KR101353701B1 - Galvanized steel sheet having excellent ultra low temperature adhesion property and method for manufacturing the same - Google Patents

Galvanized steel sheet having excellent ultra low temperature adhesion property and method for manufacturing the same Download PDF

Info

Publication number
KR101353701B1
KR101353701B1 KR1020110141257A KR20110141257A KR101353701B1 KR 101353701 B1 KR101353701 B1 KR 101353701B1 KR 1020110141257 A KR1020110141257 A KR 1020110141257A KR 20110141257 A KR20110141257 A KR 20110141257A KR 101353701 B1 KR101353701 B1 KR 101353701B1
Authority
KR
South Korea
Prior art keywords
steel sheet
hot
galvanized steel
dip galvanized
layer
Prior art date
Application number
KR1020110141257A
Other languages
Korean (ko)
Other versions
KR20130073421A (en
Inventor
이주연
김명수
김종상
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020110141257A priority Critical patent/KR101353701B1/en
Priority to US14/366,842 priority patent/US9260787B2/en
Priority to PCT/KR2012/011172 priority patent/WO2013095007A1/en
Priority to EP12859008.0A priority patent/EP2794950B1/en
Priority to CN201280064126.4A priority patent/CN104011252B/en
Priority to JP2014548664A priority patent/JP6014681B2/en
Publication of KR20130073421A publication Critical patent/KR20130073421A/en
Application granted granted Critical
Publication of KR101353701B1 publication Critical patent/KR101353701B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/026Deposition of sublayers, e.g. adhesion layers or pre-applied alloying elements or corrosion protection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/20Electroplating: Baths therefor from solutions of iron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils
    • Y10T428/12438Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Abstract

본 발명은 미세한 결정립(spangle)을 갖는 동시에, 극저온 접합성이 우수한 용융아연도금강판과 이를 제조하는 방법에 관한 것으로서,
소지강판; 상기 소지강판 상에 형성되고, 전이금속을 포함하는 복합층; 상기 복합층 상에 형성되고 Fe-Al계 금속간 화합물을 포함하는 억제층(inhibition layer); 및 상기 억제층 상에 형성되어 있는 아연도금층을 포함하고,
상기 아연도금층의 결정립(spangle)의 평균 직경이 150㎛ 이하인 극저온 접합성이 우수한 용융아연도금강판과 이를 제조하는 방법을 제공한다.
The present invention relates to a hot-dip galvanized steel sheet having fine grains and excellent cryogenic bonding properties and a method of manufacturing the same.
Base steel sheet; A composite layer formed on the base steel sheet and including a transition metal; An inhibition layer formed on the composite layer and including a Fe—Al-based intermetallic compound; And a galvanized layer formed on the suppression layer,
It provides a hot-dip galvanized steel sheet excellent in cryogenic bonding properties of the average diameter of the galvanized layer (spangle) of 150㎛ or less and a method of manufacturing the same.

Description

극저온 접합성이 우수한 용융아연도금강판 및 그 제조방법{GALVANIZED STEEL SHEET HAVING EXCELLENT ULTRA LOW TEMPERATURE ADHESION PROPERTY AND METHOD FOR MANUFACTURING THE SAME}Hot-dip galvanized steel sheet with excellent cryogenic bonding and manufacturing method thereof {GALVANIZED STEEL SHEET HAVING EXCELLENT ULTRA LOW TEMPERATURE ADHESION PROPERTY AND METHOD FOR MANUFACTURING THE SAME}

본 발명은 용융아연도금강판에 관한 것으로, 보다 상세하게는 극저온에서도 우수한 접합성을 갖는 용융아연도금강판과 이를 제조하는 방법에 관한 것이다.
The present invention relates to a hot-dip galvanized steel sheet, and more particularly, to a hot-dip galvanized steel sheet having excellent bonding properties even at cryogenic temperatures and a method of manufacturing the same.

자동차용 강판으로서, 표면외관과 내식성을 위해서 아연도금강판을 많이 사용한다. 상기 아연도금강판은 용융아연도금강판(GI)과 전기아연도금강판(EG)로 대별된다. 상기 용융아연도금강판은 용융아연도금욕에 강판을 침지하여 도금하는 방식으로 제조된 것이고, 전기아연도금강판은 전기도금 방식을 통해 도금하는 것을 말한다.
As automotive steel sheets, galvanized steel sheets are frequently used for surface appearance and corrosion resistance. The galvanized steel sheet is roughly divided into a hot dip galvanized steel sheet (GI) and an electrogalvanized steel sheet (EG). The hot-dip galvanized steel sheet is manufactured by immersing the steel plate in the hot-dip galvanizing bath and plating, and the electro-galvanized steel sheet is plated by electroplating.

상기 용융아연도금강판은 전기아연도금강판보다 가격 경쟁력이 좋지만, 도장 후 선영성 및 외관품질이 떨어지기 때문에, 그 수요에 한계가 있다. 이러한 문제를 해결하기 위해서, 아연도금 후 아연도금층에 인산염 용액을 정전 미립화하는 기술(특허문헌 1)을 이용하여 도금층 결정립(spangle)을 미세화하는 기술이 등장하게 되었다. 이를 이용하면, 아연도금층의 결정립이 약 1000㎛에서 약 50㎛로 미세한 용융아연도금강판(GI-ACE 강판)이 제조된다. 상기 도금층 결정립의 미세화를 통한 GI-ACE 강판은 도장성, 내식성 및 표면외관 등의 도금표면 특성이 우수하고, 일반적인 GI강판 대비 가격 변화가 거의 없어 경제성이 우수하다. 즉, 통상의 GI강판에 비해, 상기 GI-ACE 강판은 자동차용 강판으로의 요구조건에 보다 적합한 강판이라 할 수 있다.
The hot-dip galvanized steel sheet is more competitive in price than the electro-galvanized steel sheet, but there is a limit in its demand since the screening and appearance quality are poor after coating. In order to solve such a problem, the technique which refine | finishes a plating layer crystal grain (spangle) using the technique (patent document 1) which electrostatically atomizes the phosphate solution in a galvanized layer after zinc plating has emerged. By using this, a fine hot-dip galvanized steel sheet (GI-ACE steel sheet) having a grain size of about 100 µm to about 50 µm was produced. The GI-ACE steel sheet through the refinement of the crystal grains of the plating layer has excellent plating surface characteristics such as paintability, corrosion resistance, and surface appearance, and has little economical change compared to general GI steel sheets, and thus, economical efficiency is excellent. That is, compared with the general GI steel sheet, the GI-ACE steel sheet can be said to be a steel sheet more suitable for the requirements for automotive steel sheet.

한편, 자동차를 제조함에 있어서, 충돌성능을 강화하거나 용접을 대체하기 위해서 구조용 접착제를 사용하는 경우가 있다. 상기 구조용 접착제를 사용하기 위해서는 극저온(약 -40℃) 임팩트 필 테스트(Impact Peel test)를 통해 우수한 접합성이 확보될 필요가 있다. On the other hand, in manufacturing automobiles, structural adhesives are sometimes used to reinforce collision performance or to replace welding. In order to use the structural adhesive, it is necessary to secure excellent adhesion through a cryogenic (about −40 ° C.) Impact Peel test.

상기 통상의 GI강판을 사용하여 상기 임팩트 필 테스트를 실시하는 경우에는 접착제에서 파단이 발생한다. 이는 아연도금층이 우수한 접합성을 갖고 있음을 의미한다. 반면, 상기 GI-ACE의 경우에는 아연도금층에서 파단이 발생한다.
When the impact peel test is performed using the conventional GI steel sheet, breakage occurs in the adhesive. This means that the galvanized layer has excellent bonding. On the other hand, in the case of the GI-ACE, the fracture occurs in the galvanized layer.

통상적으로 아연은 저온에서 (0001)면과 3개의 {10-10}면에서 취성파괴가 일어난다고 알려져 있고, 온도에 따라 아연의 파괴기구들의 활성도가 고온에서는 취성+입계+연성파괴 형태이지만 저온에서는 취성파괴로 변한다고 알려져 있다. 또한, 도금층에서의 파괴는 도금층의 입계 또는 소지강판과 도금층의 계면에서 발생하는 것으로 알려져 있다. In general, zinc is known to have brittle fracture at the (0001) plane and three {10-10} planes at low temperatures. According to the temperature, the activity of the destruction mechanisms of zinc is brittle + grain boundary + ductile fracture at high temperatures, but at low temperatures. It is known to turn into brittle fracture. In addition, breakage in the plating layer is known to occur at the grain boundary of the plating layer or at the interface between the base steel sheet and the plating layer.

입계 또는 계면에서 파괴가 일어나는 것은 아연이 응고될 때, 수축(shrinkage)에 의한 부피 차이가 발생하여 입계에 용융아연도금 후 공공(void)이 발생하기 때문이다. 또한, 아연의 열팽창계수(약 1.5~6.1*10-5/K)와 철의 열팽창계수(약 1.18*10-5/K) 차이가 존재하므로, 열적 부조화(misfit)에 의해 계면에서의 파괴가 발생한다. 또한, 도금층의 우선방위가 (0001)면으로 집적된 결정립 계면에 상대적으로 커다란 응력이 작용되고, 그 결과 소지강판과 도금층의 계면에서 파괴가 시작된다고 알려져 있다.
The fracture occurs at the grain boundary or at the interface because when the zinc solidifies, a volume difference occurs due to shrinkage and voids occur after hot dip galvanizing at the grain boundary. In addition, since there is a difference between the coefficient of thermal expansion of zinc (about 1.5 to 6.1 * 10 -5 / K) and the coefficient of thermal expansion of iron (about 1.18 * 10 -5 / K), thermal misfit prevents fracture at the interface. Occurs. In addition, it is known that a relatively large stress is applied to the grain boundary where the preferential orientation of the plating layer is integrated into the (0001) plane, and as a result, fracture starts at the interface between the base steel sheet and the plating layer.

따라서, 상기 GI-ACE강판의 경우에는 (0001)면으로 우선방위가 집적된 도금층과 소지강판 계면 또는 결정립계에서 균열개시 사이트(crack initiation site)로 작용하여 파괴가 발생한다.
Accordingly, in the case of the GI-ACE steel sheet, fracture occurs by acting as a crack initiation site at the interface or grain boundary of the plating layer and the base steel sheet in which the priority direction is integrated on the (0001) plane.

상기 GI-ACE의 문제를 해결하기 위해서, 도금층의 결정립(spangle) 평균크기를 크게하는 기술(특허문헌 2)이 개발되었다. 그러나, 상기 결정립의 크기가 커짐에 따라, 선영성, 내갤링(GALLING)성, 내부식성 등 표면품질이 저하되는 문제가 있다.
In order to solve the problem of said GI-ACE, the technique (patent document 2) which enlarges the crystal grain mean size of a plating layer was developed. However, as the size of the crystal grains increases, there is a problem that the surface quality such as sunscreen, galling resistance, corrosion resistance is reduced.

한국 공개특허 2006-0076214Korea Patent Publication 2006-0076214 한국 공개특허 2011-0075612Korea Patent Publication 2011-0075612

본 발명의 일측면은 선영성, 내식성 등의 표면품질이 우수한 동시에, 극저온 접합성이 우수한 용융아연도금강판과 이를 제조하는 방법을 제공하고자 하는 것이다.
One aspect of the present invention is to provide a hot-dip galvanized steel sheet having excellent surface quality such as stiffness, corrosion resistance and excellent cryogenic bonding and a method of manufacturing the same.

본 발명의 일태양은 소지강판;One aspect of the present invention is a steel sheet;

상기 소지강판 상에 형성되고, 전이금속을 포함하는 복합층;A composite layer formed on the base steel sheet and including a transition metal;

상기 복합층 상에 형성되고 Fe-Al계 금속간 화합물을 포함하는 억제층(inhibition layer); 및An inhibition layer formed on the composite layer and including a Fe—Al-based intermetallic compound; And

상기 억제층 상에 형성되어 있는 아연도금층을 포함하고, A zinc plated layer formed on the suppression layer,

상기 아연도금층의 결정립(spangle)의 평균 직경이 150㎛ 이하인 극저온 접합성이 우수한 용융아연도금강판을 제공한다.
It provides a hot-dip galvanized steel sheet excellent in cryogenic bonding property that the average diameter of the grains (spangle) of the galvanized layer is 150㎛ or less.

본 발명의 또다른 일태양은 강판을 준비하는 단계;Another aspect of the present invention comprises the steps of preparing a steel sheet;

상기 강판에 전이금속을 도금하는 단계;Plating a transition metal on the steel sheet;

상기 전이금속이 도금된 강판을 열처리하여 열처리된 강판을 제조하는 단계;Heat-treating the steel plate plated with the transition metal to produce a heat-treated steel sheet;

상기 열처리된 강판을 냉각하는 단계;Cooling the heat-treated steel sheet;

상기 냉각된 강판을 용융아연도금욕에 침지하여 아연도금 강판을 제조하는 단계; 및 Preparing a galvanized steel sheet by immersing the cooled steel sheet in a hot dip galvanizing bath; And

상기 아연도금 강판을 냉각하는 단계를 포함하는 극저온 접합성이 우수한 용융아연도금강판의 제조방법을 제공한다.
It provides a method for producing a hot-dip galvanized steel sheet excellent in cryogenic bonding including the step of cooling the galvanized steel sheet.

본 발명은 아연도금층의 결정립(spangle) 크기가 150㎛이하이면서, -40℃의 극저온에서의 임팩트 필 강도(Impact pell strength)가 15N/㎜ 이상인 극저온 접합성이 우수한 용융아연도금강판을 제공할 수 있다. 이를 통해, 도금특성이 우수하면서도 극저온에서 접합성이 우수한 용융아연도금강판을 제공함으로서, 자동차용 강판으로의 광범위한 적용이 가능하다는 장점이 있다.
The present invention can provide a hot-dip galvanized steel sheet having excellent cryogenic bonding properties of impact pell strength of 15 N / mm or more at a cryogenic temperature of -40 ° C. while the grain size of the zinc plated layer is 150 μm or less. . Through this, by providing a hot-dip galvanized steel sheet having excellent plating properties and excellent bonding properties at cryogenic temperatures, there is an advantage that it can be applied to a wide range of automotive steel sheets.

도 1은 본 발명의 용융아연도금강판의 단면을 모식적으로 나타낸 모식도임.
도 2 (a) 및 (b)는 비교예 2와 발명예 2의 도금층 표면을 관찰한 사진임.
도 3은 비교예 1, 2, 4 및 5와, 발명예 1 내지 4의 Fe 도금량 및 냉각속도에 따른 임팩트 필 강도(Impact peel strength)를 관찰한 결과를 나타낸 그래프임.
도 4 (a)는 비교예 1 및 2, (b)는 발명예 3 및 4의 임팩트 필 테스트(Impact peel test)를 행한 후, 시편 파면을 관찰한 사진임.
도 5 (a) 및 (b)는 각각 비교예 1과 발명예 1의 소지강판과 도금층의 계면을 관찰한 TEM 사진임.
1 is a schematic diagram schematically showing a cross section of a hot-dip galvanized steel sheet of the present invention.
Figure 2 (a) and (b) is a photograph observing the surface of the plating layer of Comparative Example 2 and Inventive Example 2.
3 is a graph illustrating the results of observing impact peel strength according to Fe plating amount and cooling rate of Comparative Examples 1, 2, 4 and 5 and Inventive Examples 1 to 4;
Figure 4 (a) is Comparative Examples 1 and 2, (b) is a photograph after observing the specimen fracture after the impact peel test (Impact peel test) of the invention examples 3 and 4.
Figure 5 (a) and (b) is a TEM picture of observing the interface between the base steel sheet and the plating layer of Comparative Example 1 and Inventive Example 1, respectively.

이하, 본 발명에 대하여 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

먼저, 본 발명의 일태양인 용융아연도금강판에 대해 상세히 설명한다.First, the hot-dip galvanized steel sheet which is one aspect of this invention is demonstrated in detail.

본 발명 용융아연도금강판은 소지강판; 상기 소지강판 상에 형성되고, 전이금속을 포함하는 복합층; 상기 복합층 상에 형성되고, Fe-Al계 금속간 화합물을 포함하는 억제층(inhibition layer) 및 상기 억제층 상에 형성되어 있는 아연도금층을 포함하며, 상기 아연도금층의 결정립(spangle) 평균 직경이 150㎛ 이하이다.
The hot-dip galvanized steel sheet of the present invention is a steel sheet; A composite layer formed on the base steel sheet and including a transition metal; And a zinc plating layer formed on the inhibitory layer, which is formed on the composite layer and includes an Fe-Al-based intermetallic compound, and a zinc plating layer formed on the inhibitory layer. It is 150 micrometers or less.

본 발명에서 상기 소지강판은 열연강판, 냉연강판, 소둔강판 등 용융아연도금강판으로 적용될 수 있는 것으면, 그 종류를 특별히 한정하는 것은 아니다.
In the present invention, the steel sheet is not particularly limited as long as it can be applied to hot-dip galvanized steel sheet such as hot rolled steel sheet, cold rolled steel sheet, annealing steel sheet.

본 발명의 용융아연도금강판은 상기 소지강판 상에 전이금속을 포함하는 복합층을 포함한다. 상기 복합층은 소지강판과 후술하는 억제층 사이에 형성되며 상기 억제층과 소지강판과의 정합관계를 통해, 계면 밀착력을 향상시키는 역할을 한다. 상기 복합층의 형성으로 인해, 저온에서 우수한 접합성을 확보할 수 있다.
Hot-dip galvanized steel sheet of the present invention comprises a composite layer containing a transition metal on the base steel sheet. The composite layer is formed between the holding steel sheet and the suppressing layer to be described later, and serves to improve the interfacial adhesion through the matching relationship between the suppressing layer and the holding steel sheet. Due to the formation of the composite layer, it is possible to ensure excellent bonding at low temperatures.

상기 복합층은 전이금속을 포함한다. 본 발명에서 상기 전이금속의 종류는 특별히 한정하는 것은 아니다. 일예로는 Fe, Co, Ni 등이 있다. 상기 전이금속은 후술하는 바와 같이, 용융아연도금 이전에 전이금속 도금을 행하여 포함되는 것이다.The composite layer includes a transition metal. In the present invention, the type of the transition metal is not particularly limited. One example is Fe, Co, Ni and the like. As described later, the transition metal is included by performing transition metal plating before hot dip galvanizing.

상기 복합층은 소지강판과 억제층 사이에 형성되는 것으로, 계면밀착력을 확보하기 위한 조성으로서, Fe와 전이금속의 합이 50~90중량%, Al이 10~30중량%인 것이 바람직하며, 나머지 일부 불가피한 불순물이 포함될 수 있다. 이는 억제층의 조성이 Al 30중량%이상, Fe 50중량%이하이고, 소지철의 조성은 Fe가 90중량% 이상이기 때문에, 그 정합관계를 유지하며, 겨면 밀착력을 확보하기 위해서는 상기 복합층은 Fe와 전이금속의 합이 50~90중량%, Al이 10~30중량%인 것이 바람직하다.
The composite layer is formed between the base steel sheet and the suppression layer, and as a composition for securing interfacial adhesion, the sum of Fe and the transition metal is preferably 50 to 90% by weight, Al is 10 to 30% by weight, and the rest Some unavoidable impurities may be included. This is because the composition of the suppression layer is 30% by weight or more of Al, 50% by weight or less of Fe, and the composition of the base iron is 90% by weight or more of Fe. Thus, the composite layer is maintained in order to maintain the matching relationship. It is preferable that the sum of Fe and a transition metal is 50 to 90 weight%, and Al is 10 to 30 weight%.

상기 복합층은 상기 억제층 및 소지강판과 정합관계인 것이 바람직하다. 상기 복합층이 억제층 및 소지강판과 동일한 결정방향을 가지게 되는 정합관계에 있으므로, 상기 억제층과 소지강판 사이의 계면 밀착력 즉, 접합성을 향상된다.
The composite layer is preferably in a mating relationship with the suppression layer and the base steel sheet. Since the composite layer has a matching relationship with the same crystal direction as the suppression layer and the base steel sheet, the interfacial adhesion between the suppression layer and the base steel sheet, that is, the bonding property, is improved.

상기 복합층은 큐빅 구조인 것이 바람직하다. 상기 복합층은 전술한 바와 같이, 복합층이 상기 억제층 및 소지강판과 정합관계를 유지하기 위해서는 큐빅구조인 것이 바람직하다. 이는 소지강판의 Fe가 큐빅구조이며, 큐빅구조인 소지강판상에 복합층이 형성되어 정합관계가 되기 위해서는 상기 복합층의 형태도 큐빅구조인 것이 바람직하다.
The composite layer is preferably a cubic structure. As described above, the composite layer preferably has a cubic structure in order for the composite layer to maintain a matching relationship with the suppression layer and the base steel sheet. It is preferable that the Fe of the steel sheet is a cubic structure, and the composite layer is formed on the steel sheet having a cubic structure to form a matching relationship.

상기 복합층의 두께는 80㎚ 이상인 것이 바람직하다. 상기 복합층이 계면 밀찰력을 확보하기 위해서는 최소 80㎚ 이상인 것이 바람직하며, 그 두께는 두꺼울수록 밀착력이 우수해지나, 너무 두꺼운 경우에는 경제성이 저하되므로, 최대 500㎛인 것이 바람직하다.
It is preferable that the thickness of the said composite layer is 80 nm or more. The composite layer is preferably at least 80 nm or more in order to secure the interfacial adhesion, the thicker the thickness, the better the adhesion, but if too thick, the economical efficiency is lowered, it is preferably at most 500㎛.

상기 억제층(inhibition layer)은 Zn 도금층과의 결합력을 높이는 역할을 한다. 억제층이 없이 Zn 도금층이 형성되는 경우에는 가공시에 Zn가 다 떨어져 나가므로, 상기 억제층은 Fe-Al계 화합물을 포함하며, 바람직하게는 Fe2Al5 Zn가 일부 포함된 화합물을 포함한다.
The inhibition layer serves to increase the bonding force with the Zn plating layer. In the case where the Zn plating layer is formed without the suppression layer, since Zn runs out during processing, the suppression layer includes a Fe-Al-based compound, preferably in Fe 2 Al 5 . It includes compounds in which Zn is partially included.

상기 아연도금층의 결정립(spangle) 평균크기는 150㎛이하인 것이 바람직하다. 상기 결정립의 평균크기는 가능한 작을수록 바람직한다. 그 이유는 결정립이 미세한 경우에, 표면외관이 우수하기 때문이다. 따라서, 본 발명에서는 상기 아연도금층의 결정립(spangle) 평균크기가 최대 150㎛인 것이 바람직하다.
The average grain size of the galvanized layer is preferably 150 μm or less. The average size of the grains is preferably as small as possible. This is because the surface appearance is excellent when the crystal grains are fine. Therefore, in the present invention, it is preferable that the average grain size of the galvanized layer is at most 150 μm.

이하, 본 발명의 일태양인 용융아연도금강판의 제조방법에 대해 상세히 설명한다.Hereinafter, the manufacturing method of the hot-dip galvanized steel sheet which is one aspect of this invention is demonstrated in detail.

먼저, 강판을 준비한다. 상기 강판은 앞서 언급한 바와 같이, 그 종류를 특별히 한정하는 것은 아니며, 용융아연도금을 통해 용융아연도금강판으로 활용가능한 것이면 어느 경우라도 무방하다. First, prepare a steel sheet. As mentioned above, the steel sheet is not particularly limited in kind, and may be used in any case as long as it can be used as a hot-dip galvanized steel sheet through hot dip galvanizing.

상기 강판 표면의 이물질이나 산화막을 제거하기 위해서, 표면 청정화를 행하는 것이 바람직하다. 상기 표면 청정화는 탈지 및 산세처리를 통해 행한다. 상기 탈지 및 산세처리 방법은 통상의 방법에 의한다. 상기 표면 청정화가 충분하지 않은 경우에는 후술하는 Fe 도금시 도금이 불충분하고, 도금 외관이 악화되거나 밀착성이 악화될 수 있다.
In order to remove the foreign material and the oxide film of the said steel plate surface, it is preferable to carry out surface cleaning. The surface cleaning is performed through degreasing and pickling. The degreasing and pickling methods are based on conventional methods. When the surface cleaning is not sufficient, the plating may be insufficient during Fe plating described later, and the plating appearance may deteriorate or the adhesion may deteriorate.

상기 강판의 표면에 전이금속 도금을 행한다. 전술한 바와 같이, 상기 전이금속의 종류는 특별히 한정하는 것은 아니다. 일예로는 Fe, Co, Ni 등이 있다.Transition metal plating is performed on the surface of the steel sheet. As described above, the kind of the transition metal is not particularly limited. One example is Fe, Co, Ni and the like.

상기 전이금속 도금을 행하는 방법은 어떠한 방법을 사용하더라도 무방하다. 바람직한 일예로는 Fe를 전기도금하는 방법이 있다. Fe를 전기도금하는 경우에는 FeSO4 ·7H2O 및 (NH4)2SO4 이 포함된 전해액을 이용하는 것이 바람직하다.
Any method may be used for the transition metal plating. One preferred example is a method of electroplating Fe. In the case of electroplating Fe, it is preferable to use an electrolyte solution containing FeSO 4 · 7H 2 O and (NH 4 ) 2 SO 4 .

상기 전이금속 도금의 도금량은 350mg/㎡ 이상인 것이 바람직하다. 상기 전이금속 도금량이 350mg/㎡ 미만인 경우에는 상기 복합층의 두께가 너무 작기 때문에 충분한 표면 밀착력을 확보할 수 없다. 상기 전이금속 도금량이 350mg/㎡ 이상이어야, 상기 복합층의 두께가 80㎚이상이 될 수 있다. 본 발명에서 상기 전이금속 도금량의 상한을 특별히 한정하는 것은 아니나, 바람직하게는 10g/㎡ 이하인 것이 바람직하다.
The plating amount of the transition metal plating is preferably 350 mg / m 2 or more. When the transition metal plating amount is less than 350 mg / m 2, sufficient surface adhesion cannot be secured because the thickness of the composite layer is too small. When the transition metal plating amount is 350 mg / m 2 or more, the thickness of the composite layer may be 80 nm or more. In the present invention, the upper limit of the transition metal plating amount is not particularly limited, but preferably 10 g / m 2 or less.

상기 전이금속이 도금된 강판에 열처리를 행한다. 상기 열처리는 환원성 분위기에서 1.5~6℃/s의 승온속도로 750~900℃까지 가열하고, 20초 이상 유지하는 것이 바람직하다. 상기 승온속도가 1.5℃/s 미만에서는 강판의 승온이 너무 더디게 되어, 경제성이 좋지 않고, 6℃/s를 초과하게 되면, 강판의 잔류응력 제거가 용이하지 않으며, 회복 및 재결정이 곤란한 문제가 있으므로, 그 상한을 6℃/s로 하는 것이 바람직하다. 또한, 상기 온도범위 역시 750~900℃에서 회복 및 재결정이 가장 적절히 이루어지는 온도범위이다.Heat treatment is performed on the steel plate plated with the transition metal. The heat treatment is preferably heated to 750 ~ 900 ℃ at a temperature increase rate of 1.5 ~ 6 ℃ / s in a reducing atmosphere, and maintained for 20 seconds or more. If the temperature increase rate is less than 1.5 ℃ / s, the temperature rise of the steel sheet is too slow, economic efficiency is not good, if it exceeds 6 ℃ / s, the residual stress of the steel sheet is not easy to remove, there is a problem that recovery and recrystallization is difficult It is preferable to make the upper limit into 6 degree-C / s. In addition, the temperature range is also the temperature range where the recovery and recrystallization is most appropriate at 750 ~ 900 ℃.

상기 환원성 분위기는 H2-N2 가스 분위기인 것이 바람직하다. 상기 환원성 분위기를 만들기 위해서는 H2-N2 혼합가스인 것이 바람직하며, 바람직한 혼합비의 일예로는 수소 5~10부피%에 나머지는 질소가스를 사용한다.
The reducing atmosphere is preferably in a H 2 -N 2 atmosphere. In order to create the reducing atmosphere, it is preferable that the mixture is H 2 -N 2 gas, and as an example of the preferred mixing ratio, 5 to 10% by volume of hydrogen is used as nitrogen gas.

상기 유지시간은 20초 이상이 것이 바람직하다. 상기 유지시간이 20초 미만인 경우에는 소지강판과 억제층의 복합된 영역이 충분히 형성되지 않기 때문에 충분한 표면 밀착력을 확보할 수 없기 때문이다. 상기 유지시간의 상한을 특별히 한정하는 것은 아니나, 바람지가하게는 100초 이내로 한다. 상기 유지시간이 너무 길면, 결정립 성장이 너무 많이 이루어져, 재질균질성에 문제가 생길 수 있다.
It is preferable that the said holding time is 20 second or more. This is because when the holding time is less than 20 seconds, sufficient surface adhesion cannot be ensured because the complex region of the base steel sheet and the suppressing layer is not sufficiently formed. The upper limit of the holding time is not particularly limited, but it is preferably within 100 seconds. If the holding time is too long, too much grain growth may cause a problem in material homogeneity.

상기 열처리된 강판을 냉각한다. 상기 냉각은 용융아연도금욕 온도보다 최대 50℃까지 높은 온도인 450~500℃까지 행하는 것이 바람직하다. 상기 냉각온도가 450℃미만에서는 후속하는 Zn 도금이 제대로 이루어지지 않는 문제가 있으며, 500℃를 초과하는 경우는 흄(fume), 드로스(dross) 등의 표면결함이 발생할 수 있으므로, 그 상한을 500℃로 하는 것이 바람직하다.
Cool the heat-treated steel sheet. It is preferable to perform the said cooling to 450-500 degreeC which is a temperature higher up to 50 degreeC than the hot dip galvanizing bath temperature. If the cooling temperature is less than 450 ℃ there is a problem that the subsequent Zn plating is not properly made, if the temperature exceeds 500 ℃, such as surface defects such as fumes (dross), dross (dross) may occur, the upper limit It is preferable to set it as 500 degreeC.

상기 냉각된 강판을 용융아연도금욕에 침지하여 용융아연도금을 행한다. 상기 용융아연도금은 통상의 용융아연도금조건에 의한다. 바람직하게는 상기 용융아연도금욕의 온도는 430~480℃이고, 상기 용융아연도금욕에는 Al이 0.1~0.3wt% 포함되어 있는 것이 바람직하다. 상기 Al의 함량이 0.1wt% 미만이면 Zn 밀착력이 저하되며, 0.3wt%를 초과하면 드로스 등의 결함 발생이 많아진다. 상기 용융아연도금욕에서의 침지시간은 2.5~8초인 것이 바람직하다.
The cooled steel plate is immersed in a hot dip galvanizing bath to perform hot dip galvanizing. The hot dip galvanizing is carried out under ordinary hot dip galvanizing conditions. Preferably the temperature of the hot dip galvanizing bath is 430 ~ 480 ℃, the hot dip galvanizing bath is preferably contained 0.1 ~ 0.3wt% Al. If the Al content is less than 0.1wt%, Zn adhesion decreases, and if it exceeds 0.3wt%, defects such as dross are increased. The immersion time in the hot dip galvanizing bath is preferably 2.5 to 8 seconds.

상기 용융아연도금 후 아연도금량을 맞추기 위해 에어 와이핑(Air Wiping)을 추가적으로 행할 수 있다.
After the hot dip galvanizing, air wiping may be further performed to match the zinc plating amount.

상기 용융아연도금된 강판을 냉각한다. 상기 냉각은 -20℃/s 이하의 냉각속도로 행하는 것이 바람직하다. 상기 냉각속도가 -20℃/s를 초과하는 경우에는 도금층의 결정립(spangle)크기가 200㎛ 이상이 되므로, 결정립의 크기가 커지는 문제가 있다. 상기 결정립의 크기가 200㎛ 이상이 되면 도금표면특성 즉, 도장성, 내식성, 내갤링(GALLING)성, 선영성, 표면외관 등이 악화된다.
The hot dip galvanized steel sheet is cooled. It is preferable to perform the cooling at a cooling rate of -20 ° C / s or less. When the cooling rate exceeds -20 ° C / s, the grain size of the plated layer (spangle) is 200㎛ or more, there is a problem that the size of the crystal grains increases. When the grain size is 200 µm or more, plating surface properties, that is, paintability, corrosion resistance, galling resistance, lightness, surface appearance, and the like deteriorate.

이하, 본 발명의 실시예에 대하여 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것으로, 이에 한정하는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail. The following examples are provided for the understanding of the present invention, but are not limited thereto.

(실시예)(Example)

통상의 IF강을 냉연하고 알칼리 탈지 및 산세처리로 청정화한 후 60℃, pH 5의 조건으로 20A 전류를 인가하여 강판 표면에 전이금속 중 하나인 Fe 전기도금을 행하였다. 이때 Fe 도금량은 하기 표 1과 같이 하였다. 상기 Fe 도금 후 5%H2-N2, -40℃ 이슬점 분위기하에서 소둔 열처리 하고 유지한 후, 500℃까지 냉각하였다.Common IF steel was cold-rolled, cleaned by alkali degreasing and pickling, and then subjected to a 20 A current at 60 ° C. and pH 5 to conduct electroplating of Fe as one of the transition metals on the surface of the steel sheet. At this time, the Fe plating amount was as shown in Table 1. After Fe plating, the annealing heat treatment was performed in a 5% H 2 -N 2 , -40 ° C dew point atmosphere, and then cooled to 500 ° C.

이후, 460℃의 용융아연도금욕에서 도금을 행한 후 와이핑(wiping)하여 도금량을 약 50g/㎡으로 조절하고, -20℃/s 또는 -65℃/s의 냉각속도로 냉각하여 용융아연도금강판을 제조하였다.
Then, after plating in a hot dip galvanizing bath at 460 ° C., the wiping is performed to adjust the plating amount to about 50 g / m 2, and to be cooled at a cooling rate of −20 ° C./s or −65 ° C./s to be hot dip galvanized. Steel sheet was prepared.

한편, 상기 Fe 도금을 행하지 않은 경우에는 상기 IF강을 냉연하고 청정화한 후 5%H2-N2, -40℃ 이슬점 분위기하에서 소둔 열처리 하고 유지한 후, 500℃까지 냉각하였다. 이후, 460℃의 용융아연도금욕에서 도금을 행한 후 와이핑(wiping)하여 도금량을 약 50g/㎡으로 조절하고, -20℃/s 또는 -65℃/s의 냉각속도로 냉각하여 제조된 용융아연도금강판을 제조하였다.
On the other hand, when the Fe plating was not performed, the IF steel was cold rolled and cleaned, and then annealed and maintained in a 5% H 2 -N 2 , -40 ° C dew point atmosphere, and then cooled to 500 ° C. After the plating in a hot dip galvanizing bath at 460 ° C., the wiping is performed to adjust the plating amount to about 50 g / m 2, and the melting is performed by cooling at a cooling rate of −20 ° C./s or −65 ° C./s. Galvanized steel sheet was prepared.

상기와 같이 제조된 용융아연도금강판의 극저온 접합성 평가는 -40℃에서 임팩트 필 테스트 기구(Impact peel testing machine)를 이용하여 실시하였고, 그 결과를 표 1에 나타내었다. 하기 표 1은 실시예에서 각 발명예 및 비교예에서의 Fe 도금량, 용융아연도금의 도금층 결정립(spangle) 크기, 임팩트 필 강도(Impact peel strength) 및 임팩트 필 테스트(Impact peel test) 파면 결과를 나타내었다.Cryogenic bonding evaluation of the hot-dip galvanized steel sheet prepared as described above was carried out using an impact peel testing machine at -40 ℃, the results are shown in Table 1. Table 1 below shows the amount of Fe plating in each of the invention examples and comparative examples, the grain size of the plated layer of the hot dip galvanizing, the impact peel strength, and the impact peel test wavefront results. It was.

또한, 상기 실험을 통하여 나온 결과를 도 2 내지 5에 나타내었다.
In addition, the results obtained through the experiment are shown in Figures 2 to 5.

구분division Fe 도금량
(mg/㎡)
Fe plating amount
(mg / ㎡)
냉각속도
(℃/s)
Cooling rate
(° C / s)
spangle 크기
(㎛)
spangle size
(탆)
Impact peel strength
(N/㎜)
Impact peel strength
(N / mm)
파괴 영역Destruction zone
비교예 1Comparative Example 1 00 -20-20 127.4127.4 6.86.8 도금층Plated layer 비교예 2Comparative Example 2 00 -65-65 62.962.9 0.00.0 도금층Plated layer 비교예 3Comparative Example 3 5050 -20-20 64.964.9 2.02.0 도금층Plated layer 비교예 4Comparative Example 4 200200 -20-20 110.6110.6 13.313.3 도금층Plated layer 비교예 5Comparative Example 5 200200 -54-54 55.155.1 9.69.6 도금층Plated layer 발명예 1Inventory 1 350350 -20-20 206.5206.5 15.315.3 접착제glue 발명예 2Inventory 2 350350 -65-65 46.846.8 16.916.9 접착제glue 발명예 3Inventory 3 500500 -20-20 159.0159.0 17.617.6 접착제glue 발명예 4Honorable 4 500500 -65-65 45.045.0 20.320.3 접착제glue

한편, 상기 비교예 1과 발명예 1의 소지강판과 도금층의 계면을 TEM으로 관찰하여 이를 각각 도 5의 (a) 및 (b)에 나타내었다. 도 5 (a)에 나타난 비교예 1에서는 용융아도금강판의 단면이 소지강판, 억제층 및 도금층으로 구성되어 있으나, 도 5 (b)에 나타난 발명예 1에서는 소지강판과 억제층 사이에 검은 띠 형태의 층(복합층)이 형성되어 있는 것을 확인할 수 있다.
On the other hand, the interface between the base steel sheet and the plating layer of Comparative Example 1 and Inventive Example 1 was observed by TEM and shown in Figure 5 (a) and (b), respectively. In Comparative Example 1 shown in FIG. 5 (a), the cross section of the hot-dip galvanized steel sheet is composed of a holding steel plate, a suppression layer, and a plating layer. In Example 1 shown in FIG. 5 (b), a black strip is formed between the steel plate and the suppression layer. It can confirm that the layer (composite layer) of the form is formed.

상기 복합층에 대해 SADP(제한시야분석회절패턴, Selected Area Diffraction Pattern) 분석을 행한 결과, 상기 복합층은 소지강판과 억제층의 회절 패턴(pattern)과 일치하는 겻을 확인할 수 있었고, 그 결과, 소지강판과 억제층의 정합관계를 갖는 영역으로 소지강판과 억제층간의 높은 밀착력을 갖는 영역임을 확인할 수 있었다. 따라서, 본 발명은 상기 복합층의 형성을 통해 소지강판과 억제층의 계면 밀착력이 높아지고, 극저온 접합성이 향상되는 것을 알 수 있다.
As a result of performing SADP (Selected Area Diffraction Pattern) analysis on the composite layer, the composite layer was able to confirm the value matched with the diffraction pattern of the steel sheet and the suppression layer. As a result, As a region having a matching relationship between the base steel sheet and the suppression layer, it was confirmed that the base plate had a high adhesion between the base steel sheet and the suppression layer. Therefore, it can be seen that the present invention increases the interfacial adhesion between the base steel sheet and the suppression layer through the formation of the composite layer, thereby improving the cryogenic bonding property.

한편, 상기 비교예 2와 발명예 2의 도금층 표면을 관찰하여 그 결과를 각각 도 2 (a) 및 (b)에 나타내었다. 상기 표 1 및 도 2에 나타난 바와 같이, 비교예 2의 도금층 결정립(spangle) 크기는 약 62.9㎛이고, 발명예 2의 경우에는 약 46.8㎛인 것을 알 수 있다. 상기 결과에서 용융아연도금 후 냉각속도를 -60℃/s로 하게 되면, 미세한 도금조직을 얻을 수 있음을 알 수 있다.
Meanwhile, the plating layer surfaces of Comparative Example 2 and Inventive Example 2 were observed and the results are shown in FIGS. 2A and 2B, respectively. As shown in Table 1 and FIG. 2, the plating layer grain size of Comparative Example 2 was about 62.9 μm, and in the case of Inventive Example 2, it was about 46.8 μm. From the above results, it can be seen that when the cooling rate after hot dip galvanizing is -60 ° C / s, a fine plating structure can be obtained.

또한, 비교예 1, 2, 4 및 5와, 발명예 1 내지 4의 임팩트 필 강도(Impact peel strength)를 관찰하여 그 결과를 도 3에 나타내었다. 상기 표 1 및 도 3의 결과에서 알 수 있듯이, 발명예 1 내지 4의 경우에는 본 발명에서도 요구하는 강도(약 15N/㎜ 이상)를 확보할 수 있으나, 비교예의 경우에는 본 발명에서 요구하는 강도에 미치지 않고, 도금층에서 파괴에 일어나는 것을 확인할 수 있다.
In addition, the impact peel strength of Comparative Examples 1, 2, 4 and 5 and Inventive Examples 1 to 4 were observed, and the results are shown in FIG. 3. As can be seen from the results of Table 1 and FIG. 3, in the case of Inventive Examples 1 to 4, the strength required by the present invention (about 15 N / mm or more) can be ensured, but in the case of the comparative example, the strength required by the present invention. It can be confirmed that the breakdown occurs in the plating layer without falling short of this.

한편, Fe를 도금하지 않은 비교예 1 및 2와 Fe를 500mg/㎡ 도금한 발명예 3 및 4에 대한 임팩트 필 테스트(Impact peel test)를 행하고, 그 시편의 파면을 각각 도 4의 (a) 및 (b)에 나타내었다. 도 4(a)에 나타난 비교예의 경우에는 도금층에서 파괴가 일어나는 것을 확인할 수 있으나, 도 4(b)에 나타난 발명예의 경우에는 도금층에서 파괴가 일어나지 않아, 저온 접합성이 우수한 것을 확인할 수 있다.
Meanwhile, an impact peel test was performed on Comparative Examples 1 and 2, which were not plated with Fe, and Inventive Examples 3 and 4, which were plated with 500 mg / m 2 of Fe, and the wavefronts of the specimens were shown in FIG. And (b). In the case of the comparative example shown in Figure 4 (a) it can be confirmed that the fracture occurs in the plating layer, in the case of the invention example shown in Figure 4 (b) does not occur in the plating layer, it can be confirmed that excellent low-temperature bonding.

11.....소지강판
12.....복합층
13.....억제층
14.....아연도금층
11 ..... steel sheet
12 ..... Multilayer
13 ..... Inhibitor
14 ..... galvanized layer

Claims (16)

소지강판;
상기 소지강판 상에 형성되고, 전이금속을 포함하는 복합층;
상기 복합층 상에 형성되고 Fe-Al계 금속간 화합물을 포함하는 억제층(inhibition layer); 및
상기 억제층 상에 형성되어 있는 아연도금층을 포함하고,
상기 아연도금층의 결정립(spangle)의 평균 직경이 150㎛ 이하인 극저온 접합성이 우수한 용융아연도금강판.
Base steel sheet;
A composite layer formed on the base steel sheet and including a transition metal;
An inhibition layer formed on the composite layer and including a Fe—Al-based intermetallic compound; And
A zinc plated layer formed on the suppression layer,
Hot-dip galvanized steel sheet excellent in cryogenic bonding property that the average diameter of the grains (spangle) of the galvanized layer is 150㎛ or less.
청구항 1에 있어서,
상기 복합층은 Fe와 전이금속의 합이 50~90중량%, Al이 10~30중량%, 나머지는 불가피한 불순물을 포함하는 극저온 접합성이 우수한 용융아연도금강판.
The method according to claim 1,
The composite layer is a hot-dip galvanized steel sheet having excellent cryogenic bonding properties including 50 to 90% by weight of Fe and the transition metal, 10 to 30% by weight of Al, and the rest are unavoidable impurities.
청구항 1에 있어서,
상기 복합층은 상기 억제층 및 소지강판과 정합관계를 갖는 극저온 접합성이 우수한 용융아연도금강판.
The method according to claim 1,
The composite layer is a hot dip galvanized steel sheet having excellent cryogenic bonding properties having a matching relationship with the suppression layer and the base steel sheet.
청구항 1에 있어서,
상기 복합층은 큐빅(cubic) 구조인 극저온 접합성이 우수한 용융아연도금강판.
The method according to claim 1,
The composite layer is a hot dip galvanized steel sheet having excellent cryogenic bonding properties of the cubic (cubic) structure.
청구항 1에 있어서,
상기 복합층의 두께는 80㎚ 이상인 극저온 접합성이 우수한 용융아연도금강판.
The method according to claim 1,
Hot-dip galvanized steel sheet excellent in cryogenic bonding properties of the composite layer is 80nm or more.
강판을 준비하는 단계;
상기 강판에 350mg/㎡ 이상의 도금량으로 전이금속을 도금하는 단계;
상기 전이금속이 도금된 강판을 열처리하여 열처리된 강판을 제조하는 단계;
상기 열처리된 강판을 냉각하는 단계;
상기 냉각된 강판을 용융아연도금욕에 침지하여 아연도금 강판을 제조하는 단계; 및
상기 아연도금 강판을 냉각하는 단계
를 포함하는 극저온 접합성이 우수한 용융아연도금강판의 제조방법.
Preparing a steel sheet;
Plating the transition metal on the steel sheet with a plating amount of 350 mg / m 2 or more;
Heat-treating the steel plate plated with the transition metal to produce a heat-treated steel sheet;
Cooling the heat treated steel sheet;
Preparing a galvanized steel sheet by immersing the cooled steel sheet in a hot dip galvanizing bath; And
Cooling the galvanized steel sheet
Method for producing a hot dip galvanized steel sheet having excellent cryogenic bonding properties comprising a.
청구항 6에 있어서,
상기 강판을 준비하는 단계는 탈지 및 산세처리를 행하는 것인 극저온 접합성이 우수한 용융아연도금강판의 제조방법.
The method of claim 6,
The step of preparing the steel sheet is a method for producing a hot-dip galvanized steel sheet having excellent cryogenic bonding properties that are subjected to degreasing and pickling.
청구항 6에 있어서,
상기 전이금속은 Fe, Co 및 Ni 중 1종 이상인 극저온 접합성이 우수한 용융아연도금강판의 제조방법.
The method of claim 6,
The transition metal is a method for producing a hot-dip galvanized steel sheet having excellent cryogenic bonding properties of at least one of Fe, Co and Ni.
청구항 8에 있어서,
상기 전이금속으로 Fe를 도금하는 경우에는 FeSO4 ·7H2O 및 (NH4)2SO4 이 포함된 전해으로 전기도금을 행하는 것인 극저온 접합성이 우수한 용융아연도금강판의 제조방법.
The method according to claim 8,
In the case of plating the Fe with the transition metal, FeSO 4 · 7H 2 O and (NH 4 ) 2 SO 4 The electrolytic plating is carried out by the electroplating method of producing a hot-dip galvanized steel sheet excellent in cryogenic bonding.
삭제delete 청구항 6에 있어서,
상기 열처리는 환원성 분위기에서 1.5~6℃/s의 승온속도로 750~900℃까지 가열하고, 20초 이상 유지하는 것인 극저온 접합성이 우수한 용융아연도금강판의 제조방법.
The method of claim 6,
The heat treatment is a method of producing a hot-dip galvanized steel sheet excellent in cryogenic bonding properties that is heated to 750 ~ 900 ℃ at a temperature increase rate of 1.5 ~ 6 ℃ / s in a reducing atmosphere and maintained for 20 seconds or more.
청구항 6에 있어서,
상기 열처리된 강판을 냉각하는 것은 450~500℃까지 행하는 것인 극저온 접합성이 우수한 용융아연도금강판의 제조방법.
The method of claim 6,
Cooling the heat-treated steel sheet is carried out to 450 ~ 500 ℃ the manufacturing method of hot-dip galvanized steel sheet excellent in cryogenic bonding.
청구항 6에 있어서,
상기 용융아연도금은 Al이 0.1~0.3wt% 포함된 430~480℃의 도금욕에서 2.5~8초간 강판을 침지하여 행하는 것인 극저온 접합성이 우수한 용융아연도금강판의 제조방법.
The method of claim 6,
The hot dip galvanizing is a method of producing a hot dip galvanized steel sheet having excellent cryogenic bonding properties that is performed by immersing the steel plate for 2.5-8 seconds in a plating bath of 430 ~ 480 ℃ containing 0.1 ~ 0.3wt% Al.
청구항 6에 있어서,
상기 용융아연도금된 강판을 냉각하는 것은 -20℃/s 이하의 냉각속도로 행하는 것인 극저온 접합성이 우수한 용융아연도금강판의 제조방법.
The method of claim 6,
Cooling the hot-dip galvanized steel sheet is a method of producing a hot-dip galvanized steel sheet excellent in cryogenic bonding is performed at a cooling rate of -20 ℃ / s or less.
청구항 6에 있어서,
상기 용융아연도금강판의 소지강판 및 억제층 사이에 우수한 계면밀착력을 갖는 복합층을 형성하도록 상기 전이금속을 도금, 열처리 및 용융아연도금하는 극저온 접합성이 우수한 용융아연도금강판의 제조방법.
The method of claim 6,
A method for producing a hot-dip galvanized steel sheet having excellent cryogenic bonding properties by plating, heat-treating and hot-dip galvanizing the transition metal to form a composite layer having excellent interfacial adhesion between the base steel sheet and the suppression layer of the hot-dip galvanized steel sheet.
청구항 6에 있어서,
상기 용융아연도금강판의 도금층 결정립(spangle)의 평균 직경이 150㎛ 이하가 되도록 상기 용융아연도금된 강판을 냉각하는 극저온 접합성이 우수한 용융아연도금강판의 제조방법.
The method of claim 6,
A method for producing a hot-dip galvanized steel sheet having excellent cryogenic bonding properties for cooling the hot-dip galvanized steel sheet such that the average diameter of the plated layer grains of the hot-dip galvanized steel sheet is 150 μm or less.
KR1020110141257A 2011-12-23 2011-12-23 Galvanized steel sheet having excellent ultra low temperature adhesion property and method for manufacturing the same KR101353701B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020110141257A KR101353701B1 (en) 2011-12-23 2011-12-23 Galvanized steel sheet having excellent ultra low temperature adhesion property and method for manufacturing the same
US14/366,842 US9260787B2 (en) 2011-12-23 2012-12-20 Hot-dip galvanized steel sheet having excellent adhesiveness at ultra-low temperatures
PCT/KR2012/011172 WO2013095007A1 (en) 2011-12-23 2012-12-20 Hot-dip galvanized steel sheet having excellent adhesiveness at ultra-low temperatures and method of manufacturing the same
EP12859008.0A EP2794950B1 (en) 2011-12-23 2012-12-20 Hot-dip galvanized steel sheet having excellent adhesiveness at ultra-low temperatures and method of manufacturing the same
CN201280064126.4A CN104011252B (en) 2011-12-23 2012-12-20 Hot-dip galvanized steel sheet and its manufacture method with excellent adhesiveness under ultralow temperature
JP2014548664A JP6014681B2 (en) 2011-12-23 2012-12-20 Hot-dip galvanized steel sheet with excellent cryogenic bonding properties and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110141257A KR101353701B1 (en) 2011-12-23 2011-12-23 Galvanized steel sheet having excellent ultra low temperature adhesion property and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20130073421A KR20130073421A (en) 2013-07-03
KR101353701B1 true KR101353701B1 (en) 2014-01-21

Family

ID=48668815

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110141257A KR101353701B1 (en) 2011-12-23 2011-12-23 Galvanized steel sheet having excellent ultra low temperature adhesion property and method for manufacturing the same

Country Status (6)

Country Link
US (1) US9260787B2 (en)
EP (1) EP2794950B1 (en)
JP (1) JP6014681B2 (en)
KR (1) KR101353701B1 (en)
CN (1) CN104011252B (en)
WO (1) WO2013095007A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210079054A (en) * 2019-12-19 2021-06-29 주식회사 포스코 Galvanized steel sheet with excellent liquid metal embrittlement resistance and hydrogen embrittlement resistance and method for manufacturing thereof
KR20220036094A (en) * 2020-09-15 2022-03-22 주식회사 포스코 Galvanized steel sheet with excellent corrosion resistance in chloride containing environment and method for manufacturing thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104862631A (en) * 2015-05-08 2015-08-26 青岛锻艺金属有限公司 Surface galvanization technology of iron art product
WO2019082035A1 (en) 2017-10-24 2019-05-02 Arcelormittal A method for the manufacture of a coated steel sheet
CN106987790A (en) * 2017-04-10 2017-07-28 唐山钢铁集团有限责任公司 The continuous zinc coating method of high-silicon high-manganese galvanized steel strip
US11486531B2 (en) 2017-05-31 2022-11-01 Jfe Steel Corporation Thermal-insulated multi-walled pipe for superconducting power transmission
MA50453A (en) 2017-10-24 2021-04-07 Arcelormittal PROCESS ALLOWING THE MANUFACTURE OF A SHEET OF STEEL ANNUALLY BY GALVANIZATION
US11680331B2 (en) 2017-10-24 2023-06-20 Arcelormittal Method for the manufacture of a coated steel sheet
RU2761927C1 (en) 2017-11-17 2021-12-14 Арселормиттал Method for manufacturing zinc-coated steel sheet resistant to liquid metal embrittlement
KR102010074B1 (en) 2017-12-22 2019-08-12 주식회사 포스코 Hot dip galvanized steel sheet having good formability and surface appearance and and method for manufacturing the same
KR102031454B1 (en) 2017-12-24 2019-10-11 주식회사 포스코 Galvinized steel sheet having excellent adhesion at low temperature and excellent workability and method for manufacturing the same
KR102420305B1 (en) * 2018-03-26 2022-07-13 닛폰세이테츠 가부시키가이샤 Method for manufacturing hot-dip Al-based plated steel sheet, and hot-dip Al-based plated steel sheet
EP4242358A1 (en) * 2020-11-06 2023-09-13 JFE Steel Corporation Zinc plated steel sheet, electrodeposition coated steel sheet, automotive parts, production method for electrodeposition coated steel sheet, and production method for zinc plated steel sheet
KR20230098325A (en) * 2020-11-06 2023-07-03 제이에프이 스틸 가부시키가이샤 Manufacturing method of alloyed galvanized steel sheet, electrodeposition coated steel sheet, automobile parts, electrodeposition coated steel sheet, and manufacturing method of alloyed galvanized steel sheet
JP7323062B2 (en) * 2020-11-06 2023-08-08 Jfeスチール株式会社 Fe-based electroplated steel sheet, electrodeposition coated steel sheet, automobile parts, method for manufacturing electrodeposition coated steel sheet, and method for manufacturing Fe-based electroplated steel sheet
KR102453007B1 (en) * 2020-12-18 2022-10-12 주식회사 포스코 Composite plated steel sheet having excellent corrosion resistance after forming, and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447802A (en) * 1992-03-30 1995-09-05 Kawasaki Steel Corporation Surface treated steel strip with minimal plating defects and method for making
JP2007262464A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Method for producing hot dip galvanized steel sheet

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056418B2 (en) * 1980-10-21 1985-12-10 新日本製鐵株式会社 Manufacturing method of hot-dip galvanized steel sheet
JPH03232952A (en) * 1990-02-07 1991-10-16 Kawasaki Steel Corp Manufacture of hot-dip galvanized steel sheet having good adhesion of galvanizing layer
JP2557573B2 (en) * 1991-05-08 1996-11-27 新日本製鐵株式会社 Hot-dip galvanized steel sheet and method for producing the same
JP2704045B2 (en) * 1992-03-30 1998-01-26 川崎製鉄株式会社 Surface-treated steel sheet with few plating defects and method for producing the same
JPH0860329A (en) * 1994-08-11 1996-03-05 Kobe Steel Ltd Production of galvannealed steel sheet
JPH11100653A (en) * 1997-09-26 1999-04-13 Nisshin Steel Co Ltd Production of hot dip galvanized steel strip
US6030472A (en) * 1997-12-04 2000-02-29 Philip Morris Incorporated Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders
JP2002180224A (en) * 2000-12-11 2002-06-26 Sumitomo Metal Ind Ltd Galvannealed steel sheet and its production method
JP4886118B2 (en) * 2001-04-25 2012-02-29 株式会社神戸製鋼所 Hot-dip galvanized steel sheet
KR20040038503A (en) * 2002-11-01 2004-05-08 주식회사 포스코 Chemical composition of Zn melts for galvannealed steel sheets having excellent surface quality and method for manufacture galvannealed steel sheets to use it
JP2005082834A (en) * 2003-09-05 2005-03-31 Nippon Steel Corp Highly corrosion-resistant hot-dip plating steel sheet and manufacturing method therefor
JP4473587B2 (en) 2004-01-14 2010-06-02 新日本製鐵株式会社 Hot-dip galvanized high-strength steel sheet with excellent plating adhesion and hole expandability and its manufacturing method
WO2006070995A1 (en) 2004-12-28 2006-07-06 Posco Galvanized steel-sheet without spangle, manufacturing method thereof and device used therefor
CA2605486C (en) * 2005-04-20 2010-12-14 Nippon Steel Corporation Hot dip galvannealed steel sheet and method of production of the same
JP5194366B2 (en) * 2006-02-10 2013-05-08 新日鐵住金株式会社 Hot-dip galvanized steel sheet with excellent surface appearance
JP2008144264A (en) 2006-11-16 2008-06-26 Jfe Steel Kk High-strength hot-dip galvannealed steel sheet, and method for manufacturing high-strength hot-dip galvannealed steel sheet
KR101171449B1 (en) 2009-12-28 2012-08-06 주식회사 포스코 Galvinized steel sheet having excellent deep drawing quality and ultra-low temperature bonding brittlness and method for manufacturing the same
KR101266451B1 (en) 2010-10-13 2013-05-24 주식회사 포스코 Method for preparing galvanazed steel sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447802A (en) * 1992-03-30 1995-09-05 Kawasaki Steel Corporation Surface treated steel strip with minimal plating defects and method for making
JP2007262464A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Method for producing hot dip galvanized steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210079054A (en) * 2019-12-19 2021-06-29 주식회사 포스코 Galvanized steel sheet with excellent liquid metal embrittlement resistance and hydrogen embrittlement resistance and method for manufacturing thereof
KR102281201B1 (en) 2019-12-19 2021-07-26 주식회사 포스코 Galvanized steel sheet with excellent liquid metal embrittlement resistance and hydrogen embrittlement resistance and method for manufacturing thereof
KR20220036094A (en) * 2020-09-15 2022-03-22 주식회사 포스코 Galvanized steel sheet with excellent corrosion resistance in chloride containing environment and method for manufacturing thereof
KR102413245B1 (en) 2020-09-15 2022-06-27 주식회사 포스코 Galvanized steel sheet with excellent corrosion resistance in chloride containing environment and method for manufacturing thereof

Also Published As

Publication number Publication date
US20140349133A1 (en) 2014-11-27
JP2015500925A (en) 2015-01-08
JP6014681B2 (en) 2016-10-25
EP2794950B1 (en) 2019-08-28
CN104011252B (en) 2017-07-18
EP2794950A4 (en) 2015-11-11
CN104011252A (en) 2014-08-27
US9260787B2 (en) 2016-02-16
WO2013095007A1 (en) 2013-06-27
EP2794950A1 (en) 2014-10-29
KR20130073421A (en) 2013-07-03

Similar Documents

Publication Publication Date Title
KR101353701B1 (en) Galvanized steel sheet having excellent ultra low temperature adhesion property and method for manufacturing the same
EP2684985B1 (en) Process for producing hot-pressed member steel sheet
KR101382910B1 (en) Galvanized steel sheet having excellent surface property and coating adhesion and method for manufacturing the same
JP6009438B2 (en) Method for producing austenitic steel
KR101825857B1 (en) Bake-hardening galvanized steel sheet
JPWO2015022778A1 (en) Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
CN111511954B (en) Hot-dip galvanized steel sheet having excellent low-temperature adhesion and workability, and method for producing same
JP4720618B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
KR20190076796A (en) Aluminum alloy coated steel sheet having improved resistance for liquid metal embrittlement and coating adhesion
JP4834922B2 (en) Method for producing hot-dip galvanized steel sheet
KR102311502B1 (en) Aluminium alloy plate steel sheet having excellent formability and corrosion resistance and method for manufacturing the same
KR102311503B1 (en) Aluminium alloy plate steel sheet having excellent formability and corrosion resistance and method for manufacturing the same
KR20120041619A (en) Galvanizing steel sheet having good galvanizabilty and adhesion and method for manufacturing the same
KR102043519B1 (en) Hot dip aluminium alloy plated steel sheet having excellent corrosion resistance and weldability, method for manufacturing the same
WO2019142559A1 (en) High strength alloyed electrolytic zinc-plated steel sheet and method for producing same
CN114761603A (en) Aluminum-based alloy-plated steel sheet having excellent workability and corrosion resistance, and method for producing same
KR102491030B1 (en) High strength hot-dip galvanized steel sheet having exceelent coating adhesion and weldability and method of manufacturing the same
KR102453006B1 (en) High strength hot-dip galvanized steel sheet having exceelent coatability and method of manufacturing the same
JP7323064B2 (en) Galvanized steel sheet, electrodeposition coated steel sheet, automobile parts, method for manufacturing electrodeposition coated steel sheet, and method for manufacturing galvanized steel sheet
KR102175731B1 (en) Alloyed aluminium coated steel sheet having excellent weldability and phosphating properties and method of manufacturing the same
JP7323062B2 (en) Fe-based electroplated steel sheet, electrodeposition coated steel sheet, automobile parts, method for manufacturing electrodeposition coated steel sheet, and method for manufacturing Fe-based electroplated steel sheet
WO2022097733A1 (en) Zinc alloy-plated steel sheet, electrodeposited steel sheet, motor vehicle component, method for producing electrodeposited steel sheet, and method for producing zinc alloy-plated steel sheet
KR102031459B1 (en) Ultra high strength high manganese galvanized steel sheet having excellent coatability and method of manufacturing the same
KR101879081B1 (en) Hot dip aluminium coated high manganese steel sheet with superior self-sacrificing corrosion resistance and hot dip aluminium coatability and method for manufacturing same
EP3845681A1 (en) Hot dip plated steel sheet having excellent corrosion resistance and workability, and manufacturing method therefor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170110

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180112

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200115

Year of fee payment: 7