그리고, 기존의 분말성형 CNT 복합재가 아닌 주조기반 복합재 제조를 통한 생산성 증대 효과가 있다.
In addition, there is an increase in productivity through the production of casting-based composites rather than the conventional powder-forming CNT composites.

도 1은 본 발명의 CNT가 분산된 주조용 알루미늄 합금의 CNT의 분산량 증가에 따른 탄성계수 증가를 나타낸 그래프.
도 2는 본 발명의 CNT가 분산된 주조용 알루미늄 합금의 Boride 화합물 강화 기지내 CNT 분산에 의한 탄성계수 증가를 나타낸 그래프.
1 is a graph showing an increase in the elastic modulus according to the increase in the amount of CNT dispersion of the casting aluminum alloy of the present invention CNT dispersion.
Figure 2 is a graph showing the elastic modulus increase by CNT dispersion in the boride compound reinforced matrix of the CNT-dispersed cast aluminum alloy of the present invention.

이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 따른 CNT가 분산된 주조용 알루미늄 합금 및 그 제조방법에 대하여 살펴본다.Hereinafter, with reference to the accompanying drawings looks at with respect to the aluminum alloy for casting and manufacturing method of the CNT is dispersed according to a preferred embodiment of the present invention.

본 발명에 따른 CNT가 분산된 주조용 알루미늄 합금은, Al-Ti-B계 합금의 용탕에 산화물로 코팅된 CNT 1~5 vol%가 장입 후 교반되어 성형되며, 조직내 TiB2 화합물이 형성되어 탄성이 향상된다.
In the cast aluminum alloy in which the CNTs are dispersed according to the present invention, 1-5 vol% of CNTs coated with an oxide is melted and charged after being charged into the molten Al-Ti-B alloy, and a TiB 2 compound is formed in the tissue. Elasticity is improved.

종래의 경우, 금속계 화합물의 강화 알루미늄 합금, CNT분산 알루미늄 복합재 등이 제조되고 있으나 탄성 물성의 향상에 있어 주철(120GPa) 대비 100GPa 이하로 부족한 수준이었다. 또한, CNT 복합재 제조시 CNT 응집에 의한 불균일 분산 등의 문제로 5 vol%이상 분산이 어려우며, 분말성형 공정으로 제조되어 원가경쟁력 및 생산성의 한계가 있었다.In the related art, reinforced aluminum alloys and CNT-dispersed aluminum composites of metal-based compounds have been manufactured, but were insufficient to improve the elastic properties to less than 100 GPa compared to cast iron (120 GPa). In addition, it is difficult to disperse more than 5 vol% due to non-uniform dispersion due to CNT agglomeration when manufacturing the CNT composite material, there was a limit of cost competitiveness and productivity because it is manufactured by a powder molding process.

본 발명은 탄성 향상 극대화를 위해 Boride 화합물이 생성된 알루미늄 기지에 5 vol% 이내의 CNT 분산을 통한 120GPa(주철 동등 수준)의 탄성계수를 확보하는 것이다. The present invention is to ensure the elastic modulus of 120GPa (equivalent cast iron) through the CNT dispersion within 5 vol% in the aluminum base in which the boride compound is produced to maximize the elasticity improvement.

이를 위해, 탄성 향상을 위한 알루미늄 기지합금을 제조한다. 탄성 향상에 가장 효과적인 Boride화합물(TiB2 : 541GPa)의 형성을 위해서 Al-Ti , Al-B 모합금을 활용한 주조용 기지합금 용탕을 제조한다. 그리고, Al-(2~7wt%)Ti, Al-(1~3wt%)B의 알루미늄 모합금 이용하여, 분말 형태의 투입이 아닌, in-situ반응을 통한 TiB2상의 생성을 유도(소재 균일성을 확보)하고, 1차 기지 탄성계수를 100GPa 수준으로 확보하도록 하는 것이다. in-situ반응이란 일반적으로 별도의 입자를 생성하여 투입하는 것이 아니라, 해당 반응 사이트 내에서 자연적으로 입자가 형성되도록 하는 제조방식을 말한다.To this end, an aluminum base alloy is prepared for improving elasticity. In order to form the most effective boride compound (TiB 2 : 541GPa) to improve the elasticity, a cast base alloy molten metal using Al-Ti and Al-B mother alloy is prepared. And, using Al- (2 ~ 7wt%) Ti, Al- (1 ~ 3wt%) B aluminum master alloy, induces the formation of TiB 2 phase through in-situ reaction, not in powder form (material uniformity) Property) and the primary known modulus of elasticity to 100 GPa level. In-situ reaction generally refers to a production method in which particles are naturally formed within the reaction site, rather than generating and adding separate particles.

또한, 용탕 내에 고온 산화방지를 위한 Oxide코팅된 CNT 1~5 vol%를 투입한다. CNT는 고온 노출시 산소와 반응하여 산화되므로 이를 방지하기 위해 SiO2 등의 산화물로 코팅하여 용탕 내에 장입 후 교반시킨다.In addition, 1 ~ 5 vol% of oxide coated CNT for preventing high temperature oxidation is added to the molten metal. CNTs react with oxygen and oxidize at high temperatures, so SiO 2 It is coated with an oxide such as this and charged in the molten metal, followed by stirring.

이를 통하여, In-situ반응을 통한 기지합금의 TiB2상과 분산된 CNT로 인하여 탄성계수를 증가시키고(120GPa 이상으로서 주철 동등 수준임), 기지 자체의 탄성계수 증가로 CNT 함량 최소화가 가능하여 원가 절감 효과를 증대하는 것이다. Through this, the modulus of elasticity is increased due to the TiB 2 phase of the base alloy and the dispersed CNT through in-situ reaction (at least 120GPa, which is equivalent to cast iron), and the CNT content can be minimized by increasing the elastic modulus of the base itself. It is to increase the effect.

그리고, 기존의 분말성형 CNT 복합재가 아닌 주조기반 복합재 제조를 통한 생산성 증대 효과를 높이도록 할 수 있는 것이다.
And, it is possible to increase the productivity increase effect through the production of casting-based composites, rather than the existing powder-forming CNT composites.

한편, 상기 Al-Ti-B계 합금의 용탕은 Al-Ti계 합금 용탕과 Al-B계 합금 용탕이 in-situ 방식에 의해 교반되어 형성될 수 있으며, 상기 Al-Ti계 합금은 Ti가 2~7 wt% 포함되고, Al-B계 합금은 B가 1~3 wt% 포함될 수 있다.
On the other hand, the molten Al-Ti-B-based alloy may be formed by stirring the Al-Ti-based alloy molten metal and Al-B-based alloy molten metal by an in-situ method, the Al-Ti-based alloy is Ti 2 ~ 7 wt% is included, Al-B-based alloy may contain 1 to 3 wt% of B.

그리고, 본 발명에 따른 CNT가 분산된 주조용 알루미늄 합금의 제조방법은, Al-Ti계 합금 용탕과 Al-B계 합금 용탕을 in-situ 방식에 의해 교반하여 기지용탕을 형성하는 용탕형성단계; 및 상기 형성된 용탕에 산화물로 코팅된 CNT 1~5 vol%를 장입하고 교반하는 장입단계;를 포함한다.In addition, the method for producing an aluminum alloy for casting in which the CNTs are dispersed according to the present invention includes: a molten metal forming step of forming a matrix molten metal by stirring the Al-Ti alloy molten metal and the Al-B alloy molten metal by an in-situ method; And a charging step of charging and stirring CNT 1 to 5 vol% coated with an oxide on the formed melt.

여기서, 상기 용탕형성단계는 Al-Ti계 합금은 Ti를 2~7 wt% 포함하고, Al-B계 합금은 B를 1~3 wt% 포함하는 용탕을 혼합할 수 있고, 상기 용탕형성단계는 in-situ 방식에 의한 교반을 통하여 조직내 TiB2 화합물을 형성할 수 있다.
Here, in the molten metal forming step, the Al-Ti-based alloy may include 2 to 7 wt% of Ti, and the Al-B-based alloy may include a molten metal including 1 to 3 wt% of B. TiB 2 compound in the tissue can be formed through agitation by an in-situ method.

하기의 표 1은 Boride 화합물을 이용한 주조용 고탄성 합금 화학조성이며, 표 2는 TiB2 증가에 따른 탄성계수의 증가를 나타낸 표이다.Table 1 below is a high elastic alloy chemical composition for casting using a boride compound, Table 2 is TiB 2 Table shows the increase of the elastic modulus with the increase.

Figure 112011092826373-pat00001
Figure 112011092826373-pat00001

Figure 112011092826373-pat00002
Figure 112011092826373-pat00002

상기 표에서 볼 수 있듯이, TiB2 상의 증가에 따라 탄성계수가 현저히 상승됨을 알 수 있다.
As can be seen from the table above, TiB 2 It can be seen that the modulus of elasticity is significantly increased as the phase increases.

그리고 도 1은 본 발명의 CNT가 분산된 주조용 알루미늄 합금의 CNT의 분산량 증가에 따른 탄성계수 증가를 나타낸 그래프로서, Voigt-Reuss 모델을 통한 CNT vol% 증가에 따른 복합재의 탄성계수가 증가함을 나타낸다. 특히, 실험적 한계치인 5 vol% 분산시에도 92GPa 수준의 탄성계수 증가를 확인할 수 있었다.
1 is a graph showing an increase in the elastic modulus of the CNT-dispersed cast aluminum alloy according to the increase in the amount of CNT dispersion, the elastic modulus of the composite increases with increasing the CNT vol% through the Voigt-Reuss model Indicates. In particular, it was confirmed that the elastic modulus increased to 92 GPa even at the experimental limit of 5 vol%.

한편, 도 2는 본 발명의 CNT가 분산된 주조용 알루미늄 합금의 Boride 화합물 강화 기지내 CNT 분산에 의한 탄성계수 증가를 나타낸 그래프로서, TiB2 9.32 wt%가 생성된 기지합금을 통한 탄성계수의 증가가 68에서 98GPa로 증가하였음을 알 수 있다. 또한, Boride화합물 알루미늄 기지에서의 CNT 분산에 의한 탄성계수 증가가 98에서 122 GPa로 증가하였는바, CNT 5 vol% 분산시 122 GPa의 탄성계수를 확보할 수 있는 것이다.
On the other hand, Figure 2 is a graph showing the increase in the modulus of elasticity by the dispersion of CNT in the boride compound reinforcement base of the cast aluminum alloy of the present invention, CNT dispersion, TiB 2 9.32 wt% increase in the modulus of elasticity through the base alloy It can be seen that increased from 68 to 98 GPa. In addition, the elastic modulus increase by CNT dispersion in the boride compound aluminum matrix was increased from 98 to 122 GPa. Thus, the elastic modulus of 122 GPa can be obtained when CNT 5 vol% is dispersed.

상술한 바와 같은 구조로 이루어진 CNT가 분산된 주조용 알루미늄 합금 및 그 제조방법에 따르면, In-situ반응을 통한 기지합금의 TiB2상과 분산된 CNT로 인하여 탄성계수가 증가한다(120GPa 이상으로서 주철 동등 수준임).According to the CNT-dispersed cast aluminum alloy having a structure as described above and a manufacturing method thereof, the modulus of elasticity increases due to the TiB 2 phase of the matrix alloy and the dispersed CNTs through in-situ reaction (cast iron as 120GPa or more) Equivalent level).

또한, 기지 자체의 탄성계수 증가로 CNT 함량 최소화가 가능하여 원가 절감 효과가 크다.In addition, the CNT content can be minimized by increasing the elastic modulus of the base itself.

그리고, 기존의 분말성형 CNT 복합재가 아닌 주조기반 복합재 제조를 통한 생산성 증대 효과가 있다.
In addition, there is an increase in productivity through the production of casting-based composites rather than the conventional powder-forming CNT composites.

본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the following claims It will be apparent to those of ordinary skill in the art.

Claims (6)

Al-Ti-B계 합금의 용탕에 산화물로 코팅된 CNT 1~5 vol%가 장입 후 교반되어 성형되며, 조직내 TiB2 화합물이 형성되어 탄성이 향상된 CNT가 분산된 주조용 알루미늄 합금.A casting aluminum alloy in which CNT 1-5 vol% coated with an oxide is melted and charged in an Al-Ti-B alloy, and then stirred, and a CNT is dispersed in which a TiB 2 compound is formed in a structure to improve elasticity. 청구항 1에 있어서,
상기 Al-Ti-B계 합금의 용탕은 Al-Ti계 합금 용탕과 Al-B계 합금 용탕이 in-situ 방식에 의해 교반되어 형성된 것을 특징으로 하는 CNT가 분산된 주조용 알루미늄 합금.
The method according to claim 1,
The molten Al-Ti-B-based alloy is a CNT-dispersed cast aluminum alloy, characterized in that the Al-Ti-based alloy molten metal and Al-B-based alloy molten metal formed by stirring by the in-situ method.
청구항 2에 있어서,
상기 Al-Ti계 합금은 Ti가 2~7 wt% 포함되고, Al-B계 합금은 B가 1~3 wt% 포함된 것을 특징으로 하는 CNT가 분산된 주조용 알루미늄 합금.
The method according to claim 2,
The Al-Ti-based alloy is 2 to 7 wt% of Ti, Al-B-based alloy is CNT dispersed casting aluminum alloy, characterized in that it contains 1 to 3 wt%.
Al-Ti계 합금 용탕과 Al-B계 합금 용탕을 in-situ 방식에 의해 교반하여 기지용탕을 형성하는 용탕형성단계; 및
상기 형성된 용탕에 산화물로 코팅된 CNT 1~5 vol%를 장입하고 교반하는 장입단계;를 포함하는 CNT가 분산된 주조용 알루미늄 합금 제조방법.
A molten metal forming step of forming a matrix molten metal by stirring the Al-Ti alloy molten metal and the Al-B alloy molten metal by an in-situ method; And
The charging step of charging and stirring the CNT 1 ~ 5 vol% coated with an oxide to the formed melt; CNT dispersed casting aluminum alloy manufacturing method comprising a.
청구항 4에 있어서,
상기 용탕형성단계는 Al-Ti계 합금은 Ti를 2~7 wt% 포함하고, Al-B계 합금은 B를 1~3 wt% 포함하는 용탕을 혼합하는 것을 특징으로 하는 CNT가 분산된 주조용 알루미늄 합금 제조방법.
The method of claim 4,
In the molten metal forming step, the Al-Ti-based alloy includes 2 to 7 wt% of Ti, and the Al-B-based alloy is mixed with the molten metal including 1 to 3 wt% of BNT for casting. Aluminum alloy manufacturing method.
청구항 4에 있어서,
상기 용탕형성단계는 in-situ 방식에 의한 교반을 통하여 조직내 TiB2 화합물을 형성하는 것을 특징으로 하는 CNT가 분산된 주조용 알루미늄 합금 제조방법.
The method of claim 4,
The molten metal forming step is a CNT-dispersed casting aluminum alloy manufacturing method, characterized in that to form a TiB 2 compound in the tissue through stirring by in-situ method.
KR1020110122884A 2011-11-23 2011-11-23 Casting aluminum alloy with dispersed cnt and method for producing the same KR101360419B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020110122884A KR101360419B1 (en) 2011-11-23 2011-11-23 Casting aluminum alloy with dispersed cnt and method for producing the same
CN2012102199947A CN103131902A (en) 2011-11-23 2012-06-27 Cast aluminum alloy with dispersed CNTs and method for producing same
DE102012211463A DE102012211463A1 (en) 2011-11-23 2012-07-03 Aluminum cast alloy, comprises an aluminum-titanium-boron alloy and carbon nanotubes, which are coated with an oxide and uniformly distributed in the aluminum-titanium-boron alloy
US13/600,680 US20140037493A1 (en) 2011-11-23 2012-08-31 Casting aluminum alloy with dispersed cnt and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110122884A KR101360419B1 (en) 2011-11-23 2011-11-23 Casting aluminum alloy with dispersed cnt and method for producing the same

Publications (2)

Publication Number Publication Date
KR20130057118A KR20130057118A (en) 2013-05-31
KR101360419B1 true KR101360419B1 (en) 2014-02-11

Family

ID=48222204

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110122884A KR101360419B1 (en) 2011-11-23 2011-11-23 Casting aluminum alloy with dispersed cnt and method for producing the same

Country Status (4)

Country Link
US (1) US20140037493A1 (en)
KR (1) KR101360419B1 (en)
CN (1) CN103131902A (en)
DE (1) DE102012211463A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101601406B1 (en) * 2014-04-14 2016-03-09 현대자동차주식회사 Highly elastic aluminum alloy for continuous casting and method for producing the same
US20160023404A1 (en) * 2014-07-25 2016-01-28 Stephen Raymond Anderson Three-dimensional manufacturing, fabricating, forming, and/or repairing apparatus and method
CN104630570B (en) * 2014-12-11 2017-02-22 中车青岛四方机车车辆股份有限公司 High-damping carbon nanotube/aluminum alloy composite material and preparation method thereof
CN105671350A (en) * 2015-03-19 2016-06-15 中信戴卡股份有限公司 Aluminum alloy refiner, preparation method therefor and use thereof
CN105088023B (en) * 2015-09-08 2017-03-22 苏州有色金属研究院有限公司 Preparation method of carbon nano tube reinforced aluminum matrix composite
CN105483420A (en) * 2015-12-11 2016-04-13 苏州第一元素纳米技术有限公司 Nano-carbon-reinforced wear-resistant composite material
CN106756193A (en) * 2016-12-30 2017-05-31 苏州有色金属研究院有限公司 Preparation facilities of carbon nanotube enhanced aluminium-based composite material and preparation method thereof
CN110195168B (en) * 2019-07-12 2021-01-01 东北大学 Preparation process of aluminum-titanium-boron refiner plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523357A (en) 2000-05-15 2004-08-05 ワン,ル−ヤオ Method of spheroidizing silicon during casting of aluminum-silicon alloy
JP2006250280A (en) 2005-03-11 2006-09-21 Nissan Motor Co Ltd Piston pin of internal-combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836982A (en) * 1984-10-19 1989-06-06 Martin Marietta Corporation Rapid solidification of metal-second phase composites
US5057150A (en) * 1989-05-03 1991-10-15 Alcan International Limited Production of aluminum master alloy rod
US8340175B2 (en) 2005-04-13 2012-12-25 Ntt Docomo, Inc. Dynamic image encoding device, dynamic image decoding device, dynamic image encoding method, dynamic image decoding method, dynamic image encoding program, and dynamic image decoding program
US20090308753A1 (en) * 2008-04-21 2009-12-17 Wong Stanislaus S Methods for controlling silica deposition onto carbon nanotube surfaces
JP5246765B2 (en) * 2008-10-29 2013-07-24 国立大学法人 東京大学 Carbon nanotube formation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523357A (en) 2000-05-15 2004-08-05 ワン,ル−ヤオ Method of spheroidizing silicon during casting of aluminum-silicon alloy
JP2006250280A (en) 2005-03-11 2006-09-21 Nissan Motor Co Ltd Piston pin of internal-combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
충남대학교 석사학위논문 "전도성 페이스트용 탄소나노튜브-금속복합체의 제조 및 염료감응 태양전지로의 응용" (2011.06.) *

Also Published As

Publication number Publication date
KR20130057118A (en) 2013-05-31
CN103131902A (en) 2013-06-05
DE102012211463A1 (en) 2013-05-23
US20140037493A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
KR101360419B1 (en) Casting aluminum alloy with dispersed cnt and method for producing the same
KR101583916B1 (en) Nano-carbon reinforced aluminium composite materials and method for manufacturing the same
Kim et al. Zeolite-templated mesoporous silicon particles for advanced lithium-ion battery anodes
Tan et al. Peering into alloy anodes for sodium‐ion batteries: current trends, challenges, and opportunities
Wang et al. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes
Liu et al. Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries
Wang et al. Rapid and low temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites
Yang et al. Controllable synthesis of peapod-like Sb@ C and corn-like C@ Sb nanotubes for sodium storage
Huang et al. Synthesis of porous Si/C composite nanosheets from vermiculite with a hierarchical structure as a high-performance anode for lithium-ion battery
Gu et al. Controllable synthesis of mesoporous peapod‐like Co3O4@ carbon nanotube arrays for high‐performance lithium‐ion batteries
CN107004830B (en) Methods and materials for lithium ion battery anodes
Su et al. Large-scale synthesis and mechanism of β-SiC nanoparticles from rice husks by low-temperature magnesiothermic reduction
Li et al. Research progress of silicon/carbon anode materials for lithium‐ion batteries: structure design and synthesis method
Yao et al. Crab shells as sustainable templates from nature for nanostructured battery electrodes
Xue et al. Preparation and elevated temperature compressive properties of multi-walled carbon nanotube reinforced Ti composites
Su et al. Three-dimensional porous Si and SiO2 with in situ decorated carbon nanotubes as anode materials for Li-ion batteries
Luo et al. Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application
Liu et al. Nano-SnO2/carbon nanotube hairball composite as a high-capacity anode material for lithium ion batteries
Lee et al. In situ synthesis and characterization of Ge embedded electrospun carbon nanostructures as high performance anode material for lithium-ion batteries
Wu et al. Antimony anchored with nitrogen-doping porous carbon as a high-performance anode material for Na-ion batteries
CN103981381B (en) Method for preparing nano aluminum oxide dispersion enhanced copper-base composite material according to sol-gel method
Xu et al. Research Progress on Coating Structure of Silicon Anode Materials for Lithium‐Ion Batteries
KR20130028378A (en) Method for processing homogeneously well dispersed carbon nanotube-aluminum composite powder by nano particles
JP2015510666A5 (en)
KR101686973B1 (en) Method for processing homogeneously well dispersed carbon nanotube-aluminum composite powder by nano particles

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180130

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190130

Year of fee payment: 6