KR101310777B1 - Silane-based hydrogen storage materials and method for hydrogen release and regeneration - Google Patents

Silane-based hydrogen storage materials and method for hydrogen release and regeneration Download PDF

Info

Publication number
KR101310777B1
KR101310777B1 KR1020110037363A KR20110037363A KR101310777B1 KR 101310777 B1 KR101310777 B1 KR 101310777B1 KR 1020110037363 A KR1020110037363 A KR 1020110037363A KR 20110037363 A KR20110037363 A KR 20110037363A KR 101310777 B1 KR101310777 B1 KR 101310777B1
Authority
KR
South Korea
Prior art keywords
hydrogen
catalyst
hydrogen storage
rucl
organosilane compound
Prior art date
Application number
KR1020110037363A
Other languages
Korean (ko)
Other versions
KR20120119438A (en
Inventor
강상욱
남석우
한원식
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020110037363A priority Critical patent/KR101310777B1/en
Publication of KR20120119438A publication Critical patent/KR20120119438A/en
Application granted granted Critical
Publication of KR101310777B1 publication Critical patent/KR101310777B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)

Abstract

본 발명은 연료전지적용을 위한 실란기반 수소저장물질 및 이를 이용한 수소의 발생 및 재생 방법에 관한 것으로서, 보다 상세하게는 환형 및 선형의 유기실란화합물의 알코올화반응을 통한 수소의 발생과 상기 유기실란화합물의 효율적인 재생방법에 관한 것이다. 본 발명은 환형 및 선형 유기실란화합물 화합물을 수소 저장체로 이용하였다. 유기실란화합물화합물은 고수율로 합성되었으며 4 wt% H2 이상의 높은 수소저장용량을 가진다. 알코올화 반응을 이용한 수소발생결과 상온에서 수십 초 이내에 수소가 정량적으로 발생하였으며 리튬알라네이트를 이용한 정량적인 재생이 가능하였다. 본 발명의 수소저장물질은 액상이고 상온에서 빠른 수소발생속도를 보여주므로 운송용 및 휴대용 연료전지 시스템적용을 위한 수소저장체로써 응용가능성이 매우 크다.The present invention relates to a silane-based hydrogen storage material for fuel cell application and a method for generating and regenerating hydrogen using the same. More specifically, the generation of hydrogen and the organic silane through alcoholization of cyclic and linear organosilane compounds. A method for efficient regeneration of a compound is provided. In the present invention, cyclic and linear organosilane compound compounds are used as hydrogen storage bodies. The organosilane compound is synthesized in high yield and has a high hydrogen storage capacity of 4 wt% H 2 or higher. As a result of hydrogenation using alcoholation reaction, hydrogen was generated quantitatively within several tens of seconds at room temperature, and quantitative regeneration using lithium alanate was possible. Since the hydrogen storage material of the present invention is liquid and shows fast hydrogen generation rate at room temperature, the hydrogen storage material is highly applicable as a hydrogen storage medium for transportation and portable fuel cell system application.

Description

연료전지적용을 위한 실란기반 수소저장물질 및 이를 이용한 수소의 발생 및 재생 방법{Silane-based hydrogen storage materials and method for hydrogen release and regeneration}Silane-based hydrogen storage materials and method for hydrogen release and regeneration

본 발명은 연료전지적용을 위한 실란기반 수소저장물질 및 이를 이용한 수소의 발생 및 재생 방법에 관한 것으로서, 보다 상세하게는 환형 및 선형의 유기실란화합물을 이용한 수소의 발생과 상기 유기실란화합물의 효율적인 재생 방법에 관한 것이다.
The present invention relates to a silane-based hydrogen storage material for fuel cell application and a method for generating and regenerating hydrogen using the same. More particularly, the generation of hydrogen and the efficient regeneration of the organic silane compound using cyclic and linear organosilane compounds. It is about a method.

화석 에너지의 고갈 및 환경 오염 문제로 인하여 신재생 대체 에너지에 대한 요구가 커지고 있으며, 그러한 대체 에너지의 하나로서 수소가 특히 주목받고 있다. 연료전지와 수소연소장치는 수소를 반응 가스로 사용하는 수소 이용 장치로서, 이들 수소 이용 장치를 예컨대 자동차나 각종 전자 제품 등에 응용하기 위하여 수소의 안정적이고 지속적인 공급 내지 저장 기술이 필요하다. Due to the depletion of fossil energy and the problem of environmental pollution, the demand for renewable alternative energy is increasing, and hydrogen is particularly attracting attention as one of such alternative energy. Fuel cells and hydrogen combustion apparatuses are hydrogen utilization apparatuses that use hydrogen as a reaction gas. In order to apply these hydrogen utilization apparatuses to automobiles and various electronic products, for example, a stable and continuous supply or storage technology of hydrogen is required.

수소 이용 장치에 수소를 공급하는 첫 번째 방법은 별도로 설치된 수소 공급소로부터 수소가 필요할 때마다 수소를 공급하는 방식을 이용하는 것이다. 이러한 방식에서는 수소 저장을 위하여 압축 수소나 액화 수소를 사용할 수 있다. 수소 이용 장치에 수소를 공급하는 두 번째 방법은 수소를 저장하고 발생시키는 물질, 즉 수소 저장체를 수소 이용 장치에 탑재한 후 해당 물질의 반응을 통하여 수소를 발생시키고 이를 수소 이용 장치에 공급하는 것이다. 이 방식에는 예컨대, 금속 수소화물 이용 방법, 흡착, 탈착/탄소(absorbents/carbon) 이용 방법, 화학적 방법 등이 제안되고 있다.The first method of supplying hydrogen to a hydrogen-using device is to supply hydrogen whenever hydrogen is needed from a separate hydrogen supply station. In this way, either compressed hydrogen or liquefied hydrogen can be used for hydrogen storage. The second method of supplying hydrogen to a hydrogen-using device is to mount hydrogen storage material, that is, hydrogen storage device, in a hydrogen-using device, and then generate hydrogen through the reaction of the material and supply it to the hydrogen-using device. . For this method, for example, metal hydride use method, adsorption, desorption / carbon use method, chemical method and the like have been proposed.

화학적 수소저장체중에서 실란 화학적 수소 저장체는 액상이므로 엔지니어링 시스템에 적합하며 빠른 수소발생속도 및 높은 수소저장용량을 가지므로 운송용 및 휴대용 연료전지를 위한 수소저장체로써 가능성이 크다. 실란 수소 저장체를 연료전지에 적용하기 위하여 상온에서 안정하고 높은 수소저장용량을 가지는 새로운 실란유도체를 합성하는 것이 필수적이다. 환형 및 선형 유기실란화합물은 고수율의 합성이 가능하고 상온에서 안정하므로 위의 요건을 만족시킬 가능성이 크며 수소저장체로써 가능성이 매우 크다.Since the silane chemical hydrogen storage liquid is a liquid phase, the silane chemical hydrogen storage liquid is suitable for an engineering system, and has a high hydrogen generation rate and a high hydrogen storage capacity. In order to apply silane hydrogen storage to fuel cells, it is essential to synthesize new silane derivatives that are stable at room temperature and have high hydrogen storage capacity. Cyclic and linear organosilane compounds are capable of high yield synthesis and are stable at room temperature, which is likely to satisfy the above requirements and are very likely as hydrogen storage.

최근 보고에서 여러가지 유기실란화합물의 알코올화반응을 통한 수소발생 그리고 수소저장체로의 응용이 보고된 바 있다. 그 중 테트라실릴메탄은 수소저장용량이 17.8 wt% H2에 달하는 높은 수소저장용량을 가지고 있다. 하지만 이들은 끓는점이 매우 낮을뿐만 아니라, 촉매가 없는 상황에서도 메탄올과 반응하는 등 안정성에 있어서 문제점이 있다. 그러므로 연료전지적용을 위해서는 수소저장용량이 높고 상온에서 안정적인 새로운 수소저장물질이 요구된다.
In recent reports, various organosilane compounds have been reported for their hydrogen generation through alcoholation and their application to hydrogen storage. Among them, tetrasilylmethane has a high hydrogen storage capacity of 17.8 wt% H 2 . However, they have a low boiling point, and there is a problem in stability such as reaction with methanol even in the absence of a catalyst. Therefore, the fuel cell application requires a new hydrogen storage material having a high hydrogen storage capacity and stable at room temperature.

이러한 기술적 배경 하에서 본 발명자들은 수소저장용량이 높고 상온에서 안정적인 새로운 수소저장물질을 개발하기 위하여 예의 노력한 결과 본 발명을 완성하기에 이르렀다.Under these technical backgrounds, the present inventors have made intensive efforts to develop a new hydrogen storage material having high hydrogen storage capacity and stable at room temperature.

결국, 본 발명이 이루고자 하는 기술적 과제는 보다 수소저장용량이 높고 보다 안정적인 수소저장물질의 용도를 제공하는 데 있다.After all, the technical problem to be achieved by the present invention is to provide a use of a hydrogen storage material having a higher hydrogen storage capacity and more stable.

본 발명이 이루고자 하는 또 다른 기술적 과제는 상기 수소저장물질을 이용한 수소의 발생방법 및 상기 수소저장 물질의 재생 방법을 제공하는 데 있다.Another technical problem to be achieved by the present invention is to provide a method for generating hydrogen using the hydrogen storage material and a method for regenerating the hydrogen storage material.

본 발명이 이루고자 하는 또 다른 기술적 과제는 상기 수소저장물질을 이용한 수소의 발생 장치를 제공하는 데 있다.
Another technical problem to be achieved by the present invention is to provide an apparatus for generating hydrogen using the hydrogen storage material.

본 발명의 일 측면에 따르면, 1,3,5-트리실라시클로헥산, 2,5-비스 실릴-1,4-디실라시클로헥산, 1,3,5-트리실라펜탄, 1,1,2-트리실릴에탄 및 1,2,3-트리실릴프로판으로 이루어진 군에서 선택되는 수소저장용 유기실란화합물이 제공될 수 있다.According to one aspect of the invention, 1,3,5-trisilacyclohexane, 2,5-bis silyl-1,4-disilacyclohexane, 1,3,5-trisilapentane, 1,1,2 An organosilane compound for hydrogen storage selected from the group consisting of -trisilylethane and 1,2,3-trisilylpropane can be provided.

본 발명의 또 다른 측면에 따르면, 상기 유기실란화합물을 알코올화 반응 또는 가수분해 반응시키는 단계를 포함하는 수소의 발생 방법이 제공될 수 있다.According to another aspect of the present invention, there may be provided a method for generating hydrogen comprising the step of alcoholizing or hydrolysis reaction of the organosilane compound.

일 실시예에 따르면, 수소의 발생속도가 16.0-36mLmin-1g-1일 수 있다.According to an embodiment, the generation rate of hydrogen may be 16.0-36 mLmin −1 g −1 .

일 실시예에 따르면, 상기 알코올화 반응에 촉매를 더 추가할 수 있다.According to one embodiment, a catalyst may be further added to the alcoholation reaction.

일 실시예에 따르면, 상기 촉매는 소듐메톡사이드일 수 있다.According to one embodiment, the catalyst may be sodium methoxide.

일 실시예에 따르면, 상기 알코올화 반응은 통해 유기실란화합물이 메톡시 실란과 수소를 생성하는 것을 특징으로 할 수 있다.According to an embodiment, the alcoholation reaction may be characterized in that the organosilane compound generates methoxy silane and hydrogen.

일 실시예에 따르면, 상기 가수분해 반응에 촉매를 더 추가할 수 있다.According to one embodiment, a catalyst may be further added to the hydrolysis reaction.

일 실시예에 따르면, 상기 촉매는 황산, 메탄술폰산, 염산, 인산 등의 무기산, 포름산, 아세트산, 트리플루오로아세트산 등의 카르복실산 등의 산성 촉매, 수산화나트륨, 수산화칼륨, 수산화마그네슘 등의 알칼리 금속 또는 알칼리 토금속의 수산화물, RuCl3-H2O, RuCl2(PPh3)3, Ru(cod)Cl2, Ru3(CO)12,, RuH2(PPh3)4, [RuCl2(benzene)]2, [RuCl2(p-cymene)]2, [RuCl2(p-cymene)]2, [RuCl2(p-cymene)]2, RhCl(PPh3)3 및 양이온성 레늄(Re, Rhenium)으로 이루어진 군에서 선택될 수 있다.According to one embodiment, the catalyst is an acidic catalyst such as inorganic acids such as sulfuric acid, methanesulfonic acid, hydrochloric acid, phosphoric acid, formic acid, carboxylic acid such as acetic acid, trifluoroacetic acid, alkali such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, and the like. Hydroxides of metals or alkaline earth metals, RuCl 3 -H 2 O, RuCl 2 (PPh 3 ) 3 , Ru (cod) Cl 2 , Ru 3 (CO) 12 ,, RuH 2 (PPh 3 ) 4 , [RuCl 2 (benzene)] 2 , [RuCl 2 (p-cymene)] 2 , [RuCl 2 (p-cymene)] 2 , [RuCl 2 (p-cymene)] 2 , RhCl (PPh 3 ) 3 and cationic Rhenium (Re, Rhenium) It may be selected from the group consisting of.

본 발명의 다른 측면에 따르면, 상기 유기실란화합물의 알코올화 반응물에 촉매를 처리하는 단계를 포함하는 수소의 저장 방법이 제공될 수 있다.According to another aspect of the present invention, there may be provided a hydrogen storage method comprising the step of treating the catalyst to the alcoholation reactant of the organosilane compound.

일 실시예에 따르면, 상기 촉매는 리튬알라네이트(LiAlH4) 또는 소듐알라네이트(NaAlH4)일 수 있다.According to one embodiment, the catalyst may be lithium alanate (LiAlH 4 ) or sodium alanate (NaAlH 4 ).

본 발명의 또 다른 측면에 따르면, 유기실란화합물의 주입부; 알코올의 주입부; 반응 온도 조절부; 수소 배출부를 구비하는 반응기; 및 반응 부산물의 배출부를 구비한 수소 발생 장치가 제공될 수 있다.According to another aspect of the invention, the injection portion of the organosilane compound; Infusion of alcohol; Reaction temperature control unit; A reactor having a hydrogen outlet; And a hydrogen generator having an outlet of the reaction byproduct.

일 실시예에 따르면, 상기 유기실란화합물은 1,3,5-트리실라시클로헥산, 2,5-비스 실릴-1,4-디실라시클로헥산, 1,3,5-트리실라펜탄, 1,1,2-트리실릴에탄 및 1,2,3-트리실릴프로판으로 이루어진 군에서 선택될 수 있다.
According to one embodiment, the organosilane compound is 1,3,5-trisilacyclohexane, 2,5-bis silyl-1,4-disilacyclohexane, 1,3,5-trisilapentane, 1, It can be selected from the group consisting of 1,2-trisilylethane and 1,2,3-trisilylpropane.

본 발명은 환형 및 선형 유기실란화합물화합물을 수소저장체로 이용하였다. 유기실란화합물화합물은 고수율로 합성되었으며 4 wt% H2 이상의 높은 수소저장용량을 가진다. 알코올화 반응을 이용한 수소발생결과 상온에서 수십 초 이내에 수소가 정량적으로 발생하였으며, 리튬알라네이트를 이용한 정량적인 재생이 가능하였다. 본 발명의 수소저장물질은 액상이고 상온에서 빠른 수소발생속도를 보여주므로 운송용 및 휴대용 연료전지 시스템적용을 위한 수소저장체로써 응용가능성이 매우 크다.
In the present invention, cyclic and linear organosilane compound compounds are used as hydrogen storage bodies. The organosilane compound is synthesized in high yield and has a high hydrogen storage capacity of 4 wt% H 2 or higher. As a result of hydrogenation using alcoholation reaction, hydrogen was quantitatively generated within several tens of seconds at room temperature, and quantitative regeneration using lithium alanate was possible. Since the hydrogen storage material of the present invention is liquid and shows fast hydrogen generation rate at room temperature, the hydrogen storage material is highly applicable as a hydrogen storage medium for transportation and portable fuel cell system application.

도 1은 본 발명의 각 유기실란화합물 화합물의 수소발생율을 나타내는 그래프이다. (도 1에서 숫자 1은 1,3,5-트리실라시클로헥산, 2는 2,5-비스 실릴-1,4-디실라시클로헥산, 3은 1,3,5-트리실라펜탄, 4는 1,1,2-트리실릴에탄 및 5는 1,2,3-트리실릴프로판을 나타낸다)
도 2는 본 발명의 유기실란화합물 화합물을 이용하여 수소를 발생시키켜 연료전지에 연계하기 위한 수소 발생 장치의 모식도이다.
도 3은 수소발생 및 재생에 따른 1H NMR의 변화를 나타낸다.
도 4는 연료전지 스택의 전류-전압곡선으로서 실린더와 유기실란화합물반응기로 부터의 수소발생비교 결과이다.
도 5는 메탄올 주입량 변화에 따른 수소발생량의 변화를 나타내는 결과이다.
1 is a graph showing the hydrogen generation rate of each organosilane compound of the present invention. (In Figure 1, the number 1 is 1,3,5-trisilacyclohexane, 2 is 2,5-bis silyl-1,4-disilacyclohexane, 3 is 1,3,5-trisilapentane, and 4 is 1,1,2-trisilylethane and 5 represent 1,2,3-trisilylpropane)
2 is a schematic diagram of a hydrogen generating device for generating hydrogen using the organosilane compound of the present invention and linking it to a fuel cell.
3 shows the change of 1 H NMR according to hydrogen generation and regeneration.
4 is a comparison of hydrogen generation from a cylinder and an organosilane compound reactor as a current-voltage curve of a fuel cell stack.
5 is a result showing a change in the amount of hydrogen generated according to the change in methanol injection amount.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 일 측면에 따르면, 1,3,5-트리실라시클로헥산, 2,5-비스 실릴-1,4-디실라시클로헥산, 1,3,5-트리실라펜탄, 1,1,2-트리실릴에탄 및 1,2,3-트리실릴프로판으로 이루어진 군에서 선택되는 수소저장용 유기실란화합물이 제공될 수 있다.According to one aspect of the invention, 1,3,5-trisilacyclohexane, 2,5-bis silyl-1,4-disilacyclohexane, 1,3,5-trisilapentane, 1,1,2 An organosilane compound for hydrogen storage selected from the group consisting of -trisilylethane and 1,2,3-trisilylpropane can be provided.

일 실시예에 따르면, 상기 유기실란화합물은 선형 또는 환형의 액상 물질일 수 있으며, 상기 유기실란화합물은 끓는점이 100-170℃일 수 있다.According to one embodiment, the organosilane compound may be a linear or cyclic liquid material, the organosilane compound may have a boiling point of 100-170 ℃.

본 발명의 또 다른 측면에 따르면, 상기 유기실란화합물을 알코올화 반응 또는 가수분해 반응시키는 단계를 포함하는 수소의 발생 방법이 제공될 수 있다.According to another aspect of the present invention, there may be provided a method for generating hydrogen comprising the step of alcoholizing or hydrolysis reaction of the organosilane compound.

일 실시예에 따르면, 수소의 발생속도가 16.0-36mLmin-1g-1일 수 있다.According to an embodiment, the generation rate of hydrogen may be 16.0-36 mLmin −1 g −1 .

일 실시예에 따르면, 상기 알코올화 반응에 촉매를 더 추가할 수 있다.According to one embodiment, a catalyst may be further added to the alcoholation reaction.

일 실시예에 따르면, 상기 촉매는 소듐메톡사이드일 수 있다.According to one embodiment, the catalyst may be sodium methoxide.

일 실시예에 따르면, 상기 알코올화 반응은 통해 유기실란화합물이 메톡시 실란과 수소를 생성하는 것을 특징으로 할 수 있다.According to an embodiment, the alcoholation reaction may be characterized in that the organosilane compound generates methoxy silane and hydrogen.

상기 유기실란화합물을 알코올화 반응을 통해 수소를 발생시킬 경우 발생 수소 당량은 6 내지 10일 수 있다.When the organosilane compound generates hydrogen through an alcoholation reaction, the generated hydrogen equivalent weight may be 6 to 10.

또한, 상기 유기실란화합물은 가수분해를 통해서도 수소를 발생시킬 수 있다.In addition, the organosilane compound may generate hydrogen through hydrolysis.

일 실시예에 따르면, 상기 가수분해 반응에 촉매를 더 추가할 수 있다.According to one embodiment, a catalyst may be further added to the hydrolysis reaction.

일 실시예에 따르면, 상기 촉매는 황산, 메탄술폰산, 염산, 인산 등의 무기산, 포름산, 아세트산, 트리플루오로아세트산 등의 카르복실산 등의 산성 촉매, 수산화나트륨, 수산화칼륨, 수산화마그네슘 등의 알칼리 금속 또는 알칼리 토금속의 수산화물, RuCl3-H2O, RuCl2(PPh3)3, Ru(cod)Cl2, Ru3(CO)12,, RuH2(PPh3)4, [RuCl2(benzene)]2, [RuCl2(p-cymene)]2, [RuCl2(p-cymene)]2, [RuCl2(p-cymene)]2, RhCl(PPh3)3 및 양이온성 레늄(Re, Rhenium)으로 이루어진 군에서 선택될 수 있다.According to one embodiment, the catalyst is an acidic catalyst such as inorganic acids such as sulfuric acid, methanesulfonic acid, hydrochloric acid, phosphoric acid, formic acid, carboxylic acid such as acetic acid, trifluoroacetic acid, alkali such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, and the like. Hydroxides of metals or alkaline earth metals, RuCl 3 -H 2 O, RuCl 2 (PPh 3 ) 3 , Ru (cod) Cl 2 , Ru 3 (CO) 12 ,, RuH 2 (PPh 3 ) 4 , [RuCl 2 (benzene)] 2 , [RuCl 2 (p-cymene)] 2 , [RuCl 2 (p-cymene)] 2 , [RuCl 2 (p-cymene)] 2 , RhCl (PPh 3 ) 3 and cationic Rhenium (Re, Rhenium) It may be selected from the group consisting of.

이와 같이 수소를 발생하는 실란과 물(및 알코올)의 반응은 잘 알려져 있으며 문헌에 공지되어 있다(Pawlenko, Organosilicon Chemistry, Walter de Gruyter New York, 1986; Eaborn, Organosilicon Compounds, Butterworths Scientific Publications London 1960 and Xerox Microfilms Ann Arbor 1976).The reaction of silanes that generate hydrogen with water (and alcohols) is well known and known in the literature (Pawlenko, Organosilicon Chemistry, Walter de Gruyter New York, 1986; Eaborn, Organosilicon Compounds, Butterworths Scientific Publications London 1960 and Xerox Microfilms Ann Arbor 1976).

가수분해 촉매의 예시로서는 황산, 메탄술폰산, 염산, 인산 등의 무기산, 포름산, 아세트산, 트리플루오로아세트산 등의 카르복실산 등의 산성 촉매, 수산화나트륨, 수산화칼륨, 수산화마그네슘 등의 알칼리 금속 또는 알칼리 토금속의 수산화물 등의 알칼리성 촉매가 사용되고, 이들 촉매의 사용량은 촉매량으로 할 수 있고, 통상 반응 용액 전체의 0.1 내지 10 질량 정도로 할 수 있다. 반응 온도는 -50 내지 40℃, 특히 -20 내지 20℃로 할 수 있고, 반응 시간은 통상 1 내지 10 시간 정도이다.Examples of the hydrolysis catalyst include acidic catalysts such as inorganic acids such as sulfuric acid, methanesulfonic acid, hydrochloric acid and phosphoric acid, carboxylic acids such as formic acid, acetic acid and trifluoroacetic acid, alkali metals such as sodium hydroxide, potassium hydroxide and magnesium hydroxide or alkalis. Alkaline catalysts, such as an earth metal hydroxide, are used, and the usage-amount of these catalysts can be made into a catalytic amount, and can usually be about 0.1-10 mass of the whole reaction solution. Reaction temperature can be -50-40 degreeC, especially -20-20 degreeC, and reaction time is about 1 to 10 hours normally.

가수분해 촉매의 또 다른 예시로는 루테늄(Ru) 또는 로듐(Rh)을 들 수 있으며, 이들의 예로는 RuCl3-H2O, RuCl2(PPh3)3, Ru(cod)Cl2, Ru3(CO)12, RhCl(PPh3)3, RuH2(PPh3)4, [RuCl2(benzene)]2, [RuCl2(p-cymene)]2, [RuCl2(p-cymene)]2, [RuCl2(p-cymene)]2을 들 수 있다.Still other examples of hydrolysis catalysts include ruthenium (Ru) or rhodium (Rh), examples of which include RuCl 3 -H 2 O, RuCl 2 (PPh 3 ) 3 , Ru (cod) Cl 2 , Ru 3 (CO) 12 , RhCl (PPh 3 ) 3 , RuH 2 (PPh 3 ) 4 , [RuCl 2 (benzene)] 2 , [RuCl 2 (p-cymene)] 2 , [RuCl 2 (p-cymene)] 2 , [RuCl 2 (p-cymene)] 2 may be mentioned.

또 다른 가수분해 촉매의 예시로는 양이온성 레늄(Re, Rhenium)을 들 수 있으며, 이들은 통상 하기와 같은 반응식을 유기실란으로부터 수소를 발생시킬 수 있다.Examples of another hydrolysis catalyst include cationic rhenium (Re, Rhenium), which can generate hydrogen from the organosilane in the following scheme.

Figure 112011029794423-pat00001
Figure 112011029794423-pat00001

상기 반응식과 같은 양이온성 레늄 촉매는 염화물 전구체인 (Re(O)(hoz)2Cl, 2)로부터 할라이드 추출을 통해 얻어질 수 있다.
Cationic rhenium catalysts such as the above scheme can be obtained through halide extraction from the chloride precursor (Re (O) (hoz) 2 Cl, 2).

상기 알코올화 반응 또는 가수분해를 통해 수소를 발생시킬 수 있는 유기실란화합물은 1,3,5-트리실라시클로헥산, 2,5-비스 실릴-1,4-디실라시클로헥산, 1,3,5-트리실라펜탄, 1,1,2-트리실릴에탄 및 1,2,3-트리실릴프로판 등을 들 수 있으며, 각각의 물리적 성질은 하기의 표 1에 나타나 있다.
The organosilane compound capable of generating hydrogen through the alcoholation reaction or hydrolysis is 1,3,5-trisilacyclohexane, 2,5-bis silyl-1,4-disilacyclohexane, 1,3, 5-trisilapentane, 1,1,2-trisilylethane, 1,2,3-trisilylpropane, and the like, and the physical properties thereof are shown in Table 1 below.

본 발명의 다른 측면에 따르면, 상기 유기실란화합물의 알코올화 반응물에 촉매를 처리하는 단계를 포함하는 수소의 저장 방법이 제공될 수 있다.According to another aspect of the present invention, there may be provided a hydrogen storage method comprising the step of treating the catalyst to the alcoholation reactant of the organosilane compound.

일 실시예에 따르면, 상기 촉매는 리튬알라네이트(LiAlH4) 또는 소듐알라네이트(NaAlH4)일 수 있다.According to one embodiment, the catalyst may be lithium alanate (LiAlH 4 ) or sodium alanate (NaAlH 4 ).

본 발명의 또 다른 측면에 따르면, 유기실란화합물의 주입부; 알코올의 주입부; 반응 온도 조절부; 수소 배출부를 구비하는 반응기; 및 반응 부산물의 배출부를 구비한 수소 발생 장치가 제공될 수 있다.According to another aspect of the invention, the injection portion of the organosilane compound; Infusion of alcohol; Reaction temperature control unit; A reactor having a hydrogen outlet; And a hydrogen generator having an outlet of the reaction byproduct.

일 실시예에 따르면, 상기 유기실란화합물은 1,3,5-트리실라시클로헥산, 2,5-비스 실릴-1,4-디실라시클로헥산, 1,3,5-트리실라펜탄, 1,1,2-트리실릴에탄 및 1,2,3-트리실릴프로판으로 이루어진 군에서 선택될 수 있다.
According to one embodiment, the organosilane compound is 1,3,5-trisilacyclohexane, 2,5-bis silyl-1,4-disilacyclohexane, 1,3,5-trisilapentane, 1, It can be selected from the group consisting of 1,2-trisilylethane and 1,2,3-trisilylpropane.

실란 수소 저장체를 연료전지에 적용하기 위하여 상온에서 안정하고 높은 수소저장용량을 나타내는 것이 필수적인데, 본 발명의 상기 유기실란화합물 화합물은 상온에서 액상이므로 엔지니어링 시스템에 적합하며, 수십 초 이내의 빠른 수소발생속도 및 높은 수소저장용량을 나타내므로 운송용 및 휴대용 연료전지를 위한 수소저장 물질로써의 활용도가 매우 높다. In order to apply a silane hydrogen storage body to a fuel cell, it is essential to exhibit a stable and high hydrogen storage capacity at room temperature. Since the organosilane compound of the present invention is liquid at room temperature, it is suitable for engineering systems, and fast hydrogen within several tens of seconds. Its generation rate and high hydrogen storage capacity make it highly applicable as a hydrogen storage material for transportation and portable fuel cells.

또한, 본 발명의 상기의 환형 및 선형 유기실란화합물 화합물은 고수율의 합성이 가능하고 상온에서 안정하므로 수소저장 물질로써 필요한 요건을 만족시킨다. In addition, the cyclic and linear organosilane compound compounds of the present invention can be synthesized in high yield and stable at room temperature, thereby satisfying the necessary requirements as a hydrogen storage material.

하기 실시예 1, 4, 7, 10, 13 에는 본 발명의 유기실란화합물 화합물의 합성방법 및 그 수율이 나타나 있는데, 모두 80% 이상의 높은 수율을 나타냄을 알 수 있다. In Examples 1, 4, 7, 10, and 13, the synthesis method and yield of the organosilane compound of the present invention are shown, and all of them show high yields of 80% or more.

또한, 본 발명은 상기 알코올화 반응을 통해 유기실란화합물이 메톡시 유기실란화합물과 수소를 생성할 수 있으며, 본 발명의 특징은 유기실란화합물이 알코올화 반응을 통해 수소와 메톡시 유기실란화합물으로 전환되는 것 뿐만 아니라, 상기 반응 부산물로 생성된 메톡시 유기실란화합물에 다시 수소를 저장할 수 있다는 것이다.In addition, the present invention is an organosilane compound may generate a methoxy organosilane compound and hydrogen through the alcoholation reaction, characterized in that the organosilane compound is hydrogen and methoxy organosilane compound through an alcoholation reaction In addition to being converted, hydrogen can be stored back in the methoxy organosilane compound produced as the reaction byproduct.

본 발명의 다른 측면에 따르면, 메톡시기를 갖는 유기실란화합물에 촉매를 처리하는 단계를 포함하는 수소의 저장 방법이 제공된다.According to another aspect of the present invention, there is provided a hydrogen storage method comprising the step of treating a catalyst to an organosilane compound having a methoxy group.

일 실시예에 따르면, 상기 촉매는 리튬알라네이트(LiAlH4) 또는 소듐알라네이트(NaAlH4)일 수 있다. 하기 실시예 2, 5, 8, 11, 14에 기재되어 있는 반응식 1 내지 5를 참조하면 상기 촉매를 이용하여 메톡시 유기실란화합물이 유기실란화합물으로 전환되면서 유기실란화합물에 수소를 저장할 수 있음을 알 수 있다.According to one embodiment, the catalyst may be lithium alanate (LiAlH 4 ) or sodium alanate (NaAlH 4 ). Referring to Schemes 1 to 5 described in Examples 2, 5, 8, 11 and 14, it can be seen that hydrogen can be stored in the organosilane compound while the methoxy organosilane compound is converted to the organosilane compound using the catalyst. Able to know.

본 발명의 또 다른 측면에 따르면, 유기실란화합물의 주입부; 알코올의 주입부; 반응 온도 조절부; 수소 배출부를 구비하는 반응기; 및 반응 부산물의 배출부를 구비한 수소 발생 장치가 제공될 수 있다. 이러한 수소 발생 장치는 도 2에 나타나 있다.According to another aspect of the invention, the injection portion of the organosilane compound; Infusion of alcohol; Reaction temperature control unit; A reactor having a hydrogen outlet; And a hydrogen generator having an outlet of the reaction byproduct. This hydrogen generator is shown in FIG.

일 실시예에 따르면, 상기 유기실란화합물은 선형 또는 환형 화합물인 1,3,5-트리실라시클로헥산(1,3,5-trisilacyclohexane), 2,5-비스 실릴-1,4-디실라시클로헥산(2,5-bis silyl-1,4-disilacyclohexane), 1,3,5-트리실라펜탄(1,3,5-trisilapentane), 1,1,2-트리실릴에탄(1,1,2-trisilylethane), 1,2,3-트리실릴프로판(1,2,3-trisilylpropane)으로 이루어진 군에서 선택되는 하나 이상일 수 있다.
According to one embodiment, the organosilane compound is a linear or cyclic compound 1,3,5-trisilacyclohexane (1,3,5-trisilacyclohexane), 2,5-bis silyl-1,4-disilacyclo Hexane (2,5-bis silyl-1,4-disilacyclohexane), 1,3,5-trisilapentane (1,3,5-trisilapentane), 1,1,2-trisilylethane (1,1,2 -trisilylethane), 1,2,3-trisilylpropane (1,2,3-trisilylpropane) may be one or more selected from the group consisting of.

이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 다만, 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다 할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It should be understood, however, that these examples are for illustrative purposes only and are not to be construed as limiting the scope of the present invention.

상기 유기실란화합물화합물을 이용한 수소의 발생 및 저장 방법은 다음과 같다.Hydrogen generation and storage method using the organosilane compound compound is as follows.

I. 1,3,5-I. 1,3,5- 트리실라시클로헥산을Trisilacyclohexane 이용한 수소의 발생 및 저장  Generation and storage of used hydrogen

실시예Example 1. 1,3,5- 1.1,3,5- 트리실라시클로헥산의Of trisilacyclohexane 제조 Produce

1,1,3,3,5,5-헥사클로로-1,3,5-트리실라시클로헥산(50 mmol)을 녹인 디에틸에테르 (diethylether) 용액을 리튬알라네이트 (75 mmol)를 녹인 디에틸에테르 (diethylether)용액 300 ml에 0℃에서 천천히 떨어뜨렸다. 상온으로 온도를 올린 후 3시간 동안 교반하였다. 남은 리튬알라네이트(LiAlH4)는 5% 아세트산 수용액으로 중화시켰다. 유기물은 분리한 후 마그네슘설페이트(MgSO4)로 수분을 제거하였다. 거른 용액은 상압에서 증류하여 분리하였다. 수율 82%; b.p 142 ; 1H NMR (CDCl3) 4.09 (s, 6H, C-SiH 2 -C), 0.00 (s, 6H, Si-CH 2 -Si); 13C NMR (CDCl3) -10.2 (Si-CH2-Si)
Diethylether solution of 1,1,3,3,5,5-hexachloro-1,3,5-trisilacyclohexane (50 mmol) in diethyl ether of lithium alanate (75 mmol) 300 ml of ether solution was slowly dropped at 0 ° C. After raising the temperature to room temperature, the mixture was stirred for 3 hours. The remaining lithium alanate (LiAlH 4 ) was neutralized with 5% acetic acid aqueous solution. The organics were separated and then water was removed with magnesium sulfate (MgSO 4 ). The filtered solution was separated by distillation at atmospheric pressure. Yield 82%; bp 142; 1 H NMR (CDCl 3 ) 4.09 (s, 6H, C-Si H 2 -C), 0.00 (s, 6H, Si- CH 2 -Si); 13 C NMR (CDCl 3 ) -10.2 (Si- C H 2 -Si)

실시예Example 2. 1,3,5- 2. 1,3,5- 트리실라시클로헥산을Trisilacyclohexane 이용한 수소의 발생 Generation of used hydrogen

상기 제조된 1,3,5-트리실라시클로헥산(1,3,5-trisilacyclohexane)은 하기 반응식 1과 같이 6당량의 메탄올과 반응하여 6당량의 수소를 발생시켰다.1,3,5-trisilacyclohexane prepared above was reacted with 6 equivalents of methanol to generate 6 equivalents of hydrogen, as shown in Scheme 1 below.

[반응식 1][Reaction Scheme 1]

Figure 112011029794423-pat00002
Figure 112011029794423-pat00002

수소발생반응은 50 ml 이중자켓 유리반응기에서 진행하였다. 도 2에는 수소발생 반응에 사용할 수 있는 수소발생 장치의 일 예가 도시되어 있다. 3방향 접합기가 연결되어 있으며 한 방향은 반응기, 두번째 방향은 질소나 아르곤가스와 연결되어 있고, 나머지는 발생 가스가 나오는 방향이며 매스 플로우메터(mass flow meter, MFM)와 연결되어 있으며 측정치를 실시간 확인가능하다. 실시간 온도측정이 가능한 센서가 반응기 내부에 삽입되어 있으며 메탄올 주입시에 공기와의 접촉이 없도록 시스템이 제작되었다. 반응온도는 외부온도 조절장치에 의해서 가열 또는 냉각이 가능하다. 1 mmol의 1,3,5-트리실라시클로헥산과 소듐메톡사이드 (NaOMe, 5 mol%, 0.003 g)를 반응기 내부에 주입하였다. 소듐메톡사이드(NaOMe)촉매 5 mol% 사용시 가장 효율적인 수소발생량 및 저장용량을 보여주었다.Hydrogen evolution was carried out in a 50 ml double jacketed glass reactor. 2 shows an example of a hydrogen generating apparatus that can be used for the hydrogen generating reaction. Three-way junction is connected, one direction is connected to the reactor, the second direction is to nitrogen or argon gas, the rest is the direction from which the generated gas comes out, connected to the mass flow meter (MFM), and the measured value is checked in real time. It is possible. A sensor for real-time temperature measurement is inserted inside the reactor and the system is constructed so that there is no contact with air during methanol injection. The reaction temperature can be heated or cooled by an external temperature controller. 1 mmol of 1,3,5-trisilacyclohexane and sodium methoxide (NaOMe, 5 mol%, 0.003 g) were injected into the reactor. 5 mol% sodium methoxide (NaOMe) catalyst showed the most efficient hydrogen generation and storage capacity.

냉각트랩과 반응기 사이에 평형압력이 이루어지면 2당량의 메탄올을 주입하였다. 발생수소는 MFM을 통해 실시간 측정하였다. 실험조건에서 발생하는 메탄올증기는 메틸렌클로라이드와 드라이아이스혼합에 의한 -90℃트랩에 의해서 응결된다. 그러므로 MFM에 의해 측정되는 가스는 모두 수소라고 볼 수 있다. 메탄올 주입과 동시에 수소가 수십 초 내에 발생하였다. 수소발생량 및 속도는 도 1의 "1"번 곡선으로 나타나 있다. When equilibrium pressure was established between the cooling trap and the reactor, 2 equivalents of methanol was injected. Hydrogen generated was measured in real time through MFM. Methanol vapor generated under the experimental conditions was condensed by trapping -90 ℃ by methylene chloride and dry ice mixing. Therefore, all gases measured by MFM can be regarded as hydrogen. At the same time as the methanol injection, hydrogen was generated in tens of seconds. Hydrogen generation rate and rate are shown by the curve "1" of FIG. Is shown.

수소발생 후 헥산을 과량 주입하면 소듐메톡사이드가 석출되고 걸러진다. 용매를 감압에 의해서 제거하면 수소발생 후 탈수소화생성물인 1,1,3,3,5,5-헥사메톡시-1,3,5-실라시클로헥산(1,1,3,3,5,5-hexamethoxy-1,3,5-silacyclohexane)이 생성된다. (수율: 95%; 1H NMR(CDCl3) 3.49 (s, 18H, Si-OCH 3 ), 0.08 (s, 4H, Si-CH 2 -Si); 13C NMR (CDCl3) 50.2 (Si-OCH3), -2.5 (Si-CH2-Si)).
Injecting excessive amount of hexane after hydrogen generation precipitates and filters sodium methoxide. When the solvent is removed by depressurization, 1,1,3,3,5,5-hexamethoxy-1,3,5-silacyclohexane (1,1,3,3,5, 5-hexamethoxy-1,3,5-silacyclohexane) is produced. (Yield 95%; 1 H NMR (CDCl 3) 3.49 (s, 18H, Si-OC H 3 ), 0.08 (s, 4H, Si-C H 2 -Si); 13 C NMR (CDCl 3 ) 50.2 (Si -O C H 3 ), -2.5 (Si- C H 2 -Si)).

실시예 3. 1,1,3,3,5,5-헥사메톡시-1,3,5-실라시클로헥산의 재생(수소의 저장)Example 3. Regeneration of 1,1,3,3,5,5-hexamethoxy-1,3,5-silacyclohexane (storage of hydrogen)

상기 반응식 1과 같이 1,1,3,3,5,5-헥사메톡시-1,3,5-실라시클로헥산으로부터 1,3,5-트리실라시클로헥산으로의 재생이 진행되었다. 질소조건하에서 공기와 수분을 차단한 후 반응을 진행하였다. 500 ml three-neck 플라스크에 리튬알라네이트를 디에틸에티르에 녹인 용액을 넣는다. 온도를 0℃로 낮춘 후에 1,1,3,3,5,5-헥사메톡시-1,3,5-실라시클로헥산을 디에틸에테르에 녹인 용액을 리튬알라네이트 용액쪽으로 천천히 적가한다. 상온에서 5시간 동안 교반하였다. 남은 리튬알라네이트는 5% 아세트산으로 중화시켰다. 유기층은 MgSO4로 건조한다. 반응물은 760 mmHg에서 아래 표1의 조건에서 증류하여 분리하였다. 재생된 반응생성물은 1H NMR을 통해 확인하였으며 도 3에 그 결과를 나타내었다.
Regeneration from 1,1,3,3,5,5-hexamethoxy-1,3,5-silacyclohexane to 1,3,5-trisilacyclohexane was carried out as in Scheme 1. The reaction was carried out after blocking the air and water under nitrogen conditions. Into a 500 ml three-neck flask, add a solution of lithium alanate in diethyl ether. After the temperature was lowered to 0 ° C., a solution of 1,1,3,3,5,5-hexamethoxy-1,3,5-silacyclohexane in diethyl ether was slowly added dropwise to the lithium alanate solution. Stir at room temperature for 5 hours. The remaining lithium alanate was neutralized with 5% acetic acid. The organic layer is dried over MgSO 4 . The reaction was separated by distillation at 760 mmHg under the conditions shown in Table 1 below. The regenerated reaction product was confirmed by 1 H NMR and the results are shown in FIG. 3.

II. 2,5-비스 실릴-1,4-디실라시클로헥산을 이용한 수소의 발생 및 저장II. Generation and Storage of Hydrogen with 2,5-bissilyl-1,4-disilacyclohexane

실시예 4. 2,5-비스 실릴-1,4-디실라시클로헥산의 제조 Example 4. Preparation of 2,5-bis silyl-1,4-disilacyclohexane

1,1,4,4-테트라클로로-2,5-비스(트리클로로실릴)-1,4-디실라시클로헥산(50 mmol)을 녹인 디에틸에테르 (diethylether) 용액을 리튬알라네이트 (75 mmol)을 녹인 디에틸에테르 (diethylether) 용액 300ml에 0℃에서 천천히 떨어뜨렸다. 상온으로 온도를 올린 후 3시간 동안 교반하였다. 리튬알라네이트는 5% 아세트산 수용액으로 중화시켰다. 유기물은 분리한 후 마그네슘설페이트 (MgSO4)로 수분을 제거하였다. 거른용액은 상압에서 증류하여 분리하였다. 수율 83%; b.p. 166 ; 1H NMR (CDCl3) 3.67 (q, 4H, CH2-SiH 2 -CH), 3.62 (d, 6H, CH-SiH 3 ), 1.26-0.87 (tm, SiH2-CH 2 -CH), 0.43-0.49 (m, 2H, SiH2-CH-SiH3); 13C NMR (CDCl3) 9.7 (SiH2-CH2-CH), 6.9 (CH2-CH-SiH3).
A diethylether solution of 1,1,4,4-tetrachloro-2,5-bis (trichlorosilyl) -1,4-disilacyclohexane (50 mmol) was dissolved in lithium alanate (75 mmol ) Was slowly added to 300 ml of a diethylether solution dissolved at 0 ° C. After raising the temperature to room temperature, the mixture was stirred for 3 hours. Lithium alanate was neutralized with 5% acetic acid aqueous solution. The organics were separated and then water was removed with magnesium sulfate (MgSO 4 ). The filtered solution was separated by distillation at atmospheric pressure. Yield 83%; bp 166; 1 H NMR (CDCl 3 ) 3.67 (q, 4H, CH 2 -Si H 2 -CH), 3.62 (d, 6H, CH-Si H 3 ), 1.26-0.87 (tm, SiH 2 -C H 2 -CH ), 0.43-0.49 (m, 2H, SiH 2 -C H -SiH 3 ); 13 C NMR (CDCl 3 ) 9.7 (SiH 2 -C H 2 -CH), 6.9 (CH 2 -C H-SiH 3 ).

실시예Example 5. 2,5- 5. 2,5- 비스Vis 실릴-1,4- Silyl-1,4- 디실라시클로헥산을Disilacyclohexane 이용한 수소의 발생  Generation of used hydrogen

2,5-비스 실릴-1,4-디실라시클로헥산(2,5-bis silyl-1,4-disilacyclohexane)는 10당량의 메탄올과 반응하여 10당량의 수소를 발생시켰다. 2,5-bis silyl-1,4-disilacyclohexane reacted with 10 equivalents of methanol to generate 10 equivalents of hydrogen.

[반응식 2][Reaction Scheme 2]

Figure 112011029794423-pat00003

Figure 112011029794423-pat00003

수소발생 반응은 상기 실시예 2와 동일하게 진행되었다. 수소발생량 및 속도는 도 1에 나타나 있다. 수소발생 후 헥산을 과량 주입하면 소듐메톡사이드가 석출되고 걸러진다. 용매를 감압에 의해서 제거하면 수소발생생성물인 메톡시유기실란화합물(2,5-Bis(trimethoxysilyl)-1,1,4,4-tetramethoxy-1,4-disilacyclohexane)을 얻을 수 있다. (수율: 93%; 1H NMR(CDCl3) 1.08, 0.38 (dd, 4H, Si-CH 2 -C), 0.76, 0.71 (dd, 2H, Si-CH 2 -Si), 3.56 (s, 10H, O-CH 3 ); 13C NMR (CDCl3) 50.73 (Si-OCH 3 ), 5.43 (Si-CH2-Si), 3.27 (Si-CH2-C)).
The hydrogen evolution reaction proceeded in the same manner as in Example 2. Hydrogen generation rate and rate are shown in FIG. Injecting excessive amount of hexane after hydrogen generation precipitates and filters sodium methoxide. When the solvent is removed under reduced pressure, a methoxy organic silane compound (2,5-Bis (trimethoxysilyl) -1,1,4,4-tetramethoxy-1,4-disilacyclohexane) as a hydrogen generating product can be obtained. (Yield 93%; 1 H NMR (CDCl 3) 1.08, 0.38 (dd, 4H, Si-C H 2 -C), 0.76, 0.71 (dd, 2H, Si-C H 2 -Si), 3.56 (s, 10H, OC H 3 ); 13 C NMR (CDCl 3 ) 50.73 (Si-OC H 3 ), 5.43 (Si- C H 2 -Si), 3.27 (Si- C H 2 -C)).

실시예Example 6. 2,5- 6. 2,5- 비스Vis (( 트리메톡시실릴Trimethoxysilyl )-1,1,4,4-) -1,1,4,4- 테트라메톡시Tetramethoxy -1,4--1,4- 디실라시클로Disilacyclo - - 헥산의Hexane 재생(수소의 저장) Regeneration (storage of hydrogen)

실시예 3과 동일한 방법으로 2,5-비스(트리메톡시실릴)-1,1,4,4-테트라메톡시-1,4-디실라시클로- 헥산으로의 재생이 진행되었다. 재생된 반응생성물은 1H NMR을 통해 확인하였으며 도 3에 그 결과를 나타내었다.
Regeneration to 2,5-bis (trimethoxysilyl) -1,1,4,4-tetramethoxy-1,4-disilacyclo- hexane proceeded in the same manner as in Example 3. The regenerated reaction product was confirmed by 1 H NMR and the results are shown in FIG. 3.

III. 1,3,5-트리실라펜탄을 이용한 수소의 발생 및 저장III. Generation and storage of hydrogen using 1,3,5-trisilapentane

실시예 7. 1,3,5-트리실라펜탄의 제조Example 7. Preparation of 1,3,5-trisilapentane

1,1,1,3,3,5,5,5-옥타클로로-1,3,5-트리실라펜탄(50 mmol)을 녹인 디에틸에테르(diethylether) 용액을 리튬알라네이트 (75 mmol) 디에틸에테르 (diethylether) 용액 300 ml에 0℃에서 천천히 떨어뜨렸다. 상온으로 온도를 올린후 3시간 동안 교반하였다. 남은 리튬알라네이트는 5% 아세트산 수용액으로 중화시켰다. 유기물은 분리한후 마그네슘설페이트 (MgSO4)로 수분을 제거하였다. 거른용액은 상압에서 증류하여 분리하였다. 수율 84%; b.p. 100 ; 1H NMR (CDCl3) 3.93 (m, 6H, CH2-SiH 2 -CH2), 3.64 (m, 6H, CH2-SiH 3 ), 0.00 (s, 4H, Si-CH 2 -Si); 13C NMR (CDCl3) 15.2 (Si-CH2-Si)
A diethylether solution of 1,1,1,3,3,5,5,5-octachloro-1,3,5-trisilapentane (50 mmol) was dissolved in lithium alanate (75 mmol) di 300 ml of ethylether solution was slowly dropped at 0 ° C. After raising the temperature to room temperature, the mixture was stirred for 3 hours. The remaining lithium alanate was neutralized with 5% acetic acid aqueous solution. The organics were separated and water was removed with magnesium sulfate (MgSO 4 ). The filtered solution was separated by distillation at atmospheric pressure. Yield 84%; bp 100; 1 H NMR (CDCl 3 ) 3.93 (m, 6H, CH 2 -Si H 2 -CH 2 ), 3.64 (m, 6H, CH 2 -Si H 3 ), 0.00 (s, 4H, Si-C H 2- Si); 13 C NMR (CDCl 3 ) 15.2 (Si- C H 2 -Si)

실시예 8. 1,3,5-트리실라펜탄을 이용한 수소의 발생Example 8. Generation of Hydrogen Using 1,3,5-trisilapentane

1,3,5-트리실라펜탄(1,3,5-trisilapentane)은 10당량의 메탄올과 반응하여 10당량의 수소를 발생시켰다.1,3,5-trisilapentane reacted with 10 equivalents of methanol to generate 10 equivalents of hydrogen.

[반응식 3]Scheme 3

Figure 112011029794423-pat00004
Figure 112011029794423-pat00004

수소발생 반응은 실시예 2와 동일하게 진행되었으며, 수소발생 생성물1,1,1,3,3,5,5,5-octamethoxy-1,3,5-trisilapentane가 생성되었다(수율: 92%; 1H NMR (CDCl3) 3.42 (s, 18H, CH2-Si-OCH 3 ), 3.37 (s, 6H, CH 2 -Si-OCH3), -0.07 (s, 4H, Si-CH 2 -Si); 13C NMR (CDCl3) 50.4 (Si-OCH3), -5.5 (Si-CH2-Si)).
Hydrogen evolution was carried out in the same manner as in Example 2, and hydrogenated products 1,1,1,3,3,5,5,5-octamethoxy-1,3,5-trisilapentane were produced (yield: 92%; 1 H NMR (CDCl 3) 3.42 (s, 18H, CH 2 -Si-OC H 3 ), 3.37 (s, 6H, C H 2 -Si-OCH 3 ), -0.07 (s, 4H, Si-C H 2 -Si); 13 C NMR (CDCl 3 ) 50.4 (Si-O C H 3 ), -5.5 (Si- C H 2 -Si)).

실시예Example 9. 1,1,1,3,3,5,5,5- 9. 1,1,1,3,3,5,5,5- 옥타메톡시Octamethoxy -1,3,5--1,3,5- 트리실라펜탄의Trisilapentane 재생(수소의 저장)  Regeneration (storage of hydrogen)

실시예 3과 동일한 방법으로 1,1,1,3,3,5,5,5-옥타메톡시-1,3,5-트리실라펜탄으로의 재생이 진행되었다. 재생된 반응생성물은 1H NMR을 통해 확인하였으며 도 3에 그 결과를 나타내었다.
Regeneration to 1,1,1,3,3,5,5,5-octamethoxy-1,3,5-trisilapentane proceeded in the same manner as in Example 3. The regenerated reaction product was confirmed by 1 H NMR and the results are shown in FIG. 3.

IVIV . 1,1,2-. 1,1,2- 트리실릴에탄을Trisilylethane 이용한 수소의 발생 및 저장 Generation and storage of used hydrogen

실시예Example 10. 1,1,2- 10. 1,1,2- 트리실릴에탄의Of trisilylethane 제조 Produce

1,1,2-트리스(트리클로로실릴)에탄(50 mmol)을 녹인 디에틸에테르 (diethylether) 용액을 리튬알라네이트 (75 mmol)를 녹인 디에틸에테르 (diethylether) 용액 300 ml에 0℃에서 천천히 떨어뜨렸다. 상온으로 온도를 올린후 3시간 동안 교반한다. 남은 리튬알라네이트는 5% 아세트산 수용액으로 중화시켰다. 유기물은 분리한후 마그네슘설페이트(MgSO4)로 수분을 제거하였다. 거른용액은 상압에서 증류하여 분리한다. 수율 88%; b.p. 121 ; 1H NMR (CDCl3) 3.69 (m, 6H, CH-SiH 3 ), 1.03 (m, 2H, Si-CH 2 -CH), 0.40 (m, 1H, Si-CH-Si); 13C NMR (CDCl3) 32.1 (Si-CH2-CH), 6.3 (Si-CH-Si).
Diethylether solution of 1,1,2-tris (trichlorosilyl) ethane (50 mmol) was slowly added to 300 ml of diethylether solution of lithium alanate (75 mmol) at 0 ° C. Dropped. After raising the temperature to room temperature, the mixture is stirred for 3 hours. The remaining lithium alanate was neutralized with 5% acetic acid aqueous solution. The organics were separated and water was removed with magnesium sulfate (MgSO 4 ). The filtered solution is separated by distillation at atmospheric pressure. Yield 88%; bp 121; 1 H NMR (CDCl 3 ) 3.69 (m, 6H, CH—Si H 3 ), 1.03 (m, 2H, Si—C H 2 —CH), 0.40 (m, 1H, Si—C H —Si); 13 C NMR (CDCl 3 ) 32.1 (Si- C H 2 -CH), 6.3 (Si-C H -Si).

실시예Example 11. 1,1,2- 11. 1,1,2- 트리실릴에탄을Trisilylethane 이용한 수소의 발생 Generation of used hydrogen

1,1,2-트리실릴에탄은 9당량의 메탄올과 반응하여 9당량의 수소를 발생시켰다. 1,1,2-trisilylethane reacted with 9 equivalents of methanol to generate 9 equivalents of hydrogen.

[반응식 4][Reaction Scheme 4]

Figure 112011029794423-pat00005
Figure 112011029794423-pat00005

수소발생 반응은 상기 실시예 2와 동일하게 진행되었다. 수소발생량 및 속도는 도 1에 나타나 있다. 수소발생 후 헥산을 과량 주입하면 소듐메톡사이드가 석출되고 걸러진다. 용매를 감압에 의해서 제거하면 수소발생생성물인 3,3,6,6-테트라메톡시-4-(트리메톡시실릴)-2,7-디옥사-3,6 -디실라옥탄이 생성된다.
The hydrogen evolution reaction proceeded in the same manner as in Example 2. Hydrogen generation rate and rate are shown in FIG. Injecting excessive amount of hexane after hydrogen generation precipitates and filters sodium methoxide. Removal of the solvent by reduced pressure yields a hydrogen evolution product, 3,3,6,6-tetramethoxy-4- (trimethoxysilyl) -2,7-dioxa-3,6-disilaoctane.

실시예 12. 3,3,6,6-테트라메톡시-4-(트리메톡시실릴)-2,7-디옥사-3,6 -디실라옥탄의 재생(수소의 저장)Example 12 Regeneration of 3,3,6,6-tetramethoxy-4- (trimethoxysilyl) -2,7-dioxa-3,6-disilaoctane (storage of hydrogen)

실시예 3과 동일한 방법으로 3,3,6,6-테트라메톡시-4-(트리메톡시실릴)-2,7-디옥사-3,6 -디실라옥탄의 재생이 진행되었다. 재생된 반응생성물은 1H NMR을 통해 확인하였으며 도 3에 그 결과를 나타내었다.
Regeneration of 3,3,6,6-tetramethoxy-4- (trimethoxysilyl) -2,7-dioxa-3,6-disilaoctane proceeded in the same manner as in Example 3. The regenerated reaction product was confirmed by 1 H NMR and the results are shown in FIG. 3.

V. 1,2,3-트리실릴프로판을 이용한 수소의 발생 및 저장 V. Generation and Storage of Hydrogen with 1,2,3-trisilylpropane

실시예 13. 1,2,3-트리실릴프로판의 제조Example 13. Preparation of 1,2,3-trisilylpropane

1,2,3-트리스(트리클로로실릴)프로판(50 mmol)을 녹인 디에틸에테르 (diethylether) 용액을 리튬알라네이트 (75 mmol)를 녹인 디에틸에테르 (diethylether) 용액 300 ml에 0에서 천천히 떨어뜨렸다. 상온으로 온도를 올린후 3시간 동안 교반하였다. 남은 리튬알라네이트는 5% 아세트산 수용액으로 중화시켰다. 유기물은 분리한후 마그네슘설페이트 (MgSO4)로 수분을 제거하였다. 거른용액은 상압에서 증류하여 분리하였다. 수율 87%; b.p. 130 ; 1H NMR (CDCl3) 3.57 (m, 9H, CH2-SiH 3 ), 3.46 (m, 3H, CH-SiH 3 ), 1.20 (t, 1H, CH-SiH 3 ), 1.01 (CH 2 -SiH3); 13C NMR (CDCl3) 14.4 (Si-CH2-CH), 12.6 (CH2-CH-CH2).
Diethylether solution of 1,2,3-tris (trichlorosilyl) propane (50 mmol) was slowly dropped from 0 to 300 ml of diethylether solution of lithium alanate (75 mmol). Knocked down. After raising the temperature to room temperature, the mixture was stirred for 3 hours. The remaining lithium alanate was neutralized with 5% acetic acid aqueous solution. The organics were separated and water was removed with magnesium sulfate (MgSO 4 ). The filtered solution was separated by distillation at atmospheric pressure. Yield 87%; bp 130; 1 H NMR (CDCl 3 ) 3.57 (m, 9H, CH 2 -Si H 3 ), 3.46 (m, 3H, CH-Si H 3 ), 1.20 (t, 1H, CH-Si H 3 ), 1.01 (C H 2 -SiH 3 ); 13 C NMR (CDCl 3 ) 14.4 (Si- C H 2 -CH), 12.6 (CH 2 -C H-CH 2 ).

실시예 14. 1,2,3-트리실릴프로판을 이용한 수소의 발생Example 14 Generation of Hydrogen Using 1,2,3-trisilylpropane

1,2,3-트리실릴프로판(1,2,3-trisilylpropane)은 9당량의 메탄올과 반응하여 9당량의 수소를 발생시켰다. 1,2,3-trisilylpropane (1,2,3-trisilylpropane) was reacted with 9 equivalents of methanol to generate 9 equivalents of hydrogen.

[반응식 5][Reaction Scheme 5]

Figure 112011029794423-pat00006
Figure 112011029794423-pat00006

수소발생 반응은 상기 실시예 2와 동일하게 진행되었다. 수소발생량 및 속도는 도 1에 나타나 있다. 수소발생 후 헥산을 과량 주입하면 소듐메톡사이드가 석출되고 걸러진다. 용매를 감압에 의해서 제거하면 수소발생생성물인 3,3,7,7-테트라메톡시-5-(트리메톡시실릴)-2,8-디옥사-3,7-디실라노난이 생성된다.
The hydrogen evolution reaction proceeded in the same manner as in Example 2. Hydrogen generation rate and rate are shown in FIG. Injecting excessive amount of hexane after hydrogen generation precipitates and filters sodium methoxide. Removal of the solvent by reduced pressure yields a hydrogen evolution product, 3,3,7,7-tetramethoxy-5- (trimethoxysilyl) -2,8-dioxa-3,7-disilanonan.

실시예Example 15. 3,3,7,7- 15.3,3,7,7- 테트라메톡시Tetramethoxy -5-(-5- ( 트리메톡시실릴Trimethoxysilyl )-2,8-) -2,8- 디옥사Dioxa -3,7--3,7- 디실라노난의Disilanonan 재생(수소의 저장) Regeneration (storage of hydrogen)

실시예 3과 동일한 방법으로 3,3,7,7-테트라메톡시-5-(트리메톡시실릴)-2,8-디옥사-3,7-디실라노난의 재생이 진행되었다. 재생된 반응생성물은 1H NMR을 통해 확인하였으며 도 3에 그 결과를 나타내었다.
Regeneration of 3,3,7,7-tetramethoxy-5- (trimethoxysilyl) -2,8-dioxa-3,7-disilanonan proceeded in the same manner as in Example 3. The regenerated reaction product was confirmed by 1 H NMR and the results are shown in FIG. 3.

상기 실시예를 종합하여 상기 유기실란화합물 수소저장물질 각각의 수소저장용량은 하기와 같이 계산될 수 있으며, 상기 수소발생 반응에서의 수소발생속도 및 기타 반응에 이용된 물리적 성질은 하기 표 1과 같다.
In total, the hydrogen storage capacity of each of the organosilane compound hydrogen storage materials may be calculated as follows, and the hydrogen generation rate and other physical properties used in the hydrogen generation reaction are shown in Table 1 below. .

수조저장용량 = [발생한 수소의 무게 / (해당 화합물+메탄올+소듐메톡사이드(NaOMe))의 무게]Tank storage capacity = [weight of hydrogen generated / (weight of the compound + methanol + sodium methoxide (NaOMe))]

수소저장물질Hydrogen storage material 수소저장용량(wt% H2)Hydrogen Storage Capacity (wt% H 2 ) 발생수소 당량수Generated hydrogen equivalent number 끓는점
(℃)
Boiling point
(℃)
증기압
(Torr)
Vapor pressure
(Torr)
수소발생속도
(mLmin-1g-1)
Hydrogen Generation Rate
(mLmin -1 g -1 )
1,3,5-트리실라시클로헥산1,3,5-trisilacyclohexane 3.763.76 66 142142 11.511.5 16.016.0 2,5-비스 실릴-1,4-디실라시클로헥산2,5-bis silyl-1,4-disilacyclohexane 4.304.30 1010 166166 -- 35.435.4 1,3,5-트리실라펜탄1,3,5-trisilapentane 4.184.18 88 100100 47.347.3 16.416.4 1,1,2-트리실릴에탄1,1,2-trisilylethane 4.414.41 99 121121 -- 23.723.7 1,2,3-트리실릴프로판1,2,3-trisilylpropane 4.264.26 99 130130 -- 26.026.0

실시예Example 16.  16. 고분자전해질막Polymer electrolyte membrane 연료전지 ( Fuel cell ProtonProton exchangeexchange membranemembrane fuelfuel cellcell , , PEMFCPEMFC )로의 적용Application to)

상기 수소저장물질의 수소발생성능이 우수하므로 PEMFC구동에 요구되는 연료공급용량을 갖는다. 연료전지장치는 데드-엔드(dead-end) 모드로 작동한다. 음극입구 (Anode Inlet)는 메탄올 주입량의 변화에 따라서 0.1-0.5 bar 범위의 압력으로 유지된다. 도 4를 참조하면, 수소실린더로부터 발생하는 수소를 사용한 장치의 작동과 유기실란화합물을 통한 반응기로부터 발생하는 수소를 이용한 장치작동은 큰 차이를 보이지 않고 거의 동등하다.Since the hydrogen generating performance of the hydrogen storage material is excellent, it has a fuel supply capacity required for PEMFC driving. The fuel cell device operates in dead-end mode. The anode inlet is maintained at a pressure in the range of 0.1-0.5 bar depending on the change in methanol injection volume. Referring to FIG. 4, the operation of the device using hydrogen generated from the hydrogen cylinder and the operation of the device using hydrogen generated from the reactor through the organosilane compound show almost no difference.

도 5에는 메탄올 주입량에 따른 수소발생량의 변화량 추이가 나타나 있다. 도 5를 참조하면, 메탄올 주입량에 따라 수소 발생량이 정량적으로 변화하는 것을 알 수 있으며, 이는 수소의 발생량을 조절할 수 있음을 의미한다.
5 shows a change in the amount of hydrogen generation according to the amount of methanol injected. Referring to FIG. 5, it can be seen that the amount of hydrogen generated quantitatively changes according to the amount of methanol injected, which means that the amount of generated hydrogen can be controlled.

결론적으로, 본 발명의 수소저장물질은 실리콘-카본 (Si-C) 기본구조에 실란 (SiH3)이 포함된 환형 및 선형 구조를 가지는 유기실란화합물화합물에 기반하고 있다. 이는 최대 7 wt% H2에 달하는 높은 수소저장용량을 가지고 있으며 상온에서 안정하고 메탄올에서는 반응성이 없다. 따라서 연료전지시스템에서 안정적으로 사용이 가능하다. 액상이므로 시스템적용에 적합하여 효과적인 연료공급이 장점이다. 소듐메톡사이드촉매 사용시에 상온에서 수십초내에 수소를 발생시키므로 수소를 안정적으로 공급이 가능하다. 수소발생생성물은 리튬알라네이트에 의해 정량적 재생이 가능하므로 휴대용 및 운송용 연료전지시스템적용에 매우 적합하다.
In conclusion, the hydrogen storage material of the present invention is based on an organosilane compound compound having a cyclic and linear structure in which a silane (SiH 3 ) is included in a silicon-carbon (Si-C) basic structure. It has a high hydrogen storage capacity of up to 7 wt% H 2 , stable at room temperature and not reactive in methanol. Therefore, it can be used stably in fuel cell system. As it is a liquid phase, it is suitable for system application, and the effective fuel supply is an advantage. When sodium methoxide catalyst is used, hydrogen is generated within several tens of seconds at room temperature, and thus hydrogen can be stably supplied. Hydrogen generation products can be quantitatively regenerated by lithium alanate, making them well suited for portable and transportation fuel cell systems.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항 들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims (12)

삭제delete 2,5-비스 실릴-1,4-디실라시클로헥산, 1,3,5-트리실라펜탄, 1,1,2-트리실릴에탄 및 1,2,3-트리실릴프로판으로 이루어진 군에서 선택되는 수소저장용 유기실란화합물에 대한 알코올화 반응 또는 가수분해 반응 단계를 포함하는 수소의 발생 방법.
Selected from the group consisting of 2,5-bis silyl-1,4-disilacyclohexane, 1,3,5-trisilapentane, 1,1,2-trisilylethane and 1,2,3-trisilylpropane Method of generating hydrogen comprising an alcoholation reaction or hydrolysis reaction step for the organosilane compound for hydrogen storage.
제2항에 있어서, 수소의 발생속도가 16.0-36mLmin-1g-1인 것을 특징으로 하는 수소의 발생 방법.
3. The method of generating hydrogen according to claim 2, wherein the rate of hydrogen generation is 16.0-36 mLmin -1 g -1 .
제2항에 있어서,
상기 알코올화 반응에 촉매를 더 추가하는 것을 특징으로 하는 수소 발생 방법.
The method of claim 2,
Hydrogen generation method, characterized in that further adding a catalyst to the alcoholation reaction.
제4항에 있어서, 상기 촉매는 소듐메톡사이드인 수소 발생 방법.
5. The method of claim 4, wherein said catalyst is sodium methoxide.
제4항에 있어서, 상기 알코올화 반응을 통해 유기실란화합물이 메톡시 실란과 수소를 생성하는 것을 특징으로 하는 수소 발생 방법.
The method of claim 4, wherein the organosilane compound generates methoxy silane and hydrogen through the alcoholation reaction.
제2항에 있어서,
상기 가수분해 반응에 촉매를 더 추가하는 것을 특징으로 하는 수소 발생 방법.
The method of claim 2,
Hydrogen generating method characterized by further adding a catalyst to the hydrolysis reaction.
제7항에 있어서, 상기 촉매는 황산, 메탄술폰산, 염산 및 인산으로 이루어진 군으로부터 선택되는 하나 이상의 무기산 또는 포름산, 아세트산 및 트리플루오로아세트산으로 이루어진 군으로부터 선택되는 하나 이상의 카르복실산인 산성 촉매, 수산화나트륨, 수산화칼륨 및 수산화마그네슘으로 이루어진 군으로부터 선택되는 하나 이상의 알칼리 금속 또는 알칼리 토금속의 수산화물, RuCl3-H2O, RuCl2(PPh3)3, Ru(cod)Cl2, Ru3(CO)12,, RuH2(PPh3)4, [RuCl2(benzene)]2, [RuCl2(p-cymene)]2, [RuCl2(p-cymene)]2, [RuCl2(p-cymene)]2, RhCl(PPh3)3 및 양이온성 레늄(Re, Rhenium)으로 이루어진 군에서 선택되는 것을 특징으로 하는 수소 발생 방법.
8. The acidic catalyst of claim 7, wherein the catalyst is at least one inorganic acid selected from the group consisting of sulfuric acid, methanesulfonic acid, hydrochloric acid and phosphoric acid or at least one carboxylic acid selected from the group consisting of formic acid, acetic acid and trifluoroacetic acid. At least one hydroxide of an alkali metal or alkaline earth metal selected from the group consisting of sodium, potassium hydroxide and magnesium hydroxide, RuCl 3 -H 2 O, RuCl 2 (PPh 3 ) 3 , Ru (cod) Cl 2 , Ru 3 (CO) 12 , , RuH 2 (PPh 3 ) 4 , [RuCl 2 (benzene)] 2 , [RuCl 2 (p-cymene)] 2 , [RuCl 2 (p-cymene)] 2 , [RuCl 2 (p-cymene)] 2 , RhCl (PPh 3 ) 3 and the cationic rhenium (Re, Rhenium) hydrogen generation method characterized in that it is selected from the group consisting of.
제2항의 유기실란화합물의 알코올화 반응물에 촉매를 처리하는 단계를 포함하는 수소의 저장 방법.
A method of storing hydrogen, comprising treating a catalyst to an alcoholation reactant of the organosilane compound of claim 2.
제9항에 있어서,
상기 촉매는 리튬알라네이트(LiAlH4) 또는 소듐알라네이트(NaAlH4)인 것을 특징으로 하는 수소의 저장 방법.
10. The method of claim 9,
The catalyst is lithium alanate (LiAlH 4 ) or sodium alanate (NaAlH 4 ) characterized in that the storage method of hydrogen.
삭제delete 삭제delete
KR1020110037363A 2011-04-21 2011-04-21 Silane-based hydrogen storage materials and method for hydrogen release and regeneration KR101310777B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110037363A KR101310777B1 (en) 2011-04-21 2011-04-21 Silane-based hydrogen storage materials and method for hydrogen release and regeneration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110037363A KR101310777B1 (en) 2011-04-21 2011-04-21 Silane-based hydrogen storage materials and method for hydrogen release and regeneration

Publications (2)

Publication Number Publication Date
KR20120119438A KR20120119438A (en) 2012-10-31
KR101310777B1 true KR101310777B1 (en) 2013-09-25

Family

ID=47286685

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110037363A KR101310777B1 (en) 2011-04-21 2011-04-21 Silane-based hydrogen storage materials and method for hydrogen release and regeneration

Country Status (1)

Country Link
KR (1) KR101310777B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2651161B2 (en) * 2017-07-11 2018-08-13 Universitat Jaume I Process for the production and storage of hydrogen by catalytic dehydrogenation, and use of a catalyst of a transition metal anchored on a support of a carbon material to obtain hydrogen by catalytic dehydrogenation reactions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080267859A1 (en) 2005-08-23 2008-10-30 Abu-Omar Mahdi M Catalytic hydrogen production from hydrolytic oxidation of organosilanes
US20080281055A1 (en) * 2007-05-09 2008-11-13 Momentive Performance Materials Inc. Branched polysiloxane of reduced molecular weight and viscosity
US20090136800A1 (en) 2006-08-03 2009-05-28 Rev Renewable Energy Ventures, Inc. Process for supplying a fuel cell with hydrogen by means of silanes or polysilanes
US20100255392A1 (en) * 2005-08-03 2010-10-07 Spear Scott K Silanes as a source of hydrogen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100255392A1 (en) * 2005-08-03 2010-10-07 Spear Scott K Silanes as a source of hydrogen
US20080267859A1 (en) 2005-08-23 2008-10-30 Abu-Omar Mahdi M Catalytic hydrogen production from hydrolytic oxidation of organosilanes
US20090136800A1 (en) 2006-08-03 2009-05-28 Rev Renewable Energy Ventures, Inc. Process for supplying a fuel cell with hydrogen by means of silanes or polysilanes
US20080281055A1 (en) * 2007-05-09 2008-11-13 Momentive Performance Materials Inc. Branched polysiloxane of reduced molecular weight and viscosity

Also Published As

Publication number Publication date
KR20120119438A (en) 2012-10-31

Similar Documents

Publication Publication Date Title
KR101862012B1 (en) System for storage and release of hydrogen using pyridine-based hydrogen storage materials
KR20080045683A (en) Silanes as a source of hydrogen
KR100921212B1 (en) Organometallic complexes as hydrogen storage materials and a method of preparing the same
CN115210175A (en) Ultra-light hydrogen production reactor with high-efficiency composite material
KR20100036317A (en) Electrolysis of carbon dioxide in aqueous media to carbon monoxide and hydrogen for production of methanol
CN101239701A (en) Apparatus and method for feeding hydrogen
EP2960204B1 (en) Hydrogen storage by reversible hydrogenation of pi-conjugated substrates
EP2536658B1 (en) Phosphine-oxide catalyzed process of production of hydrogen from silylated derivatives as hydrogen carrier
Zhang et al. PdCl2-catalyzed hydrodeoxygenation of 5-hydroxymethylfurfural into 2, 5-dimethylfuran at room-temperature using polymethylhydrosiloxane as the hydrogen donor
Han et al. Silane-based hydrogen storage materials for fuel cell application: Hydrogen release via methanolysis and regeneration by hydride reduction from organosilanes
US20110311439A1 (en) New process of production of hydrogen from silylated derivatives as hydrogen carrier
JP2007182336A (en) Method of generating hydrogen
US20140010717A1 (en) Hyrdrogen generator for fuel cells
Wu et al. Nickel nanoparticles encapsulated in microporous graphenelike carbon (Ni@ MGC) as catalysts for CO2 methanation
KR101310777B1 (en) Silane-based hydrogen storage materials and method for hydrogen release and regeneration
US20130209905A1 (en) Process for the production of hydrogen
Prosini et al. Water consumption during solid state sodium borohydride hydrolysis
JP5297251B2 (en) Hydrogen supply method and hydrogen supply apparatus
WO2006127775A2 (en) Method and device and pure hydrogen generation from acidic solution
CN114289073B (en) Method for producing hydrogen by reforming methanol and water by using Schiff base metal complex in homogeneous phase catalysis
KR101106563B1 (en) Device for hydrogen production
US20110021818A1 (en) Azaborine compounds as hydrogen storage substrates
CN111389395A (en) Ruthenium iridium catalyst, preparation method thereof and application of ruthenium iridium catalyst in hydrogenolysis reaction of 5-hydroxymethylfurfural
CN100558630C (en) Hydrogen supply system
KR101964767B1 (en) Method of preparing syngas and method of preparing liquid fuel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160615

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170707

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180801

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190717

Year of fee payment: 7