KR101350831B1 - Preparation method of organosilica capable of non oxide silica preparation - Google Patents

Preparation method of organosilica capable of non oxide silica preparation Download PDF

Info

Publication number
KR101350831B1
KR101350831B1 KR1020110094253A KR20110094253A KR101350831B1 KR 101350831 B1 KR101350831 B1 KR 101350831B1 KR 1020110094253 A KR1020110094253 A KR 1020110094253A KR 20110094253 A KR20110094253 A KR 20110094253A KR 101350831 B1 KR101350831 B1 KR 101350831B1
Authority
KR
South Korea
Prior art keywords
silica
hours
organic
microparticles
organo
Prior art date
Application number
KR1020110094253A
Other languages
Korean (ko)
Other versions
KR20130030647A (en
Inventor
유영철
심종길
권오성
Original Assignee
(주)석경에이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)석경에이티 filed Critical (주)석경에이티
Priority to KR1020110094253A priority Critical patent/KR101350831B1/en
Publication of KR20130030647A publication Critical patent/KR20130030647A/en
Application granted granted Critical
Publication of KR101350831B1 publication Critical patent/KR101350831B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명은 탄소를 함유한 유기-실리카 전구체를 박막증발기를 이용하여 분별증류하는 단계; 및
상기 분별증류된 유기-실리카 전구체를 원료로 하여 졸겔법에 의해 단분산된 유기-실리카 미세입자를 제조하는 단계; 및
상기 유기-실리카 미세입자를 열처리하는 단계를 포함하는 고순도 SiC 또는 Si3N4의 제조방법을 제공한다.
The present invention comprises the steps of fractional distillation of carbon-containing organo-silica precursors using a thin film evaporator; And
Preparing monodispersed organic-silica microparticles by the sol-gel method using the fractionated organic-silica precursor as a raw material; And
It provides a method for producing high purity SiC or Si 3 N 4 comprising the step of heat-treating the organic-silica microparticles.

Description

비산화물 실리카 제조가 가능한 유기 실리카 제조방법{PREPARATION METHOD OF ORGANOSILICA CAPABLE OF NON OXIDE SILICA PREPARATION}Organic silica manufacturing method which can manufacture non-oxide silica {PREPARATION METHOD OF ORGANOSILICA CAPABLE OF NON OXIDE SILICA PREPARATION}

본 발명은 고순도 탄화규소 또는 질화규소의 제조방법에 관한 것으로, 보다 상세하게는 간단한 공정에 의해 단분산된 유기-실리카 미세입자를 고순도로 제조할 수 있으며, 또한 이로부터 제조된 고순도 유기-실리카 미세입자로부터 고순도의 SiC 또는 Si3N4 미세입자를 제조하는 방법에 관한 것이다.
The present invention relates to a method for producing high-purity silicon carbide or silicon nitride, more specifically mono-dispersed organo-silica microparticles can be produced in high purity by a simple process, and also high-purity organo-silica microparticles prepared therefrom From a high purity SiC or Si 3 N 4 microparticles.

일반적으로 SiC 또는 Si3N4는 낮은 밀도와 높은 융점, 고온 고강도성, 내열성 및 내산화성을 가진 재료로서 각종 내열구조재, 공업용로재, 차세대 열교환기, 가스 터빈 및 피스톤 엔진재료로의 응용면에서 주목받고 있으나, 공유결합 물질이라서 소결하기 어려우므로 원하는 정도의 치밀화 정도로 소결하기 위한 연구가 다방면으로 진행 중에 있다. In general, SiC or Si 3 N 4 is a material with low density, high melting point, high temperature high strength, heat resistance and oxidation resistance, and is used in various heat resistant structural materials, industrial furnace materials, next generation heat exchangers, gas turbines, and piston engine materials. Although attracting attention, it is difficult to sinter since it is a covalent material, and research for sintering to a desired degree of densification is underway in various fields.

SiC 또는 Si3N4를 고순도로 대량으로 제조하기 위해서는 규소원으로 고순도의 실리카나 테트라에톡시실란 같은 알콕시실란이 필요하고, 탄소원으로는 카본, 페놀 레진, 그라파이트 등이 필요하며 또한 환원 분위기의 소성이 필수적이나, 기존의 SiC 또는 Si3N4를 제조하기 위해 지금까지 알려진 실리카 미세입자의 제조방법들은 대개 단분산이 어렵고 순도가 낮으며, 구형화가 잘 이루어지지 않고, 무기물로 이루어진 실리카를 사용하기 때문에 SiC 제조를 위한 원료로서 사용하기에는 적합하지 않은 문제가 있어 왔다.
In order to manufacture SiC or Si 3 N 4 in large quantities with high purity, a silicon source requires an alkoxysilane such as silica or tetraethoxysilane and carbon, phenol resin, graphite, etc. This is necessary, but conventional methods for producing silica microparticles to produce SiC or Si 3 N 4 are generally difficult to monodisperse, low in purity, poorly spherical, and use inorganic silica. Therefore, there has been a problem that is not suitable for use as a raw material for SiC production.

본 발명은 상기한 바와 같은 종래기술이 가지는 문제를 해결하기 위해 안출된 것으로, 그 목적은 간단한 공정에 의해 단분산된 유기-실리카 미세입자를 고순도로 제조할 수 있으며, 또한 이로부터 제조된 고순도 유기-실리카 미세입자로부터 고순도의 SiC 또는 Si3N4 미세입자를 제조하는 방법을 제공함에 있다.
The present invention has been made to solve the problems of the prior art as described above, the object is to produce a high-purity organic-silica microparticles monodispersed by a simple process, and also produced from high purity organic The present invention provides a method for producing high purity SiC or Si 3 N 4 microparticles from silica microparticles.

상기한 바와 같은 본 발명의 기술적 과제는 다음과 같은 수단에 의해 달성되어진다.The technical problem of the present invention as described above is achieved by the following means.

(1) 탄소를 함유한 유기-실리카 전구체를 박막증발기를 이용하여 분별증류하는 단계; 및(1) fractionally distilling carbon-containing organo-silica precursors using a thin film evaporator; And

상기 분별증류된 유기-실리카 전구체를 원료로 하여 졸겔법에 의해 단분산된 유기-실리카 미세입자를 제조하는 단계; 및 Preparing monodispersed organic-silica microparticles by the sol-gel method using the fractionated organic-silica precursor as a raw material; And

상기 유기-실리카 미세입자를 열처리하는 단계를 포함하는 고순도 SiC 또는 Si3N4의 제조방법.
Method for producing high purity SiC or Si 3 N 4 comprising the step of heat-treating the organo-silica microparticles.

(2) 제 1항에 있어서,(2) The method according to claim 1,

열처리공정은 1300~2000℃로 이루어지는 것을 특징으로 하는 고순도 SiC 또는 Si3N4의 제조방법.
Heat treatment process is a method for producing high purity SiC or Si 3 N 4 characterized in that consisting of 1300 ~ 2000 ℃.

(3) 제 1항에 있어서,(3) The method according to claim 1,

열처리 온도를 1300 내지 1600 ℃로 1 내지 10 시간 동안 질소분위기에서 소성한 것을 특징으로 하는 질화규소(Si3N4)의 제조방법.
Method for producing silicon nitride (Si 3 N 4 ) characterized in that the heat treatment temperature was fired in a nitrogen atmosphere for 1 to 10 hours at 1300 to 1600 ℃.

(4) 제 1항에 있어서,(4) The method according to claim 1,

열처리 온도를 1500 내지 2000 ℃로 1 내지 10 시간 동안 질소 또는 아르곤분위기에서 소성한 것을 특징으로 하는 탄화규소(SiC)의 제조 방법.
Method for producing silicon carbide (SiC), characterized in that the heat treatment temperature was calcined in nitrogen or argon atmosphere for 1 to 10 hours at 1500 to 2000 ℃.

상기와 같이 본 발명에 의하면, 간단한 공정에 의해 단분산된 유기-실리카 미세입자를 고순도로 제조할 수 있으며, 또한 이로부터 제조된 유기-고순도 실리카 미세입자는 SiC 또는 Si3N4 미세입자의 제조공정에 원료로서 제공되어 고순도의 SiC 또는 Si3N4를 제조하는 것이 가능하다.
According to the present invention as described above, it is possible to produce mono-dispersed organic-silica microparticles by a simple process with high purity, and the organic-high purity silica microparticles prepared therefrom are prepared of SiC or Si 3 N 4 microparticles. It is possible to produce high purity SiC or Si 3 N 4 by being provided as a raw material to the process.

도 1 및 2는 본 발명에 따른 고순도 유기-실리카 미세입자의 SEM 사진이다.
도 3은 본 발명에 따른 고순도 Si3N4 미세입자의 SEM 사진이다.
도 4는 본 발명에 따른 고순도 Si3N4 미세입자의 XRD 분석결과이다.
도 5는 본 발명에 따른 고순도 SiC 미세입자의 SEM 사진이다.
도 6은 본 발명에 따른 고순도 SiC 미세입자의 XRD 분석결과이다.
1 and 2 are SEM photographs of high purity organo-silica microparticles according to the present invention.
3 is a SEM photograph of high purity Si 3 N 4 microparticles according to the present invention.
4 is an XRD analysis result of high purity Si 3 N 4 microparticles according to the present invention.
5 is a SEM photograph of high purity SiC microparticles according to the present invention.
6 is an XRD analysis result of high purity SiC microparticles according to the present invention.

본 발명은 탄소를 함유하는 유기-실리카 전구체를 박막증발기를 이용하여 분별증류하는 단계; 및 상기 분별증류된 유기-실리카 전구체를 원료로 하여 졸겔법에 의해 단분산된 유기-실리카 미세입자를 제조하는 단계; 및 상기 유기-실리카를 열처리하는 단계를 포함하는 고순도 SiC 또는 Si3N4 의 제조방법을 제공한다.
The present invention comprises the steps of fractional distillation of the organic-silica precursor containing carbon using a thin film evaporator; And preparing monodispersed organic-silica microparticles by the sol-gel method using the fractionated organic-silica precursor as a raw material. And it provides a method for producing high purity SiC or Si 3 N 4 comprising the step of heat-treating the organo-silica.

이하 본 발명의 내용을 보다 상세하게 설명하면 다음과 같다.
Hereinafter, the contents of the present invention will be described in more detail.

(1) 고순도 유기-실리카 전구체 제조(1) Preparation of High Purity Organic-Silica Precursor

상기 본 발명에서 탄소를 함유하는 유기-실리카 전구체는 실리콘 알콕사이드를 들 수 있으며, 예로는 테트나메틸오르소실리케이트(TMOS), 테트라에틸오르소실리케이트(TEOS), 3-머캅토프로필트라이메톡시실란(MPTMS), 페닐트라이메톡시실란(PTMS), 비닐트라이메톡시실란(VTMS), 메틸트라이메톡시실란(MTMS), 3-아미노프로필트라이메톡시실란(APTMS), 3-글리시딜옥시프로필트라이메톡시실란(GPTMS), (3-트라이메톡시실릴)프로필메타크릴레이트(TMSPMA), 3-머캅토프로필트라이메톡시실란(MPTMS), 3-(트라이메톡시실릴)프로필아이소시아네이트(TMSPI), 페닐실란(PS), 디에톡시(메틸)페닐실란(Diethoxy(methyl)phenylsilane), 페닐옥시미노실란(Phenyl Oximino Silane) 등을 사용할 수 있으며, 바람직하게는 페닐트라이메톡시실란(PTMS) 및 테트라에틸오르소실리케이트(TEOS)를 사용하는 것이다. 상기 실리카 미세입자의 구조 및 입자 사이즈에 따라서 사용하는 실리콘 알콕사이드 중 2 종 이상의 혼합비를 적절히 선택할 수 있다. Examples of the organo-silica precursor containing carbon in the present invention include silicon alkoxide, and examples thereof include tetnamethylorthosilicate (TMOS), tetraethylorthosilicate (TEOS), and 3-mercaptopropyltrimethoxysilane. (MPTMS), phenyltrimethoxysilane (PTMS), vinyltrimethoxysilane (VTMS), methyltrimethoxysilane (MTMS), 3-aminopropyltrimethoxysilane (APTMS), 3-glycidyloxypropyl Trimethoxysilane (GPTMS), (3-trimethoxysilyl) propylmethacrylate (TMSPMA), 3-mercaptopropyltrimethoxysilane (MPTMS), 3- (trimethoxysilyl) propylisocyanate (TMSPI ), Phenylsilane (PS), diethoxy (methyl) phenylsilane, phenyl oxymino silane (Phenyl Oximino Silane) and the like can be used, preferably phenyl trimethoxy silane (PTMS) and Tetraethylorthosilicate (TEOS) is used. Mixing ratios of two or more kinds of silicon alkoxides to be used can be appropriately selected depending on the structure and particle size of the silica fine particles.

상기 유기-실리카 전구체는 용액상태로 제공되며, 실리카 전구체 용액은 실리카 전구체 1 내지 70 중량% 및 유기용매 30 내지 99 중량%로 포함하는 것이 바람직하고, 더욱 바람직하게는 실리카 전구체 2 내지 30 중량% 및 유기용매 70 내지 98 중량%로 포함하는 것이다.The organo-silica precursor is provided in a solution state, and the silica precursor solution may include 1 to 70% by weight of the silica precursor and 30 to 99% by weight of the organic solvent, more preferably 2 to 30% by weight of the silica precursor and 70 to 98% by weight of an organic solvent.

상기 유기용매로는 n-펜탄, i-펜탄, n-헥산, i-헥산, 2,2,4-트리메틸펜탄, 시클로헥산, 또는 메틸시클로헥산 등의 지방족 탄화수소계 용매; 벤젠, 톨루엔, 자일렌, 트리메틸벤젠, 에틸벤젠, 또는 메틸에틸벤젠 등의 방향족 탄화수소계 용매; 메틸알콜, 에틸알콜, n-프로판올, i-프로판올, n-부탄올, i-부탄올, sec-부탄올, t-부탄올, 4-메틸-2-펜탄올, 시클로헥사놀, 메틸시클로헥사놀, 또는 글리세롤 등의 알코올계 용매; 아세톤, 메틸에틸케톤, 메틸-n-프로필케톤, 메틸-n-부틸케톤, 메틸-i-부틸케톤, 디에틸케톤, 시클로헥사논, 메탈시클로헥사논, 또는 아세틸아세톤 등의 케톤계 용매; 테트라하이드로퓨란, 2-메틸 테트라하이드로퓨란, 에틸에테르, n-프로필에테르, i-프로필에테르, n-부틸에테르, 디글라임(diglyme), 디옥신, 디메틸디옥신, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜-n-프로필에테르, 에틸렌글리콜디메틸에테르, 에틸렌글리콜디에틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노에틸에테르, 프로필렌글리콜모노프로필에테르, 프로필렌글리콜-디메틸에테르, 프로필렌글리콜디에틸에테르, 또는 프로필렌글리콜디프로필에테르 등의 에테르계 용매; 디에틸카보네이트, 메틸아세테이트, 에틸아세테이트, n-프로필아세테이트, i-프로필아세테이트, n-부틸아세테이트, 에틸락테이트, 에틸렌글리콜모노메틸에테르아세네이트, 에틸렌글리콜모노에틸에테르아세테이트, 프로필렌글리콜모노메틸에테르아세에이트, 프로필렌글리콜모노에틸에테르아세테이트, 프로필렌글리콜모노프로필에테르아세테이트, 에틸렌글리콜디아세테이트, 또는 프로필렌글리콜디아세테이트 등의 에스테르계 용매; 또는 N-메틸피롤리돈, 포름아마이드, N-메틸포름아마이드, N-에틸포름아마이드, N,N-디메틸포름아마이드, N,N-디에틸포름아마이드, N-메틸아세트아마이드, N-에틸아세트아마이드, N,N-디메틸아세트아마이드, 또는 N,N-디에틸아세트아마이드 등의 아마이드계 용매 등을 사용할 수 있다.Examples of the organic solvent include aliphatic hydrocarbon solvents such as n-pentane, i-pentane, n-hexane, i-hexane, 2,2,4-trimethylpentane, cyclohexane, or methylcyclohexane; Aromatic hydrocarbon solvents such as benzene, toluene, xylene, trimethylbenzene, ethylbenzene, or methylethylbenzene; Methyl alcohol, ethyl alcohol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, t-butanol, 4-methyl-2-pentanol, cyclohexanol, methylcyclohexanol, or glycerol Alcohol solvents such as these; Ketone solvents such as acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, methyl-i-butyl ketone, diethyl ketone, cyclohexanone, metalcyclohexanone, or acetylacetone; Tetrahydrofuran, 2-methyl tetrahydrofuran, ethyl ether, n-propyl ether, i-propyl ether, n-butyl ether, diglyme, dioxin, dimethyldioxine, ethylene glycol monomethyl ether, ethylene glycol Monoethyl ether, ethylene glycol-n-propyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol dimethyl ether, propylene glycol di Ether solvents such as ethyl ether or propylene glycol dipropyl ether; Diethyl carbonate, methyl acetate, ethyl acetate, n-propyl acetate, i-propyl acetate, n-butyl acetate, ethyl lactate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate Ester solvents such as ate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, ethylene glycol diacetate, or propylene glycol diacetate; Or N-methylpyrrolidone, formamide, N-methylformamide, N-ethylformamide, N, N-dimethylformamide, N, N-diethylformamide, N-methylacetamide, N-ethylacetide Amide solvents such as amide, N, N-dimethylacetamide, or N, N-diethylacetamide can be used.

본 발명에서는 저순도의 실리카 전구체 용액(예를 들어, 순도 3N5)을 박막증발기를 통해 분별증류하여 고순도(예를 들어, 순도 >5N)의 실리카 전구체 용액을 얻는다. In the present invention, a low-purity silica precursor solution (for example, purity 3N5) is fractionally distilled through a thin film evaporator to obtain a high-purity (for example, purity> 5N) silica precursor solution.

본 발명에서 사용되는 상기 박막증발기는 증발기 내에 박막을 형성시켜 증발시키는 장치이면 모두 가능하다. 예로서, 증발기 내부에 박막을 형성시켜주는 방법에 따라 교반식 박막증발기, 장관형 수직증발기, 또는 낙하 막증발기 등이 사용될 수 있다. 상기 교반식 박막증발기는 증발기 내부에 회전형 날개가 있어 이 회전형 날개를 회전시켜 박막을 형성시켜주는 증발기이고, 상기 장관형 수직증발기와 낙하 막증발기는 중력에 의해 박막을 형성시켜주는 증발기이다. The thin film evaporator used in the present invention can be any device that forms a thin film in the evaporator to evaporate. For example, a stirring thin film evaporator, a long vertical evaporator, or a falling film evaporator may be used according to a method of forming a thin film inside the evaporator. The stirring thin film evaporator is an evaporator having a rotary blade inside the evaporator to rotate the rotary blade to form a thin film, and the elongated vertical evaporator and the falling film evaporator are evaporators for forming a thin film by gravity.

상기 박막증발기에서의 분별증류 과정은 50 내지 100 hPa의 압력 조건하에서 실시하는 것이 바람직하다. 또한 상기 증류시 온도조건은 압력에 따라 결정할 수 있으나, 가열온도는 40 내지 200 ℃로 하고, 냉각온도는 0 내지 5 ℃의 저온에서 실시하는 것이 좋다. 실리카 전구체 용액의 공급은 정량펌프를 통해 박막증발기내에 10 내지 30mg/분의 속도로 이루어지는 것이 바람직하며, 박막증발기 내로 공급된 실리카 전구체 용액의 증발이 잘 되도록 박막증발기 내벽에 얇은 막을 형성시키기 위하여 회전날개는 교반속도 400 내지 1000rpm의 일정한 속도로 회전시켜 주는 것이 바람직하다.The fractional distillation process in the thin film evaporator is preferably carried out under a pressure condition of 50 to 100 hPa. In addition, the temperature conditions during the distillation can be determined according to the pressure, the heating temperature is 40 to 200 ℃, the cooling temperature is preferably carried out at a low temperature of 0 to 5 ℃. The supply of the silica precursor solution is preferably performed at a rate of 10 to 30 mg / min in the thin film evaporator through a metering pump, and the rotary wing to form a thin film on the inner wall of the thin film evaporator to facilitate evaporation of the silica precursor solution into the thin film evaporator. It is preferable to rotate at a constant speed of the stirring speed of 400 to 1000rpm.

상기 박막증발기에서의 증류는 1 회로 실시할 수도 있으며, 필요에 따라 2 회 이상 실시할 수도 있다.
The distillation in the thin film evaporator may be performed once, or may be performed two or more times as necessary.

(2) 고순도 유기-실리카 미세입자의 제조(2) Preparation of High Purity Organic-Silica Microparticles

상기와 같은 과정을 통해 얻은 고순도의 실리카 전구체를 이용하여 졸겔공정에 의해 1 내지 2㎛ 급 실리카 미세입자를 제조한다.By using a high purity silica precursor obtained through the above process to prepare a 1 to 2 ㎛ silica fine particles by a sol-gel process.

상기 실리카 전구체는 적당한 용매에 혼합되어지며, 이러한 용매의 예로는 물, 알코올 또는 이들의 혼합물이 사용될 수 있다. 알코올로는 메틸알코올, 에틸알코올, 프로필알코올, 이소 프로필알코올, 부틸알코올 등의 용제가 단독 또는 혼합하여 사용될 수 있으며, 이 중 에틸알코올 또는 프로필 알코올 및 이소 프로필 알코올을 사용하는 것이 바람직하다.The silica precursor is mixed in a suitable solvent, and examples of such a solvent may be water, alcohol or a mixture thereof. As alcohol, solvents such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol and the like may be used alone or in combination, and among them, ethyl alcohol or propyl alcohol and isopropyl alcohol are preferably used.

상기 실리카 전구체를 용매에 혼합하여 투명한 실리카 전구체 용액을 얻을 수 있으며, 이때 알콕사이드의 안정화를 위해 촉매가 투입될 수 있다. 이러한 촉매의 예로는, 2-아미노프로판올, 2-(메틸페닐아미노)에탄올, 2-(에틸페닐아미노)에탄올, 2-아미노-1-부탄올, (다이이소프로필아미노)에탄올, 2-다이에틸아미노에탄올, 4-아미노페닐아미노이소프로판올, N-에틸아미노에탄올, 모노에탄올아민, 다이에탄올아민, 트리에탄올아민, 모노이소프로판올아민, 다이이소프로판올아민, 트리이소프로판올아민, 메틸디에탄올아민, 디메틸모노에탄올아민, 에틸디에탄올아민, 디에틸모노에탄올아민 등의 아미노 알콜을 들 수 있다.The silica precursor may be mixed with a solvent to obtain a transparent silica precursor solution, and a catalyst may be added to stabilize the alkoxide. Examples of such a catalyst include 2-aminopropanol, 2- (methylphenylamino) ethanol, 2- (ethylphenylamino) ethanol, 2-amino-1-butanol, (diisopropylamino) ethanol, 2-diethylaminoethanol , 4-aminophenylaminoisopropanol, N-ethylaminoethanol, monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, methyldiethanolamine, dimethyl monoethanolamine, ethyl diethanol Amino alcohols, such as an amine and diethyl monoethanolamine, are mentioned.

실리카 미세입자의 제조를 위하여 30 내지 50 ℃ 정도에서 1시간 내지 6 시간 반응하는 것이 바람직하며, 만일 30 ℃ 미만으로 유지될 경우에는 구형화도가 낮고 입자가 불균일하게 될 우려가 있고, 50 ℃를 초과할 경우에는 입자 성장이 어려워, 입자가 지나치게 소형화할 우려가 있다.For the production of silica microparticles, the reaction is preferably carried out at about 30 to 50 ° C. for 1 hour to 6 hours, and if it is maintained below 30 ° C., the degree of sphericity is low and the particles may be non-uniform. In this case, particle growth is difficult, and there is a fear that the particles become too small.

반응에 알콕사이드 안정화 촉매가 투입되어지는 경우에는 그 함량은 전체 반응용액 100 중량부에 대하여 0.01 내지 20 중량부 첨가하는 것이 바람직하다. 상기 촉매의 함량이 0.01 중량부 미만일 경우에는 알콕사이드의 안정화를 기대하기 곤란하며, 20 중량부를 초과하는 경우에는 수율저하 및 입자불균일을 초래하거나 구형화도가 떨어질 우려가 있다.When the alkoxide stabilized catalyst is added to the reaction, the content thereof is preferably added in an amount of 0.01 to 20 parts by weight based on 100 parts by weight of the total reaction solution. When the content of the catalyst is less than 0.01 parts by weight, it is difficult to expect stabilization of the alkoxide, and when it exceeds 20 parts by weight, yield decreases and particle nonuniformity may occur, or the degree of sphericity may decrease.

유기-실리카 미세입자의 형성을 위하여 반응용액에 염기성 촉매를 첨가하여 진행시킬 수 있다. 염기성촉매는 2 종 또는 3종의 알콕사이드 또는 염의 가수분해 시 각 성분의 가수분해 속도를 조절하도록 도움을 준다. 다만, 본 발명의 상기 반응과정에 산촉매(c-HNO3, HCl, CH3COOH 등)도 사용될 수는 있지만 (이 경우 산촉매로 가수분해 한 후 (투명) 반응을 진행), 후속하는 2차 가수분해 과정에서 얻어지는 입자의 구형화도 및 균일성이 떨어지므로 염기성 촉매가 바람직하다.In order to form the organo-silica microparticles, a basic catalyst may be added to the reaction solution to proceed. The basic catalyst helps to control the rate of hydrolysis of each component upon hydrolysis of two or three alkoxides or salts. However, although an acid catalyst (c-HNO 3 , HCl, CH 3 COOH, etc.) may also be used in the reaction process of the present invention (in this case, hydrolysis with an acid catalyst (transparent) reaction), subsequent secondary valences Basic catalysts are preferred because the degree of sphericity and uniformity of the particles obtained in the decomposition process is poor.

이와 같이, 염기의 첨가를 통해 용액의 pH를 7 내지 10 범위로 조절하는 것이 바람직하다. As such, it is preferable to adjust the pH of the solution to the range of 7 to 10 through the addition of base.

상기 반응에 사용할 염기성 촉매의 예로는, 아민기와 하이드록시기를 함유하는 화합물 또는 이의 수용액을 들 수 있으며, 아민기와 하이드록시기를 함유하는 물질의 대표적인 예로는 암모니아, 수산화나트륨, 알킬아민 또는 이들의 혼합물을 들 수 있다.Examples of the basic catalyst to be used for the reaction include a compound containing an amine group and a hydroxy group or an aqueous solution thereof, and representative examples of the material containing an amine group and a hydroxy group include ammonia, sodium hydroxide, alkylamine or a mixture thereof. Can be mentioned.

이어, 상기 과정에서 얻어진 유기-실리카 미세입자는 50~60℃에서 1시간 내지 3시간 예비건조 후 100 내지 150 ℃에서 4시간 내지 24시간 건조를 진행하는 것이 바람직하다. 이와 같이 건조되어진 유기-실리카 미세입자는 소성 단계를 거쳐 실리콘 카바이드 또는 실리콘 나이트라이드와 같은 결정상을 가지도록 진행할 수 있으며, 이를 위해 소성은 1200 ℃ 내지 2000 ℃에서 1 시간 내지 24시간 수행하는 것이 바람직하다.
Subsequently, the organo-silica microparticles obtained in the above process are preferably pre-dried at 50 to 60 ° C. for 1 hour to 3 hours and then dried at 100 to 150 ° C. for 4 hours to 24 hours. The dried organic-silica microparticles may proceed to have a crystalline phase such as silicon carbide or silicon nitride through a calcination step, and for this purpose, calcination is preferably performed at 1200 to 2000 ° C. for 1 to 24 hours. .

상기와 같은 본 발명에 의해 제조된 유기-실리카 미세입자는 거의 동일한 크기를 갖는 단분산 구형의 형태를 가지며, 이러한 단분산 구형 입자는 고순도 SiC 또는 Si3N4의 제조를 위한 원료로서 제공 되어질 수 있다. 이에 대하여는 별도로 후술하기로 한다. The organic-silica microparticles prepared by the present invention as described above have a monodisperse spherical shape having almost the same size, and such monodisperse spherical particles can be provided as a raw material for the production of high purity SiC or Si 3 N 4 . have. This will be described later separately.

이렇게 제조된 본 발명의 유기-실리카 미세입자는 평균입경이 내지 30nm ~5㎛의 크기로, 입자의 중심값이 30nm, 50 ㎚, 100 ㎚, 150 ㎚, 200 ㎚, 500nm, 1000nm, 2㎛, 5㎛인 구형의 형태를 갖는 것이 바람직하다. 더욱 바람직하게는 평균입경이 500nm 내지 2㎛의 입자를 갖는 것이다. 여기서 구형이란 완전구형뿐만 아니라, 통상 구형 때가 0.6∼1의 범위에 있는 약간 비뚤어진 구형도 포함한다. 여기서 구형 때란 실제의 입자와 동일체적을 가지는 공의 표면적/실제의 입자 표면적을 의미한다.The organic-silica microparticles of the present invention thus prepared have an average particle diameter of 30 nm to 5 μm, and have a center value of 30 nm, 50 nm, 100 nm, 150 nm, 200 nm, 500 nm, 1000 nm, 2 μm, It is preferable to have a spherical form of 5 µm. More preferably, the particles have an average particle diameter of 500 nm to 2 µm. Here, the spherical shape includes not only a perfect spherical shape, but also a slightly crooked spherical shape in which the spherical time is in the range of 0.6 to 1. The spherical shape here means the surface area of the ball / actual particle surface area having the same volume as the actual particle.

또한, 본 발명의 유기-실리카 미세입자는 탄소수가 많은 실란을 사용하는 것이 좋으며, 규소와 탄소의 유효반응 원소의 비율이 1:2 내지 1:4의 비율인 것이 바람직하다. 상기 규소와 탄소의 유효반응 원소의 비율이 1:2 미만인 경우 질소 분위기에서 열처리를 진행하여도 잔존 산소가 문제 되어 실리카로 존재하는 양이 많을 수 있고, 1대 4 이상이 비율일 경우 잔존 탄소가 존재할 수 있고, Si3N4합성이 어려울 수 있는 단점이 있다.
In addition, the organo-silica microparticles of the present invention preferably use a silane having a high carbon number, and the ratio of the effective reactive element of silicon and carbon is 1: 2 to 1: 4. When the ratio of the effective reactive element of silicon and carbon is less than 1: 2, even if heat treatment is performed in a nitrogen atmosphere, residual oxygen may be a problem and thus a large amount of silica exists. It may be present and has the disadvantage that Si 3 N 4 synthesis may be difficult.

상기와 같이 제조된 본 발명의 유기-실리카 미세입자는 소성 온도 및 환원 분위기 조절에 의해 SiC 또는 Si3N4 미세 입자로의 제조가 가능하다.
The organo-silica microparticles of the present invention prepared as described above may be manufactured into SiC or Si 3 N 4 microparticles by controlling the firing temperature and the reducing atmosphere.

(3) 고순도 Si3N4 입자의 제조(3) Preparation of High Purity Si 3 N 4 Particles

상기와 같은 과정을 통해 얻은 고순도의 유기-실리카 미세입자를 이용하여 고순도의 Si3N4 입자를 제조할 수 있다. Si 3 N 4 particles of high purity may be prepared using high purity organic-silica microparticles obtained through the above process.

Si3N4 입자의 제조를 위해 가열실과 증착실을 구비한 공지의 제조장치가 이용될 수 있으며, 가열실에는 통상적으로 가열수단, 압력조절관 및 밸브가 장착되어 있다. For the production of Si 3 N 4 particles, a known manufacturing apparatus having a heating chamber and a deposition chamber can be used, and the heating chamber is usually equipped with a heating means, a pressure control tube and a valve.

Si3N4 입자의 제조를 위해 먼저 유기-실리카 입자는 볼밀 등을 이용하여 응집되어 있는 입자를 일차 입경까지 해쇄해 주는 것이 필요하다.In order to produce Si 3 N 4 particles, first, the organo-silica particles need to be disintegrated to a primary particle size of the aggregated particles using a ball mill or the like.

이와 같이 해쇄된 유기 실리카 미세입자는 가열실의 내부에 투입하여 열처리하고, 가열수단을 통해 가열실 내의 혼합물을 가열하면서 내부의 공기를 빼내고 질소(N2)과 같은 환원 가스를 채워 넣으면서 가열실 내의 압력을 조절한다. 이때 열처리공정은 바람직하게는 1300 내지 1600 ℃로 1 내지 10 시간 동안 수행되어지며, 만일 1300 ℃ 미만에서는 탄소가 잔존할 수 있고 비정질 상태의 실리카로 존재할수 있으며, 1600 ℃를 초과하면 실리콘 카바이드로 존재하게 되고, 입성장으로 인해 거대입자가 존재하게 되어 바람직하지 않다. 또한, 열처리시간이 상기 조건을 충족하지 않게 되면 미반응 산소와 탄소가 존재하게 되어 바람직하지 않다.The disintegrated organic silica fine particles are added to the inside of the heating chamber for heat treatment, and the heating means removes the air therein while heating the mixture in the heating chamber and fills the reducing gas such as nitrogen (N 2 ) in the heating chamber. Adjust the pressure At this time, the heat treatment process is preferably carried out for 1 to 10 hours at 1300 to 1600 ℃, if less than 1300 ℃ carbon may remain and exist as an amorphous silica, if the temperature exceeds 1600 ℃ as silicon carbide It is not desirable to have large particles present due to grain growth. In addition, when the heat treatment time does not satisfy the above conditions, unreacted oxygen and carbon are present, which is not preferable.

가열실에서 혼합 파우더가 가열되어 발생하는 일산화탄소(CO)와 질화규소(Si3N4) 증기는 증착실로 투입된다. 증착실은 통상적으로 내부에 투입된 일산화탄소(CO)를 외부로 방출시키기 위한 개방면, 개방면을 덮는 필터 및 냉각수단을 포함한다. 이때 필터는 질화규소(Si3N4 )가 개방면을 통해 방출되지 않도록 걸러주는 역할을 한다.Carbon monoxide (CO) and silicon nitride (Si 3 N 4 ) vapors generated when the mixed powder is heated in the heating chamber are introduced into the deposition chamber. The deposition chamber typically includes an open surface for discharging carbon monoxide (CO) introduced into the outside, a filter covering the open surface, and cooling means. At this time, the filter serves to filter the silicon nitride (Si 3 N 4 ) is not emitted through the open surface.

상기와 같은 과정에 의해 500nm 내지 5㎛의 Si3N4 입자를 얻을 수 있다.
Si 3 N 4 particles of 500nm to 5㎛ can be obtained by the above process.

(4) 고순도 SiC 입자의 제조(4) Preparation of High Purity SiC Particles

상기와 같은 과정을 통해 얻은 고순도의 유기-실리카 미세입자를 이용하여 고순도의 SiC 입자를 제조할 수 있다. SiC particles of high purity may be prepared using high purity organo-silica microparticles obtained through the above process.

SiC 입자의 제조를 위해 가열실과 증착실을 구비한 공지의 제조장치가 이용될 수 있으며, 가열실에는 통상적으로 가열수단, 압력조절관 및 밸브가 장착되어 있다. For the production of SiC particles, a known manufacturing apparatus having a heating chamber and a deposition chamber can be used, and the heating chamber is usually equipped with a heating means, a pressure control tube and a valve.

SiC 입자의 제조를 위해 먼저 유기-실리카 입자는 볼밀 등을 이용하여 응집되어 있는 입자를 일차 입경까지 해쇄해 주는 것이 필요하다.For the production of SiC particles, first, the organic-silica particles need to disintegrate the aggregated particles to the primary particle size using a ball mill or the like.

이와 같이 해쇄된 유기 실리카 미세입자는 가열실의 내부에 투입하여 열처리하고, 가열수단을 통해 가열실 내의 혼합물을 가열하면서 내부의 공기를 빼내고 질소(N2)과 같은 환원 가스를 채워 넣으면서 가열실 내의 압력을 조절한다. 이때 열처리공정은 바람직하게는 1500 내지 2000 ℃로 1 내지 10 시간 동안 수행되어지며, 만일 1500 ℃ 미만에서는 잔존 탄소 및 질소 또한 산소 미반응물이 잔존할 수 있고, 2000 ℃를 초과하면 입성장으로 인해 거대입자가 존재하게 되어 바람직하지 않다. 또한, 열처리시간이 상기 조건을 충분하지 않게되면 미반응 산소와 탄소가 존재하게 되어 바람직하지 않다.The disintegrated organic silica fine particles are introduced into a heating chamber, followed by heat treatment, while heating the mixture in the heating chamber through a heating means, extracting air therein, and filling a reducing gas such as nitrogen (N2) to pressurize the pressure in the heating chamber. Adjust At this time, the heat treatment process is preferably carried out at 1500 to 2000 ℃ for 1 to 10 hours, if less than 1500 ℃ remaining carbon and nitrogen also oxygen remaining unreacted, if it exceeds 2000 ℃ large due to grain growth The presence of particles is undesirable. In addition, when the heat treatment time does not satisfy the above conditions, unreacted oxygen and carbon are present, which is undesirable.

가열실에서 혼합 파우더가 가열되어 발생하는 일산화탄소(CO)와 탄화규소(SiC) 증기는 증착실로 투입된다. 증착실은 통상적으로 내부에 투입된 일산화탄소(CO)를 외부로 방출시키기 위한 개방면, 개방면을 덮는 필터 및 냉각수단을 포함한다. 이때 필터는 탄화규소(SiC)가 개방면을 통해 방출되지 않도록 걸러주는 역할을 한다.Carbon monoxide (CO) and silicon carbide (SiC) vapors generated by mixing powder in the heating chamber are introduced into the deposition chamber. The deposition chamber typically includes an open surface for discharging carbon monoxide (CO) introduced into the outside, a filter covering the open surface, and cooling means. At this time, the filter serves to filter out silicon carbide (SiC) from being discharged through the open surface.

상기와 같은 과정에 의해 1내지 10㎛의 SiC 입자를 얻을 수 있다.
SiC particles of 1 to 10㎛ can be obtained by the above process.

이하 본 발명의 내용을 실시예를 통해 구체적으로 설명하고자 하나 본 발명의 권리범위는 이들 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the contents of the present invention will be described in detail with reference to examples, but the scope of the present invention is not limited to these examples.

[실시예 1] 고순도 테트라에틸실리케이트(TEOS)의 제조Example 1 Preparation of High Purity Tetraethylsilicate (TEOS)

TEOS(순도 3N5)를 80hPa로 유지되는 박막증발기에 정량펌프를 이용하여 20 ㎖/분의 속도로 투입하고, 900rpm으로 교반하면서 90 ℃로 30분 내지 3 시간 동안 가열한 후 나온 증기를 3℃로 냉각하여 고순도 TEOS 용액을 얻었다.
TEOS (purity 3N5) was added to a thin film evaporator maintained at 80 hPa at a rate of 20 mL / min using a metering pump, and heated at 90 ° C. for 30 minutes to 3 hours while stirring at 900 rpm. Cooling gave a high purity TEOS solution.

[실시예 2] 고순도 페닐트라이메톡시실란(PTMS)의 제조Example 2 Preparation of High Purity Phenyltrimethoxysilane (PTMS)

저순도 PTMS(순도 3N5)를 50hPa로 유지되는 박막증발기에 정량펌프를 이용하여 10 ㎖/분의 속도로 투입하고, 1000rpm으로 교반하면서 150 ℃로 30분 내지 3 시간 동안 가열한 후 나온 증기를 0℃로 냉각하여 고순도 PTMS 용액을 얻었다.
Low-purity PTMS (purity 3N5) was introduced into the thin film evaporator maintained at 50 hPa at a rate of 10 ml / min using a metering pump, and heated at 150 ° C. for 30 minutes to 3 hours with stirring at 1000 rpm, followed by vaporization. Cool to C to obtain a high purity PTMS solution.

[실시예 3] 고순도 유기-실리카 미세입자 제조Example 3 Preparation of High Purity Organic-Silica Microparticles

500mL 플라스크에 물 800ml, 에틸알콜 800ml, 암모니아수 30ml을 넣어 투명한 혼합액을 교반하면서 가열하여 45℃까지 승온 하였다. 또 다른 1000ml 비이커에 실시예 1, 2에서 얻어진 테트라에틸 실리케이트(TEOS) 1 몰 및 페닐트라이메톡시실란(PTMS) 1.5 몰을 측량하였다. 상기 용액(투명한 혼합액)에 고순도 TEOS+PTMS 혼합액을 한번에 투입하여 4시간 동안 가수분해물의 축중합반응을 수행하였다. 상기 실리카 혼합용액의 반응 시 온도는 45℃를 유지하였다. 이때 pH는 10.3이었으며, 이후 4N HNO3를 넣어 pH를 3으로 맞춘 후 세정을 실시하였다. 세정은 필터프레스(Filter press)를 사용하였으며, 세정을 실시하여 도전율(Conductivity)을 50㎲/㎝ 이하로 유지하였다. 이와 같이 얻은 실리카 미세입자는 60℃에서 1시간 예비건조 후 100 ℃에서 24시간 건조하였다. 상기 수득된 실리카 미세입자를 SEM(SHIMADSU社, SS-550)으로 분석 한 결과 1.5㎛ 수준의 구형 입자임을 확인하였다.(도 1, 2)
800 ml of water, 800 ml of ethyl alcohol, and 30 ml of ammonia water were added to a 500 mL flask, and the transparent mixed solution was heated while stirring to raise the temperature to 45 ° C. In another 1000 ml beaker was weighed 1 mol of tetraethyl silicate (TEOS) and 1.5 mol of phenyltrimethoxysilane (PTMS) obtained in Examples 1 and 2. A high-purity TEOS + PTMS mixed solution was added to the solution (transparent mixed solution) at once to carry out condensation polymerization of the hydrolyzate for 4 hours. The temperature of the reaction mixture was maintained at 45 ℃. At this time, the pH was 10.3, after which 4N HNO 3 was added to adjust the pH to 3 and then washed. Cleaning was performed using a filter press, and the cleaning was carried out to maintain conductivity at 50 mW / cm or less. The silica fine particles thus obtained were pre-dried at 60 ° C. for 1 hour and then dried at 100 ° C. for 24 hours. The obtained silica microparticles were analyzed by SEM (SHIMADSU, SS-550) and found to be spherical particles having a level of 1.5 μm. (FIGS. 1 and 2)

[실시예 4] 고순도 Si3N4 미세입자의 제조Example 4 Preparation of High Purity Si 3 N 4 Microparticles

실시예 3에 의해 얻은 실리카 미세입자(1.5㎛)를 질소 분위기하에서 흑연로(Graphite furnace)를 사용하여 상기 혼합물을 1500℃로 1시간에서 10시간 동안 가열하고 생성된 일산화탄소만을 방출하여 직경이 1 ~ 2㎛인 고순도의 Si3N4 입자를 제조하였다. 상기 수득된 실리카 미세입자를 SEM(SHIMADSU社, SS-550)으로 분석 한 결과 1.5~2㎛ 수준의 구형 입자임을 확인하였으며(도 3), XRD(SHIMADSU社, XRD-6000)로 결정상을 확인한 결과 Si3N4와 일치하는 것을 확인하였다.(도 4)
Silica fine particles (1.5 μm) obtained in Example 3 were heated in a nitrogen furnace using a graphite furnace under a nitrogen atmosphere for 1 hour to 10 hours, and only the produced carbon monoxide was released to obtain a diameter of 1 to 1. High purity Si 3 N 4 particles of 2 μm were prepared. As a result of analyzing the obtained silica fine particles by SEM (SHIMADSU, SS-550) it was confirmed that the spherical particles of 1.5 ~ 2㎛ level (Fig. 3), and confirmed the crystal phase by XRD (SHIMADSU, XRD-6000) was confirmed to be consistent with the Si 3 N 4. (4)

[실시예 5] 고순도 SiC 미세입자 제조Example 5 Preparation of High Purity SiC Fine Particles

실시예 3에 의해 얻은 실리카 미세입자(1.5㎛)를 아르곤 분위기하에서 흑연로를 사용하여 상기 혼합물을 1700℃로 1시간에서 10시간 동안 가열하고 생성된 일산화탄소만을 방출하여 직경이 1 ~ 2㎛인 고순도의 SiC 입자를 제조하였다. 상기 수득된 실리카 미세입자를 SEM(SHIMADSU社, SS-550)으로 분석 한 결과 1.5~2㎛ 수준의 구형 입자임을 확인하였으며(도 5), XRD(SHIMADSU社, XRD-6000)로 결정상을 확인한 결과 SiC와 일치하는 것을 확인하였다.(도 6)
The silica fine particles (1.5 µm) obtained in Example 3 were heated in an argon atmosphere using a graphite furnace at 1700 ° C. for 1 hour to 10 hours, and only the produced carbon monoxide was released to obtain a high purity of 1 to 2 µm in diameter. SiC particles were prepared. As a result of analyzing the silica fine particles obtained by SEM (SHIMADSU, SS-550) it was confirmed that the spherical particles of 1.5 ~ 2㎛ level (Fig. 5), the result of confirming the crystal phase by XRD (SHIMADSU, XRD-6000) It was confirmed that it matches with SiC. (FIG. 6)

상기와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the appended claims. It can be understood that

Claims (4)

TEOS와 PTMS를 각각 10 내지 100 hPa로 유지되는 박막증발기에 정량펌프를 이용하여 10 내지 30 ㎖/분의 속도로 투입하고, 400 내지 1000rpm으로 교반하면서 40 내지 200 ℃로 30분 내지 3 시간 동안 가열한 후 나온 증기를 0 내지 5℃로 냉각하여 유기-실리카 전구체를 제조하는 단계; 및
물, 에틸알콜 및 암모니아수를 첨가하여 얻은 투명한 혼합액에 상기 유기-실리카 전구체를 한번에 투입하여 축중합반응을 수행하여 단분산된 실리카 미세입자를 제조하는 단계; 및
상기 유기-실리카 미세입자를 50~60℃에서 1시간 내지 3시간 예비건조 후 100 내지 150 ℃에서 4시간 내지 24시간 건조하고, 건조되어진 유기-실리카 미세입자는 1200 ℃ 내지 2000 ℃에서 1 시간 내지 24시간 소성하여 생성된 일산화탄소만을 방출하여 직경이 1~2㎛인 구형의 미세입자를 제조하는 단계를 포함하는 비산화물 실리카 제조가 가능한 유기 실리카 제조방법.
TEOS and PTMS were added to the thin film evaporator maintained at 10 to 100 hPa at a rate of 10 to 30 ml / min, and heated at 40 to 200 ° C. for 30 minutes to 3 hours while stirring at 400 to 1000 rpm. Cooling the resulting vapor to 0-5 ° C. to produce an organo-silica precursor; And
Preparing monodisperse silica fine particles by subjecting the organo-silica precursor to a transparent mixture obtained by adding water, ethyl alcohol and ammonia water at one time to perform a condensation polymerization reaction; And
After pre-drying the organo-silica microparticles at 50 to 60 ° C. for 1 hour to 3 hours, the organo-silica microparticles are dried at 100 to 150 ° C. for 4 hours to 24 hours, and the dried organic-silica microparticles are 1 hour to 1200 ° C. to 2000 ° C. A method of manufacturing organic silica, which can produce non-oxide silica, comprising the step of releasing only carbon monoxide produced by firing for 24 hours to produce spherical fine particles having a diameter of 1 to 2 μm.
삭제delete 제 1항에 있어서,
소성은 1300 내지 1600 ℃로 1 내지 10 시간 동안 질소분위기에서 이루어지는 것을 특징으로 하는 비산화물 실리카 제조가 가능한 유기 실리카 제조방법.
The method of claim 1,
Firing is a method for producing organic silica capable of producing non-oxide silica, characterized in that 1300 to 1600 ℃ in a nitrogen atmosphere for 1 to 10 hours.
제 1항에 있어서,
소성은 1500 내지 2000 ℃로 1 내지 10 시간 동안 질소 또는 아르곤분위기에서 이루어지는 것을 특징으로 하는 비산화물 실리카 제조가 가능한 유기 실리카 제조방법.
The method of claim 1,
Firing is a method for producing organic silica capable of producing non-oxide silica, characterized in that made in nitrogen or argon atmosphere for 1 to 10 hours at 1500 to 2000 ℃.
KR1020110094253A 2011-09-19 2011-09-19 Preparation method of organosilica capable of non oxide silica preparation KR101350831B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110094253A KR101350831B1 (en) 2011-09-19 2011-09-19 Preparation method of organosilica capable of non oxide silica preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110094253A KR101350831B1 (en) 2011-09-19 2011-09-19 Preparation method of organosilica capable of non oxide silica preparation

Publications (2)

Publication Number Publication Date
KR20130030647A KR20130030647A (en) 2013-03-27
KR101350831B1 true KR101350831B1 (en) 2014-01-15

Family

ID=48180162

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110094253A KR101350831B1 (en) 2011-09-19 2011-09-19 Preparation method of organosilica capable of non oxide silica preparation

Country Status (1)

Country Link
KR (1) KR101350831B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166212A (en) * 1984-02-09 1985-08-29 Shin Etsu Chem Co Ltd Production of silicon carbide
US4839150A (en) 1987-05-15 1989-06-13 Union Oil Company Of California Production of silicon carbide
JPH08325272A (en) * 1995-05-26 1996-12-10 Mitsubishi Chem Corp High-purity tetraalkoxysilane and its production
KR20090041970A (en) * 2007-10-25 2009-04-29 재단법인서울대학교산학협력재단 Method for manufacturing porous sic and porous sic manufactured thereby

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166212A (en) * 1984-02-09 1985-08-29 Shin Etsu Chem Co Ltd Production of silicon carbide
US4839150A (en) 1987-05-15 1989-06-13 Union Oil Company Of California Production of silicon carbide
JPH08325272A (en) * 1995-05-26 1996-12-10 Mitsubishi Chem Corp High-purity tetraalkoxysilane and its production
KR20090041970A (en) * 2007-10-25 2009-04-29 재단법인서울대학교산학협력재단 Method for manufacturing porous sic and porous sic manufactured thereby

Also Published As

Publication number Publication date
KR20130030647A (en) 2013-03-27

Similar Documents

Publication Publication Date Title
KR101678624B1 (en) A method for preparing silicon carbide powder of ultra-high purity
JP5489505B2 (en) Method for producing hydrophobic silica particles
CN100341788C (en) Method for preparing doped zinc oxide double crystal nano belt by sol-gel
TWI741116B (en) Silica particle dispersion liquid and its manufacturing method
KR101598696B1 (en) manufacturing method of hollow/rattle/raspberry/mesoporous type silica particles by a selective etching process
CN110386595A (en) High entropy RE phosphate powder and preparation method thereof
KR101296840B1 (en) Preparation method of monodispersed silica microparticles with high purity
KR101268875B1 (en) Manufacturing method of silicon carbide nanopowder
KR101627371B1 (en) Preparing method of size-controlled silicon carbide powder
KR101350831B1 (en) Preparation method of organosilica capable of non oxide silica preparation
CN107381589B (en) Preparation method of ordered mesoporous silicon boron carbon nitrogen material
CN1501454A (en) Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
JP2009184897A (en) Method for manufacturing silicon carbide single crystal
KR101829197B1 (en) Preparation method of monodispersed silica microparticles with high purity
Costa et al. Preparation of nanoscale amorphous silicon based powder in a square-wave-modulated rf plasma reactor
CN1944268A (en) Method for preparing gallium nitride nano crystal using sol-gel method
JP4065945B2 (en) Method for producing water-resistant aluminum nitride powder coated with carbonaceous film
JP5262055B2 (en) Spherical silica-based porous body, method for producing the same, and spherical carbon-based porous body
Jota et al. Synthesis of Lu2O3: Eu3+ luminescent ceramic powder embedded in SiO2 matrix
US9102543B2 (en) Method of fabricating silicon carbide
EP0719875B1 (en) A method of forming a metal-containing ceramic coating
JP3548649B2 (en) Carbon heating element
CN102719029B (en) Preparation method of silicon carbide nanowire-base light-emitting film
Salles et al. Synthesis of SiCNAl (O) pre-alloyed nanopowders by pyrolysis of an aluminosilazane aerosol
CN101279723B (en) In situ template method for preparing AlN nano-hollow sphere

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170109

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171226

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190207

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191230

Year of fee payment: 7