KR101354489B1 - Charge transfer complex, synthesis method of the same and solar cell containing the same - Google Patents

Charge transfer complex, synthesis method of the same and solar cell containing the same Download PDF

Info

Publication number
KR101354489B1
KR101354489B1 KR1020120000056A KR20120000056A KR101354489B1 KR 101354489 B1 KR101354489 B1 KR 101354489B1 KR 1020120000056 A KR1020120000056 A KR 1020120000056A KR 20120000056 A KR20120000056 A KR 20120000056A KR 101354489 B1 KR101354489 B1 KR 101354489B1
Authority
KR
South Korea
Prior art keywords
compound
metal
solar cell
layer
formula
Prior art date
Application number
KR1020120000056A
Other languages
Korean (ko)
Other versions
KR20130078904A (en
Inventor
오세용
양의열
이태연
Original Assignee
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교산학협력단 filed Critical 서강대학교산학협력단
Priority to KR1020120000056A priority Critical patent/KR101354489B1/en
Publication of KR20130078904A publication Critical patent/KR20130078904A/en
Application granted granted Critical
Publication of KR101354489B1 publication Critical patent/KR101354489B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/20Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups being part of rings other than six-membered aromatic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 전하착체 화합물, 그 합성방법 및 이를 포함하는 태양전지에 관한 것으로 태양전지와 같은 전자소자에 포함되는 유기층과 금속전극의 계면에서 접촉저항과 전자 주입능력을 개선할 수 있는 전하착체 화합물, 그 합성방법 및 이를 버퍼층으로 포함하는 태양전지에 관한 것이다.
본 발명에 따르면 금속전극과 유기층 계면의 접촉저항이 개선되고 금속과 유기층 사이의 에너지 장벽이 낮아져 전자 주입이 용이하게 되어 고효율의 전자소자를 얻을 수 있다. 특히 태양전지에 있어서 광활성층(유기층)과 금속전극 사이에 전하착체 화합물을 유기 버퍼층으로 사용함으로써 광활성층과 금속전극 간의 접촉 저항을 감소시키고, 고전도성을 갖는 유기-금속 화합물을 형성하여 직렬저항, 단락전류 값, 개방전압 및 필팩터(fill factor) 값을 개선시킬 수 있다.
The present invention relates to a charge complex compound, a method for synthesizing the same, and a solar cell including the same. A charge complex compound capable of improving contact resistance and electron injection ability at an interface between an organic layer and a metal electrode included in an electronic device such as a solar cell, The synthesis method and a solar cell comprising the same as a buffer layer.
According to the present invention, the contact resistance between the metal electrode and the organic layer interface is improved and the energy barrier between the metal and the organic layer is lowered to facilitate electron injection, thereby obtaining a highly efficient electronic device. In particular, in the solar cell, by using a charge complex compound between the photoactive layer (organic layer) and the metal electrode as an organic buffer layer, the contact resistance between the photoactive layer and the metal electrode is reduced, and an organic-metal compound having high conductivity is formed to form a series resistance, It is possible to improve the short circuit current value, the open voltage and the fill factor value.

Description

전하착체 화합물, 그 합성방법 및 이를 포함하는 태양전지.{Charge transfer complex, synthesis method of the same and solar cell containing the same}Charge complex compound, synthesis method thereof and solar cell comprising same. {Charge transfer complex, synthesis method of the same and solar cell containing the same}

본 발명은 전하착체 화합물, 그 합성방법 및 이를 포함하는 태양전지에 관한 것으로 태양전지와 같은 전자소자에 포함되는 유기층과 금속전극의 계면에서 접촉저항과 전자 주입능력을 개선할 수 있는 전하착체 화합물, 그 합성방법 및 이를 버퍼층으로 포함하는 태양전지에 관한 것이다.The present invention relates to a charge complex compound, a method for synthesizing the same, and a solar cell including the same. A charge complex compound capable of improving contact resistance and electron injection ability at an interface between an organic layer and a metal electrode included in an electronic device such as a solar cell, The synthesis method and a solar cell comprising the same as a buffer layer.

최근 전 세계적으로 화석연료의 소비가 급격히 늘어나면서 유가가 급격히 상승하고 있으며 지구 온난화 등의 환경문제로 청정 대체에너지의 필요성이 높아지고 있다. 이에 세계 각국은 신재생 에너지원에 총력을 기울이고 있으며, 교토의정서 발효와 맞물려 친환경적인 무공해 에너지원으로 개발이 국가의 당면과제로 제기되고 있다. Recently, as the consumption of fossil fuels is rapidly increasing all over the world, the oil price is rising rapidly, and the necessity of clean alternative energy is increasing due to environmental problems such as global warming. As a result, countries around the world are concentrating their efforts on new and renewable energy sources, and development of environmentally friendly, pollution-free energy sources in response to the entry into force of the Kyoto Protocol has been raised as a national challenge.

무한한 에너지원인 태양광으로부터 전기를 생산하는 태양전지 기술은 다양한 신재생 에너지 기술 중에서도 가장 관심을 받는 분야이다. 현재 태양전지의 주된 부분을 차지하고 있는 무기물 실리콘 태양전지는 상용화되어 시판되고 있다. 그러나 비싼 재료 가격과 재료공급의 한계성이라는 단점이 있다. 또한 복잡한 제작공정도 비용이 상승하는 요인이 된다.Solar cell technology that produces electricity from solar, which is an infinite energy source, is the field of most interest among various renewable energy technologies. At present, inorganic silicon solar cells, which are a major part of solar cells, are commercially available and commercially available. However, there are disadvantages of expensive material price and limit of material supply. In addition, complicated fabrication processes also lead to increased costs.

따라서 이러한 무기물 실리콘 태양전지의 대안으로 유기 태양전지의 대한 관심이 모아지고 있다. 유기 태양전지는 유기 재료의 우수한 가공성, 다양성, 경량성 및 경제성(값싼 원재료)이라는 장점을 가지고 있다. 또한 기존 무기물 실리콘 태양전지에 비해 제작 공정이 간단하여 제작 비용을 줄일 수 있는 장점도 있다. 현재 유기 태양전지는 롤 투 롤(ROLL TO ROLL) 대면적 박막 제작공정 기술이 개발되면서 더 주목받고 있다. 다만 이러한 유기 태양전지의 높은 효율을 위해서는 유기층과 금속전극 계면의 접촉저항 개선이 필수적이다. 현재 자기조립 단분자막, LiF층의 삽입, 버퍼층 삽입 등의 연구가 진행 중이다. N형 버퍼층으로는 주기 무기산화물계열이 개발되고 있으나 이는 공기중에서 O2를 흡수하여 낮은 전도도를 나타내는 문제가 있다. 또한 공정이 복잡하고 플렉시블(flexible)한 유기태양전지의 장점을 극대화하기에는 어려움이 있다. Therefore, attention has been drawn to organic solar cells as an alternative to such inorganic silicon solar cells. Organic solar cells have the advantages of excellent processability, versatility, light weight and economy (cheap raw materials) of organic materials. In addition, the manufacturing process is simpler than the existing inorganic silicon solar cell has the advantage of reducing the manufacturing cost. Currently, organic solar cells are attracting more attention as the roll to roll large area thin film manufacturing process technology is developed. However, for the high efficiency of the organic solar cell, it is necessary to improve the contact resistance between the organic layer and the metal electrode interface. Currently, self-assembled monolayers, insertion of LiF layers, buffer layer insertion, and other researches are in progress. Periodic inorganic oxide series have been developed as the N-type buffer layer, but this has a problem of absorbing O 2 in the air and showing low conductivity. In addition, there is a difficulty in maximizing the advantages of the complex and flexible organic solar cell.

상기와 같은 문제점을 해결하기 위하여, 본 발명은 태양전지와 같은 전자소자에 포함되는 유기층과 금속전극 계면에서 접촉저항과 전자 주입능력을 개선시킬 수 있는 전하착체화합물 및 그 합성방법을 제공한다. 또한 유기 태양전지의 플렉시블(flexible)한 물성에 손상을 주지 않으면서 전자수송층의 역할을 하며 인접한 금속전극과의 접촉저항을 줄여주는 역할을 복합적으로 할 수 있는 상기 전하착체 화합물을 새로운 유기 버퍼층으로 사용한 유기 태양전지를 제공한다. In order to solve the above problems, the present invention provides a charge complex compound and a method for synthesizing the same, which can improve contact resistance and electron injection capability at an organic layer and a metal electrode interface included in an electronic device such as a solar cell. In addition, as the new organic buffer layer, the charge complex compound, which can act as an electron transport layer and reduce the contact resistance with adjacent metal electrodes without damaging the flexible physical properties of the organic solar cell, is used. Provide an organic solar cell.

본 발명의 하나의 양상은 하기 화학식 1의 전하착제 화합물을 제조하는 방법에 관계한다. 상기 방법은 금속화합물, 환원제, 약산 및 산화제를 반응시켜 금속카르보닐기 함유 용액을 제조하는 단계 ; 상기 금속카르보닐기 함유 용액에 하기 화학식 2의 화합물을 소정온도에서 반응시켜 벤조퀴논 화합물을 제조하는 단계 ; 상기 벤조퀴논 화합물에서 금속카르보닐을 제거하는 단계; 및 상기 벤조퀴논 화합물을 카르보디이미드기를 갖는 화합물과 반응시키는 단계. One aspect of the invention relates to a method of preparing a charge binder compound of formula (1). The method includes preparing a metal carbonyl group-containing solution by reacting a metal compound, a reducing agent, a weak acid and an oxidizing agent; Preparing a benzoquinone compound by reacting the metal carbonyl group-containing solution with a compound of Formula 2 at a predetermined temperature; Removing metal carbonyl from the benzoquinone compound; And reacting the benzoquinone compound with a compound having a carbodiimide group.

[화학식 1] [Formula 1]

Figure 112012000068416-pat00001
Figure 112012000068416-pat00001

상기 화학식에서 R1, R2, R3, R4는 각각 독립적으로 H, C1~C20 직쇄 또는 분쇄 알킬기, C1~C20 직쇄 또는 분쇄 알케닐기, C1~C20 직쇄 또는 분쇄 알키닐기이다.R 1, R 2, R 3, and R 4 in the above formulas are each independently H, C 1 to C 20 straight or crushed alkyl group, C 1 to C 20 straight or crushed alkenyl group, C 1 to C 20 straight or pulverized alkynyl group.

[화학식 2](2)

R5C≡CHR 5 C≡CH

여기서 상기 R5은 C1~C20 직쇄 또는 분쇄 알킬기, C1~C20 직쇄 또는 분쇄 알케닐기이다. Wherein R 5 is a C1-C20 straight or crushed alkyl group, C1-C20 straight or crushed alkenyl group.

다른 양상에서, 본 발명은 기판 위에 형성된 양극전극; 상기 양극전극 상에 형성된 전자수용체와 전자공여체를 갖는 광활성층; 상기 광활성층 상에 형성된 하기 화학식 3으로 표현되는 전하착체 화합물을 포함하는 버퍼층; 및 상기 버퍼층 상에 형성된 음극 전극을 포함하는 태양전지에 관계한다. In another aspect, the present invention is an anode electrode formed on a substrate; A photoactive layer having an electron acceptor and an electron donor formed on the anode electrode; A buffer layer comprising a charge complex compound represented by Formula 3 below formed on the photoactive layer; And it relates to a solar cell comprising a cathode electrode formed on the buffer layer.

[화학식 3](3)

Figure 112012000068416-pat00002
Figure 112012000068416-pat00002

상기 화학식에서 R은 C6~C12인 알킬기이다.In the above formula, R is an alkyl group of C6 ~ C12.

본 발명에 따르면 금속전극과 유기층 계면의 접촉저항이 개선되고 금속과 유기층 사이의 에너지 장벽이 낮아져 전자 주입이 용이하게 되어 고효율의 전자소자를 얻을 수 있다. 특히 태양전지에 있어서 광활성층(유기층)과 금속전극 사이에 전하착체 화합물을 유기 버퍼층으로 사용함으로써 광활성층과 금속전극 간의 접촉 저항을 감소시키고, 고전도성을 갖는 유기-금속 화합물을 형성하여 직렬저항, 단락전류 값, 개방전압 및 필팩터(fill factor) 값을 개선시킬 수 있다.According to the present invention, the contact resistance between the metal electrode and the organic layer interface is improved and the energy barrier between the metal and the organic layer is lowered to facilitate electron injection, thereby obtaining a highly efficient electronic device. In particular, in the solar cell, by using a charge complex compound between the photoactive layer (organic layer) and the metal electrode as an organic buffer layer, the contact resistance between the photoactive layer and the metal electrode is reduced, and an organic-metal compound having high conductivity is formed to form a series resistance, It is possible to improve the short circuit current value, the open voltage and the fill factor value.

도 1은 본 발명의 일구현예에 따른 태양전지의 구조를 나타내는 모식도이다.
도 2는 솔벤트 종류(a) 및 메탄올 농도(b)에 따른 광 전류-전압 특성을 나타낸 것이다.
도 3은 솔벤트 종류(a) 및 메탄올 농도(b)에 따른 광-루미네선스 특성을 나타낸 것이다.
도 4는 DCNQI 0.1mM 제작된 소자와 이를 포함하지 않는 소자의 광 전류-전압 특성을 나타낸 것이다.
1 is a schematic diagram showing the structure of a solar cell according to an embodiment of the present invention.
2 shows photocurrent-voltage characteristics according to solvent type (a) and methanol concentration (b).
Figure 3 shows the photo-luminescence characteristics according to the solvent type (a) and methanol concentration (b).
Figure 4 shows the photocurrent-voltage characteristics of the device manufactured DCNQI 0.1mM and not including it.

이하, 본 발명을 상세히 설명하면 하기와 같다.Hereinafter, the present invention will be described in detail.

본 발명은 유기층과 금속전극 계면의 접촉 저항을 감소시키고, 전자 주입을 용이하게 하는 전하착체 화합물(하기 화학식 1)을 합성하고 이를 이용한 고효율의 태양전지를 제공한다. The present invention synthesizes a charge complex compound (Formula 1) that reduces contact resistance between an organic layer and a metal electrode interface and facilitates electron injection, and provides a high efficiency solar cell using the same.

[화학식 1] [Formula 1]

Figure 112012000068416-pat00003
Figure 112012000068416-pat00003

상기 화학식에서 R1, R2, R3, R4는 각각 독립적으로 H, C1~C20 직쇄 또는 분쇄 알킬기, C1~C20 직쇄 또는 분쇄 알케닐기, C1~C20 직쇄 또는 분쇄 알키닐기이다.R 1, R 2, R 3, and R 4 in the above formulas are each independently H, C 1 to C 20 straight or crushed alkyl group, C 1 to C 20 straight or crushed alkenyl group, C 1 to C 20 straight or pulverized alkynyl group.

본 발명에 따른 상기 화학식 1로 표현되는 전하착체 화합물의 합성방법은, 금속카르보닐기 함유 용액을 제조하는 단계, 벤조퀴논 화합물을 제조하는 단계, 금속카르보닐을 제거하는 단계 및 상기 벤조퀴논 화합물을 카르보디이미드기를 갖는 화합물과 반응시키는 단계를 포함한다.
Synthesis method of the charge complex compound represented by the formula (1) according to the present invention, preparing a metal carbonyl group-containing solution, preparing a benzoquinone compound, removing the metal carbonyl and the benzoquinone compound carbodi Reacting with a compound having a mid group.

금속카르보닐기Metal Carbonyl Group 함유 용액을 제조하는 단계 Preparing a containing solution

상기 단계는 금속화합물, 환원제, 약산 및 산화제를 반응시켜 금속카르보닐기 함유 용액을 제조하는 단계이다. The step is to prepare a metal carbonyl group-containing solution by reacting a metal compound, a reducing agent, a weak acid and an oxidizing agent.

상기 단계는 산화제인 일산화탄소로 버블링하면서 환원제와 금속 함유물질을 반응시키는 단계이다.The step is to react the reducing agent and the metal-containing material while bubbling with carbon monoxide, which is an oxidizing agent.

좀 더 구체적으로는 상기 단계는 금속화합물을 환원제 용액에 넣어주고, 동시에 산화제인 일산화탄소로 버블링하면서 반응시킬 수 있다.More specifically, the step may be added to the metal compound in the reducing agent solution, and at the same time it can be reacted while bubbling with carbon monoxide, which is an oxidizing agent.

상기 금속화합물은 출발물질로서 사용되며, 수산화마그네슘, 질산마그네슘, 탄산마그네슘, 황산마그네슘, 아세트산마그네슘, 질산 제2철, 황산 제2철, 염화 제2철, 질산 제1철, 황산 제1철, 염화 제1철 및 사염화타이타늄으로 이루어진 군에서 선택되는 하나 이상일 수 있으며, 바람직하게는 염화제이철(FeCl3)이다.The metal compound is used as a starting material, magnesium hydroxide, magnesium nitrate, magnesium carbonate, magnesium sulfate, magnesium acetate, ferric nitrate, ferric sulfate, ferric chloride, ferrous nitrate, ferrous sulfate, It may be at least one selected from the group consisting of ferrous chloride and titanium tetrachloride, preferably ferric chloride (FeCl 3).

상기 환원제는 NaBH4, LiBH4, KBH4, 테트라부틸암모늄 보로하이드라이드(tetrabutylammonium borohydride), N2H4, PhHNNH2, 암모니아 보레인 배위체(NH3-BH3), 트리메틸암모니아 보레인 배위체((CH3)3N-BH3), 포름산 및 소듐 하이드로포스페이트(NaHPO2)로 이루어진 군으로부터 선택될 수 있고, 바람직하게는 NaBH4일 수 있다. The reducing agent is NaBH4, LiBH4, KBH4, tetrabutylammonium borohydride, N2H4, PhHNNH2, ammonia borane ligand (NH3-BH3), trimethylammonia borane ligand ((CH3) 3N-BH3), It may be selected from the group consisting of formic acid and sodium hydrophosphate (NaHPO 2), preferably NaBH 4.

상기 환원제나 금속화합물을 용해하는 용매로는 테트라하이드로푸란, 디클로로메탄, 톨루엔, 메틸톨루엔, 디메틸톨루엔, 모노클로로벤젠, 디클로로벤젠 및 트리클로로벤젠으로 이루어진 군에서 선택된 하나 이상일 수 있다. The solvent for dissolving the reducing agent or the metal compound may be at least one selected from the group consisting of tetrahydrofuran, dichloromethane, toluene, methyltoluene, dimethyltoluene, monochlorobenzene, dichlorobenzene and trichlorobenzene.

상기 약산으로는 젖산(lactic acid), 구연산(citric acid), 사과산(말산, malic acid), 옥살산(oxalic acid), 초산(acetic acid), 주석산(tartaric acid), 아디프산(adipic acid), 숙신산(succinic acid), 말레산(maleic acid), 글루타민산(glutamic aicd), 푸마르산(fumaric aicd), 피루빈산(pyruvic aicd), 글루콘산(gluconic acid), 시트르산(citric acid), 피크린산(picric acid), 아스파르트산(aspartic acid), 테레빈산(terebic acid) 등이 있으며, 바람직하게는 아세트산을 사용할 수 있다. The weak acid includes lactic acid, citric acid, malic acid, malic acid, oxalic acid, acetic acid, tartaric acid, adipic acid, Succinic acid, maleic acid, glutamic aicd, fumaric aicd, pyruvic aicd, gluconic acid, citric acid, picric acid ), Aspartic acid (aspartic acid), terebic acid (terebic acid) and the like, preferably acetic acid can be used.

상기 금속카르보닐기 함유 용액을 제조하는 단계는 산화제를 사용하여 상기 금속화합물에서 금속외의 성분을 제거하고, 환원제를 통해 카르보닐기를 금속성분에 결합하는 반응과정을 거친다. 상기 반응에 의해 생성되는 금속카르보닐기를 함유 화합물은 HFe(CO)4, HMg(CO)4 등이 있을 수 있다. The preparing of the metal carbonyl group-containing solution is performed by removing an ingredient other than metal from the metal compound using an oxidizing agent, and bonding the carbonyl group to the metal component through a reducing agent. The metal carbonyl group-containing compound produced by the reaction may be HFe (CO) 4, HMg (CO) 4 and the like.

벤조퀴논Benzoquinone 화합물 제조 단계 Compound Preparation Steps

상기 단계는 상기 금속카르보닐기 함유 용액에 상기 화학식 2의 화합물을 소정온도에서 반응시켜 벤조퀴논 화합물을 제조하는 단계이다.The step is to prepare a benzoquinone compound by reacting the compound of Formula 2 at a predetermined temperature to the metal carbonyl group-containing solution.

[화학식 2](2)

R5C≡CHR 5 C≡CH

여기서 상기 R5은 C1~C20 직쇄 또는 분쇄 알킬기, C1~C20 직쇄 또는 분쇄 알케닐기이다. Wherein R 5 is a C1-C20 straight or crushed alkyl group, C1-C20 straight or crushed alkenyl group.

상기 벤조퀴논 화합물을 제조하는 단계는 상기 반응물들을 70~90℃, 바람직하게는 70~80℃로 반응시키는 것이 좋다. 상기 반응온도가 70℃미만이면 반응성이 떨어지게 되어 육각형의 퀴논계 고리를 형성하기가 어렵고, 90℃ 초과이면 용매가 급격하게 끓어 리플럭스가 용이하지 못하고, 용매가 다 날아가버리는 문제가 발생할 수 있다. The step of preparing the benzoquinone compound is preferably reacted with the reactants at 70 ~ 90 ℃, preferably 70 ~ 80 ℃. If the reaction temperature is less than 70 ℃ to decrease the reactivity is difficult to form a hexagonal quinone-based ring, if it exceeds 90 ℃ solvent boils rapidly, reflux is not easy, the solvent may run out.

상기 화학식 2의 화합물은 상기 환원제 100중량부에 대하여 5~10중량부, 바람직하게는 5~7 중량부일 수 있다. 5중량부 미만이면 반응효율이 낮아지게 되고, 7중량부 초과시엔 반응하지 못하고 남는 아세틸렌계 수소가 발생할 수 있다.The compound of Formula 2 may be 5 to 10 parts by weight, preferably 5 to 7 parts by weight, based on 100 parts by weight of the reducing agent. If it is less than 5 parts by weight, the reaction efficiency is lowered, and if it exceeds 7 parts by weight, the acetylene-based hydrogen may not be reacted.

상기 벤조퀴논 화합물을 제조하는 단계는 상기 반응물을 질소(N2)기체 치환상태 하에서 12~18시간, 바람직하게는 12~14시간 동안 환류시킬 수 있다. 12시간 미만이면 반응이 완결까지 가지 못하고 남는 미반응물이 생길 수 있고, 18시간 초과시에는 이미 충분히 반응이 진행되어 더 이상 반응이 일어나기 어렵다.
In preparing the benzoquinone compound, the reactant may be refluxed for 12-18 hours, preferably 12-14 hours, under a nitrogen (N 2) gas substitution state. If it is less than 12 hours, the reaction may not be completed until completion, and an unreacted substance may be left. If it is more than 18 hours, the reaction is already sufficiently progressed, so that the reaction is hard to occur.

금속카르보닐을 제거하는 단계Removing metal carbonyl

상기 단계는 상기 벤조퀴논 화합물에서 금속카르보닐을 제거하는 단계이다. 상기 단계에 의해 벤조퀴논 화합물을 제조할 수 있다. The step is removing the metal carbonyl from the benzoquinone compound. The benzoquinone compound can be prepared by the above steps.

본 발명에서는 금속카르보닐이 함유된 상기 벤조퀴논 화합물에 염화구리(CuCl2· H2O)를 첨가하여 금속카르보닐을 분해시킨 후 벤조퀴논 화합물을 추출한다.In the present invention, copper chloride (CuCl 2 · H 2 O) is added to the benzoquinone compound containing metal carbonyl to decompose the metal carbonyl, and then the benzoquinone compound is extracted.

상기 방법은 상기 벤조퀴논 화합물을 추출한 다음 NaCl 수용액으로 세척하고 CaCl2로 건조시켜 준 후 증발(Evaporating)할 수 있다.
The method may be extracted with the benzoquinone compound and then washed with an aqueous NaCl solution, dried over CaCl2 and then evaporated.

카르보디이미드기를Carbodiimide groups 갖는 화합물과 반응단계  Compound having and reaction step

상기 방법은 상기 벤조퀴논 화합물을 카르보디이미드기를 갖는 화합물과 반응시키는 단계이다. 상기 반응에 의해 상기 화학식 1로 표시되는 전하착제 화합물이 생성된다.The method is a step of reacting the benzoquinone compound with a compound having a carbodiimide group. By the reaction, a charge binder compound represented by Chemical Formula 1 is produced.

상기 카르보디이미드기를 갖는 화합물이 비스(트리메틸실릴)카르보디이미드(bis(trimethylsilyl)carbodiimide일 수 있다.The compound having a carbodiimide group may be bis (trimethylsilyl) carbodiimide.

다른 양상에서 본 발명은 상기 화학식 3으로 표현되는 전하착체 화합물을 포함하는 태양전지와 관계한다.In another aspect, the present invention relates to a solar cell including a charge complex compound represented by Chemical Formula 3.

본 발명에 따른 태양전지는 도 1에 나타난 바와 같이 기판(10) 위에 형성된 양극전극(20); 상기 양극전극 상에 형성된 전자수용체와 전자공여체를 갖는 광활성층(30); 상기 광활성층 상에 형성된 하기 화학식 3으로 표현되는 전하착체 화합물을 포함하는 버퍼층(40); 및 상기 버퍼층 상에 형성된 음극 전극(50)을 포함한다. The solar cell according to the present invention includes a cathode electrode 20 formed on the substrate 10 as shown in FIG. A photoactive layer 30 having an electron acceptor and an electron donor formed on the anode electrode; A buffer layer 40 including a charge complex compound represented by the following Chemical Formula 3 formed on the photoactive layer; And a cathode electrode 50 formed on the buffer layer.

상기 태양전지는 상기 버퍼층(40)과 음극전극(50) 사이의 계면에 형성된 유기-금속화합물층(60)을 포함한다.The solar cell includes an organic-metal compound layer 60 formed at an interface between the buffer layer 40 and the cathode electrode 50.

[화학식 3](3)

Figure 112012000068416-pat00004
Figure 112012000068416-pat00004

상기 화학식에서 R은 C6~C12인 알킬기이다.In the above formula, R is an alkyl group of C6 ~ C12.

본 발명에서 기판(10)으로는 유리, 폴리카보네이트, 폴리메틸메타클릴레이트, 폴리에틸렌테레프탈레이트, 폴리아미드, 폴리에트르술폰 등의 투명재질이면 제한없이 사용할 수 있다.In the present invention, the substrate 10 may be used without limitation as long as it is a transparent material such as glass, polycarbonate, polymethyl methacrylate, polyethylene terephthalate, polyamide, or polysulfone.

양극전극(20)은 ITO(INdium Tin Oxide), SnO2, IZO(In2O3-ZnO), AZO(aluminum doped ZnO), GZO(gallium doped ZnO) 등이 사용될 수 있고, 바람직하게는 높은 일함수를 갖는 ITO(INdium Tin Oxide)로 코팅하면 좋다. ITO를 스패터링 타겟(Spattering Target)으로 가공하여, 글래스판에 스패터링을 하면, 투명한 도전막을 얻을 수 있다. 또는 ITO를 용해하여 글래스판에 스프레이를 하거나, 글래스판을 용액에 침적시키는 방법으로 투명한 전극막을 얻을 수 있다.The anode electrode 20 may be formed of indium tin oxide (ITO), SnO 2, IZO (In 2 O 3 -ZnO), aluminum doped ZnO (AZO), gallium doped ZnO (GZO), and preferably ITO having a high work function. It can be coated with (Indium Tin Oxide). When ITO is processed into a spattering target and the glass plate is sputtered, a transparent conductive film can be obtained. Alternatively, a transparent electrode film can be obtained by dissolving ITO in a glass plate and spraying the glass plate or immersing the glass plate in a solution.

양극전극(20) 상에 형성된 광활성층(30)은 상기 전자수용체와 상기 전자공여체가 더블 레이어(double layer)로 형성되거나 BHJ(bulk hetero-junction)구조로 형성될 수 있다. 상기 더블 레이어 구조는 도너 물질과 억셉터 물질의 표면에서 전하의 분리가 일어나는 물리적 특성상 여기자의 이동거리의 한계가 있을 수 있다. 따라서 에너지 변환 효율에 있어서 BHJ 구조가 더 유리할 수 있다.The photoactive layer 30 formed on the anode electrode 20 may be formed of a double layer of the electron acceptor and the electron donor or a bulk hetero-junction (BHJ) structure. The double layer structure may have a limitation in the excitation distance due to physical properties in which charge separation occurs on the surface of the donor material and the acceptor material. Therefore, the BHJ structure may be more advantageous in energy conversion efficiency.

상기 전자공여체는 전도성 고분자, 저분자반도체 등이 사용될 수 있다. 다시 말해, PPV(poly(para-phenylene vinylene)계열의 물질, 폴리티오핀(polythiophene)유도체 및 프탈로시아닌(pthalocyanine)계 물질로 이루어진 군에서 선택할 수 있다. 구체적으로 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리(p-페닐렌비닐렌), MEH-PPV(poly[2-methoxy-5-(2'-ethylhexyloxy)-The electron donor may be a conductive polymer, a low molecular semiconductor, or the like. In other words, it may be selected from the group consisting of poly (para-phenylene vinylene) -based materials, polythiophene derivatives, and phthalocyanine-based materials, specifically polyaniline, polypyrrole, polythiophene, poly ( p-phenylenevinylene), MEH-PPV (poly [2-methoxy-5- (2'-ethylhexyloxy)-

1,4-phenylene vinylene), DMO-PPV(poly(2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene), 펜타센, 폴리(3,4-에틸렌디옥시티오펜)(PEDOT), 폴리(3-알킬티오펜), 일례로, 폴리(3-헥실티오펜)(P3HT) 등이 있다.1,4-phenylene vinylene), DMO-PPV (poly (2-methoxy-5- (3,7-dimethyloctyloxy) -1,4-phenylenevinylene), pentacene, poly (3,4-ethylenedioxythiophene) ( PEDOT), poly (3-alkylthiophene), and poly (3-hexylthiophene) (P3HT), for example.

상기 전자 수용체로는 전자 친화도가 큰 플러렌(C60, C70, C76, C78, C82, C90, C94, C96, C720, C860 등), 1-(3-메톡시-카르보닐)프로필-1-페닐(6,6)C61(1-(3-methoxy-carbonyl)propyl-1-phenyl(6,6)C61: PCBM), C71-The electron acceptors include fullerenes having high electron affinity (C 60 , C 70 , C 76 , C 78 , C 82 , C 90 , C 94 , C 96 , C 720 , C 860, etc.), 1- (3-meth Methoxy-carbonyl) propyl-1-phenyl (6,6) C61 (1- (3-methoxy-carbonyl) propyl-1-phenyl (6,6) C61: PCBM), C71-

PCBM, C84-PCBM, bis-PCBM 등을 사용할 수 있다.PCBM, C84-PCBM, bis-PCBM and the like can be used.

광활성층(30)은 종래 공지된 방법으로 형성될 수 있으며, 일예로 상기 전자수용체와 전자공여체를 소정 비율로 혼합하여 양극전극(20) 상에 스핀코팅하여 형성될 수 있다. The photoactive layer 30 may be formed by a conventionally known method. For example, the photoactive layer 30 may be formed by mixing the electron acceptor and the electron donor in a predetermined ratio and spin coating the anode electrode 20.

본 발명은 광활성층(30) 상에 상기 화학식 3으로 표현되는 전하착체 화합물을 포함하는 버퍼층(40)이 형성된다.In the present invention, the buffer layer 40 including the charge complex compound represented by Chemical Formula 3 is formed on the photoactive layer 30.

상기 화학식 3의 화합물은 금속과 전하 착체화합물을 생성하여 공기중 안정성과 접촉저항을 감소시켜 주며, 또한, 전자를 끌어당기는 성질과 다이폴 영향으로 활성층과 금속과의 에너지 차이를 낮춰주며 제 2 억셉터로 역재결합을 방지하는 역할을 한다. 또한 상기 화합물의 시안화기와 금속층과의 결합이 용이하여 고전도성을 나타낼 수 있으며, 측쇄기 도입으로 인하여 용매에 잘 녹을 수 있는 장점이 있다. The compound of Formula 3 reduces the stability and contact resistance in the air by generating a metal and a charge complex compound, and also lowers the energy difference between the active layer and the metal due to the attracting electrons and the dipole effect, and the second acceptor To prevent reverse recombination. In addition, the cyanation of the compound and the metal layer can be easily coupled to exhibit high conductivity, and due to the introduction of the side chain group has the advantage that can be dissolved in the solvent well.

본 발명에서 상기 화학식 3의 화합물은 바람직하게는 탄소수 6 내지 12개, 가장 바람직하게는 탄소수 6개를 가질 수 있다. 예를 들면, 상기 화학식 1의 화합물은 (디)헥실디시아노퀴노이민(dihethyldicyanoquinonediimine, DHDCNQI)일 수 있다. In the present invention, the compound of Chemical Formula 3 may preferably have 6 to 12 carbon atoms, most preferably 6 carbon atoms. For example, the compound of Formula 1 may be (di) hexyldicyanoquinoneimine (dihethyldicyanoquinonediimine, DHDCNQI).

버퍼층(40)은 광활성층(30) 상에 진공 열증착기로 열증착되거나 상기 화학식 1의 유기화합물을 용매에 혼합하여 스크린 인쇄법, 프린팅법, 스핀코팅법, 딥핑법(dipping) 및 잉크분사법으로 이루어지는 군으로부터 선택되는 용액공정으로 코팅될 수 있다. The buffer layer 40 is thermally deposited on the photoactive layer 30 by a vacuum thermal evaporator or by mixing the organic compound of Chemical Formula 1 in a solvent, using a screen printing method, a printing method, a spin coating method, a dipping method, and an ink spraying method. It may be coated by a solution process selected from the group consisting of.

본 발명은 버퍼층(40) 상에 형성된 음극전극(50)을 포함한다. 상기 단계에 의해 버퍼층(40)과 음극전극(50) 사이의 계면에 유기-금속화합물층(60)이 형성된다. The present invention includes a cathode electrode 50 formed on the buffer layer 40. In this step, the organic-metal compound layer 60 is formed at the interface between the buffer layer 40 and the cathode electrode 50.

음극전극(50)은 양극전극(20)보다 일함수가 낮으면 제한없이 사용될 수 있다. 금속, 금속 합금, 반금속(semimetal) 또는 광 투과성 투명 산화물로 이루어질 수 있다. 상기 금속의 예로는 마그네슘(Mg) 등의 알칼리 토금속; 알루미늄(Al); 은(Ag), 금(Au), 백금(Pt) 등의 전이금속; 희토류 원소; 셀렌(Se) 등의 반금속 등이 있다. 상기 금속 합금의 예로는 나트륨-칼륨 합금, 마그네슘-인듐 합금, 알루미늄-리튬 합금 등이 있다. The cathode electrode 50 may be used without limitation as long as the work function is lower than that of the anode electrode 20. It may be made of a metal, a metal alloy, a semimetal or a transparent transparent oxide. Examples of the metal include alkaline earth metals such as magnesium (Mg); Aluminum (Al); Transition metals such as silver (Ag), gold (Au), and platinum (Pt); Rare earth elements; Semimetals such as selenium (Se); Examples of the metal alloys include sodium-potassium alloys, magnesium-indium alloys, aluminum-lithium alloys, and the like.

본 발명에서는 음극 전극(50)으로 바람직하게는 Li, LiAl이 될 수 있다. In the present invention, the cathode electrode 50 is preferably Li or LiAl.

음극전극(50)은 공지의 방법으로 증착될 수 있으며, 일예로서 기상증착될 수 있다. The cathode electrode 50 may be deposited by a known method, and may be vapor-deposited as an example.

본 발명의 음극전극(50) 형성단계에 의해 음극전극(50)층과 버퍼층(40) 사이의 계면에 유기-금속화합물층(60)이 형성된다.By forming the cathode electrode 50 of the present invention, the organic-metal compound layer 60 is formed at the interface between the cathode electrode 50 layer and the buffer layer 40.

상기 유기-금속화합물층(60)은 유기-금속화합물이 소정 크기 및 두께로 음극전극(50)과 버퍼층(40)사이에 존재함에 따라 음극전극(50)층과 버퍼층(40)과는 구분되고, 이들 사이에 존재하는 나노사이즈 두께의 막으로 이해할 수 있다.The organic-metal compound layer 60 is distinguished from the cathode electrode 50 layer and the buffer layer 40 as the organic-metal compound is present between the cathode electrode 50 and the buffer layer 40 in a predetermined size and thickness. It can be understood as a nano-sized film existing between them.

즉, 유기-금속화합물층(60)은 버퍼층(40)과 음극전극(50) 사이의 계면에 형성된 얇은 막으로서 그 두께는 1~30Å, 바람직하게는 1~10Å, 보다 바람직하게는 1~5Å이 될 수 있다.That is, the organic-metal compound layer 60 is a thin film formed at the interface between the buffer layer 40 and the cathode electrode 50 and has a thickness of 1 to 30 GPa, preferably 1 to 10 GPa, more preferably 1 to 5 GPa. Can be.

유기-금속화합물층(60)은 상기 버퍼층의 화학식 1의 유기화합물과 음극 전극과의 결합에 의해 생성된 유기-금속화합물을 포함한다.The organo-metal compound layer 60 includes an organo-metal compound produced by combining an organic compound of Formula 1 and a cathode electrode of the buffer layer.

상기 유기-금속화합물은 상기 금속과 상기 화학식 1의 유기화합물이 1 : 2의 조성으로 결합하여 고전도성을 나타낸다. The organo-metal compound exhibits high conductivity by combining the metal and the organic compound of Formula 1 in a composition of 1: 2.

상기 유기-금속화합물은 바람직하게는 LiAl(B)2 또는 Al(B)2이 될 수 있다. 여기서 B는 상기 화학식 1의 화합물을 나타낸다.The organo-metal compound may preferably be LiAl (B) 2 or Al (B) 2. Wherein B represents the compound of Formula 1.

상기 LiAl(B)2 또는 Al(B)2는 바늘형태의 형상을 가지고 그 길이가 2~5㎛ 일 수 있다. The LiAl (B) 2 or Al (B) 2 may have a needle shape and may have a length of about 2 μm to about 5 μm.

상기 화학식 3으로 표현되는 화합물은 tetracyanoquinonediimine(TCNQ)와 달리 2개의 CN기를 가지고 있어 인접하는 금속과 2:1의 조성으로 결합할 수 있다. 따라서 TCNQ보다 높은 전도성을 갖는 유기-금속 화합물을 형성할 수 있다. The compound represented by Chemical Formula 3 has two CN groups, unlike tetracyanoquinonediimine (TCNQ), and may be bonded to an adjacent metal in a composition of 2: 1. Therefore, it is possible to form an organo-metal compound having higher conductivity than TCNQ.

상기 유기-금속화합물은 가장 바람직하게는 Al(DHDCNQI)2, LiAl(DHDCNQI)2가 될 수 있다. 이것은 상기 화합물이 가장 우수한 광 전류-전압특성을 나타내기 때문이다.The organo-metal compound may most preferably be Al (DHDCNQI) 2 or LiAl (DHDCNQI) 2 . This is because the compound exhibits the best photocurrent-voltage characteristic.

상기 유기-금속 화합물은 음극전극 증착시, CN기와 금속과의 반응이 크기 때문에 상온 상압에서 쉽게 생성될 수 있다.The organo-metal compound may be easily generated at room temperature and normal pressure because the reaction between the CN group and the metal is large when the cathode electrode is deposited.

본 발명의 일구현에 따르면, 상기 화학식 3의 전하착체 화합물을 이용한 버퍼층 삽입을 통해 개방전압, 단락전류, 필팩터(fill factor)의 복합적 향상을 통한 고효율의 유기 태양전지 소자 제작이 가능하게 된다. 이 같은 소자는 저온 상압 제작 공정이 가능하고 재료가 저렴하다는 이점으로 대량 생산 및 대형 모듈에 이용할 있으며 첨단의류, 디스플레이, 자동차, 항공/우주 등의 첨단 기술 산업 분야에도 적용 가능하여 새로운 산업의 창출에 크게 기여할 수 있을 것이므로 그 기대 효과는 상당히 높다.
According to one embodiment of the present invention, a high efficiency organic solar cell device may be manufactured through a complex improvement of an open voltage, a short circuit current, and a fill factor by inserting a buffer layer using the charge complex compound of Chemical Formula 3. These devices can be used for high-volume production and large-scale modules due to the low temperature and atmospheric pressure manufacturing process and the low cost of materials. They can also be applied to high-tech industries such as high-tech clothing, display, automotive, aerospace / space, etc. The expected effect is quite high, as it can contribute greatly.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하지만, 본 발명이 이들 예로만 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited only to these examples.

실시예Example 1 One

디헥실디시아노퀴노이민(dihexyldicyanoquinonediimine, DHDCNQI)의 합성    Synthesis of dihexyldicyanoquinonediimine (DHDCNQI)

1. 2,5-1.2,5- 헥실Hexyl -1,4--1,4- 벤조퀴논(2,5-dihexyl-1,4-benzoquinone)의Of benzoquinone (2,5-dihexyl-1,4-benzoquinone) 제조  Produce

NaBH4 (1.54 g, 40 mmol)을 THF (100ml)에 녹여 혼합물을 만들었다. 무수의 FeCl3 (1.26g, 10 mmol)을 THF (50ml)에 넣은 후, 상기 혼합물에 1시간 동안 천천히 떨어뜨려 주었다. 계속 CO로 버블링(Bubbling) 해주면서 넣어주었고, 25℃를 유지하였다. 이 혼합물은 25℃ 유지한 채로 9시간 동안 교반하였다. 아세트산(4 g, 68 mmol)을 천천히 넣어주고, 30분 동안 더 교반하였다.(CO 버블링 계속 유지) CO 버블링을 멈추고 플라스크 내를 N2기체를 이용하여 치환하였다. 1-옥틴(0.090g, 1.23 mmol)을 넣고 70℃의 온도로 12시간 동안 환류시켰다. 그 다음 상온까지 식혀준 후 혼합물에 섞여있는 메탈 카르보닐(metal carbonyls)들은 아세톤(20ml)에 CuCl2·H2O(6.8 g, 40 mmol)을 섞어준 후 혼합물에 부어주어 분해시켰다. 포화 NaCl 수용액 (40ml)를 부어주고, 생성물들은 ether(100ml)을 이용하여 추출하였다. 합성된 물질은 NaCl 수용액(20ml)으로 세척하여 주고, CaCl2로 하루 동안 건조시켜준 후, 증발(Evaporating)시켜 주었다. 생성물은 헥산(Hexane)을 이동상으로 사용하여 컬럼 분리 하였다. NaBH 4 (1.54 g, 40 mmol) was dissolved in THF (100 ml) to form a mixture. Anhydrous FeCl 3 (1.26 g, 10 mmol) was added to THF (50 ml), and then slowly dropped to the mixture for 1 hour. It was added while bubbling with CO and kept at 25 ° C. The mixture was stirred for 9 hours while maintaining at 25 ° C. Acetic acid (4 g, 68 mmol) was slowly added and further stirred for 30 minutes (CO bubbling continued). CO bubbling was stopped and the flask was replaced with N2 gas. 1-octin (0.090 g, 1.23 mmol) was added thereto, and the mixture was refluxed at a temperature of 70 ° C. for 12 hours. After cooling to room temperature, the metal carbonyls mixed in the mixture were mixed with acetone (20 ml) and mixed with CuCl 2 · H 2 O (6.8 g, 40 mmol) and poured into the mixture to decompose. Saturated aqueous NaCl solution (40 ml) was poured and the products were extracted using ether (100 ml). The synthesized material was washed with aqueous NaCl solution (20ml), dried with CaCl 2 for one day, and then evaporated. The product was column separated using hexane (Hexane) as a mobile phase.

2. 2. DHDCNQIDHDCNQI 의 합성Synthesis of

2,5-디헥실-1,4-벤조퀴논(2,5-dihexyl-1,4-benzoquinone, 0.091 g, 2.3 mmol)을 디클로로메탄(20ml)에 녹여 준 후, 0~5℃로 냉각시켰다. TiCl4(547 mg, 2.9 mmol)을 넣어주고, 30분동안 저어준 후, 비스(트리메틸실릴)카르보디이미드(bis(trimethylsilyl)carbodiimide, 1068 mg, 5.8 mmol)을 신속히 넣어주고 침전물이 다 녹을때 까지 디클로로메탄을 더 넣어주었다.(12시간 반응) 반응이 끝난 후, 물을 이용하여 세척하여 주고, 유기물층은 분리하여 CaCl2를 이용하여 건조시켰다. 건조 후, 디클로로메탄을 이용하여 컬럼 분리하여 DHDCNQI의 합성하였다.
2,5-dihexyl-1,4-benzoquinone (2,5-dihexyl-1,4-benzoquinone, 0.091 g, 2.3 mmol) was dissolved in dichloromethane (20 ml) and then cooled to 0-5 ° C. . Add TiCl 4 (547 mg, 2.9 mmol), stir for 30 minutes, and then quickly add bis (trimethylsilyl) carbodiimide (1068 mg, 5.8 mmol) until the precipitate has dissolved Dichloromethane was further added. (12 hours reaction) After the reaction, the mixture was washed with water and the organic layer was separated and dried using CaCl 2. After drying, the column was separated using dichloromethane to synthesize DHDCNQI.

[반응식 1][Reaction Scheme 1]

Figure 112012000068416-pat00005

Figure 112012000068416-pat00005

실시예Example 2 2

BHJ(bulk hetero-junction) 구조의 유기 태양전지를 제작 Fabrication of organic solar cell with bulk hetero-junction (BHJ) structure

1. 시약 및 소자 구성1. Reagent and Device Composition

양극전극(ITO)과 광활성층 사이에 삽입되는 PEDOT:PSS (Poly3,4-ethylenedioxythiophene):poly(styrenesulfonate)는 Bayer사에서, 도너(donor) 물질로서 사용된 P3HT(poly(3-hexylthiophene-2,5-diyl))는 Aldrich사에서, 억셉터(acceptor)물질로서 사용된 PCBM([6,6]-Phenyl-C61-butyric acid methyl ester)은 Nano-c 社에서 구입하였다. 버퍼층으로 사용된 DHDCNQI(dihexyldicyanoquinonediimine)는 상기 실시예 1과 같은 방법으로 합성되었다. 여타의 솔벤트들은 시약급(reagent grade)을 사용하였다.PEDOT: PSS (Poly3,4-ethylenedioxythiophene): poly (styrenesulfonate), which is interposed between the anode electrode (ITO) and the photoactive layer, is P3HT (poly (3-hexylthiophene-2, 5-diyl)) was purchased from Aldrich, and PCBM ([6,6] -Phenyl-C61-butyric acid methyl ester) used as an acceptor was purchased from Nano-c. Dihexyldicyanoquinonediimine (DHDCNQI) used as a buffer layer was synthesized in the same manner as in Example 1. Other solvents used reagent grade.

2. 제조방법2. Manufacturing Method

유리 기판 위에 코팅된 ITO(Indium Tin Oxide) (15 Ω≤, 2000 Å) 를 원하는 패턴으로 염산(HCl)에 에칭(etching) 한 후, 증류수, 아세톤, 2-프로판올(2-propanol)에 60분 동안 초음파 세척하였다. 그 후 80℃ 진공오븐(vacuum oven)에 넣어 1시간 동안 건조시켰다. PEDOT:PSS 용액은 점성을 낮춰 코팅을 원활하게 하기 위해 메탄올(methanol)과 1:1로 혼합한 다음, 2500 rpm으로 40초간 스핀 코팅을 하여 300 Å 정도 두께의 PEDOT:PSS 층을 형성하였다. 광활성층으로 사용된 P3HT:PCBM(1:1)은 클로로벤젠(chlorobenzene, 40mg/ml)에 교반한 후, PEDOT:PSS 필름이 형성된 ITO 기판 위에 스핀코팅하여 2100 Å정도의 광활성층을 적층하였다. 그 후 120℃ 진공오븐(vacuum oven)에 넣어 10분 동안 건조시켰다. 여러 가지 솔벤트 하에서 DHDCNQI를 딥코팅하고 진공오븐에서 60℃에서 10분간 어닐링시켰다. 그 다음 진공 열증착기( ULVAC VTR-300M/1ERH evaporator, Japan)를 이용하여 10-6 torr 이하의 진공 상태에서 금속전극(1000 Å)을 증착하였다. 그 후 진공오븐에서 150℃에서 10분간 어닐링(annealing)하여 소자를 완성하였다.ITO (Indium Tin Oxide) coated on a glass substrate (15 Ω≤, 2000 kPa) is etched in hydrochloric acid (HCl) in the desired pattern, and then 60 minutes in distilled water, acetone, 2-propanol Ultrasonic washing during. After that, it was put into a vacuum oven at 80 ° C. and dried for 1 hour. The PEDOT: PSS solution was mixed 1: 1 with methanol to lower the viscosity to smooth the coating, followed by spin coating at 2500 rpm for 40 seconds to form a PEDOT: PSS layer having a thickness of about 300 mm 3. P3HT: PCBM (1: 1) used as the photoactive layer was stirred in chlorobenzene (40 mg / ml), and spin-coated on an ITO substrate having a PEDOT: PSS film, thereby stacking a photoactive layer having a thickness of about 2100 mm 3. Then, it was put into a vacuum oven (120 ℃) oven and dried for 10 minutes. DHDCNQI was dip-coated under various solvents and annealed at 60 ° C. for 10 minutes in a vacuum oven. Then, a metal electrode (1000 kPa) was deposited using a vacuum thermal evaporator (ULVAC VTR-300M / 1ERH evaporator, Japan) in a vacuum of 10 -6 torr or less. After that, the device was annealed at 150 ° C. for 10 minutes in a vacuum oven to complete the device.

3. 실험기기3. Experiment equipment

유기 태양전지 소자의 전류-전압 특성은 뉴포트 솔라 시뮬레이터(Newport solar simulator)를 이용하여 AM 1.5, 1 SUN (100 mW/cm2)의 빛을 조사하면서 키슬리(KEITHLEY) 2400 소스미터(sourcemeter)를 이용하여 측정하였다. 포토루미네선스(Photoluminescence, PL) 스펙트럼은 스펙트라 프로(Spectra Pro) 300i를 이용하여 측정하였다.
The current-voltage characteristics of organic solar cell devices were measured using a Keithley 2400 source meter while irradiating AM 1.5, 1 SUN (100 mW / cm2) with a Newport solar simulator. It measured using. Photoluminescence (PL) spectra were measured using a Spectra Pro 300i.

참고예Reference Example 1 One

DMDCNQI 버퍼층을 구비한 태양전지 제작 Fabrication of Solar Cell with DMDCNQI Buffer Layer

1. 시약 및 소자 구성1. Reagent and Device Composition

양극전극(ITO)과 광활성층 사이에 삽입되는 PEDOT:PSS (Poly3,4-ethylenedioxythiophene):poly(styrenesulfonate)는 Bayer사에서, 도너(donor) 물질로서 사용된 P3HT(poly(3-hexylthiophene-2,5-diyl))는 Aldrich사에서, 억셉터(acceptor)물질로서 사용된 PCBM([6,6]-Phenyl-C61-butyric acid methyl ester)은 Nano-c 社에서 구입하였다. 버퍼층으로 사용된 DMDCNQI(dimethyldicyanoquinonediimine)는 동경공업대의 Mori 연구실에서 하기 반응식 2과 같은 방법으로 합성되었다. 여타의 솔벤트들은 시약급(reagent grade)을 사용하였다.PEDOT: PSS (Poly3,4-ethylenedioxythiophene): poly (styrenesulfonate), which is interposed between the anode electrode (ITO) and the photoactive layer, is P3HT (poly (3-hexylthiophene-2, 5-diyl)) was purchased from Aldrich, and PCBM ([6,6] -Phenyl-C61-butyric acid methyl ester) used as an acceptor was purchased from Nano-c. DMDCNQI (dimethyldicyanoquinonediimine), used as a buffer layer, was synthesized in the same manner as in Scheme 2 below at Mori Lab. Other solvents used reagent grade.

[반응식 2][Reaction Scheme 2]

Figure 112012000068416-pat00006
Figure 112012000068416-pat00006

2. 열증착 공정에 의한 제조(반응식 1 참조) 2. Preparation by thermal evaporation process (see Scheme 1)

유리 기판 위에 코팅된 ITO(Indium Tin Oxide) (15 Ω≤, 2000 Å) 를 원하는 패턴으로 염산(HCl)에 에칭(etching) 한 후, 증류수, 아세톤, 2-프로판올(2-propanol)에 60분 동안 초음파 세척하였다. 그 후 80℃ 진공오븐(vacuum oven)에 넣어 1시간 동안 건조시켰다. PEDOT:PSS 용액은 점성을 낮춰 코팅을 원활하게 하기 위해 메탄올(methanol)과 1:1로 혼합한 다음, 2500 rpm으로 40초간 스핀 코팅을 하여 300 Å 정도 두께의 PEDOT:PSS 층을 형성하였다. 광활성층으로 사용된 P3HT:PCBM(1:1)은 클로로벤젠(chlorobenzene, 40mg/ml)에 교반한 후, PEDOT:PSS 필름이 형성된 ITO 기판 위에 스핀코팅하여 2100 Å정도의 광활성층을 적층하였다. 그 후 120℃ 진공오븐(vacuum oven)에 넣어 10분 동안 건조시켰다. 진공 열증착기( ULVAC VTR-300M/1ERH evaporator, Japan)를 이용하여 10-6 torr 이하의 진공 상태에서 DMDCNQI와 금속전극을 순서대로 증착하였다. 음전극(cathode electrode)은 다양한 금속을 이용하여 1000 Å 두께로 증착하였다. 그 후 150℃에서 10분간 어닐링(annealing)하여 소자를 완성하였다.
ITO (Indium Tin Oxide) coated on a glass substrate (15 Ω≤, 2000 kPa) is etched in hydrochloric acid (HCl) in the desired pattern, and then 60 minutes in distilled water, acetone, 2-propanol Ultrasonic washing for a while. After that, it was put into a vacuum oven at 80 ° C. and dried for 1 hour. The PEDOT: PSS solution was mixed 1: 1 with methanol to lower the viscosity to smooth the coating, followed by spin coating at 2500 rpm for 40 seconds to form a PEDOT: PSS layer having a thickness of about 300 mm 3. P3HT: PCBM (1: 1) used as the photoactive layer was stirred in chlorobenzene (40 mg / ml), and spin-coated on an ITO substrate having a PEDOT: PSS film, thereby stacking a photoactive layer having a thickness of about 2100 mm 3. Then, it was put into a vacuum oven (120 ℃) oven and dried for 10 minutes. DMDCNQI and metal electrodes were sequentially deposited using a vacuum thermal evaporator (ULVAC VTR-300M / 1ERH evaporator, Japan) under a vacuum of 10 -6 torr or less. Cathode electrodes were deposited to 1000 Å thickness using various metals. Then, the device was completed by annealing at 150 ° C. for 10 minutes.

비교예Comparative Example 1 One

DMDCNQI나 DHDCNQI 버퍼층을 구비하지 않는 것을 제외하고는 상기 실시예 2와 동일한 조건으로 유기태양전지를 제작하였다.
An organic solar cell was manufactured under the same conditions as in Example 2 except that the DMDCNQI or DHDCNQI buffer layer was not provided.

시험예Test Example 1 One

솔벤트 종류에 따른 광 전류-전압 특성Photocurrent-Voltage Characteristics by Solvent Type

실시예 2, 참고예 1, 및 비교예 1의 솔벤트 종류에 따른 광 전류-전압 특성을 조사하였다.The photocurrent-voltage characteristics of the solvents of Example 2, Reference Example 1, and Comparative Example 1 were investigated.

도 2와 표 1에서 보는 바와 같이, DHDCNQI를 버퍼층으로 삽입한 소자에서 삽입하지 않은 소자에 비해 매우 높은 단락전류 값을 나타냄을 확인 할 수 있다. 이와 같은 이유는 유기/금속 계면의 계면 진공 에너지 이동(interfacial vacuum energy shift)에 기인한다고 판단된다. 즉 DHDCNQI가 작은 일함수 금속인 Ag, Cu 등과 접합하게 되면 계면 진공 에너지(interfacial vacuum energy)의 상승으로 DHDCNQI의 HOMO 준위와 LUMO 준위가 동시에 상승하게 되므로 일함수 값이 작은 Al 의해 DHDCNQI 진공 준위의 상승효과가 일어난다. 따라서 DHDCNQI의 본래 LUMO값의 상승으로 PCBM의 LUMO와 Al의 일함수 값 사이에 DHDCNQI의 상승된 LUMO 값이 위치하게 되어 PCBM/Al 계면에 비해 접촉저항의 하락 효과가 일어나기 때문이라고 할 수 있다. 또한 Al(DHDCNQI)2의 고전도성을 갖는 유기-금속 화합물이 전류 값의 상승에 기여하는 것으로 볼 수 있다.As shown in FIG. 2 and Table 1, it can be seen that the device having the DHDCNQI inserted into the buffer layer shows a very high short-circuit current value compared to the device without the insertion. The reason is considered to be due to the interfacial vacuum energy shift of the organic / metal interface. In other words, when DHDCNQI is bonded to Ag or Cu, which is a small work function metal, the HOMO level and LUMO level of DHDCNQI are increased at the same time due to the increase of interfacial vacuum energy. Effect occurs. Therefore, the increased LUMO value of DHDCNQI is located between the LUMO of PCBM and the work function value of Al due to the increase of the original LUMO value of DHDCNQI, and thus the contact resistance decreases compared to the PCBM / Al interface. It can also be seen that the organo-metallic compound having high conductivity of Al (DHDCNQI) 2 contributes to the increase of the current value.

솔벤트 종류 및 농도에 따른 소자의 특성을 살펴보면, 도 2와 표 1에서 보는 바와 같이 개방전압은 별다른 차이를 보이지 않았으나 단락전류와 광전환효율은 메탄올 0.1mM DHDCNQI에서 가장 우수한 수치를 나타내었다 (단락전류 36.09 mA/cm2, 광전환효율 6.16 %). 이 값은 메탄올 0.1mM DMDCNQI보다 거의 두 배에 가까운 광전효율을 나타낸다. As shown in FIG. 2 and Table 1, the characteristics of the device according to the solvent type and concentration showed no difference, but the short-circuit current and the light conversion efficiency showed the best value in methanol 0.1mM DHDCNQI (short-circuit current). 36.09 mA / cm2, light conversion efficiency 6.16%). This value represents nearly twice the photoelectric efficiency of methanol 0.1 mM DMDCNQI.

[표 1][Table 1]

Figure 112012000068416-pat00007
Figure 112012000068416-pat00007

시험예Test Example 2 2

광루미네선스(Photoluminescence, PL) 측정Photoluminescence (PL) Measurement

도3은 ITO/PEDOT-PSS/P3HT:PCBM/DHDCNQI/Al 소자와 ITO/PEDOT-PSS/P3HT:PCBM/Al의 광루미네선스 특성을 나타낸 것이다. DHDCNQI를 코팅한 소자에서 라디언스(Radience) 값의 하락이 두드러졌는데, 이는 DHDCNQI의 전자수용능력 때문이라고 판단된다. 즉 DHDCNQI가 작은 일함수 금속인 Al 등과 결합하게 되면 계면 진공 에너지(interfacial vacuum energy)의 상승으로 DHDCNQI의 HOMO 준위와 LUMO 준위가 동시에 상승하게 되고 PCBM의 LUMO(3.7 eV)와 Al의 일함수 값 (4.3 eV)사이에 DHDCNQI의 상승된 LUMO 값이 위치하게 PCBM의 LUMO에서 P3HT의 HOMO로 이동하여 백 리컴비네이션(back recombination)되는 전자를 일정부분 막아주기 때문이다. 3 shows photoluminescence characteristics of an ITO / PEDOT-PSS / P3HT: PCBM / DHDCNQI / Al device and an ITO / PEDOT-PSS / P3HT: PCBM / Al. The drop in radiance was noticeable in the DHDCNQI-coated device, which is attributed to the electron acceptability of the DHDCNQI. That is, when DHDCNQI is combined with Al, which is a small work function metal, the HOMO level and LUMO level of DHDCNQI are increased simultaneously due to the increase of interfacial vacuum energy, and the LUMO (3.7 eV) and Al work function values of Al (PCM) ( This is because the elevated LUMO value of DHDCNQI is moved between 4.3 eV) from the LUMO of PCBM to the HOMO of P3HT to prevent some of the electrons that are back recombined.

또한 DHDCNQI를 코팅한 소자 중 메탄올로 공정된 소자에서 라디언스 값의 하락현상이 두드러졌는데, 이는 DHDCNQI의 용해도가 메탄올에서 가장 높았기 때문이라고 판단된다.
Among the devices coated with DHDCNQI, the decrease in radiance was remarkable in the device processed with methanol because the solubility of DHDCNQI was the highest in methanol.

시험예Test Example 3 3

광 전류-전압 특성 비교Optical current-voltage characteristic comparison

도 4는 ITO/PEDOT-PSS/P3HT:PCBM/DHDCNQI/Al 소자와 ITO/PEDOT-PSS/P3HT:P CBM/DMDCNQI/Al, 그리고 -DCNQI 유기버퍼층을 구비하지 않는 유기태양전지 소자의 광 전류-전압 특성을 나타낸 것이다.4 shows the photocurrent of an ITO / PEDOT-PSS / P3HT: PCBM / DHDCNQI / Al device and an ITO / PEDOT-PSS / P3HT: P CBM / DMDCNQI / Al and -DCNQI organic buffer layer. Voltage characteristics are shown.

도 4를 참조하면, DHDCNQI가 코팅된 소자에서 더 우수한 광 전류-전압 특성을 나타냄을 확인할 수 있다.
Referring to FIG. 4, it can be seen that DHDCNQI exhibits better photocurrent-voltage characteristics in the coated device.

지금까지 본 발명의 구체적인 실시예들을 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본질적인 특성에 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
Hereinafter, specific embodiments of the present invention have been described. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims. The scope of the present invention is defined by the appended claims rather than by the foregoing description, and all differences within the scope of equivalents thereof should be construed as being included in the present invention.

10 : 기판 20 : 양극전극
30 : 광활성층 40 : 버퍼층
50 : 음극전극 60 : 유기-금속 화합물층
10: substrate 20: positive electrode
30: photoactive layer 40: buffer layer
50: cathode electrode 60: organic-metal compound layer

Claims (14)

하기 화학식 1의 전하착제 화합물을 제조하는 방법은 하기 단계를 포함한다.
금속화합물, 환원제, 약산 및 산화제를 반응시켜 금속카르보닐기 함유 용액을 제조하는 단계 ;
상기 금속카르보닐기 함유 용액에 하기 화학식 2의 화합물을 소정온도에서 반응시켜 벤조퀴논 화합물을 제조하는 단계 ;
상기 벤조퀴논 화합물에서 금속카르보닐을 제거하는 단계; 및
상기 벤조퀴논 화합물을 카르보디이미드기를 갖는 화합물과 반응시키는 단계.
[화학식 1]
Figure 112012000068416-pat00008

상기 화학식에서 R1, R2, R3, R4는 각각 독립적으로 H, C1~C20 직쇄 또는 분쇄 알킬기, C1~C20 직쇄 또는 분쇄 알케닐기, C1~C20 직쇄 또는 분쇄 알키닐기이다.
[화학식 2]
R5C≡CH
여기서 상기 R5은 C1~C20 직쇄 또는 분쇄 알킬기, C1~C20 직쇄 또는 분쇄 알케닐기이다.
The method for preparing a charge binder compound of Formula 1 includes the following steps.
Reacting a metal compound, a reducing agent, a weak acid and an oxidizing agent to prepare a metal carbonyl group-containing solution;
Preparing a benzoquinone compound by reacting the metal carbonyl group-containing solution with a compound of Formula 2 at a predetermined temperature;
Removing metal carbonyl from the benzoquinone compound; And
Reacting the benzoquinone compound with a compound having a carbodiimide group.
[Chemical Formula 1]
Figure 112012000068416-pat00008

In the above formula, R1, R2, R3, and R4 are each independently H, C1-C20 straight or crushed alkyl group, C1-C20 straight or crushed alkenyl group, C1-C20 straight or pulverized alkynyl group.
(2)
R 5 C≡CH
Wherein R 5 is a C1-C20 straight or crushed alkyl group, C1-C20 straight or crushed alkenyl group.
제 1 항에 있어서, 상기 금속카르보닐기 함유 용액을 제조하는 단계는 산화제인 일산화탄소로 버블링하면서 환원제와 금속 함유물질을 반응시키는 단계인 것을 특징으로 하는 전하착체 화합물 제조방법. The method of claim 1, wherein the preparing of the metal carbonyl group-containing solution comprises reacting the reducing agent with the metal-containing material while bubbling with carbon monoxide, which is an oxidizing agent. 제 1 항에 있어서, 상기 금속화합물이 수산화 마그네슘, 질산 마그네슘, 탄산 마그네슘, 황산 마그네슘, 아세트산 마그네슘, 질산 제2철, 황산 제2철, 염화 제2철, 질산 제1철, 황산 제1철, 염화 제1철 및 사염화타이타늄으로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 전하착체 화합물 제조방법. The method of claim 1, wherein the metal compound is magnesium hydroxide, magnesium nitrate, magnesium carbonate, magnesium sulfate, magnesium acetate, ferric nitrate, ferric sulfate, ferric chloride, ferrous nitrate, ferrous sulfate, Method for producing a charge complex compound characterized in that at least one selected from the group consisting of ferrous chloride and titanium tetrachloride. 제 1 항에 있어서, 상기 벤조퀴논 화합물을 제조하는 단계는 70~90℃온도로 반응하는 단계인 것을 특징으로 하는 전하착체 화합물 제조방법. The method of claim 1, wherein the step of preparing the benzoquinone compound is characterized in that the step of reacting at a temperature of 70 ~ 90 ℃. 제 1 항에 있어서, 상기 벤조퀴논 화합물을 제조하는 단계는 상기 반응물을 질소(N2)기체 치환상태 하에서 12~18시간 동안 환류시키는 것을 특징으로 하는 전하착체 화합물 제조방법. The method of claim 1, wherein the preparing of the benzoquinone compound comprises refluxing the reactant under a nitrogen (N 2) gas substitution state for 12 to 18 hours. 제 1 항에 있어서, 상기 벤조퀴논 화합물에서 금속카르보닐을 제거하는 단계는 염화구리를 상기 벤조퀴논 화합물에 첨가하여 분해반응시키는 것을 특징으로 하는 전하착체 화합물 제조방법. The method of claim 1, wherein removing the metal carbonyl from the benzoquinone compound comprises adding a copper chloride to the benzoquinone compound to cause a decomposition reaction. 제 1 항에 있어서, 상기 화학식 2의 화합물은 상기 환원제 100중량부에 대하여 5~10중량부를 사용하는 것을 특징으로 하는 전하착체 화합물 제조방법. The method of claim 1, wherein the compound of Formula 2 is used in an amount of 5 to 10 parts by weight based on 100 parts by weight of the reducing agent. 제 1 항에 있어서, 상기 카르보디이미드기를 갖는 화합물이 비스(트리메틸실릴)카르보디이미드(bis(trimethylsilyl)carbodiimide인 것을 특징으로 하는 전하착체 화합물 제조방법. The method of claim 1, wherein the compound having a carbodiimide group is bis (trimethylsilyl) carbodiimide. 기판 위에 형성된 양극전극;
상기 양극전극 상에 형성된 전자수용체와 전자공여체를 갖는 광활성층;
상기 광활성층 상에 형성된 하기 화학식 3으로 표현되는 전하착체 화합물을 포함하는 버퍼층; 및
상기 버퍼층 상에 형성된 음극 전극을 포함하는 태양전지.
[화학식 3]
Figure 112012000068416-pat00009

상기 화학식에서 R은 C6~C12인 알킬기이다.
An anode electrode formed on the substrate;
A photoactive layer having an electron acceptor and an electron donor formed on the anode electrode;
A buffer layer comprising a charge complex compound represented by Formula 3 below formed on the photoactive layer; And
A solar cell comprising a cathode electrode formed on the buffer layer.
(3)
Figure 112012000068416-pat00009

In the above formula, R is an alkyl group of C6 ~ C12.
제 9항에 있어서, 상기 태양전지는 상기 버퍼층과 음극전극 사이의 계면에 형성된 유기-금속화합물층을 포함하는 태양전지. The solar cell of claim 9, wherein the solar cell comprises an organo-metal compound layer formed at an interface between the buffer layer and the cathode electrode. 제 10항에 있어서, 상기 유기-금속화합물층은 상기 금속과 상기 화학식 3의 전하착체 화합물이 1 : 2의 조성으로 결합된 유기-금속화합물을 포함하는 것을 특징으로 하는 태양전지. The solar cell of claim 10, wherein the organo-metal compound layer comprises an organo-metal compound in which the metal and the charge complex compound of Formula 3 are bonded in a composition of 1: 2. 제 11항에 있어서, 상기 유기-금속 화합물은 LiAl(B)2 또는 Al(B)2인 것을 특징으로 하는 태양전지.
여기서 B는 상기 화학식 1의 화합물을 나타냄.
The solar cell of claim 11, wherein the organo-metal compound is LiAl (B) 2 or Al (B) 2.
Wherein B represents the compound of Formula 1.
제 12항에 있어서, 상기 LiAl(B)2 또는 Al(B)2는 바늘형태의 형상을 가지고 그 길이가 2~5㎛ 인 것을 특징으로 하는 태양전지.The solar cell of claim 12, wherein the LiAl (B) 2 or Al (B) 2 has a needle shape and has a length of 2 μm to 5 μm. 제 10항에 있어서, 상기 유기-금속 화합물층은 두께가 1~10Å인 것을 특징으로 하는 태양전지.

The solar cell of claim 10, wherein the organo-metal compound layer has a thickness of 1˜10 μs.

KR1020120000056A 2012-01-02 2012-01-02 Charge transfer complex, synthesis method of the same and solar cell containing the same KR101354489B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120000056A KR101354489B1 (en) 2012-01-02 2012-01-02 Charge transfer complex, synthesis method of the same and solar cell containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120000056A KR101354489B1 (en) 2012-01-02 2012-01-02 Charge transfer complex, synthesis method of the same and solar cell containing the same

Publications (2)

Publication Number Publication Date
KR20130078904A KR20130078904A (en) 2013-07-10
KR101354489B1 true KR101354489B1 (en) 2014-01-28

Family

ID=48991759

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120000056A KR101354489B1 (en) 2012-01-02 2012-01-02 Charge transfer complex, synthesis method of the same and solar cell containing the same

Country Status (1)

Country Link
KR (1) KR101354489B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578220A (en) * 1983-10-19 1986-03-25 Basf Aktiengesellschaft Charge transfer complexes of tetrathio/seleno-fulvalene derivatives and biscyanimine derivatives; biscyanimine derivatives and method for producing same
JP2699429B2 (en) 1988-08-02 1998-01-19 ミノルタ株式会社 Photoconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578220A (en) * 1983-10-19 1986-03-25 Basf Aktiengesellschaft Charge transfer complexes of tetrathio/seleno-fulvalene derivatives and biscyanimine derivatives; biscyanimine derivatives and method for producing same
JP2699429B2 (en) 1988-08-02 1998-01-19 ミノルタ株式会社 Photoconductor

Also Published As

Publication number Publication date
KR20130078904A (en) 2013-07-10

Similar Documents

Publication Publication Date Title
Zhang et al. Recent advance in solution‐processed organic interlayers for high‐performance planar perovskite solar cells
Rao et al. A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3− xClx solar cells by an effective Cl doping method
Ahmed et al. Design of new electron acceptor materials for organic photovoltaics: synthesis, electron transport, photophysics, and photovoltaic properties of oligothiophene-functionalized naphthalene diimides
KR101597373B1 (en) Organic photovoltaic devices comprising fullerenes and derivatives thereof and improved methodes of making fullerene derivatives
US9537101B2 (en) Composition capable of changing its solubility, hole transport material composition, and organic electronic element using the same
US7906724B2 (en) N-type conjugated materials based on 2-vinyl-4,5-dicyanoimidazoles and their use in organic photovoltaics
JP6297891B2 (en) Organic material and photoelectric conversion element
WO2013031732A1 (en) Process for producing hole blocking layer, hole blocking layer, photoelectric conversion element, photoelectric conversion device, organic thin-film solar cell panel, and light-emitting device
TW200936637A (en) Process for preparation of conducting polymers
Liu et al. PDI-based hexapod-shaped nonfullerene acceptors for the high-performance as-cast organic solar cells
Yan et al. Naphthalene-diimide selenophene copolymers as efficient solution-processable electron-transporting material for perovskite solar cells
US20110127515A1 (en) Photoelectric conversion element
JP2004277736A (en) Conductive polymer, its producing method and organic solar cell using it
KR20080076518A (en) Nitrogen containing heteroaromatic ligand/transition metalcomplexes, buffer layer comprising the complexes and organic thin film transistor comprising the buffer layer
JP5763522B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
KR101091179B1 (en) Organic solar cell using morphology controller and method for fabricating the same
KR101962848B1 (en) Asymmetric alkyl substituted organic semiconductor compound and application to solar cells
KR101354489B1 (en) Charge transfer complex, synthesis method of the same and solar cell containing the same
KR100931676B1 (en) C70 fullerene derivative and organic photovoltaic device using the same
KR20130044663A (en) Organic photovoltaic cell using charge transfer compound and methode for preparing the same
KR101363912B1 (en) Fullerene-perylene dyad, method for manufacturing the same and photovoltaic cell containing fullerene-perylene dyad
KR101744523B1 (en) Copolymer comprising thienopyrrole derivatives, and organic electronic device comprising the same
KR20150133219A (en) Semiconductor polymers
TWI411148B (en) Organic solar cell
KR101755001B1 (en) Polymer solar cell having cathode buffer layer inlcuding polyvinylpyridine derivatives

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170110

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee