KR101319521B1 - The working fluid composition and manufacturing method for heat pipe - Google Patents

The working fluid composition and manufacturing method for heat pipe Download PDF

Info

Publication number
KR101319521B1
KR101319521B1 KR1020120053259A KR20120053259A KR101319521B1 KR 101319521 B1 KR101319521 B1 KR 101319521B1 KR 1020120053259 A KR1020120053259 A KR 1020120053259A KR 20120053259 A KR20120053259 A KR 20120053259A KR 101319521 B1 KR101319521 B1 KR 101319521B1
Authority
KR
South Korea
Prior art keywords
working fluid
heat
fluid composition
water
heat pipe
Prior art date
Application number
KR1020120053259A
Other languages
Korean (ko)
Inventor
석 재 오
김범진
Original Assignee
김범진
주식회사 레미
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김범진, 주식회사 레미 filed Critical 김범진
Priority to KR1020120053259A priority Critical patent/KR101319521B1/en
Application granted granted Critical
Publication of KR101319521B1 publication Critical patent/KR101319521B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D2015/0291Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes comprising internal rotor means, e.g. turbine driven by the working fluid

Abstract

PURPOSE: A hydraulic fluid composition for heat pipes and a manufacturing method thereof are provided to replace working fluid of Freon group, to increase water heat transported volume, to enhance heat transmission, thermal performance of a heat pipe and anti-corrosion properties. CONSTITUTION: A hydraulic fluid composition for heat pipes comprises 49-64kg of ion exchanged water, 35-50kg of dimethyl silicone oil, and 0.1-0.5kg of nano-sized aluminum with a diameter of 20-120 nano meters. Moreover, a manufacturing method of the hydraulic fluid composition comprises the following steps: washing inside a furnace with water and drying the furnace; putting 64kg of ion exchanged water, 35.9kg of dimethyl silicon oil, 0.1kg of nano-sized aluminum with a diameter of 20-120 nano meters into the furnace in order; and maintaining the reactor at a rotation speed of 50-80 rpm under the pressure of 0.01-0.05 kg/cm^2 and the temperature of 20-25°C for 60 minutes. [Reference numerals] (AA) Heat emission; (BB) Condensing unit; (CC) Insulation unit; (DD) Condensing; (EE) Heat adsorption; (FF) Evaporation unit

Description

히트파이프용 작동유체 조성물 및 그 제조방법{The working fluid composition and manufacturing method for Heat pipe}The working fluid composition and manufacturing method for heat pipes

본 발명은 열 회수장치 또는 초음속 열전달 장치 와 방열장치 등에 시용되는 히트 파이프용 작동유체에 관한 것으로서 그 구성 물질은 디 메틸 실리콘 오일을 기본으로 하고 여기에 이온교환수 와 나노알루미늄을 첨가한 조성물로서 특히 열 수송량이 큰 열 회수 장치 또는 방열 장치에 사용되는 히트파이프용 작동유체 조성물 및 그 제조방법에 관한 것이다.
The present invention relates to a working fluid for a heat pipe used in a heat recovery device or a supersonic heat transfer device and a heat dissipation device, the constituent material of which is based on dimethyl silicone oil and in which ion-exchanged water and nanoaluminum are added. The present invention relates to a working fluid composition for a heat pipe used in a heat recovery device or a heat dissipation device having a large heat transport amount, and a manufacturing method thereof.

지금까지 히트파이프에 사용되는 작동유체 또는 작동유체 조성물로서는 일반적으로 프레온 계 냉각제, 물, 글리세린, 수산화나트륨수용액, 바나딘산염 수용액등 여러 가지의 것이 사용되어지고 있지만 이들의 작동유체 조성물에는 각기 장단점이 있다.Up to now, as a working fluid or working fluid composition used in heat pipes, various types such as freon coolant, water, glycerin, aqueous sodium hydroxide solution and vanadate solution are generally used, but there are advantages and disadvantages of these working fluid compositions. have.

가령, 물은 비교적 넓은 작동온도 범위를 가지는 것이지만 이것을 금속 소재를 이용하여 만든 히트파이프를 장기간 사용할 경우 히트 파이프 표면에 부식시키기 때문에 수명이 짧은 결점이 있으며, 또 글리세린이나 수산화나트륨수용액, 바나딘산염 수용액등은 냉동작동온도의 범위가 넓지 않은 결점을 가지고 있다.For example, water has a relatively wide operating temperature range, but heat pipes made of metal materials have a short lifespan because they corrode on the surface of heat pipes for a long time. Also, aqueous solution of glycerin, sodium hydroxide and vanadate The lamp has the drawback that the refrigeration operating temperature range is not wide.

또 작동유체로서 널리 사용되는 프레온 계나 즉 훌로로를 포함 탄소화합물인 프레온계의 열매체는 인체에 대하여 유해할 뿐만 아니라. 이것이 지구성층권의 오존층을 파괴하는 것으로 사용이 금지 되어 있고, 가격도 고가라는 결점이 있다. In addition, Freon type widely used as a working fluid, ie Freon type heat medium, which is a carbon compound containing a fluoro, is not only harmful to the human body. This destroys the ozone layer in the global stratosphere and is banned, and the price is high.

일본 특허공보 소화5-195308호에는 물, 3인산나트륨, 헥사메타 인산나트륨, 제 3인산나트륨, 제 1인산칼륨, 제2인산나트륨(無水)및 제 2인산칼륨으로부터 되는 히트파이프용 열매체조성물이 기재되어 있고,Japanese Patent Laid-Open No. 5-195308 discloses a heat composition for heat pipes consisting of water, sodium triphosphate, sodium hexameta phosphate, sodium triphosphate, potassium monophosphate, sodium diphosphate and potassium diphosphate. Listed,

국내등록특허공보 등록번호 제1009692560000(20100702)호에는 In Korea Patent Publication No. 1009692560000 (20100702)

에탄계인 1,1,-디플루오로에탄 (R-152a) 85~98 kg, 프로필렌 (R-1270) 0.3~3 kg, 프로판 (R-290) 1~5 kg,과 핵사 메틸 실리콘 오일을 0.1~0.5 kg,으로 조성되어 있으며, 오존층 파괴지수가 (ODP=0) 인 냉매조성물이 공개되어 있으며,85 to 98 kg of ethane-based 1,1, -difluoroethane (R-152a), 0.3 to 3 kg of propylene (R-1270), 1 to 5 kg of propane (R-290), and 0.1 to 4 nucleated methyl silicone oil It has a composition of ~ 0.5 kg, refrigerant composition with ozone layer destruction index (ODP = 0) is disclosed,

동 공보 등록번호 제1004333320000 (20040518)에는 폴리알킬렌 글리콜 및 폴리에스테르와 같은 산소-함유 유기 화합물로 구성된 기본 오일에 25에서 500mm2/sec 이상의 동점도를 갖는 불소화 실리콘 오일을 포함시켜 이루어진 냉동기 오일, 특히 하이드로플루오로카본 냉매용 냉동기 오일이 기재되어 있다. 상기 냉동기 오일을 사용하여 압축형 냉동 시스템을 윤활 시키는 것을 포함하는 냉동 시스템의 윤활 방법 또한 기재되어 있고,Publication No. 1004333320000 (20040518) discloses refrigeration oils, especially hydros, comprising a fluorinated silicone oil having a kinematic viscosity of at least 25 to 500 mm 2 / sec in a base oil composed of oxygen-containing organic compounds such as polyalkylene glycols and polyesters. Refrigerator oils for fluorocarbon refrigerants are described. Also described is a lubrication method of a refrigeration system comprising lubricating a compression refrigeration system using the refrigerator oil,

동 공보 등록번호(일자) 제1004967800000(20050614)호에는 환경 오염을 유발하지 않는 1,1,1,2-테트라플루오로에탄 등의 수소 함유 플론 냉매를 사용한 냉동기의 윤활유로서 적합한 냉동기 오일 조성물이 공개되어 있으며, Korean Patent Publication No. 1004967800000 (20050614) discloses a refrigerator oil composition suitable as a lubricating oil for a refrigerator using hydrogen-containing flon refrigerants such as 1,1,1,2-tetrafluoroethane that do not cause environmental pollution. It is

동 공보 등록번호(일자) 제1009484880000(20100311)호에는 냉동기와 열 교환 장치 및 급속냉동장치를 포함하여 간접 냉동방식으로 운용되는 침지식 냉동 시스템에 있어서, 상기 냉동기에서 압축한 후, 응축하여 상기 열 교환 장치로 이동된 교환냉매와 열 교환되고 상기 급속냉동장치에서 냉동시키고자 하는 냉동 대상물을 냉동시키는 디클로로-플로오르에탄(1,1-Dichloro-1-Fluorethane)을 포함한 냉매조성물이 기재되어 있고,Publication No. (Date) No. 1009484880000 (20100311) discloses an immersion refrigeration system operating in an indirect freezing method including a refrigerator, a heat exchanger and a rapid freezer, wherein the refrigerator is compressed and then condensed. Refrigerant composition including dichloro- fluoroethane (1,1-Dichloro-1-Fluorethane) which is heat exchanged with the exchange refrigerant transferred to the exchange unit and freezes the freezing object to be frozen in the rapid freezer,

국내공개특허공보 공개번호 제1020110122484(20111110)호에는 방열 성능이 우수한 실리콘 중합체 조성물에 관한 것으로서, 열전도성 충전재를 고함 량으로 함유하여 높은 열전도성을 나타내면서도 유동성을 유지하고, 취급성이 양호하며, 고온 고습 조건하에서의 내구성신뢰성이 우수한 열전도성 실리콘 중합체 조성물이 공개되어 있으며,Korean Laid-Open Patent Publication No. 1020110122484 (20111110) relates to a silicone polymer composition having excellent heat dissipation performance, and includes a high content of thermally conductive fillers to maintain high fluidity while maintaining fluidity and good handling properties. A thermally conductive silicone polymer composition having excellent durability and reliability under high temperature and high humidity conditions is disclosed.

동 공보 공개번호 제1020000036953(20000705)호에는 본 발명의 제 1 실시 예에 따르면, 프레온계 냉매 R-12를 대체할 수 있는 탄화수소계 혼합냉매 조성물은 이소부탄(isobutane)[C4H10] 30중량%, 디플루오로에탄(difluoroethane)[CHF2-CH3] 70중량%를 기본으로 함유하며 탄화수소계 냉매가 가지고 있는 가연성을 개선하기 위하여 첨가제로서 실리콘 오일(silicon oil)을 3중량% 추가한 것으로 이루어진다. 본 발명의 제 2 실시 예에 따르면, 프레온계 냉매 R-22를 대체하기 위한 탄화수소계 혼합냉매 조성물은 프로판(propane)[C3H8] 40중량%, 프로필렌(propylene) [CH3-CH-CH2] 60중량%를 기본으로 함유하고 첨가제로서 실리콘 오일을 3중량% 추가한 냉매조성물이 공개되어 있음을 알 수 있다.
Publication No. 1020000036953 (20000705), according to the first embodiment of the present invention, a hydrocarbon-based mixed refrigerant composition that can replace the freon-based refrigerant R-12 isobutane (isobutane) [C4H10] 30% by weight, It contains 70% by weight of difluoroethane [CHF 2 -CH 3] as a base, and consists of adding 3% by weight of silicone oil as an additive to improve the flammability of the hydrocarbon-based refrigerant. According to the second embodiment of the present invention, the hydrocarbon-based mixed refrigerant composition for replacing the Freon refrigerant R-22 is 40% by weight of propane [C3H8], 60% by weight of propylene [CH3-CH-CH2] It can be seen that a refrigerant composition containing% as a basis and 3% by weight of silicone oil as an additive is disclosed.

1. 국내등록특허공보 등록번호 제1009692560000(20100702)호1. Domestic registered patent publication No. 1009692560000 (20100702) 2. 국내등록특허공보 등록번호 제1004333320000 (20040518)호2. National Registered Patent Publication No. 1004333320000 (20040518) 3. 국내등록특허공보 등록번호(일자) 제1004967800000(20050614)호3. Domestic registered patent publication registration number (date) No. 1004967800000 (20050614) 4. 국내등록특허공보 등록번호(일자) 제1009484880000(20100311)호4. Domestic registration patent publication number (date) No. 1009484880000 (20100311) 5. 국내공개특허공보 공개번호 제1020110122484(20111110)호5. Korean Patent Publication No. 1020110122484 (20111110) 6. 국내공개특허공보 공개번호 제1020000036953(20000705)호6. Korean Patent Publication No. 1020000036953 (20000705)

종래의 히트파이프에 사용되는 작동유체 또는 작동유체 조성물로서는 일반적으로 프레온 계, 물, 글리세린, 수산화나트륨수용액, 바나딘산염 수용액등 여러 가지의 것이 사용되어지고 있지만, 물은 비교적 넓은 작동온도 범위를 가지는 것이지만 이것을 금속 소재를 이용하여 만든 히트파이프를 장기간 사용할 경우 히트 파이프 표면에 부식시키기 때문에 수명이 짧은 결점이 있으며, 또 글리세린이나 수산화나트륨수용액, 바나딘산염 수용액등은 냉동작동온도의 범위가 넓지 않은 결점을 가지고 있다.As a working fluid or working fluid composition used in a conventional heat pipe, various kinds of fluids such as freon, water, glycerin, aqueous sodium hydroxide solution and vanadate solution are generally used, but water has a relatively wide operating temperature range. However, if the heat pipe made of metal material is used for a long time, it has a short life due to corrosion on the surface of the heat pipe, and glycerin, sodium hydroxide solution, and vanadate solution are not good in the range of freezing operation temperature. Have

또 작동유체로서 널리 사용되는 프레온 계나 즉 훌로로를 포함 탄소화합물인 프레온계의 열매체는 인체에 대하여 유해할 뿐만 아니라. 이것이 지구성층권의 오존층을 파괴하는 것으로 사용이 금지 되어 있고, 가격도 고가라는 결점이 본 발명이 해결하고자 하는 과제인 것이다.
In addition, Freon type widely used as a working fluid, ie Freon type heat medium, which is a carbon compound containing a fluoro, is not only harmful to the human body. This is a problem that the present invention intends to solve the drawback that the use of the earth stratospheric ozone layer is prohibited and the price is also high.

본 출원인이 선출원한 등록번호 제1002554770000(20000214)호, 발명의 명칭; 냉매조성물을 개량한 것으로서, 히트파이프에 사용되는 작동유체 조성물에 있어서, 디 메틸 실리콘오일 35~50 kg, 이온교환수 49~64 kg, 20~120nm 직경 크기의 나노알루미늄 0.1~0.5 kg 으로 조성된 히트파이프용 작동유체 조성물 및 그 제조방법을 제공하는 것이 본 발명이 이루고자 하는 과제해결수단인 것이다.
No. 1002554770000 (20000214), filed earlier by the applicant, of the present invention; An improvement of the refrigerant composition, in the working fluid composition used in the heat pipe, 35 to 50 kg of dimethyl silicone oil, 49 to 64 kg of ion-exchanged water, and 0.1 to 0.5 kg of nano aluminum having a diameter of 20 to 120 nm It is an object of the present invention to provide a working fluid composition for a heat pipe and a method of manufacturing the same.

본 발명은 프레온계의 작동유체를 대체 할 수 있고 물이 가진 특성의 열 수송량을 증가시킨 것으로서, 히트 파이프가 가지는 장점 중 열전달 속도는 물론 보다 더 큰 열 수송량을 증가 시켜서 열전달 및 방열 효과를 높이고 작동 온도 범위를 확대 하여 사용 범위를 크게 한 점과 나노 알루미늄으로 인한 내 부식성을 향상시키는 점에서 유용성이 높으며,The present invention is to replace the working fluid of the freon system and to increase the heat transfer of the characteristics of the water, the heat pipe has the advantages of heat transfer rate and heat transfer to increase the heat transfer and heat dissipation effect and increase the operation It has high usefulness in terms of increasing the use range by expanding the temperature range and improving corrosion resistance due to nano aluminum.

30 ~ 400 까지 넓은 온도범위에 쓰일 수 있으며, 히트 파이프 컨테이너 소재로서는 스테인리스, 동, 청동, 알루미늄, 등으로 구성 되어진 히트파이프의 어느 것이라도 적용할 수 있으며, It can be used in a wide temperature range from 30 to 400.As a heat pipe container material, any of heat pipes made of stainless steel, copper, bronze, aluminum, etc. can be applied.

또, 이 조성물은 그 취급이 간편하며, 불연성이며, 인체에 대하여서 해를 미치는 일은 없고, In addition, the composition is easy to handle, nonflammable, and does not harm the human body,

또 본 발명은 사용 중에 자연이 생성되어지는 결로 현상에 의하여 물(H2 O) 이 증가 하여 작동유체와 혼합되어도 증발 온도는 같으며, 히트 파이프의 끝단부에 열전달이 안 되어 수명을 단축시키는 일이 발생 되지 않는 가장 큰 장점을 가지고 있다.
In addition, the present invention is the same as the evaporation temperature even if the water (H 2 O) is increased by mixing with the working fluid due to the condensation phenomenon that the nature is generated during use, it is not heat transfer to the end of the heat pipe to shorten the life It has the greatest advantage that it does not occur.


도 1. 히트 파이프의 구성도
도 2, 작동유체의 성능 실험 개요도

Figure 1. Schematic diagram of the heat pipe
2, the schematic diagram of the performance experiment of the working fluid

본 발명은 히트파이프에 사용되는 작동유체 조성물에 있어서, 디 메틸 실리콘오일 35~50 kg, 이온교환수 49~64 kg, 20~120nm 직경 크기의 나노알루미늄 0.1~0.5 kg 을 포함하는 것을 특징으로 하는 히트파이프용 작동유체 조성물 및 그 제조방법에 관한 것이다. In the working fluid composition used in the heat pipe, the present invention comprises 35 to 50 kg of dimethyl silicone oil, 49 to 64 kg of ion-exchanged water, and 0.1 to 0.5 kg of nano aluminum having a diameter of 20 to 120 nm. A working fluid composition for a heat pipe and a method of manufacturing the same.

본 발명은 프레온계의 작동유체를 대체 할 수 있고 물이 가진 특성의 열 수송량을 증가시킨 것으로서 일본 특허원 헤이세이 5-195308호 명세서에 있어서 물, 3인산나트륨, 헥사메타 인산나트륨, 제 3인산나트륨, 제 1인산칼륨, 제2인산나트륨(無水)및 제 2인산칼륨으로부터 되는 히트파이프용 열매체조성물 보다 더 큰 작동유체를 발명하기에 이르렀다.The present invention is to replace the working fluid of the freon system and to increase the heat transport of the characteristics of the water, the Japanese Patent Application No. Heisei 5-195308 in the specification, water, sodium triphosphate, hexameta phosphate, triphosphate A larger working fluid has been invented than the heat medium composition for heat pipes consisting of sodium, potassium monophosphate, sodium diphosphate and potassium diphosphate.

특히 히트 파이프가 가지는 장점 중 열전달 속도는 물론 보다 더 큰 열 수송량을 증가 시켜서 열전달 및 방열 효과를 높이고 작동 온도 범위를 확대 하여 사용 범위를 크게 한 점과 20~120nm 직경 크기의 나노 알루미늄으로 인한 내 부식성을 향상시키는 점에서 유용성이 높은 것이다.In particular, the heat pipe has the advantages of heat transfer rate, heat transfer rate, heat transfer rate, heat dissipation effect, and wider operating temperature range. In terms of improving the usefulness.

본 발명의 작동유체는 스테인리스, 동 및 청동, 황동 알루미늄 등의 비철금속제의 소재로서 구성되는 히트파이프에 사용되어진다.The working fluid of the present invention is used in heat pipes composed of non-ferrous metal materials such as stainless steel, copper, bronze and brass aluminum.

본 발명의 작동유체 조성물은 30 ~ 400 까지 넓은 온도범위에 쓰일 수 있으며, 히트 파이프 컨테이너 소재로서는 스테인리스, 동, 청동, 알루미늄, 등으로 구성 되어진 히트파이프의 어느 것이라도 적용할 수 있다. The working fluid composition of the present invention can be used in a wide temperature range from 30 to 400, and any heat pipe made of stainless steel, copper, bronze, aluminum, or the like can be applied as a heat pipe container material.

이하 본 발명을 실시 예를 통하여 상세히 설명하면 다음과 같다.
Hereinafter, the present invention will be described in detail with reference to examples.

실시예1Example 1 (제1최선의 조건)(1st best condition)

반응로 내부를 물로 세정하여 그 중에 이물질이 없는 것을 확인한 후 물(증류수)로 재차 세정하고 건조시킨 다음, 반응로에 이온 교환수 49kg을 넣은 후, 디 메틸실리콘오일 54.9kg을 넣고 마지막으로 20~120nm 직경 크기의 나노알루미늄 0.1kg을 넣어서 약 60분간 혼합기를 조작하여 온도는 상온 20~25 압력은 0.01~0.05kg/cm2의 압력 하에 50~80rpm 의 회전 속도로 약 60분간 혼합기를 조작하여 제조함을 히트파이프용 작동유체 조성물을 제조하였다.
After washing the inside of the reactor with water to make sure there are no foreign substances in it, wash it again with water (distilled water) and dry it. Then, add 49kg of ion-exchanged water to the reactor, add 54.9kg of dimethylsilicone oil and finally add 20 ~ It is prepared by operating the mixer for about 60 minutes with 0.1kg of 120nm diameter aluminum aluminum and operating for about 60 minutes at a rotational speed of 50 ~ 80rpm under a pressure of 0.01 ~ 0.05kg / cm2 at room temperature 20-25 pressure. The working fluid composition for heat pipes was prepared.

실시 예 2(제2최선의 조건)Example 2 (second best condition)

반응로 내부를 물로 세정하여 그 중에 이물질이 없는 것을 확인한 후 물(증류수)로 재차 세정하고 건조시킨 다음, 반응로에 이온 교환수 54kg을 넣은 후, 디 메틸 실리콘오일 44.9kg을 넣고 마지막으로 20~120nm 직경 크기의 나노알루미늄 0.1kg을 넣어서 약 60분간 혼합기를 조작하여 온도는 상온 20~25 압력은 0.01~0.05kg/cm2의 압력 하에 50~80rpm 의 회전 속도로 약 60분간 혼합기를 조작하여 제조함을 히트파이프용 작동유체 조성물을 제조하였다.
After washing the inside of the reactor with water to make sure there are no foreign substances in it, wash it again with water (distilled water) and dry it. Then, add 54kg of ion-exchanged water to the reactor, and add 44.9kg of dimethyl silicone oil. It is prepared by operating the mixer for about 60 minutes with 0.1kg of 120nm diameter aluminum aluminum and operating for about 60 minutes at a rotational speed of 50 ~ 80rpm under a pressure of 0.01 ~ 0.05kg / cm2 at room temperature 20-25 pressure. The working fluid composition for heat pipes was prepared.

실시 예 3(제3최선의 조건)Example 3 (third best condition)

반응로 내부를 물로 세정하여 그 중에 이물질이 없는 것을 확인한 후 물(증류수)로 재차 세정하고 건조시킨 다음, 반응로에 이온 교환수 64kg을 넣은 후, 디 메틸 실리콘오일 35kg을 넣고 마지막으로 20~120nm 직경 크기의 나노알루미늄 0.1kg을 넣어서 약 60분간 혼합기를 조작하여 온도는 상온 20~25 압력은 0.01~0.05kg/cm2의 압력 하에 50~80rpm 의 회전 속도로 약 60분간 혼합기를 조작하여 제조함을 히트파이프용 작동유체 조성물을 제조하였다. After washing the inside of the reactor with water to make sure that there are no foreign substances in it, wash it again with water (distilled water) and dry it. Then, add 64kg of ion-exchanged water to the reactor, add 35kg of dimethyl silicone oil and finally 20 ~ 120nm. It is manufactured by operating the mixer for about 60 minutes by adding 0.1 kg of nano-aluminum of diameter size and operating the mixer for about 60 minutes at a rotational speed of 50 to 80 rpm under a pressure of 0.01 to 0.05 kg / cm2 for a temperature of 20 to 25 pressure. A working fluid composition for a heat pipe was prepared.

상기 실시 예 1~3의 제조 방법을 설명하면 다음과 같다.The manufacturing method of Examples 1 to 3 is as follows.

혼합기를 구비한 반응로를 사용하여서 상기 각 성분을 그들의 각 양적 비율로 조합하여 제조 하였다. Each of the above components was prepared by combining their respective quantitative ratios using a reactor equipped with a mixer.

우선 반응로 내부를 물로 세정하여 그 중에 이물질이 없는 것을 확인한 후 물(증류수)로 재차 세정하였다.First, the inside of the reactor was washed with water to confirm that there were no foreign substances therein, and then washed again with water (distilled water).

이 반응로에 이온 교환수를 넣은 후 (각 물질의 양적 비율은 상기의 것과 같다)제 핵사메틸실리콘오일을 넣고 마지막으로 나노 알루미늄을 넣어서 약 60분간 혼합기를 조작하여서 혼합하였다.After adding ion-exchanged water to the reactor (quantitative ratio of each substance is the same as above), the nucleated methylsilicon oil was added, and finally, nano aluminum was added thereto, and the mixture was operated by a mixer for about 60 minutes.

이렇게 하여서 제조한 열매체조성물의 제원 즉 성질(특성)은 다음과 같다.The specifications or properties (characteristics) of the heat medium composition thus prepared are as follows.

색 상 : 백 색,Color: white,

형 상 : 액 상,Shape: Liquid,

조 성 : 비이온성,Composition: Nonionic,

P H : 70.5P H: 70.5

또, 이 제품은 플라스틱용기에 가령 20~100리터 정도의 적절한 양을 넣어서 포장하여 출하하는 것이다.
In addition, this product is packaged and shipped in a plastic container in an appropriate amount of about 20 to 100 liters, for example.

실험 예 Experimental Example

도 1 과 같이 히트 파이프 (25.4 x 1,000 의 크기)로 열전달 량이 가장 좋은 물(H2O)과 본 발명의 작동 유체를 이용하여 각각 1개씩 만들어 히트 파이프의 구성도 도 1에서 보여 주는 것 과 같이 증발부에 히터를 도 2 와 같이 설치하여 가열 부를 설치 한 다음,As shown in FIG. 1, a heat pipe (size of 25.4 x 1,000) is used to make the best heat transfer water (H 2 O) and one by one using the working fluid of the present invention. Install the heater on the heater as shown in Figure 2, and then

와트미터를 이용 가열 량을 측정 할 수 있도록 하고 반대로 도 1에서 응축부에 도 2 에 보여준 것과 같이 물을 순환 하도록 하여 열량을 측정 비교 하였다.
The amount of heating was measured using a wattmeter, and the heat quantity was measured and compared by circulating water as shown in FIG.

본 발명의 실시예1의 히트파이프용 작동유체의 조성물을 실험.Experiment of the composition of the working fluid for the heat pipe of Example 1 of the present invention. 작 동 유 체                      Working fluid 물 ( H2O )                 Water (H2O) 최 선 의 조 성 1 의 작 동 유 체   Operating Fluid of Choi Seon-Sung's Composition 1 온 도    Temperature 열 량 kcal/h   Calories kcal / h 온 도    Temperature 열 량 kcal/h   Calories kcal / h 4040 166166 4040 186186 6060 207207 6060 232232 7070 247247 7070 277277 8080 290290 8080 334334 9090 332332 9090 745745

본 발명의 실시예2의 히트파이프용 작동유체 조성물을 실험Experimental working fluid composition for a heat pipe of Example 2 of the present invention 작 동 유 체                      Working fluid 물 ( H2O )                 Water (H2O) 최 선 의 조 성 2 의 작 동 유 체   Operating Fluid of Choi Seon-Sung's Composition 2 온 도    Temperature 열 량 kcal/h   Calories kcal / h 온 도    Temperature 열 량 kcal/h   Calories kcal / h 4040 165165 4040 185185 6060 207207 6060 234234 7070 245245 7070 278278 8080 292292 8080 325325 9090 333333 9090 737737

본 발명의 실시예3의 히트파이프용 작동유체 조성물을 실험Experimental working fluid composition for heat pipes of Example 3 of the present invention 작 동 유 체                      Working fluid 물 ( H2O )                 Water (H2O) 최 선 의 조 성 3 의 작 동 유 체   Operating Fluid of Choi Seon-Sung's Composition 3 온 도    Temperature 열 량 kcal/h   Calories kcal / h 온 도    Temperature 열 량 kcal/h   Calories kcal / h 4040 166166 4040 189189 6060 207207 6060 239239 7070 247247 7070 285285 8080 290290 8080 335335 9090 332332 9090 745745

실험결과 Experiment result

실시예 1 내지 3의 본 발명의 히트파이프용 작동 유체 조성물을 각각 실험한 결과 표 1~3에서 보여준 것과 같이, 열전달 량이 가장 큰 작동유체인 물보다 본 발명의 히트파이프용 작동유체 조성물이 평균 10~12% 이상 열전달 량이 크게 나타났음을 알 수 있었다.
As a result of experiments of the working fluid compositions for heat pipes of the present invention of Examples 1 to 3, as shown in Tables 1 to 3, the working fluid compositions for heat pipes of the present invention had an average of 10 to more than water, which is the working fluid having the largest heat transfer amount. It was found that the heat transfer was greater than 12%.

Claims (3)

히트파이프에 사용되는 작동유체 조성물에 있어서, 이온교환수 49~64 kg, 디 메틸 실리콘오일 35~50 kg, 20~120nm 직경 크기의 나노알루미늄 0.1~0.5 kg 을 포함하는 것을 특징으로 하는 히트파이프용 작동유체 조성물.
A working fluid composition for use in a heat pipe, the heat pipe is characterized in that it comprises 49-64 kg of ion-exchanged water, 35-50 kg of dimethyl silicone oil, 0.1-0.5 kg of nano aluminum having a diameter of 20-120 nm. Working fluid composition.
제 1항에 있어서, 상기 히트파이프에 사용되는 작동유체 조성물에 있어서, 이온교환수 49 kg, 디 메틸 실리콘오일 54.9kg, 20~120nm 직경 크기의 나노알루미늄 0.1 kg 을 포함하는 것을 특징으로 하는 히트파이프용 작동유체 조성물.
2. The working fluid composition of claim 1, wherein the working fluid composition used in the heat pipe comprises 49 kg of ion-exchanged water, 54.9 kg of dimethyl silicone oil, and 0.1 kg of nano aluminum having a diameter of 20 to 120 nm. Working fluid composition for.
히트파이프용 작동유체 조성물의 제조방법에 있어서,
반응로 내부를 물로 세정하여 그 중에 이물질이 없는 것을 확인한 후 물(증류수)로 재차 세정하고 건조시킨 다음, 반응로에 이온 교환수 64kg을 넣은 후, 디메틸 실리콘오일 35.9kg을 넣고 마지막으로 20~120nm 직경 크기의 나노알루미늄 0.1kg을 넣고 온도는 상온 20~25 압력은 0.01~0.05kg/cm2의 압력 하에 50~80rpm 의 회전 속도로 약 60분간 혼합기를 조작하여 제조함을 특징으로 하는 히트파이프용 작동유체 조성물의 제조방법.
In the manufacturing method of the working fluid composition for heat pipe,
After washing the inside of the reactor with water to make sure there are no foreign substances in it, wash it again with water (distilled water) and dry it. Then, add 64kg of ion-exchanged water to the reactor, add 35.9kg of dimethyl silicone oil and finally 20 ~ 120nm. 0.1kg diameter aluminum aluminum, and the temperature is 20 ~ 25 pressure operating at 0.01 ~ 0.05kg / cm2 under the pressure of 50 ~ 80rpm to operate the mixer for about 60 minutes Method of Making a Fluid Composition.
KR1020120053259A 2012-05-18 2012-05-18 The working fluid composition and manufacturing method for heat pipe KR101319521B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120053259A KR101319521B1 (en) 2012-05-18 2012-05-18 The working fluid composition and manufacturing method for heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120053259A KR101319521B1 (en) 2012-05-18 2012-05-18 The working fluid composition and manufacturing method for heat pipe

Publications (1)

Publication Number Publication Date
KR101319521B1 true KR101319521B1 (en) 2013-10-17

Family

ID=49638743

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120053259A KR101319521B1 (en) 2012-05-18 2012-05-18 The working fluid composition and manufacturing method for heat pipe

Country Status (1)

Country Link
KR (1) KR101319521B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190046527A (en) 2017-10-26 2019-05-07 세종공업 주식회사 Heat Exchange using Heat Pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100191799B1 (en) 1996-06-05 1999-06-15 엄기철 Heating medium composition for heat-pipe
JP2007262302A (en) 2006-03-29 2007-10-11 Denso Corp Particulate-dispersed heat transport medium
KR20100114637A (en) * 2009-04-16 2010-10-26 혜전대학 산학협력단 Dasik containing for infrared-radiated mosidae and producing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100191799B1 (en) 1996-06-05 1999-06-15 엄기철 Heating medium composition for heat-pipe
JP2007262302A (en) 2006-03-29 2007-10-11 Denso Corp Particulate-dispersed heat transport medium
KR20100114637A (en) * 2009-04-16 2010-10-26 혜전대학 산학협력단 Dasik containing for infrared-radiated mosidae and producing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190046527A (en) 2017-10-26 2019-05-07 세종공업 주식회사 Heat Exchange using Heat Pipe

Similar Documents

Publication Publication Date Title
Kasaeian et al. Applications of eco-friendly refrigerants and nanorefrigerants: A review
JP6337180B2 (en) Heat transfer composition and heat transfer method
CN102971394B (en) For the composition that freezes and method
US9315708B2 (en) Heat-transfer compositions exhibiting improved miscibility with the lubricating oil
CN1898353B (en) Compositions containing fluorine substituted olefins
KR102501395B1 (en) Heat transfer compositions, methods and systems
JP5795448B2 (en) Heat transfer composition and heat transfer method
JP2014514423A (en) Heat transfer composition and method
CN103502380A (en) Producing heating using working fluids comprising Z-1,1,1,4,4,4-hexafluoro-2-butene
JP2016514187A (en) Compositions and methods for cooling
CN110845997B (en) Heat transfer medium and composition suitable for cooler
KR101319521B1 (en) The working fluid composition and manufacturing method for heat pipe
KR20210099182A (en) Stabilized heat transfer compositions, methods and systems
US10731064B1 (en) Heat transfer fluid coordination entities
CN113302257B (en) Stabilized heat transfer compositions, methods, and systems
CN105349105B (en) Refrigerant composition
US20140131613A1 (en) Refrigerants
CN101033388A (en) Middle-high temperature heat pump mixing working substance containing trifluoroiodomethane (R13I1) and tetrafluoromethane (HFCl34a)
KR20150107074A (en) Low temperature working fluid composition of the heat pipe and Manufacturing methodsng
CN106398650B (en) High temperature heat pump ternary mix working medium in the geothermal utilization of colliery
Razzaq et al. Effect of TiO2/MO nano-lubricant on energy and exergy savings of an air conditioner using blends of R22/R600a
CN100415847C (en) Mixing cryogen containing 1,1,2,2-tetrafluoroethane
CN113330091B (en) Stabilized heat transfer compositions, methods, and systems
CN1070220C (en) Azeotropic mixture refrigerant used as substitut for freon 12
CN106032463A (en) Gravity assisted heat pipe mixing working medium

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161011

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171011

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181011

Year of fee payment: 6