KR101341601B1 - Method for manufacturing core/shell nanostructured nanowire and solar cell comprising the same with improved efficiency - Google Patents

Method for manufacturing core/shell nanostructured nanowire and solar cell comprising the same with improved efficiency Download PDF

Info

Publication number
KR101341601B1
KR101341601B1 KR1020100088932A KR20100088932A KR101341601B1 KR 101341601 B1 KR101341601 B1 KR 101341601B1 KR 1020100088932 A KR1020100088932 A KR 1020100088932A KR 20100088932 A KR20100088932 A KR 20100088932A KR 101341601 B1 KR101341601 B1 KR 101341601B1
Authority
KR
South Korea
Prior art keywords
zno
shell
nanowire
core
solar cell
Prior art date
Application number
KR1020100088932A
Other languages
Korean (ko)
Other versions
KR20120026801A (en
Inventor
임상우
정주영
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020100088932A priority Critical patent/KR101341601B1/en
Publication of KR20120026801A publication Critical patent/KR20120026801A/en
Application granted granted Critical
Publication of KR101341601B1 publication Critical patent/KR101341601B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/204Light-sensitive devices comprising an oxide semiconductor electrode comprising zinc oxides, e.g. ZnO
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0038Manufacturing processes for forming specific nanostructures not provided for in groups B82B3/0014 - B82B3/0033
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 나노구조의 코어/쉘로 이루어지는 나노선의 제조방법 및 상기 나노선을 포함하는 태양전지에 관한 것으로, 더욱 상세하게는 나노구조로서, ZnO로 이루어지는 코어 상에 ZnS 또는 ZnSe층으로 이루어지는 쉘을 형성하므로써 태양전지 또는 나노소자의 효율을 향상시키는 나노선의 제조방법 및 상기 나노선을 포함하는 태양전지에 관한 것이다.The present invention relates to a method for manufacturing a nanowire comprising a core / shell of a nanostructure and a solar cell including the nanowire, and more particularly to forming a shell comprising a ZnS or ZnSe layer on a core composed of ZnO as a nanostructure. Therefore, the present invention relates to a method for manufacturing a nanowire for improving the efficiency of a solar cell or a nano device, and a solar cell including the nanowire.

Description

태양전지 또는 나노소자의 효율을 향상시키는 나노구조의 코어/쉘 나노선의 제조방법 및 상기 나노선을 포함하는 태양전지{METHOD FOR MANUFACTURING CORE/SHELL NANOSTRUCTURED NANOWIRE AND SOLAR CELL COMPRISING THE SAME WITH IMPROVED EFFICIENCY}A method for manufacturing a core / shell nanowire having a nanostructure to improve efficiency of a solar cell or a nanodevice, and a solar cell comprising the nanowire TECHNICAL FIELD

본 발명은 나노구조의 코어/쉘 나노선의 제조방법 및 상기 나노선을 포함하는 태양전지에 관한 것으로, 더욱 상세하게는 나노구조로서, ZnO로 이루어지는 코어 상에 ZnS 또는 ZnSe를 쉘로 형성함으로써 태양전지 및 나노소자의 효율을 향상시키는 나노선의 제조방법 및 상기 나노선을 포함하는 태양전지에 관한 것이다.The present invention relates to a method for manufacturing a core / shell nanowire of a nanostructure and a solar cell including the nanowire, and more particularly, to a solar cell by forming ZnS or ZnSe as a shell on a core made of ZnO as a nanostructure. It relates to a method of manufacturing a nanowire to improve the efficiency of the nano device and a solar cell comprising the nanowire.

화석 에너지의 고갈 등으로 인해 무공해 신재생 에너지원인 태양광 발전에 대한 연구 및 개발이 활발하게 이루어지고 있다. 이러한 태양광 발전 중에서도 염료 감응형 태양전지는 기존 실리콘 기반 태양전지 보다 가격이 저렴하고, 상압, 상온에서 제작하여 공정상 이점을 가지고 있어 유망하다.Due to the depletion of fossil energy, research and development on solar power generation, a pollution-free renewable energy source, is being actively conducted. Among such photovoltaic power generation, dye-sensitized solar cells are cheaper than conventional silicon-based solar cells, and are promising because they are manufactured at normal pressure and room temperature.

특히, 염료 감응형 태양전지의 음극(anode) 재료로서 ZnO 나노선이 각광을 받고 있는데 이는, 상기 ZnO 나노선의 구조가 c-축 방향의 내부 전기장을 가지고 있고, 음극 물질에 주입된 전자가 전해질과 재결합하는 것을 방지하여 전자전달이 뛰어나기 때문이다.In particular, ZnO nanowires have been spotlighted as anode materials of dye-sensitized solar cells. The structure of the ZnO nanowires has an internal electric field in the c-axis direction, and electrons injected into the anode material have an electrolyte and This is because the electron transfer is excellent by preventing recombination.

현재까지 ZnO 나노선 기반 염료 감응형 태양전지에 대한 연구는 대부분 염료 흡착을 위한 표면적 증가에 초점을 맞추었다. 예를 들어 수열 합성 시간의 증가에 따른 나노선 길이를 증가시킨 연구와 가지 달린 나노선 구조 혹은 나노선과 나노파티클의 복합체 구조 등 나노선의 구조 변화에 따른 태양전지 성능에 변화를 연구가 진행되었다.To date, most studies on ZnO nanowire-based dye-sensitized solar cells have focused on increasing the surface area for dye adsorption. For example, research has been conducted to increase the length of nanowires with increasing hydrothermal synthesis time and to investigate changes in the performance of solar cells due to changes in the structure of nanowires such as branched nanowire structures or composite structures of nanowires and nanoparticles.

또한, ZnO 나노선의 표면 상태 또한 염료 감응형 태양전지의 성능을 결정짓는 중요 요소이다. 예를 들면, ZnO와 염료의 불완전한 상호작용이 집광효율(light harvesting efficiency)을 떨어뜨리며, 나노선 열처리 후, 나노선 표면의 수산화 작용기의 증가가 염료 감응형 태양전지의 성능 향상으로 이어진다고 보고되어 있다. 그러나, 여전히 태양전지의 효율을 극대화할 수 있는 기술의 개발이 필요한 상황이다.In addition, the surface state of ZnO nanowires is also an important factor in determining the performance of dye-sensitized solar cells. For example, incomplete interactions of ZnO and dyes reduce light harvesting efficiency, and after nanowire heat treatment, an increase in hydroxyl functional groups on the surface of nanowires has been reported to lead to improved performance of dye-sensitized solar cells. have. However, there is still a need for the development of a technology that can maximize the efficiency of solar cells.

본 발명의 목적은, 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 염료 감응성 태양전지용 음극 및 나노 소자의 나노선으로 사용되어 태양전지 및 나노소자의 전류의 세기를 더욱 향상시킬 수 있는 나노구조의 ZnO/ZnS 또는 ZnO/ZnSe의 코어/쉘 나노선의 제조방법 및 상기 나노선을 포함하는 태양전지를 제공하는 것이다.An object of the present invention, to solve the problems of the prior art as described above, is used as a nanowire of the anode and the nano-device for the dye-sensitized solar cell nanostructure that can further improve the strength of the current of the solar cell and nano-device To provide a method for producing a core / shell nanowire of ZnO / ZnS or ZnO / ZnSe and a solar cell comprising the nanowire.

태양전지의 효율을 향상시키기 위한 표면 개질 방법 중 하나는 나노선 표면에 쉘을 형성시키는 것이다. ZnO 표면에 쉘을 형성시키면 표면의 전자 재결합 자리가 제거되어 암전류(dark current)는 감소되고, 개방 전압은 증가된다. 그러나 나노선에 Al2O3 쉘을 형성시켰을 경우, 효율이 오히려 저하되는데, 그 이유는 쉘이 전자가 ZnO 나노선에 들어가는 것을 방지하여 전자의 주입효과(injection efficiency)를 감소시켜 단락 전류 값을 감소시키기 때문이다.One of the surface modification methods to improve the efficiency of the solar cell is to form a shell on the nanowire surface. Forming a shell on the ZnO surface removes electron recombination sites on the surface, reducing dark current and increasing open voltage. However, when the Al 2 O 3 shell is formed on the nanowires, the efficiency is rather reduced, because the shell prevents the electrons from entering the ZnO nanowires, thereby reducing the electron injection efficiency and reducing the short circuit current value. Because it decreases.

따라서, ZnO 나노선 표면에 쉘 형성 시 전자의 재결합을 방지하고 개방 전압은 증가시키면서도 단락 전류의 감소는 억제할 수 있어야 한다. 이를 위해 적절한 쉘 물질을 찾는 것이 필요한데, 쉘로 사용될 수 있는 물질 중에서 아연(Zinc) 기반 물질이 유망하다. 코어와 쉘에 비슷한 물질을 사용함으로써 전자가 이동할 때 쉘이 장벽으로서 작용하지 않도록 방지할 수 있는 장점이 있다.Therefore, when the shell is formed on the surface of the ZnO nanowires, the recombination of the electrons should be prevented and the short circuit current should be suppressed while the open voltage is increased. For this purpose, it is necessary to find a suitable shell material. Among the materials that can be used as shells, zinc-based materials are promising. The use of similar materials for the core and shell has the advantage of preventing the shell from acting as a barrier when electrons move.

다만, 나노 구조의 ZnO/ZnS 코어/쉘 또는 ZnO/ZnSe 코어/쉘은 제조할 때에 사용되는 전구체의 종류 및 농도와 담지 시간 및 온도에 따라 염료 감응형 태양전지의 성능이 달라진다. 따라서 염료 감응형 태양전지의 효율을 더욱 향상시킬 수 있는 코어/쉘 나노선의 다양한 제조방법의 개발이 필요하다.However, ZnO / ZnS core / shell or ZnO / ZnSe core / shell having a nano structure may vary in performance of dye-sensitized solar cells depending on the kind and concentration of precursors used, and the supporting time and temperature. Therefore, it is necessary to develop various methods of manufacturing core / shell nanowires that can further improve the efficiency of dye-sensitized solar cells.

본 발명에 따른 태양전지용 및 나노소자용 ZnO/ZnS의 코어/쉘 나노선의 제조방법은, ZnO 나노선을 전구체에 담지한 후, 55~70℃에서 10~60분간 유지하는 것을 특징으로 한다.The method for producing a core / shell nanowire of ZnO / ZnS for solar cells and nanodevices according to the present invention is characterized in that the ZnO nanowires are supported on a precursor and then maintained at 55 to 70 ° C. for 10 to 60 minutes.

또한, 본 발명에 따른 태양전지용 및 나노소자용 ZnO/ZnSe의 코어/쉘 나노선의 제조방법은, ZnO 나노선을 소듐 셀레노설페이트에 담지한 후, 꺼내어 아연 용액에 다시 담지하는 상기 두 담지과정을 10~60회 반복하는 것을 특징으로 한다.In addition, according to the present invention, a method for manufacturing a core / shell nanowire of ZnO / ZnSe for a solar cell and a nanodevice includes the above two supporting processes in which ZnO nanowires are supported on sodium selenosulfate, and then taken out and re-supported in zinc solution. It is characterized by repeating 10 to 60 times.

본 발명에 따른 ZnO/ZnS의 코어/쉘 나노선의 제조방법에 있어서, 상기 전구체는, 황산아연 헵타수화물, 티오우레아 및 수산화 암모늄을 0.04~0.06mM:3~50mM:3~600mM의 농도비로 혼합하는 것이 바람직한데, 상기 범위를 벗어나면 쉘이 형성되지 않거나, 필름타입 구조물이 형성이 될 수 있어 바람직하지 않다.In the method for producing a core / shell nanowire of ZnO / ZnS according to the present invention, the precursor is mixed with zinc sulfate heptahydrate, thiourea and ammonium hydroxide in a concentration ratio of 0.04 to 0.06 mM: 3 to 50 mM: 3 to 600 mM. It is preferable that the shell is not formed outside the above range, or a film-type structure may be formed, which is not preferable.

상기 ZnO 나노선을 상기 전구체에 담지한 후, 55~70℃의 항온조에서 10~60분간 유지하는 것이 바람직한데, 55℃ 미만이면 쉘이 형성되지 않을 수 있어 바람직하지 않고, 70℃를 초과하면 필름구조를 형성할 수 있어 바람직하지 않으며, 10분 미만이면 쉘이 형성되지 않아 바람직하지 않고, 60분을 초과하면 필름구조를 형성할 수 있어 바람직하지 않다.After supporting the ZnO nanowires in the precursor, it is preferable to maintain for 10 to 60 minutes in a 55 ~ 70 ℃ thermostat, if less than 55 ℃ may not form a shell is not preferable, if the film exceeds 70 ℃ It is not preferable because a structure can be formed, and if it is less than 10 minutes, a shell is not formed and it is not preferable, and if it exceeds 60 minutes, a film structure can be formed and it is not preferable.

본 발명에 따른 ZnO/ZnSe의 코어/쉘 나노선의 제조방법에 있어서, 23~30℃에서 0.001M~0.003M의 소듐 셀레노설페이트 용액에 ZnO 나노선을 담그고, 꺼내어서 23~30℃에서 0.001M~0.003M의 아연 용액에 다시 담근다. 그리고 각 담지 과정 사이에 탈이온수로 세척한다. 상기 두 단계 과정을 10~60회 반복하므로써 ZnO 나노선 표면에 ZnSe층을 형성시켜 코어/쉘 나노선 구조를 만든다.In the method for producing a core / shell nanowire of ZnO / ZnSe according to the present invention, ZnO nanowires are immersed in a sodium selenosulfate solution of 0.001M to 0.003M at 23 to 30 ° C, and taken out to 0.001M at 23 to 30 ° C. Soak again in ~ 0.003M zinc solution. And it is washed with deionized water between each supporting process. By repeating the two steps 10 to 60 times to form a core / shell nanowire structure by forming a ZnSe layer on the surface of the ZnO nanowires.

상기 소듐 셀레노설페이트 용액은 23~30℃에서 0.001M~0.003M의 농도인 것이 바람직하고, 0.002M의 농도인 것이 가장 바람직한데, 상기 범위를 벗어나면 쉘이 형성되지 않거나, 필름타입 구조물이 형성될 수 있어 바람직하지 않다.The sodium selenosulfate solution is preferably in a concentration of 0.001M to 0.003M at 23 ~ 30 ℃, most preferably of a concentration of 0.002M, outside the above range does not form a shell, or film-type structure is formed It may be undesirable.

상기 아연 용액은, 그 종류에 특별히 한정이 없고, 예를 들면, 질산아연 헥사수화물 용액, 황산아연 헵타수화물 용액, 아세트산아연(zinc acetate) 용액 등이 있으며, 질산아연 헥사수화물 용액이 가장 바람직하다.The zinc solution is not particularly limited in kind, and examples thereof include zinc nitrate hexahydrate solution, zinc sulfate heptahydrate solution, zinc acetate solution, and the like, and zinc nitrate hexahydrate solution is most preferred. .

상기 아연 용액은 23~30℃에서 0.001M~0.003M의 농도인 것이 바람직하고, 0.002M의 농도인 것이 가장 바람직한데, 상기 범위를 벗어나면 쉘이 형성되지 않거나, 필름타입 구조물이 형성될 수 있어 바람직하지 않다.The zinc solution is preferably at a concentration of 0.001M to 0.003M at 23 ~ 30 ℃, most preferably at a concentration of 0.002M, the shell is not formed or the film-type structure can be formed outside the above range Not desirable

본 발명에 따른 ZnO/ZnSe의 코어/쉘 나노선의 제조방법에 있어서, 상기 두 단계의 담지과정을 10~60회 반복하는 것이 바람직한데, 10회 미만이면 쉘이 형성되지 않을 수 있어 바람직하지 않고, 60회를 초과하면 필름구조물을 형성할 수 있어 바람직하지 않다.In the method for producing a core / shell nanowire of ZnO / ZnSe according to the present invention, it is preferable to repeat the supporting step of 10 to 60 times, but less than 10 times, the shell may not be formed, which is not preferable. If it exceeds 60 times, since it can form a film structure, it is unpreferable.

본 발명에 따른 태양전지는 상기 ZnO/ZnS 또는 ZnO/ZnSe의 코어/쉘 나노선의 제조방법에 의해 제조된 ZnO/ZnS 또는 ZnO/ZnSe의 코어/쉘 나노선을 포함하는 것을 특징으로 한다.The solar cell according to the present invention is characterized in that it comprises a core / shell nanowire of ZnO / ZnS or ZnO / ZnSe prepared by the method for producing a core / shell nanowire of ZnO / ZnS or ZnO / ZnSe.

본 발명에 따른 나노소자는 상기 ZnO/ZnS 또는 ZnO/ZnSe의 코어/쉘 나노선의 제조방법에 의해 제조된 ZnO/ZnS 또는 ZnO/ZnSe의 코어/쉘 나노선을 포함하는 것을 특징으로 한다.Nano device according to the invention is characterized in that it comprises a core / shell nanowire of ZnO / ZnS or ZnO / ZnSe prepared by the method for producing a core / shell nanowire of ZnO / ZnS or ZnO / ZnSe.

본 발명은 ZnO 나노선 표면 위에 ZnS 또는 ZnSe 쉘을 형성시키는 방법을 사용하여 만든 ZnO/ZnS 또는 ZnO/ZnSe의 코어/쉘 나노선을 태양전지 및 나노소자의 음극 물질에 적용하여 디바이스의 효율 및 단락 전류 등의 성능 향상의 효과를 갖는다.The present invention applies a core / shell nanowire of ZnO / ZnS or ZnO / ZnSe made by using a method of forming a ZnS or ZnSe shell on a surface of a ZnO nanowire to an anode material of a solar cell and a nano device, thereby improving efficiency and short circuit of the device. It has the effect of improving performance such as current.

도 1은 본 발명에 따른 실시예 1~4 및 비교예 1~2를 염료 감응형 태양전지의 음극에 적용하여 인조태양광 시스템(Solar Simulation system)에서 측정한 I-V 커브를 나타낸 도이다.
도 2는 비교예 1, 실시예 1 및 실시예 3를 TEM(Transmission electron microscopy)으로 측정한 사진이다.
도 3은 비교예 1, 실시예 1 및 실시예 3를 X-선 광전자 분광기(XPS: X-ray photoelectron spectroscopy)로 측정한 도이다.
FIG. 1 is a diagram showing IV curves measured in a solar simulation system by applying Examples 1 to 4 and Comparative Examples 1 to 2 to a cathode of a dye-sensitized solar cell.
2 is a photograph of Comparative Example 1, Example 1 and Example 3 measured by Transmission Electron Microscopy (TEM).
3 is a diagram of Comparative Example 1, Example 1 and Example 3 measured by X-ray photoelectron spectroscopy (XPS).

이하, 하기의 실시예를 통하여 본 발명을 더욱 상세하게 설명하지만, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of the following examples, but the scope of the present invention is not limited to these examples.

<물성 측정 방법>&Lt; Method for measuring physical properties &

1. 전류 크기의 측정1. Measurement of current magnitude

전류의 크기는 인조태양광 시스템에 의해 전류 밀도를 측정함으로써 측정되었다. The magnitude of the current was measured by measuring the current density with an artificial solar system.

2. 코어/쉘 2. Core / shell 나노선의Nano-ray 형성 측정 Formation measurement

코어/쉘 나노선의 형성은 TEM (Transmission electron microscopy) 및 X-선 광전자 분광기에 의해 측정되었다.Formation of core / shell nanowires was measured by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy.

실시예Example 1: Z 1: Z nOnO /Of ZnSZnS 의 코어/쉘 Core / shell 나노선의Nano-ray 제조 Produce

플루오로-도핑 주석 산화물(fluorine-doped tin oxide; FTO) 기판 위에 산화아연 시드층(ZnO seed layer)을 증착하고, 상기 시드층과 FTO간의 접착력을 증가시키기 위해 기판을 300℃에서 열처리하였다. 30mM의 질산아연 헥사수화물 용액에 수산화 암모늄을 pH 10.3이 될 때까지 넣어 전구체를 제조하였다. 이 전구체에 열처리한 기판을 넣고 항온조에서 60℃, 6시간 유지시킴으로써 ZnO코어를 저온 수열합성법으로 합성하였다.A zinc oxide seed layer was deposited on a fluorine-doped tin oxide (FTO) substrate, and the substrate was heat treated at 300 ° C. to increase the adhesion between the seed layer and the FTO. A precursor was prepared by adding ammonium hydroxide to a pH of 10.3 in a 30 mM zinc nitrate hexahydrate solution. ZnO cores were synthesized by low-temperature hydrothermal synthesis by placing the substrate heat-treated in this precursor and holding it at 60 DEG C for 6 hours in a thermostatic chamber.

황산아연 헵타수화물, 티오우레아 및 수산화 암모늄을 0.05mM:5mM:5mM의 농도비로 하여 전구체를 제조하였다. 상기 전구체 100ml에 ZnO 나노선을 첨가한 후, 60℃의 항온조에서 10분간 유지하여 ZnO 코어 표면에 ZnS쉘을 형성시킨 후, 쉘이 형성된 결과는 도 2 및 도 3에 나타내었고, 도 3에서 결합에너지가 162.3eV인 S 2p를 나타내므로, ZnS층이 형성된 것을 확인하였으며, 상기 형성된 ZnO/ZnS 코어/쉘 나노선을 염료 감응형 태양전지의 음극에 적용한 후, 전류의 크기를 측정하여 도 1에 나타내었다.A precursor was prepared using zinc sulfate heptahydrate, thiourea and ammonium hydroxide in a concentration ratio of 0.05 mM: 5 mM: 5 mM. After the ZnO nanowires were added to 100 ml of the precursor, the ZnS shell was formed on the surface of the ZnO core by maintaining in a thermostatic chamber at 60 ° C. for 10 minutes, and the result of the formation of the shell was shown in FIGS. 2 and 3, and in FIG. 3. Since S 2p having an energy of 162.3 eV was confirmed, it was confirmed that a ZnS layer was formed, and after applying the formed ZnO / ZnS core / shell nanowires to the cathode of the dye-sensitized solar cell, the magnitude of the current was measured and the result is shown in FIG. 1. Indicated.

실시예Example 2:  2: ZnOZnO /Of ZnSZnS 의 코어/쉘 Core / shell 나노선의Nano-ray 제조 Produce

실시예 1과 동일한 방법으로 ZnO 코어를 제조하였다. 그런 다음, 황산아연 헵타수화물, 티오우레아 및 수산화 암모늄을 0.05mM:5mM:500mM의 농도비로 하여 전구체를 제조하였다. 상기 전구체 100ml에 ZnO 나노선을 첨가한 후, 60℃의 항온조에서 10분간 유지하여 ZnO 코어 표면에 ZnS쉘을 형성시켰다. 상기 형성된 ZnO/ZnS 코어/쉘 나노선을 염료 감응형 태양전지의 음극에 적용한 후, 전류의 크기를 측정하여 도 1에 나타내었다.A ZnO core was prepared in the same manner as in Example 1. Then, a precursor was prepared using zinc sulfate heptahydrate, thiourea and ammonium hydroxide in a concentration ratio of 0.05 mM: 5 mM: 500 mM. After ZnO nanowires were added to 100 ml of the precursor, ZnS shells were formed on the surface of the ZnO core by maintaining for 10 minutes in a 60 ° C thermostat. After applying the formed ZnO / ZnS core / shell nanowire to the cathode of the dye-sensitized solar cell, the magnitude of the current is measured and shown in FIG.

실시예Example 3:  3: ZnOZnO /Of ZnSeZnSe 의 코어/쉘 Core / shell 나노선의Nano-ray 제조 Produce

실시예 1과 동일한 방법으로 ZnO 코어를 제조하였다. 그런 다음, 25℃에서 0.002M의 소듐 셀레노설페이트 용액 100ml에 ZnO 나노선을 담그고 꺼낸 후, 100mL의 탈이온수로 세척하고, 그런 다음 0.002M의 질산아연 헥사수화물 용액 100ml에 담그었다. 상기 과정을 60회 반복하여 ZnO 코어 표면에 ZnSe쉘을 형성시킨 후, 쉘이 형성된 결과는 도 2 및 도 3에 나타내었고, 도 3에서 결합에너지가 53.9eV인 Se 3d5/2를 나타내므로, ZnSe층이 형성된 것을 확인하였고, 상기 형성된 ZnO/ZnSe 코어/쉘 나노선을 염료 감응형 태양전지의 음극에 적용한 후, 전류의 크기를 측정하여 도 1에 나타내었다.A ZnO core was prepared in the same manner as in Example 1. Then, ZnO nanowires were immersed in 100 ml of 0.002 M sodium selenosulfate solution at 25 ° C., taken out, washed with 100 mL of deionized water, and then immersed in 100 ml of 0.002 M zinc nitrate hexahydrate solution. After repeating the above process 60 times to form a ZnSe shell on the surface of the ZnO core, the result of the shell formation is shown in Figures 2 and 3, in Figure 3, the binding energy is 53.9eV Se 3d5 / 2, ZnSe It was confirmed that the layer was formed, and after applying the formed ZnO / ZnSe core / shell nanowire to the cathode of the dye-sensitized solar cell, the magnitude of the current is measured and shown in FIG.

실시예Example 4:  4: ZnOZnO /Of ZnSeZnSe 의 코어/쉘 Core / shell 나노선의Nano-ray 제조 Produce

실시예 1과 동일한 방법으로 ZnO 코어를 제조하였다. 그런 다음, 25℃에서 0.002M의 소듐 셀레노설페이트 용액 100ml에 ZnO 나노선을 담그고 꺼낸 후, 100mL의 탈이온수로 세척하고, 그런 다음 0.002M의 질산아연 헥사수화물 용액 100ml에 담그었다. 상기 과정을 30회 반복하여 ZnO 코어 표면에 ZnSe쉘을 형성시켰다. 상기 형성된 ZnO/ZnSe 코어/쉘 나노선을 염료 감응형 태양전지의 음극에 적용한 후, 전류의 크기를 측정하여 도 1에 나타내었다.A ZnO core was prepared in the same manner as in Example 1. Then, ZnO nanowires were immersed in 100 ml of 0.002 M sodium selenosulfate solution at 25 ° C., taken out, washed with 100 mL of deionized water, and then immersed in 100 ml of 0.002 M zinc nitrate hexahydrate solution. The procedure was repeated 30 times to form a ZnSe shell on the surface of the ZnO core. After applying the formed ZnO / ZnSe core / shell nanowire to the cathode of the dye-sensitized solar cell, the magnitude of the current is measured and shown in FIG.

비교예Comparative Example 1:  One: ZnOZnO 코어의 제조Manufacture of cores

실시예 1과 동일한 방법으로 ZnO코어를 제조하였다. 그런 다음, 상기 제조된 ZnO코어 나노선을 염료 감응형 태양전지의 음극에 적용한 후, 전류의 크기를 측정하여 도 1에 나타내었다.A ZnO core was prepared in the same manner as in Example 1. Then, after applying the prepared ZnO core nanowires to the cathode of the dye-sensitized solar cell, the magnitude of the current is measured and shown in FIG.

비교예Comparative Example 2:  2: ZnOZnO /Of ZnSZnS 코어/쉘 제조 Core / shell manufacturing

실시예 1과 동일한 방법으로 ZnO 코어를 제조하였다. 그런 다음, 0.01M의 황화나트륨 9수화물(sodium sulfide nonahydrate) 용액을 만들어 전구체로 제조하였다. 상기 전구체 100ml에 ZnO 나노선을 첨가한 후, 60℃의 항온조에서 10분간 유지하였다. 이어서, 100mL의 탈이온수로 세척하고, 0.01M의 질산아연 헥사수화물 100ml에 담가 60℃의 항온조에서 10분간 유지하여 ZnO 코어 표면에 ZnS쉘을 형성시켰다. 상기 형성된 ZnO/ZnS 코어/쉘 나노선을 염료 감응형 태양전지의 음극에 적용한 후, 전류의 크기를 측정하여 도 1에 나타내었다.A ZnO core was prepared in the same manner as in Example 1. Then, a sodium sulfide nonahydrate solution of 0.01M was made to prepare a precursor. After ZnO nanowires were added to 100 ml of the precursor, it was maintained for 10 minutes in a thermostat at 60 ° C. Subsequently, the resultant was washed with 100 mL of deionized water, immersed in 100 ml of 0.01 M zinc nitrate hexahydrate, and kept in a constant temperature bath at 60 ° C. for 10 minutes to form a ZnS shell on the surface of the ZnO core. After applying the formed ZnO / ZnS core / shell nanowire to the cathode of the dye-sensitized solar cell, the magnitude of the current is measured and shown in FIG.

도 1을 참고로 하면, 실시예 1~4는 비교예 1~2보다 훨씬 우수한 전류밀도를 나타내었다. 특히, 실시예 2의 전류 밀도는 비교예 1 및 비교예 2의 효율 보다 최대 25배 이상, 실시예 4의 전류 밀도는 비교예 1 및 비교예 2의 효율 보다 최대 12배 이상 높게 나타내었다. 따라서, 실시예 1~4의 전류 세기가 비교예 1~2의 전류세기 보다 훨씬 우수하게 나타냄을 알 수 있다.Referring to FIG. 1, Examples 1 to 4 showed much better current densities than Comparative Examples 1 to 2. In particular, the current density of Example 2 is at least 25 times higher than the efficiency of Comparative Example 1 and Comparative Example 2, the current density of Example 4 is at least 12 times higher than the efficiency of Comparative Example 1 and Comparative Example 2. Therefore, it can be seen that the current intensity of Examples 1 to 4 is much better than the current intensity of Comparative Examples 1 to 2.

이상에서 설명한 바와 같이, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.As described above, those skilled in the art will understand that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Therefore, the embodiments described above are to be understood as illustrative and not restrictive in all aspects. The scope of the present invention should be construed as being included in the scope of the present invention without departing from the scope of the present invention as defined by the appended claims.

Claims (9)

ZnO 나노선을 전구체에 담지한 후, 55~70 ℃에서 10~60 분간 유지하는 것을 특징으로 하고,
상기 전구체는 황산아연 헵타수화물, 티오우레아 및 수산화 암모늄이 0.04~0.06 mM : 3~50 mM : 3~600 mM의 농도비로 혼합된 혼합물인 것을 특징으로 하는 ZnO/ZnS의 코어/쉘 나노선의 제조방법.
After supporting the ZnO nanowires in the precursor, characterized in that for 10 to 60 minutes at 55 ~ 70 ℃,
The precursor is a ZnO / ZnS core / shell nanowires, characterized in that the mixture of zinc sulfate heptahydrate, thiourea and ammonium hydroxide in a concentration ratio of 0.04 ~ 0.06 mM: 3 ~ 50 mM: 3 ~ 600 mM Way.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020100088932A 2010-09-10 2010-09-10 Method for manufacturing core/shell nanostructured nanowire and solar cell comprising the same with improved efficiency KR101341601B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100088932A KR101341601B1 (en) 2010-09-10 2010-09-10 Method for manufacturing core/shell nanostructured nanowire and solar cell comprising the same with improved efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100088932A KR101341601B1 (en) 2010-09-10 2010-09-10 Method for manufacturing core/shell nanostructured nanowire and solar cell comprising the same with improved efficiency

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020120112524A Division KR101262330B1 (en) 2012-10-10 2012-10-10 Method for manufacturing core/shell nanostructured nanowire and solar cell or nanodevice comprising the same with improved efficiency

Publications (2)

Publication Number Publication Date
KR20120026801A KR20120026801A (en) 2012-03-20
KR101341601B1 true KR101341601B1 (en) 2013-12-13

Family

ID=46132496

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100088932A KR101341601B1 (en) 2010-09-10 2010-09-10 Method for manufacturing core/shell nanostructured nanowire and solar cell comprising the same with improved efficiency

Country Status (1)

Country Link
KR (1) KR101341601B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621309B1 (en) 2004-04-20 2006-09-14 삼성전자주식회사 Method for Preparing Metal Sulfide Nanocrystal Using Thiol Compound As Sulfur Precursor
KR100904588B1 (en) 2007-07-05 2009-06-25 삼성전자주식회사 Method of preparing core/shell type Nanowire, Nanowire prepared therefrom and Display device comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621309B1 (en) 2004-04-20 2006-09-14 삼성전자주식회사 Method for Preparing Metal Sulfide Nanocrystal Using Thiol Compound As Sulfur Precursor
KR100904588B1 (en) 2007-07-05 2009-06-25 삼성전자주식회사 Method of preparing core/shell type Nanowire, Nanowire prepared therefrom and Display device comprising the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Xue-Lian Yu et al. J. Phys. Chem. C. 12 January 2010(online), Vol. 114, pp. 2380-2384 *
Xue-Lian Yu et al. J. Phys. Chem. C. 12 January 2010(online), Vol. 114, pp. 2380-2384*

Also Published As

Publication number Publication date
KR20120026801A (en) 2012-03-20

Similar Documents

Publication Publication Date Title
Raj et al. Improved photovoltaic performance of CdSe/CdS/PbS quantum dot sensitized ZnO nanorod array solar cell
Gubbala et al. Band‐edge engineered hybrid structures for dye‐sensitized solar cells based on SnO2 nanowires
Xu et al. Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells
Gopi et al. ZnO nanorods decorated with metal sulfides as stable and efficient counter-electrode materials for high-efficiency quantum dot-sensitized solar cells
Yin et al. Strategies to prepare an efficient photoanode for ZnO nanowires-based CdS–CdSe co-sensitized solar cells
Goh et al. Low temperature grown ZnO@ TiO2 core shell nanorod arrays for dye sensitized solar cell application
Wu et al. Enhancing photoelectrochemical activity with three-dimensional p-CuO/n-ZnO junction photocathodes
CN105845443B (en) A kind of carbon quantum dot sensitization solar battery being prepared in situ
CN102623195A (en) Method for preparing solar cell through quantum dot and dye synergistic sensitization of TiO2 nanorod array
Sun et al. Influence of the porosity of the TiO 2 film on the performance of the perovskite solar cell
Nikam et al. SILAR controlled CdSe nanoparticles sensitized ZnO nanorods photoanode for solar cell application: electrolyte effect
CN103119674A (en) Photovoltaic cell and method of its manufacture
Kim et al. CdS/CdSe quantum dot-sensitized solar cells based on ZnO nanoparticle/nanorod composite electrodes
KR101232299B1 (en) Nanostructure and manufacturing method thereof and solar cell including the same
Ling et al. Spongy structure of CdS nanocrystals decorated with dye molecules for semiconductor sensitized solar cells
Bo et al. From red selenium to cuprous selenide: a novel and facile route to a high performance metal selenide cathode for sensitized solar cells
Shi et al. Fabrication of Ag2S quantum dots sensitized CdSe photoelectrodes and its photoelectric performance
Al-Zahrani et al. Enhanced photoelectrochemical performance of Bi2S3/Ag2S/ZnO novel ternary heterostructure nanorods
CN111312522A (en) Quantum dot sensitized solar cell CuS/Ti3C2Composite counter electrode and preparation method thereof
Du et al. Titanium mesh based fully flexible highly efficient quantum dots sensitized solar cells
CN102610394A (en) Preparation method of transition metal doped alpha-Fe2O3 nano rod array
Mulyanti et al. Absorption Performance of Doped TiO 2-Based Perovskite Solar Cell using FDTD Simulation
Zhang et al. Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Noh et al. Influence of ZnO seed layers on charge transport in ZnO nanorod-based dye-sensitized solar cells
KR101262330B1 (en) Method for manufacturing core/shell nanostructured nanowire and solar cell or nanodevice comprising the same with improved efficiency

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161205

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee