KR101317297B1 - Recycle process of high purity nickel from waste nickel sludge using ion exchange resin and reducing agent - Google Patents

Recycle process of high purity nickel from waste nickel sludge using ion exchange resin and reducing agent Download PDF

Info

Publication number
KR101317297B1
KR101317297B1 KR1020130025054A KR20130025054A KR101317297B1 KR 101317297 B1 KR101317297 B1 KR 101317297B1 KR 1020130025054 A KR1020130025054 A KR 1020130025054A KR 20130025054 A KR20130025054 A KR 20130025054A KR 101317297 B1 KR101317297 B1 KR 101317297B1
Authority
KR
South Korea
Prior art keywords
nickel
ion exchange
exchange resin
impurities
waste
Prior art date
Application number
KR1020130025054A
Other languages
Korean (ko)
Inventor
신기웅
김진호
홍은미
Original Assignee
인천화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인천화학 주식회사 filed Critical 인천화학 주식회사
Priority to KR1020130025054A priority Critical patent/KR101317297B1/en
Application granted granted Critical
Publication of KR101317297B1 publication Critical patent/KR101317297B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/005Preliminary treatment of ores, e.g. by roasting or by the Krupp-Renn process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0446Leaching processes with an ammoniacal liquor or with a hydroxide of an alkali or alkaline-earth metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction

Abstract

PURPOSE: A method for recovery nickel powder of high purity from nickel waste by using an ion exchange resin and a reducing agent is provided to obtain nickel powder of high purity with a simplified method without using an expensive electrolysis device or a heat treatment process. CONSTITUTION: A method for recovery nickel powder of high purity from nickel waste by using an ion exchange resin and a reducing agent includes the following steps of: removing primary impurities from nickel sulphate and waste nickel sulphate which are obtained from nickel sludge; removing secondary impurities by filtering the nickel sulphate with the ion exchange resin; forming a precursor by adding hydrazine as a reducing to the nickel sulphate; and increasing the pH of the precursor at a range of 10-12 and obtaining nickel powder by inducing a reduction reaction by separating liquid and solid from each other. [Reference numerals] (S01) Dissolve nickel sludge and prepare waste nickel sulphate; (S02) Remove impurities-control pH; (S03) Remove impurities-ion exchange resin; (S04) Add a reducing agent-generate a precursor; (S05) Reduction reaction-a pH control agent; (S06) Obtain nickel powder; (S07) Wash; (S08) Dry

Description

이온교환수지 및 환원제를 이용하여 니켈 폐기물로부터 고순도 니켈 분말을 회수하는 방법{RECYCLE PROCESS OF HIGH PURITY NICKEL FROM WASTE NICKEL SLUDGE USING ION EXCHANGE RESIN AND REDUCING AGENT}Method for recovering high purity nickel powder from nickel waste using ion exchange resin and reducing agent

본 발명은 산업 현장에서 발생되는 니켈 폐기물인 폐황산니켈이나 니켈슬러지로 부터 pH 조절을 통한 화학침전법 및 이온교환수지법를 이용하여 불순물이 제거된 황산니켈을 추출하고 이로 부터 환원반응을 통해 고순도의 니켈 분말을 회수하는 방법에 관한 것이다.
The present invention extracts nickel sulfate from which impurities are removed using nickel sewage or nickel sludge, which is an industrial waste, by using chemical precipitation and ion exchange resins by adjusting pH, and reducing the high purity through the reduction reaction. A method for recovering nickel powder.

일반적으로 니켈(Ni)은 은백색의 광택을 지닌 금속으로 그 강도나 세기가 철과 유사하고, 단조 및 용접이 가능하며, 전성과 연성이 좋아 연마성이 우수하면서도 공기 및 습기에 대해서는 철보다 안정적이어서 쉽게 산화되지 않고, 알칼리에도 잘 녹지 않는다는 장점으로 인해 다양한 산업분야에서 널리 이용되고 있다.In general, nickel (Ni) is a silver-white gloss metal, whose strength and strength are similar to iron, can be forged and welded, and have good abrasiveness and ductility, and are more abrasive than air and moisture. It is widely used in various industrial fields due to its advantages of not being easily oxidized and insoluble in alkali.

그러나, 이러한 니켈은 고단가일 뿐만 아니라 약 90%가 해외에서 산출되기 때문에 대부분을 수입에 의존하고 있는 바, 최근 자원 고갈 및 원자재 가격 상승 등으로 인해 자원부족국가인 우리나라에서는 산업현장에서 발생되는 니켈 폐기물인 니켈도금폐액 또는 니켈슬러지로부터 황산니켈이나 니켈 분말의 형태로 회수하여 재활용하는 기술이 필요로 하고 있다.However, since nickel is not only a high unit price but also about 90% is produced overseas, most of them are dependent on imports. In recent years, nickel produced at industrial sites in Korea, which is a resource-deficient country due to resource depletion and rising raw material prices. There is a need for a technology to recover and recycle nickel nickel waste or nickel sludge in the form of nickel sulfate or nickel powder.

상기와 같은 재활용 방법으로 니켈슬러지의 경우 폐기물을 황산에 용해하여 황산니켈로 추출한 후 pH 조절을 통하여 금속이온들을 제거하는 방법이나, 용매추출을 통해 불순물을 제거하는 방법이 알려져 있으며, 이와 유사한 방법으로 불순물이 제거된 황산니켈에 수산화나트륨(NaOH)와 같은 pH 조절제를 이용하여 수산화니켈을 수득하고 이를 다시 황산에 용해하여 고순도 황산니켈을 제조하는 방법이 연구된 바 있다.In the case of nickel sludge by the above recycling method, there is known a method of dissolving waste in sulfuric acid, extracting with nickel sulfate, removing metal ions through pH control, or removing impurities through solvent extraction, A method has been studied in which nickel hydroxide is obtained by using a pH adjusting agent such as sodium hydroxide (NaOH) to remove impurities from nickel sulfate and then dissolved in sulfuric acid to prepare high purity nickel sulfate.

이와 같이 회수된 황산니켈 또는 니켈 분말은 전기저장매체, PCB 기판, 각종 전자부품의 전극과 집전체를 제조하기 위한 무전해 전기도금 또는 전해전기도금 등에 활용될 수 있다. 특히, 최근에는 리튬이차전지의 양극재를 제조하기 위한 핵심적인 기초 원료로서 황산니켈이 크게 주목을 받고 있어 그 활용도는 높아지고 있다.The nickel sulfate or nickel powder recovered as described above may be used for an electroless electroplating or electrolytic electroplating for manufacturing electrodes and current collectors of electrical storage media, PCB substrates, and various electronic components. In particular, in recent years, nickel sulfate as a key basic raw material for manufacturing a cathode material of a lithium secondary battery has attracted great attention, and its utilization is increasing.

그러나, 이러한 재활용 방법들에 의해 얻어진 황산니켈 또는 니켈 분말은 순수 니켈과 비교하여 불순물의 함유량이 높아 산업적으로 바로 사용하기에는 아직까지 많은 제약이 뒤따르고 있는 실정이다.However, nickel sulfate or nickel powder obtained by these recycling methods has a high content of impurities as compared to pure nickel, which is still subject to many restrictions for industrial use.

이와 관련하여 대한민국 특허 등록번호 제686985호에서는 니켈을 함유하는 니켈 폐액 및 수산니켈 슬러지에 염산을 투여하여 혼합 및 교반하고, 여기에 아민계 용매를 투여시켜 불순물을 제거시킨 다음 전기분해하여 니켈을 회수하는 방법을 소개한 바 있으나, 이러한 방법은 전기분해를 하기 위한 고가의 장치 및 공간이 별도로 필요하며, 일정량의 니켈을 회수한 후에는 전기분해 장치를 청소해야 하는 등의 연속적인 제조공정이 불가능하다는 문제점이 있었다.
In this regard, in Korean Patent Registration No. 686985, hydrochloric acid is added to nickel waste solution and nickel sulfate sludge containing nickel, mixed and stirred, and then an amine-based solvent is added thereto to remove impurities and then electrolyzed to recover nickel However, this method requires expensive equipment and space for electrolysis, and it is not possible to perform continuous manufacturing process such as cleaning the electrolysis device after recovering a certain amount of nickel There was a problem.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 니켈이 함유된 슬러지 또는 폐황산니켈을 화학침전법과 이온교환수지법를 이용하여 미량의 불순물까지 제거하고 이를 환원공정을 통해 상용화 가능한 수준의 고순도의 니켈을 회수할 수 있는 이온교환수지 및 환원제를 이용하여 니켈 폐기물로부터 고순도 니켈 분말을 회수하는 방법을 제공하는 것을 목적으로 한다.
Accordingly, the present invention is to solve the above problems, to remove a small amount of impurities using a chemical precipitation method and an ion exchange resin method containing nickel-containing sludge or waste nickel sulfate and high purity of the level that can be commercialized through a reduction process An object of the present invention is to provide a method for recovering high-purity nickel powder from nickel waste by using an ion exchange resin and a reducing agent capable of recovering nickel.

상기와 같은 목적을 달성하기 위하여, 본 발명은 니켈슬러지를 황산에 용해하여 얻어진 황산니켈 또는 산업현장에서 바로 수거된 폐황산니켈을 원료로 구성하는 단계(S01); 상기 황산니켈의 pH 조절을 통한 화학침전법으로 1차 불순물을 제거하는 단계(S02); 상기 1차 불순물이 제거된 황산니켈을 이온교환수지를 이용하여 2차 불순물을 제거하는 단계(S03); 상기 이온교환수지를 통과한 황산니켈에 환원제로서 히드라진(Hydrazine)을 첨가하여 전구체를 생성하는 단계(S04); 상기 전구체 생성물의 pH를 10 ~ 12로 상승시켜 환원반응을 일으키는 단계(S05); 상기 환원반응이 종료된 후 고액을 분리하여 니켈 분말을 수득하는 단계(S06); 상기 수득한 니켈 분말을 증류수에 세척하여 잔존 불순물을 제거하는 단계(S07); 상기 수세된 니켈 분말을 건조기에서 건조하는 단계(S08);를 포함하는 것을 특징으로 하는 이온교환수지 및 환원제를 이용하여 니켈 폐기물로부터 고순도 니켈 분말을 회수하는 방법을 제공한다.
In order to achieve the above object, the present invention comprises the step of constituting the nickel sulfate obtained by dissolving the nickel sludge in sulfuric acid or nickel sulfate directly collected from the industrial site as a raw material (S01); Removing primary impurities by a chemical precipitation method through adjusting the pH of the nickel sulfate (S02); Removing secondary impurities from the nickel sulfate from which the primary impurities are removed using an ion exchange resin (S03); Adding a hydrazine (Hydrazine) as a reducing agent to the nickel sulfate passed through the ion exchange resin (S04); Raising the pH of the precursor product to 10 to 12 to cause a reduction reaction (S05); After the reduction reaction is completed to separate the solid solution to obtain a nickel powder (S06); Washing the obtained nickel powder in distilled water to remove residual impurities (S07); Drying the washed nickel powder in a dryer (S08); provides a method for recovering high-purity nickel powder from the nickel waste using an ion exchange resin and a reducing agent comprising a.

상술한 바와 같이 본 발명의 이온교환수지 및 환원제를 이용하여 니켈 폐기물로부터 고순도 니켈 분말을 회수하는 방법은 니켈슬러지 및 폐황산니켈과 같은 니켈 폐기물을 화학침전법에 의해 1차 불순물을 제거하고, 이온교환수지를 이용하여 미량의 2차 불순물을 제거하여 황산니켈을 수득한 후 이를 효율적인 환원공정을 통해 니켈 분말을 회수함으로써 고온에서 장시간 이루어지는 열처리과정이나 고가의 전기분해장치를 사용하지 않고 보다 간소화된 방법으로 산업적으로 상용화 가능한 고순도 니켈 분말을 얻을 수 있을 뿐만 아니라 비교적 저렴하고 재활용이 가능한 이온교환수지를 사용함으로써 연속적인 공정이 가능하고 생산비용도 절감할 수 있다는 효과를 가져 온다.
As described above, the method for recovering high-purity nickel powder from nickel waste by using the ion exchange resin and the reducing agent of the present invention removes primary impurities from nickel waste, such as nickel sludge and waste nickel sulfate, by chemical precipitation. By removing a small amount of secondary impurities using exchange resin to obtain nickel sulfate, and then recovering nickel powder through an efficient reduction process, a simpler method without using a heat treatment process or an expensive electrolysis device performed at high temperature for a long time In addition, high-purity nickel powders that are commercially available can be obtained, and the use of ion exchange resins, which are relatively inexpensive and recyclable, enables continuous processing and reduces production costs.

도 1은 본 발명의 구현에 따른 니켈 분말의 회수공정을 개략적으로 나타낸 흐름도.
도 2a와 2b는 본 발명의 실시예에 의해 회수된 니켈 분말을 나타낸 사진.
1 is a flow chart schematically showing a recovery process of nickel powder according to an embodiment of the present invention.
Figure 2a and 2b is a photograph showing the nickel powder recovered by the embodiment of the present invention.

이하에서는 본 발명의 고순도 황산니켈을 제조하는 방법에 대하여 보다 상세하게 설명하기로 하나, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.Hereinafter, a method for preparing high purity nickel sulfate of the present invention will be described in more detail, but it is provided as an example, and the present invention is not limited thereto, and the present invention is defined by the scope of the claims to be described later. It is only.

도 1은 본 발명의 구현에 따른 니켈 분말의 회수공정을 개략적으로 나타낸 흐름도로서, 이에 도시된 바와 같이 본 발명은 니켈슬러지를 황산에 용해하여 얻어진 황산니켈 또는 산업현장에서 바로 수거된 폐황산니켈을 원료로 구성하는 단계(S01); 상기 황산니켈의 pH 조절을 통한 화학침전법으로 1차 불순물을 제거하는 단계(S02); 상기 1차 불순물이 제거된 황산니켈을 이온교환수지를 이용하여 2차 불순물을 제거하는 단계(S03); 상기 이온교환수지를 통과한 황산니켈에 환원제로서 히드라진(Hydrazine)을 첨가하여 전구체를 생성하는 단계(S04); 상기 전구체 생성물의 pH를 10 ~ 12로 상승시켜 환원반응을 일으키는 단계(S05); 상기 환원반응이 종료된 후 고액을 분리하여 니켈 분말을 수득하는 단계(S06); 상기 수득한 니켈 분말을 증류수에 세척하여 잔존 불순물을 제거하는 단계(S07); 상기 수세된 니켈 분말을 건조기에서 건조하는 단계(S08);를 포함한다.1 is a flow chart schematically showing a recovery process of nickel powder according to an embodiment of the present invention, as shown in the present invention is a nickel sulfate obtained by dissolving nickel sludge in sulfuric acid or nickel sulfate directly collected in the industrial field Comprising a raw material (S01); Removing primary impurities by a chemical precipitation method through adjusting the pH of the nickel sulfate (S02); Removing secondary impurities from the nickel sulfate from which the primary impurities are removed using an ion exchange resin (S03); Adding a hydrazine (Hydrazine) as a reducing agent to the nickel sulfate passed through the ion exchange resin (S04); Raising the pH of the precursor product to 10 to 12 to cause a reduction reaction (S05); After the reduction reaction is completed to separate the solid solution to obtain a nickel powder (S06); Washing the obtained nickel powder in distilled water to remove residual impurities (S07); It includes; the step of drying the washed nickel powder in a dryer (S08).

먼저, (S01) 단계와 같이 니켈슬러지와 폐황산니켈과 같은 니켈 폐기물을 원료로 구성함에 있어, 니켈슬러지의 경우 황산에 용해시켜 황산니켈로 변환시켜야 하며, 이 때 상기 황산은 슬러지에 함유된 니켈에 대하여 Ni:H2SO4 = 1: 1~2의 몰비로 첨가하여 용해시키게 된다. 이는 니켈에 대하여 황산을 1:1의 몰비보다 적게 첨가할 경우 슬러지 내의 니켈성분이 모두 용해되지 않아 니켈의 손실이 발생할 수 있으며, 반대로 니켈에 대하여 황산을 1:2의 몰비를 초과하여 첨가할 경우 변환된 황산니켈의 pH가 1이하의 강한 산성을 띄게 되므로 다음 단계인 화학침전법에 의한 불순물 제거시 과량의 pH 조절제가 사용되어야 하는 문제점이 발생되기 때문이다.First, in the composition of nickel waste such as nickel sludge and waste nickel sulfate as in step S01, nickel sludge should be dissolved in sulfuric acid and converted to nickel sulfate, wherein the sulfuric acid is nickel contained in the sludge. It is dissolved by adding in a molar ratio of Ni: H 2 SO 4 = 1: 1-2. This is because when sulfuric acid is added less than 1: 1 molar ratio with respect to nickel, all the nickel components in the sludge do not dissolve and loss of nickel may occur. In contrast, when sulfuric acid is added in excess of molar ratio of 1: 2 with respect to nickel, Since the pH of the converted nickel sulfate becomes less than 1 strong acidity, the problem arises in that an excess pH regulator should be used when removing impurities by the next step, the chemical precipitation method.

그 다음으로 (S2) 단계에서는, 니켈슬러지로부터 얻어진 황산니켈 또는 바로 수거된 폐황산니켈을 60~90℃의 가열상태를 유지하면서 pH 조절제를 첨가하여 용액의 pH를 4~6의 범위로 조절함으로써 화학침전법에 의한 1차 불순물을 제거하게 되는데, 이 때 불순물로서 철(Fe) 및 구리(Cu), 아연(Zn), 알루미늄(Al)이 대부분 50 ppm 이하로 제거된다.Next, in the step (S2), by adjusting the pH of the solution to the range of 4-6 by adding a pH adjuster while maintaining the nickel sulfate or nickel waste immediately collected waste sulfate sulfate from the sludge 60 ~ 90 ℃ heating state The primary impurity is removed by the chemical precipitation method. At this time, iron (Fe), copper (Cu), zinc (Zn), and aluminum (Al) are mostly removed to 50 ppm or less.

이때 황산니켈의 pH가 4 이하에서는 화학침전법에 의한 불순물의 석출이 이루어지 않고, pH 6 이상에서는 불순물뿐만 아니라 니켈(Ni) 또한 석출되기 때문에 상기 pH 범위 내에서 불순물을 석출하여 제거하는 것이 바람직하다. 이와 같이 황산니켈의 pH를 조절하기 위한 pH 조절제로는 암모니아수, 탄산니켈, 수산화나트륨 중에 선택된 하나 또는 둘 이상의 혼합물이 사용된다.At this time, since the precipitation of nickel sulfate does not occur when the pH of nickel sulfate is 4 or less, and nickel (Ni) is precipitated as well as impurities above pH 6, it is preferable to precipitate and remove impurities within the pH range. Do. As such pH adjusting agent for adjusting the pH of the nickel sulfate is used one or two or more selected from ammonia water, nickel carbonate, sodium hydroxide.

또한, 상기 화학침전법에 의한 석출과정은 60~90℃의 가열상태를 유지한 상태에 진행되며, 이는 황사니켈 용액을 상온에서 반응을 진행할 경우 주위온도에 따라 니켈 및 불순물의 결정이 생겨 완전한 반응이 이루어질 수 있기 때문이다.In addition, the precipitation process by the chemical precipitation method is carried out in the state of maintaining the heating state of 60 ~ 90 ℃, this is when the sulfuric acid nickel solution is reacted at room temperature, the crystals of nickel and impurities are generated according to the ambient temperature to complete the reaction Because this can be done.

그 다음으로 (S3) 단계에서는, 상기 1차 불순물이 제거된 황산니켈을 여과 후 이온교환수지를 이용하여 2차 불순물을 제거하게 되는데, 이 때 사용되는 이온교환수지는 Ethylhexyl-Phosphat 및 iminodiacetic acid 계열을 사용하며, 상기 Ethylhexyl-Phosphat 계열의 이온교환수지의 경우 아연(Zn) 및 알루미늄(Al)을 1ppm 이하까지 제거가 가능하며, iminodiacetic acid 계열의 이온교환수지의 경우 철(Fe) 및 구리(Cu)를 1ppm이하까지 제거가 가능하다.Subsequently, in the step (S3), the secondary sulfate is removed using an ion exchange resin after filtering the nickel sulfate from which the primary impurities are removed. The ion exchange resin used at this time is Ethylhexyl-Phosphat and iminodiacetic acid series. In the case of the Ethylhexyl-Phosphat series ion exchange resin, zinc (Zn) and aluminum (Al) can be removed up to 1 ppm or less, and in the case of iminodiacetic acid series ion exchange resins, iron (Fe) and copper (Cu) ) Can be removed up to 1 ppm.

그 다음으로 (S4) 단계에서는, 상기 이온교환수지를 통과한 황산니켈에 환원제로서 히드라진(Hydrazine,N2H4)을 첨가하여 Ni(N2H4)n 형태의 전구체를 생성하게 되는데, 상기 히드라진의 첨가량은 황산니켈에 함유된 니켈을 기준으로 Ni:N2H4 = 1:1~2의 몰비가 되도록 하며, 이는 히드라진이 니켈 대비 1몰 미만으로 첨가되면 함유된 니켈이 모두 전구체로 형성되지 않아 환원공정에 따른 니켈 수득율이 낮아지게 되고, 반대로 히드라진이 니켈 대비 2몰을 초과하여 첨가될 경우 더 이상의 전구체가 생성되지 않은바 오히려 생산단가를 높이는 문제점을 초래하게 된다. 이 때 상기 전구체 생성과정은 60~90℃의 온도를 유지하면서 시행되며, 히드라진 첨가 후 약 1~3시간 동안 반응시키면 Ni(N2H4)n 전구체가 고르게 생성된다.Subsequently, in step (S4), hydrazine (Hydrazine, N 2 H 4 ) is added as a reducing agent to the nickel sulfate passed through the ion exchange resin to generate a Ni (N 2 H 4 ) n type precursor. The addition amount of hydrazine is molar ratio of Ni: N 2 H 4 = 1: 1 to 2 based on nickel contained in nickel sulfate, and when the hydrazine is added in less than 1 mole of nickel, all the nickel contained is formed as a precursor. If the nickel yield is reduced according to the reduction process, on the contrary, when the hydrazine is added in excess of 2 moles compared to nickel, no further precursors are produced, resulting in an increase in production cost. At this time, the precursor generation process is carried out while maintaining a temperature of 60 ~ 90 ℃, Ni-N 2 H 4 ) n precursor is evenly generated by reacting for about 1 to 3 hours after the addition of hydrazine.

그 다음으로 (S5) 단계에서는, 상기 전구체 생성물의 pH를 10 ~ 12로 상승시켜 환원반응을 유도하게 되는데, 이는 pH 10 이상에서 전구체 Ni(N2H4)n는 Ni(OH)2로 생성되며, 전구체에서 분리되어 나온 N2H4는 환원제의 역할을 하여 환원반응을 일으키게 된다. 상기 전구체의 pH를 상승시키기 위한 pH 조절제로는 50%농도의 수산화나트륨(NaOH)이 가장 바람직하게 사용된다.In the next step (S5), the pH of the precursor product is raised to 10 to 12 to induce a reduction reaction, which is a precursor Ni (N 2 H 4 ) n is generated as Ni (OH) 2 above pH 10 N 2 H 4 separated from the precursor acts as a reducing agent to cause a reduction reaction. As a pH adjusting agent for raising the pH of the precursor, sodium hydroxide (NaOH) at a concentration of 50% is most preferably used.

다만, 상기 pH 조절제로 사용된 수산화나트륨은 반응식상에서 Ni:NaOH가 이론적으로 1:2 의 몰비가 되어야 Ni(OH)2를 생성되기 때문에, 종래에는 이러한 환원반응을 위해 수산화나트륨을 니켈 대비 2몰 이상을 첨가하는 것이 일반적이었으나, 시약급에 해당하는 황산니켈(NiSO4)이나 염화니켈(NiCl2)이 아닌 본 발명과 같이 재활용 공정을 거쳐 수득된 황산니켈(NiSO4)의 경우 이론적 수치에 해당하는 2몰 이상의 수산화나트륨을 첨가할 경우 고순도의 니켈이 석출되지 않아 적절한 배합량이 아님을 확인할 수 있었다.However, since sodium hydroxide used as the pH adjusting agent in the reaction formula Ni: NaOH theoretically has a molar ratio of 1: 2 to produce Ni (OH) 2 , conventionally 2 moles of sodium hydroxide compared to nickel for this reduction reaction It was common to add the above, but it is theoretical value for nickel sulfate (NiSO 4 ) obtained through a recycling process like the present invention, not nickel sulfate (NiSO 4 ) or nickel chloride (NiCl 2 ), which is a reagent grade. When more than 2 moles of sodium hydroxide was added, it was confirmed that nickel of high purity was not precipitated and thus was not an appropriate amount.

따라서, 본 발명에서는 상기 재활용된 황산니켈에 대한 수산화나트륨의 적절한 배합량으로서 몰비 기준으로 NiSO4:NaOH = 1:1.5~2가 되는 것이 바람직하며, 이는 수산화나트륨을 1.5몰 미만으로 첨가할 경우 환원반응이 원활하게 이루어지지 못해 니켈염으로부터 Ni(OH)2로 변환되지 않은 미반응물이 생성될 수 있으며, 수산화나트륨을 2몰을 초과하여 첨가할 경우 불순물들이 수산화물의 형태로 니켈 분말과 혼합되어 있어 그 순도가 낮아지기 때문이다. Therefore, in the present invention, it is preferable that NiSO 4 : NaOH = 1: 1.5 to 2 on a molar ratio basis as an appropriate blending amount of sodium hydroxide to the recycled nickel sulfate, which is a reduction reaction when less than 1.5 mol of sodium hydroxide is added. This may not be done smoothly, which may result in unreacted substances that are not converted from nickel salts to Ni (OH) 2 , and when more than 2 moles of sodium hydroxide are added, impurities are mixed with the nickel powder in the form of hydroxides. Purity is lowered.

그 다음으로 (S06) 단계와 같이 환원반응이 종료된 반응물을 필터프레스 및 여과기를 이용하여 고액분리함으로서 니켈 분말을 얻을 수 있으며, 이를 (S07) 단계와 같이 수득된 니켈 분말을 증류수로 수세하여 나트륨(Na) 등과 같은 잔존 불순물을 제거한 다음, (S08)과 같이 상기 수세된 니켈 분말을 60~80℃의 건조기에서 건조함으로써 본 발명에서 요구하는 고순도의 니켈 분말을 회수하게 된다. 이와 같은 공정을 통하여 니켈 폐기물인 니켈슬러지 및 폐황산니켈로부터 니켈 분말을 98% 이상의 수득율로 회수할 수 있다.Subsequently, nickel powder may be obtained by solid-liquid separation of the reactant after the reduction reaction as in step (S06) using a filter press and a filter, and the nickel powder obtained as in step (S07) is washed with distilled water to give sodium powder. After removing the remaining impurities such as (Na) and the like, the high-purity nickel powder required by the present invention is recovered by drying the washed nickel powder in a dryer of 60 to 80 ℃ as shown in (S08). Through such a process, nickel powder can be recovered from nickel waste sludge and waste nickel sulfate at a yield of 98% or more.

이상과 같이 본 발명은 니켈슬러지 및 폐황산니켈과 같은 니켈 폐기물을 화학침전법에 의해 1차 분순물을 제거하고, 이온교환수지를 이용하여 미량의 2차 불순물을 제거하여 황산니켈을 수득한 후 이를 효율적인 환원공정을 통해 니켈 분말을 회수함으로써 고온에서 장시간 이루어지는 열처리과정이나 고가의 전기분해장치를 사용하지 않고 보다 간소화된 방법으로 산업적으로 상용화 가능한 고순도 니켈 분말을 얻을 수 있을 뿐만 아니라 비교적 저렴하고 재활용이 가능한 이온교환수지를 사용함으로써 연속적인 공정이 가능하고 생산비용도 절감할 수 있다.
As described above, the present invention removes primary impurities from nickel wastes such as nickel sludge and waste nickel sulfate by chemical precipitation, and removes trace secondary impurities using ion exchange resin to obtain nickel sulfate. By recovering nickel powder through an efficient reduction process, it is possible to obtain industrially commercially available high-purity nickel powder in a simpler way without using a long-term heat treatment process or an expensive electrolysis device at high temperature, and is relatively inexpensive and easy to recycle. By using possible ion exchange resins, continuous processes are possible and production costs can be reduced.

이하에서는 본 발명을 하기 실시예를 통하여 보다 상세하게 설명하고자 하나, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명이 하기의 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are for illustrative purposes only and are not intended to limit the scope of the present invention.

<실시예 1>&Lt; Example 1 >

하기 표 1과 같이 니켈 및 불순물이 함유된 pH 1의 강산성인 폐황산니켈액을 수거하여 10ℓ 용량의 반응기에 7ℓ를 투입한 후 교반봉으로 교반하면서 핫플레이트를 이용하여 용액의 온도를 60℃까지 상승시킨 다음 50%농도의 NaOH 용액을 첨가하여 용액의 pH가 5이상이 되도록 조절하고 1시간 동안 반응시켜 불순물들을 슬러지 상태로 석출하였다.As shown in Table 1 below, the strongly acidic nickel sulfate solution containing pH 1 containing nickel and impurities was collected, and 7 liters were added to a 10 liter reactor, and the temperature of the solution was increased to 60 ° C. using a hot plate while stirring with a stirring rod. After raising, a 50% concentration of NaOH solution was added to adjust the pH of the solution to 5 or more and reacted for 1 hour to precipitate impurities in the sludge state.

이와 같이 불순물이 석출된 황산니켈 용액을 필터링를 하고 고액분리하여 슬러지를 제거한 다음 Ethylhexyl-Phosphat 계열의 이온교환수지에 통과하여 미량의 불순물을 추가적으로 제거하였으며, 이 때 황산니켈의 이온교환수지 통과속도는 6BV(1.2ℓ/h)가 되도록 시행하였다.As such, the nickel sulfate solution in which impurities were precipitated was filtered and solid-liquid separated to remove sludge, and then the traces of impurities were additionally removed by passing through the Ethylhexyl-Phosphat series ion exchange resin. (1.2 L / h).

이와 같이 화학침전법 및 이온교환수지법에 의해 불순물이 제거된 황산니켈액을 유도결합 플라즈마 원자방출분광분석(Inductively Coupled Plasma Atomic Emission Spectroscopy; ICP-OES)을 실행하여 그 함유성분을 분석하였으며, 그 결과를 하기 표 2에 나타내었다.In this way, the nickel sulfate solution from which impurities were removed by the chemical precipitation method and the ion exchange resin method was analyzed by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES) to analyze the components thereof. The results are shown in Table 2 below.

상기와 같이 불순물이 제거된 Ni 농도 8.6 %의 황산니켈액을 다시 10ℓ용량의 반응기에 2.7 kg을 투입하고 교반봉으로 교반하면서 핫플레이트를 이용하여 용액의 온도를 60℃까지 상승시킨 다음 환원제로서 히드라진(N2HH2O)을 300.48g 첨가하여 Ni:N2H4의 반응몰비가 1:1.5M이 되도록 한다. 이 때 하늘색에서 보라색에 가까운 Ni(N2H4)n가 전구체가 생성되고, 이와 같이 전구체 생성 후 반응온도를 60℃ 유지한 상태에서 2시간 동안 반응시켜 균일한 농도가 되도록 하였다.As described above, 2.7 kg of the nickel sulfate liquid having a concentration of 8.6% of Ni removed therein was added to a 10-l reactor, and the temperature of the solution was raised to 60 ° C. using a hot plate while stirring with a stirring rod, followed by hydrazine as a reducing agent. 300.48 g of (N 2 H 4 .H 2 O) is added so that the reaction molar ratio of Ni: N 2 H 4 is 1: 1.5M. At this time, a precursor of Ni (N 2 H 4 ) n, which is close to light blue to purple, is generated. Thus, the precursor is reacted for 2 hours while maintaining the reaction temperature at 60 ° C. to form a uniform concentration.

이와 같이 전구체가 생성된 반응기에 pH 조절제로서 50% 농도의 수산화나트륨 544g을 첨가하여 Ni:NaOH의 반응몰비가 1:1.7이 되도록 하며, 이와 같이 수산화나트륨이 첨가되면 연보라색인 전구체는 분해되고 Ni(OH)2이 생성되면서 점점 녹색을 띄게 된다. 이 때 전구체에서 분해되어 나온 N2H4는 환원제의 역할을 수행하여 니켈 분말을 환원시키게 되며, 환원반응이 진행될수록 용액의 색은 녹색에서 점차 검은색을 띠며 거품이 일어나고, 상기 거품이 2ℓ 용액에서 약 6ℓ까지 거품이 상승한 것을 확인하고 반응을 종료하였으며, 그 반응시간은 1시간이 소요되었다.In this way, 544 g of 50% sodium hydroxide is added to the reactor in which the precursor is produced, so that the reaction molar ratio of Ni: NaOH is 1: 1.7. When sodium hydroxide is added, the light purple precursor is decomposed and Ni ( As OH) 2 is produced, it becomes more and more green. At this time, N 2 H 4 decomposed from the precursor serves as a reducing agent to reduce the nickel powder, and as the reduction reaction proceeds, the color of the solution gradually becomes black from green to foam, and the foam is a 2 L solution. It was confirmed that the bubbles rose to about 6 L at and the reaction was terminated, and the reaction time was 1 hour.

이와 같이 반응이 종료되면 반응물을 필터레이션을 이용하여 고액을 분리하여 니켈 분말을 수득한 다음 다시 10ℓ 용량의 반응기에 H2O 2ℓ를 채우고 1시간 동안 수세과정을 거치며, 이러한 수세과정을 4회 반복하여 시행하였다.When the reaction is completed as described above, the reaction product is filtered to separate the solid solution to obtain nickel powder, and then, the reactor is charged with 10 L of H 2 O 2 L and washed with water for 1 hour. The washing process is repeated four times. Was carried out.

상기 수세고정을 마친 니켈 분말을 60 ℃의 건조기에 넣고 24시간을 건조한 후 플라즈마 원자방출분광분석(Inductively Coupled Plasma Atomic Emission Spectroscopy; ICP-OES)을 실행하여 그 함유성분을 분석한 결과를 표 3에 나타내었으며, 주사전자현미경(SEM)을 통해 촬영한 사진을 도2a에 나타내었다.
The nickel powder after washing with water was placed in a dryer at 60 ° C., dried for 24 hours, and then subjected to Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES). The photograph taken through the scanning electron microscope (SEM) is shown in Figure 2a.

<실시예 2><Example 2>

하기 표 1과 같이 니켈 및 불순물이 함유된 니켈슬러지를 수거하여 10ℓ 용량의 반응기에 투입하고, 황산을 슬러지에 함유된 니켈에 대하여 Ni:H2SO4 = 1: 2의 반응몰비로 첨가하여 용해시킨 후 여과하여 황산니켈 용액을 얻었다.As shown in Table 1, nickel sludge containing nickel and impurities were collected and introduced into a reactor having a capacity of 10 l, and sulfuric acid was added to the nickel contained in the sludge at a reaction molar ratio of Ni: H 2 SO 4 = 1: 2 to dissolve it. After filtration, a nickel sulfate solution was obtained.

상기 황산니켈 용액을 실시예 1과 동일한 방법으로 pH 조절을 통한 화학침전법에 의해 석출된 슬러지를 제거하고, iminodiacetic acid 계열의 이온교환수지를 이용하여 미량의 불순물을 추가적으로 제거하였다.The nickel sulfate solution was removed in the same manner as in Example 1 by removing the sludge precipitated by the chemical precipitation method through pH adjustment, and additional impurities were removed by using an iminodiacetic acid-based ion exchange resin.

이와 같이 화학침전법 및 이온교환수지법에 의해 불순물이 제거된 황산니켈액을 유도결합 플라즈마 원자방출분광분석(Inductively Coupled Plasma Atomic Emission Spectroscopy; ICP-OES)을 실행하여 그 함유성분을 분석하였으며, 그 결과를 하기 표 2에 나타내었다.In this way, the nickel sulfate liquid from which impurities were removed by the chemical precipitation method and the ion exchange resin method was analyzed by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES). The results are shown in Table 2 below.

상기와 같이 불순물이 제거된 황산니켈액을 실시예 1과 동일한 방법으로 환원공정을 통해 니켈 분말을 수득하였으며, 이를 플라즈마 원자방출분광분석(Inductively Coupled Plasma Atomic Emission Spectroscopy; ICP-OES)을 실행하여 그 함유성분을 분석한 결과를 표 3에 나타내었으며, 주사전자현미경(SEM)을 통해 촬영한 사진을 도2b에 나타내었다.
The nickel sulfate liquid from which impurities were removed as described above was obtained in the same manner as in Example 1 to obtain nickel powder, which was subjected to Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES). The results of analyzing the components are shown in Table 3, and the photograph taken through the scanning electron microscope (SEM) is shown in Figure 2b.

<비교예><Comparative Example>

현재 시장에 판매되는 고순도 니켈 분말에 대해 플라즈마 원자방출분광분석(Inductively Coupled Plasma Atomic Emission Spectroscopy; ICP-OES)을 실행하여 그 함유성분을 분석한 결과를 하기 표 3에 함께 나타내었다.
Table 2 shows the results of analyzing the components of high purity nickel powders currently on the market by performing Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES).

 성분ingredient 단위 unit 실시예1Example 1 실시예2Example 2 NiNi %% 7.97.9 7.27.2 FeFe



ppm




ppm
320320 1.51.5
ZnZn 632632 1One CoCo 1212 99 AlAl tracetrace tracetrace NaNa 242242 532532 CaCa 132132 174174 MnMn 22 22 MgMg 55 3434 CuCu 0.20.2 427427 SiSi tracetrace 33 PbPb 2121 tracetrace

 성분ingredient 단위 unit 실시예 1Example 1 실시예 2Example 2 NiNi %% 7.57.5 6.756.75 FeFe



ppm




ppm
0.10.1 0.10.1
ZnZn 0.80.8 1One CoCo 66 55 AlAl tracetrace tracetrace NaNa 35503550 31263126 CaCa 123123 121121 MnMn 1One 1One MgMg 2626 2525 CuCu 0.90.9 0.80.8 SiSi 55 66 PbPb tracetrace tracetrace

 성분ingredient 단위 unit 실시예 1Example 1 실시예2Example 2 비교예Comparative Example NiNi %% 99.9899.98 99.9699.96 99.9999.99 FeFe



ppm




ppm
1818 1010 88
ZnZn 1212 1111 tracetrace CoCo tracetrace 164164 tracetrace AlAl tracetrace tracetrace tracetrace NaNa 110110 110110 8080 CaCa 99 1010 99 MnMn tracetrace 55 tracetrace MgMg 22 4040 22 CuCu 55 44 1One SiSi 55 2525 1313 PbPb tracetrace tracetrace tracetrace

상기 표 1 내지 표 3의 결과를 통해 알 수 있듯이, 표 1과 같이 다양한 불순물이 포함된 폐황산니켈 및 니켈슬러지들이 화학침전법과 이온교환수지법에 의해 표 2와 같이 철, 칼슘, 망간, 마그네슘, 세슘, 규소 등의 성분들이 제거되었음을 알 수 있으며, 이를 환원공정을 통해 얻어진 니켈 분말의 경우 모두 99.9% 이상의 순도를 가짐에 따라 상업적으로 바로 활용이 가능함을 확인할 수 있었다.As can be seen from the results of Tables 1 to 3, the waste nickel sulfate and nickel sludge containing various impurities as shown in Table 1 are iron, calcium, manganese, magnesium as shown in Table 2 by chemical precipitation and ion exchange resin methods. It can be seen that components such as cesium and silicon were removed, and the nickel powders obtained through the reduction process had a purity of 99.9% or more, and thus, commercially available.

또한, 도 2a와 2b를 통해 수득된 니켈 분말은 0.3 ~ 1.5 ㎛의 미세한 입도를 가지고 있어 화학적 분야뿐만 아니라 MLCC와 같은 전기전자분야에도 적용이 가능하다는 것을 알 수 있다.In addition, it can be seen that the nickel powder obtained through FIGS. 2A and 2B has a fine particle size of 0.3 to 1.5 μm, so that the nickel powder may be applied to electrical and electronic fields such as MLCC.

Claims (7)

니켈슬러지에 황산을 Ni:H2SO4 = 1: 1~2의 몰비로 첨가하고 용해하여 얻어진 황산니켈 또는 산업현장에서 바로 수거된 폐황산니켈을 원료로 구성하는 단계(S01);
상기 니켈슬러지로부터 얻어진 황산니켈 또는 바로 수거된 폐황산니켈을 60~90℃의 가열상태를 유지하면서 암모니아수, 탄산니켈, 수산화나트륨 중에 선택된 하나 또는 둘 이상의 혼합물로 구성된 pH 조절제를 첨가하여 용액의 pH를 4~6의 범위로 조절하여 철, 구리, 아연, 알루미늄을 불순물로 석출하는 화학침전법으로 1차 불순물을 제거하는 단계(S02);
상기 1차 불순물이 제거된 황산니켈을 Ethylhexyl-Phosphat 계열이나 iminodiacetic acid 계열의 이온교환수지에 단독 또는 동시에 투과하여 2차 불순물을 제거하는 단계(S03);
상기 이온교환수지를 통과한 황산니켈에 환원제로서 히드라진(Hydrazine)을 Ni:N2H4 = 1:1~2의 몰비가 되도록 첨가하여 전구체를 생성하는 단계(S04);
상기 전구체 생성물의 pH를 10 ~ 12로 상승시켜 환원반응을 일으키는 단계(S05);
상기 환원반응이 종료된 후 고액을 분리하여 니켈 분말을 수득하는 단계(S06);
상기 수득한 니켈 분말을 증류수에 세척하여 잔존 불순물을 제거하는 단계(S07);
상기 수세된 니켈 분말을 건조기에서 건조하는 단계(S08);를 포함하는 것을 특징으로 하는 이온교환수지 및 환원제를 이용하여 니켈 폐기물로부터 고순도 니켈 분말을 회수하는 방법.
Adding sulfuric acid to the nickel sludge in a molar ratio of Ni: H 2 SO 4 = 1: 1 to 2 and dissolving nickel sulfate or waste nickel sulfate directly collected at an industrial site as a raw material (S01);
The pH of the solution is adjusted by adding a pH adjuster composed of one or two or more mixtures of ammonia water, nickel carbonate and sodium hydroxide while maintaining the nickel sulfate obtained from the nickel sludge or the immediately collected nickel sulfate, which is heated to 60 to 90 ° C. Adjusting the range of 4 to 6 to remove primary impurities by a chemical precipitation method in which iron, copper, zinc, and aluminum are precipitated as impurities (S02);
Transmitting the nickel sulfate from which the primary impurities have been removed through an ion exchange resin of Ethylhexyl-Phosphat series or iminodiacetic acid series alone or simultaneously to remove secondary impurities (S03);
Adding a hydrazine (Hydrazine) as a reducing agent to the nickel sulfate passing through the ion exchange resin in a molar ratio of Ni: N 2 H 4 = 1: 1 to 2 to generate a precursor (S04);
Raising the pH of the precursor product to 10 to 12 to cause a reduction reaction (S05);
After the reduction reaction is completed to separate the solid solution to obtain a nickel powder (S06);
Washing the obtained nickel powder in distilled water to remove residual impurities (S07);
Drying the washed nickel powder in a dryer (S08); and recovering high purity nickel powder from the nickel waste using an ion exchange resin and a reducing agent.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 청구항 1에 있어서, 상기 전구체 생성물의 환원반응은 황산니켈에 대해 pH 조절제로서 50중량%의 수산화나트륨을 NiSO4:NaOH = 1:1.5~2의 몰비가 되도록 첨가하는 것을 특징으로 하는 이온교환수지 및 환원제를 이용하여 니켈 폐기물로부터 고순도 니켈 분말을 회수하는 방법.The ion exchange resin of claim 1, wherein the reduction of the precursor product is performed by adding 50% by weight of sodium hydroxide as a pH adjusting agent to nickel sulfate so that the molar ratio of NiSO 4 : NaOH = 1: 1.5 to 2; A method for recovering high purity nickel powder from nickel waste using a reducing agent.
KR1020130025054A 2013-03-08 2013-03-08 Recycle process of high purity nickel from waste nickel sludge using ion exchange resin and reducing agent KR101317297B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130025054A KR101317297B1 (en) 2013-03-08 2013-03-08 Recycle process of high purity nickel from waste nickel sludge using ion exchange resin and reducing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130025054A KR101317297B1 (en) 2013-03-08 2013-03-08 Recycle process of high purity nickel from waste nickel sludge using ion exchange resin and reducing agent

Publications (1)

Publication Number Publication Date
KR101317297B1 true KR101317297B1 (en) 2013-10-10

Family

ID=49638228

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130025054A KR101317297B1 (en) 2013-03-08 2013-03-08 Recycle process of high purity nickel from waste nickel sludge using ion exchange resin and reducing agent

Country Status (1)

Country Link
KR (1) KR101317297B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101465033B1 (en) * 2014-06-18 2014-11-26 인천화학 주식회사 Manufacture method of high purity nickel carbonate from waste nickel plating solution
KR101465032B1 (en) * 2014-06-18 2014-11-26 인천화학 주식회사 Recycle process of high purity nickel powder from waste nickel plating solution and High purity nickel powder using that
KR101467356B1 (en) * 2014-04-22 2014-12-11 인천화학 주식회사 Recovering Method of high concentration nickel from waste electroless nickel plating
KR20180131288A (en) * 2017-05-31 2018-12-10 (주)성은 Recycling method of ammonium sulfate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100311689B1 (en) 1999-08-10 2001-11-14 신현준 A METHOD FOR PREPARATION OF HIGH PURITY NiSO4 CRYSTAL
KR100330459B1 (en) * 1998-09-11 2002-04-01 무라타 야스타카 Metallic powder, manufacturing method thereof and conductive paste
KR100345743B1 (en) * 1999-12-22 2002-07-27 주식회사 포스코 A method for preparation of high purity nickel sulfate crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100330459B1 (en) * 1998-09-11 2002-04-01 무라타 야스타카 Metallic powder, manufacturing method thereof and conductive paste
KR100311689B1 (en) 1999-08-10 2001-11-14 신현준 A METHOD FOR PREPARATION OF HIGH PURITY NiSO4 CRYSTAL
KR100345743B1 (en) * 1999-12-22 2002-07-27 주식회사 포스코 A method for preparation of high purity nickel sulfate crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101467356B1 (en) * 2014-04-22 2014-12-11 인천화학 주식회사 Recovering Method of high concentration nickel from waste electroless nickel plating
KR101465033B1 (en) * 2014-06-18 2014-11-26 인천화학 주식회사 Manufacture method of high purity nickel carbonate from waste nickel plating solution
KR101465032B1 (en) * 2014-06-18 2014-11-26 인천화학 주식회사 Recycle process of high purity nickel powder from waste nickel plating solution and High purity nickel powder using that
KR20180131288A (en) * 2017-05-31 2018-12-10 (주)성은 Recycling method of ammonium sulfate
KR101974197B1 (en) * 2017-05-31 2019-04-30 (주)성은 Recycling method of ammonium sulfate

Similar Documents

Publication Publication Date Title
US10118224B2 (en) Method for producing nickel powder
Wang et al. Recovery of cobalt from spent lithium ion batteries using sulphuric acid leaching followed by solid–liquid separation and solvent extraction
KR100975317B1 (en) Method for preparing manganese sulfate and zinc sulfate from waste batteries containing manganese and zinc
CN112158894A (en) Method for recovering anode material of waste lithium battery
KR102064668B1 (en) A Method of Recycling Material for Precursor of Anode Active Material, Precursor of Anode Active Material, Anode Active Material, Anode, and Lithium Ion Secondary Battery Using The Same
CA2996277C (en) Method for producing nickel powder
WO2008056125A1 (en) Lead recycling
KR101317297B1 (en) Recycle process of high purity nickel from waste nickel sludge using ion exchange resin and reducing agent
KR101771596B1 (en) Manufacturing method of lithium salt from waste solution containing lithium
CN106299526B (en) Recycling method of strong alkali solution in waste lithium battery recycling industry
KR20120133662A (en) Manufacturing method of nickel sulfate from nickel scrap
KR101266437B1 (en) Method of preparing manganese sulfate with high purity
KR102405778B1 (en) Preparing method of lithium carbonate by recycling lithium from wasted electrode material of lithium secondary battery
KR20150046336A (en) Method for recovering indium-tin alloy from ito target scrap and methods for producing indium oxide-tin oxide powder and ito target
CN105274352B (en) A kind of method that copper cobalt manganese is separated in the manganese cobalt calcium zinc mixture from copper carbonate
CN114317977B (en) Method for recovering metal from waste lithium cobalt oxide battery
JP5568977B2 (en) Method for recovering manganese from batteries
KR101465032B1 (en) Recycle process of high purity nickel powder from waste nickel plating solution and High purity nickel powder using that
CN101824541B (en) Treatment method of wet method zinc smelting by-products
CN109576734A (en) A method of recycling metal from sophisticated electronic waste
CN111533104B (en) Method for preparing battery-grade iron phosphate
RU2143997C1 (en) Method of preparing difficultly soluble metal hydroxides
TW201343560A (en) Processes for dissolving copper and preparing copper salts
KR101270549B1 (en) Manufacturing method of high purity nickel sulfate from waste scrap including nickel using ion exchange resin
KR101465033B1 (en) Manufacture method of high purity nickel carbonate from waste nickel plating solution

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161004

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181004

Year of fee payment: 6