KR101308967B1 - Process of preparing polymer/NGPs nanocomposite films with enhanced gas barrier properties - Google Patents

Process of preparing polymer/NGPs nanocomposite films with enhanced gas barrier properties Download PDF

Info

Publication number
KR101308967B1
KR101308967B1 KR1020110091824A KR20110091824A KR101308967B1 KR 101308967 B1 KR101308967 B1 KR 101308967B1 KR 1020110091824 A KR1020110091824 A KR 1020110091824A KR 20110091824 A KR20110091824 A KR 20110091824A KR 101308967 B1 KR101308967 B1 KR 101308967B1
Authority
KR
South Korea
Prior art keywords
polymer
ngps
nanographene
nanographene sheet
nanocomposite film
Prior art date
Application number
KR1020110091824A
Other languages
Korean (ko)
Other versions
KR20130028341A (en
Inventor
박민
심현석
국정인
김태안
김희숙
이상수
임순호
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020110091824A priority Critical patent/KR101308967B1/en
Publication of KR20130028341A publication Critical patent/KR20130028341A/en
Application granted granted Critical
Publication of KR101308967B1 publication Critical patent/KR101308967B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/30Processes for applying liquids or other fluent materials performed by gravity only, i.e. flow coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Abstract

본 발명은 나노 크기로 박리가 이루어진 NGPs가 고분자 매트릭스 내에 내첨형의 형태로 고르게 분산되어 있는 고분자 나노복합체를 제조하는 발명에 관한 것으로서, 간단한 초음파 처리법을 통해 그래파이트로부터 NGPs를 쉽게 제조하고, 고분자와 미량의 NGPs로 구성된 나노복합체의 제조방법을 제공한다. 본 발명에 의해 제조되어 NGPs의 박리 및 분산 상태가 향상된 고분자 나노복합체는 우수한 기체 차단성 및 기계적 특성을 지니게 되므로 각 종 구조재료 및 포장재료 등에 응용될 수 있다.The present invention relates to the invention for producing a polymer nanocomposite in which NGPs, which have been exfoliated to a nano size, are evenly dispersed in a polymerized form in a polymer matrix, and easily prepare NGPs from graphite through a simple sonication method. It provides a method for producing a nanocomposite consisting of NGPs. The polymer nanocomposite prepared by the present invention having improved peeling and dispersion state of NGPs has excellent gas barrier properties and mechanical properties, and thus may be applied to various structural materials and packaging materials.

Description

기체 차단성이 향상된 고분자/나노그래핀시트 나노복합체 필름의 제조방법{Process of preparing polymer/NGPs nanocomposite films with enhanced gas barrier properties}Process of preparing polymer / NGPs nanocomposite films with enhanced gas barrier properties

본 발명은 고분자/나노그래핀시트 나노복합체 필름의 제조방법에 관한 것으로서, 더욱 상세하게는 그래파이트를 초음파 처리하여 나노그래핀시트를 제조하고, 이를 이용하여 기체 차단성 및 고분자의 물성을 향상시킨 고분자/나노그래핀시트 나노복합체 필름의 제조 방법에 관한 것이다.The present invention relates to a method for producing a polymer / nanographene sheet nanocomposite film, and more particularly, to prepare a nanographene sheet by ultrasonically treating graphite, using the polymer to improve gas barrier properties and polymer properties It relates to a method for producing a nano-graphene sheet nanocomposite film.

고분자와 나노그래핀시트(NGPs)로 구성된 나노복합체의 제조에 관한 연구는 NGPs의 도입으로 고분자 재료의 기계적, 열적, 전기적 물성 등 각종 성질을 개선시키는데 목적을 두고 있으며, 최근까지 전 세계적으로 활발한 연구가 진행되고 있다.The research on the preparation of nanocomposites composed of polymers and nanographene sheets (NGPs) aims to improve various properties such as mechanical, thermal and electrical properties of polymer materials with the introduction of NGPs. Is going on.

특히, 고분자와 함께 복합체를 구성하는 NGPs는, 2차원 판상의 탄소 물질이 층을 이루고 있는 그래파이트를 박리(exfoliation 또는 delamination)하여 얻을 수 있으며, 그 두께는 약 0.34-100 ㎚ 수준이다. 이는 복합체를 제조할 때 고분자 사슬에 의해 층간 삽입(intercalation)이 이루어지며, 동시에 추가적인 박리가 가능하다. 그래파이트는 일반적으로 적당한 두께의 NGPs로 박리시킨 후 고분자와의 복합체 제조에 사용되는데, 이때 고분자 매트릭스 내에 박리된 NGPs를 내첨형의 형태로 고르게 분산하는 것이 고분자 나노복합체의 물성을 결정하는데 핵심적인 기술이라 할 수 있다.In particular, the NGPs constituting the composite together with the polymer can be obtained by exfoliation or delamination of graphite layered with a two-dimensional plate-like carbon material, and the thickness is about 0.34-100 nm. This is achieved by intercalation by the polymer chain when preparing the composite, and at the same time additional peeling is possible. Graphite is generally used for the preparation of composites with polymers after peeling with NGPs of suitable thickness. At this time, evenly dispersing NGPs in the polymer matrix in the form of internal additives is a key technique for determining the physical properties of polymer nanocomposites. can do.

그래핀을 생산하기 위하여 종래 기술로서 Kosynkin et al은 강산에 탄소나노튜브를 넣어서, 세로로 자르고 연결된 화학적 결합을 풀어서 그래핀을 생산하였다. 처음 황산과 질산을 액체 상태에서 정제되지 않은 탄소나노튜브를 섞어 산에 의하여 쉽게 산화되어 녹아 버리는 비정질불순물들을 녹여 탄소나노튜브만 남게 한 후, 과망간산칼륨(KMnO4)를 혼합하여 탄소나노튜브 내부 탄소간의 결합를 공격하여 연결부위를 끊어 언지핑함으로써, 그래핀 나노리본(graphene nanoribbons)(GNRs)을 제조하였다.(D. V. Kosynkin et al. (2009). "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons". Nature 458: 872.) 또한, 카본나노튜브 표면에 폴리머 필름(PMMA)으로 코팅한 후. 아르곤 플라즈마 에칭을 하여 10-20 ㎚의 좁은 폭을 갖는 그래핀 리본을 제조하기도 하였으며(Nature 458, 877, 2009), 또한 Ni 또는 Co와 같은 전이금속 나노입자를 사용하여 카본나노튜브를 열어 15-40 ㎚의 폭과 100-500 ㎚의 길이를 갖는 그래핀을 제조하였다.(Nano Lett. 9, 1527(2009))In order to produce graphene, Kosynkin et al., As a prior art, produced graphene by inserting carbon nanotubes into strong acids, cutting them vertically and releasing the connected chemical bonds. First, sulfuric acid and nitric acid are mixed with unrefined carbon nanotubes in a liquid state to dissolve amorphous impurities that are easily oxidized and dissolved by acid, leaving only carbon nanotubes, and then mixing potassium permanganate (KMnO 4 ) to carbon inside carbon nanotubes. Graphene nanoribbons (GNRs) were prepared by attacking the bonds of the liver and breaking the connection sites (DV Kosynkin et al. (2009). "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons". 458: 872.) After the carbon nanotube surface was coated with a polymer film (PMMA). Argon plasma etching was used to produce graphene ribbons with a narrow width of 10-20 nm (Nature 458, 877, 2009), and also by opening carbon nanotubes using transition metal nanoparticles such as Ni or Co. Graphene having a width of 40 nm and a length of 100-500 nm was prepared. (Nano Lett. 9, 1527 (2009)).

그러나, 상기 방법은 모두 산처리와 같은 화학적 방법이 필수적으로 필요하여, 다량의 산성용매를 사용하는 각 처리 단계마다 원심분리 및 필터를 통하여 분리 추출을 반복해야 하기 때문에 수율이 낮은 점, 그리고 처리과정이 복잡하고, 처리과정에 많은 시간이 소요되며, 처리비용이 많이 드는 점, 처리과정에서 생성되는 화공약품의 부산물에 대한 처리가 어렵고, 이러한 부산물은 환경을 오염시킬 수 있는 점 등의 문제점이 있다.However, all of the above methods require a chemical method such as acid treatment, and thus, the yield is low because the separation extraction through the centrifugation and the filter must be repeated for each processing step using a large amount of acid solvent, and the treatment process. This complicated, time-consuming process, high processing costs, difficult to process by-products of chemicals generated during the process, these by-products can pollute the environment, etc. .

상기와 같이 종래에는 그래파이트에 강산을 이용한 화학적 박리법으로 NGPs를 얻고, 이를 이용해 고분자 나노복합체를 제조한 연구 결과들이 보고된 바 있으나, 강산에 의해 NGPs의 구조적인 결함 현상 등이 일어나 효과적인 물성 향상이 이루어지지 않아 문제가 되고 있었다.As described above, conventionally, NGPs have been obtained by chemical exfoliation using a strong acid in graphite, and research results of manufacturing polymer nanocomposites using the same have been reported. However, the structural defects of NGPs are caused by strong acid, thereby effectively improving physical properties. It was not lost and became problem.

따라서, 본 발명이 해결하고자 하는 과제는 고분자 나노복합체를 제조함에 있어서 구조적인 결함을 최소화하고 고분자 매트릭스 내에 나노그래핀시트(NGPs)가 잘 박리된 상태로 분산될 수 있게 하여, 고분자 나노복합체의 기체 차단성을 높이고, 기계적 특성이 향상된 고분자/나노그래핀시트 나노복합체 필름의 제조방법을 제공하는 것이다.Therefore, the problem to be solved by the present invention is to minimize the structural defects in the preparation of the polymer nanocomposite and to be dispersed in the state that the nanographene sheets (NGPs) in the polymer matrix in a well peeled state, the gas of the polymer nanocomposite It is to provide a method of manufacturing a polymer / nanographene sheet nanocomposite film with improved barrier properties and improved mechanical properties.

또한, 고분자에 나노그래핀시트가 미량 첨가되더라도, 일정 수준 이상의 기체 차단성 및 기계적 특성을 갖는 고분자/나노그래핀시트 나노복합체 필름의 제조방법을 제공하는 것이다.In addition, even if a small amount of nanographene sheet is added to the polymer, to provide a method for producing a polymer / nanographene sheet nanocomposite film having a certain level or more gas barrier properties and mechanical properties.

본 발명은 상기 과제를 달성하기 위하여,In order to achieve the above object,

(a) 층상 구조의 그래파이트를 용매에 분산시킨 후, 초음파 처리하여 용액 내에서 나노그래핀시트를 박리시키는 단계; (b) 상기 나노그래핀시트 용액과 고분자 용액을 혼합한 후 초음파 처리하는 단계; 및 (c) 상기 초음파 처리한 혼합 용액을 드랍 코팅하고 건조하여 필름을 제조하는 단계;를 포함하고, 상기 고분자 내에 상기 나노그래핀시트가 내첨형으로 분산되어 있는 것을 특징으로 하는 고분자/나노그래핀시트 나노복합체 필름의 제조방법을 제공한다.(a) dispersing the layered graphite in a solvent, followed by sonication to release the nanographene sheet in the solution; (b) sonicating the nanographene sheet solution and the polymer solution after mixing; And (c) drop coating and drying the sonicated mixed solution to prepare a film, wherein the nanographene sheet is dispersed in the polymer in an internal form. It provides a method for producing a sheet nanocomposite film.

본 발명의 일 실시예에 의하면, 상기 용매는 소듐 도데실벤젠설포네이트(SDBS) 및 소듐 도데실설포네이트(SDS) 중에서 선택된 어느 하나를 포함하는 수용액 또는 N,N-다이메틸포름아마이드(DMF), N,N-다이메틸아세트아마이드(DMAc), N-메틸-2-피롤리돈(NMP) 및 테트라히드로퓨란(THF) 중에서 선택되는 어느 하나일 수 있고, 바람직하게는 N,N-다이메틸아세트아마이드일 수 있다.According to an embodiment of the present invention, the solvent is an aqueous solution or N, N-dimethylformamide (DMF) comprising any one selected from sodium dodecylbenzenesulfonate (SDBS) and sodium dodecylsulfonate (SDS) , N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and tetrahydrofuran (THF) may be any one, preferably N, N-dimethyl Acetamide.

본 발명의 다른 일 실시예에 의하면, 상기 고분자는 특정한 고분자로 제한되는 것은 아니나, 폴리(비닐 알코올), 폴리(비닐알코올-co-에틸렌) 또는 폴리(비닐아세테이트-co-에틸렌)일 수 있고, 상기 고분자 용액에 사용된 용매는 소듐 도데실벤젠설포네이트(SDBS) 및 소듐 도데실설포네이트(SDS) 중에서 선택된 어느 하나를 포함하는 수용액 또는 N,N-다이메틸포름아마이드(DMF), N,N-다이메틸아세트아마이드(DMAc), N-메틸-2-피롤리돈(NMP) 및 테트라히드로퓨란(THF) 중에서 선택되는 어느 하나일 수 있다.According to another embodiment of the present invention, the polymer is not limited to a specific polymer, but may be poly (vinyl alcohol), poly (vinyl alcohol-co-ethylene) or poly (vinylacetate-co-ethylene), The solvent used in the polymer solution is an aqueous solution containing any one selected from sodium dodecylbenzenesulfonate (SDBS) and sodium dodecylsulfonate (SDS) or N, N-dimethylformamide (DMF), N, N -Dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and tetrahydrofuran (THF).

본 발명의 다른 일 실시예에 의하면, 상기 (a) 및 (b) 단계에서의 초음파 처리는 50-700 W의 세기로 10-120 분 동안 실시할 수 있다.According to another embodiment of the present invention, the ultrasonic treatment in the step (a) and (b) can be performed for 10-120 minutes with an intensity of 50-700 W.

본 발명의 다른 일 실시예에 의하면, 극소량의 나노그래핀시트에 의해서도 기체 차단성 및 고분자의 물성을 향상시킬 수 있으며, 바람직하게는 상기 나노 복합체 총중량 기준 나노그래핀시트의 중량이 0.1-1.0 중량%일 수 있다.According to another embodiment of the present invention, even a very small amount of nanographene sheet can improve the gas barrier properties and the physical properties of the polymer, preferably the weight of the nanographene sheet based on the total weight of the nanocomposite is 0.1-1.0 weight May be%.

본 발명에 따른 나노그래핀시트 및 이를 고분자에 내첨형으로 분산시킨 나노그래핀시트/고분자 나노복합체 필름의 제조 방법은 그래파이트의 박리 공정에서 강산 및 유기용매의 과다한 사용이 필요 없어 합성 공정이 친환경적이고, 낮은 비용, 짧은 제조시간으로 공정 효율이 우수하다. 또한, 고분자에 나노그래핀시트가 내첨형의 형태로 효과적인 분산이 기체 차단성 및 기계적 특성이 우수한 고분자 나노복합체를 제조할 수 있다.The nanographene sheet according to the present invention and a method for producing a nanographene sheet / polymer nanocomposite film dispersed therein in a polymer internally do not require excessive use of a strong acid and an organic solvent in the exfoliation process of graphite, the synthesis process is environmentally friendly Excellent process efficiency due to low cost and short manufacturing time. In addition, it is possible to prepare a polymer nanocomposite having excellent gas barrier properties and mechanical properties in the dispersion of the nanographene sheet in the form of an internal additive in the polymer.

도 1은 나노그래핀시트로 박리 전의 expanded 그래파이트의 형상을 나타내는 SEM 이미지이다.
도 2는 본 발명의 일 실시예에 따라 제조된 박리된 나노그래핀시트의 형상을 나타내는 SEM 이미지이다.
도 3은 본 발명의 일 실시예에 따라 제조한 고분자 나노복합체 필름에 대한 OTR(Oxygen Transfer Rate) 변화를 나타낸 그래프이다.
1 is an SEM image showing the shape of expanded graphite before peeling with a nanographene sheet.
Figure 2 is a SEM image showing the shape of the peeled nanographene sheet prepared according to an embodiment of the present invention.
Figure 3 is a graph showing the change in Oxygen Transfer Rate (OTR) for the polymer nanocomposite film prepared according to an embodiment of the present invention.

이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 고분자/나노그래핀시트 나노복합체 필름의 제조방법은 층상 구조의 그래파이트를 용매에 분산시킨 후, 초음파 처리하여 용액 내에서 나노그래핀시트를 박리시키는 단계, 상기 나노그래핀시트 용액과 고분자 용액을 혼합한 후 초음파 처리하는 단계 및 상기 초음파 처리한 혼합 용액을 드랍 코팅하고 건조하여 필름을 제조하는 단계를 포함하는 것을 특징으로 한다.Method for producing a polymer / nanographene sheet nanocomposite film according to the present invention is to disperse the graphite layer of the layer structure in a solvent, followed by ultrasonic treatment to peel the nanographene sheet in a solution, the nanographene sheet solution And mixing the polymer solution with an ultrasonic wave and drop coating and drying the sonicated mixed solution to prepare a film.

본 발명은 층상 구조의 그래파이트를 포함한 용액을 초음파 처리하여 그래파이트가 박리된 형태인 나노그래핀시트(NGPs)를 제조하는 방법을 제공한다.The present invention provides a method for producing nanographene sheets (NGPs) in the form of graphite is peeled off by ultrasonically treating a solution containing graphite having a layered structure.

또한, 본 발명은 층상 구조의 그래파이트를 포함한 용액을 초음파 처리하여 그래파이트가 박리된 형태인 나노그래핀시트(NGPs)를 얻고, 상기 NGPs 용액과 고분자 용액을 혼합한 뒤 추가적인 초음파 처리를 통해 고분자 사슬이 NGPs에 층간 삽입되어, 결과적으로 NGPs가 고분자 매트릭스 내에 내첨형의 형태로 효과적인 분산이 이루어지는 것을 특징으로 하는 고분자 나노복합체 필름의 제조 방법을 제공한다.In addition, the present invention to obtain a nano-graphene sheet (NGPs) in the form of graphite is separated by ultrasonic treatment of the solution containing the graphite of the layered structure, the polymer chains through the additional ultrasonic treatment after mixing the NGPs solution and the polymer solution It is intercalated into NGPs, and as a result, a method for producing a polymer nanocomposite film is characterized in that the NGPs are effectively dispersed in an indwelling form in the polymer matrix.

본 발명에 따르는, 고분자 사슬이 NGPs 층간에 삽입되어, 결과적으로 NGPs가 고분자 매트릭스 내에 내첨형의 형태로 효과적인 분산이 이루어지는 것은 특정 고분자, 특정 용매에 제한되는 것이 아니라 범용적으로 적용될 수 있다.According to the present invention, the polymer chain is intercalated between the NGPs layers, and as a result, the effective dispersion of the NGPs in the form of internal additives in the polymer matrix is not limited to a specific polymer, a specific solvent, but can be applied universally.

고분자 나노복합체 제조시, 고분자 질량 대비 0.1-1.0 중량%의 나노그래핀시트(NGPs)가 첨가되는데, 본 발명은 극소량의 NGPs의 첨가로 인하여 기체 차단성 및 고분자의 물성을 효과적으로 개선시킨 것을 특징으로 한다.When preparing the polymer nanocomposite, 0.1-1.0 wt% of nanographene sheets (NGPs) are added to the polymer mass, and the present invention is characterized by effectively improving gas barrier properties and polymer properties due to the addition of very small amounts of NGPs. do.

또한, 고분자 나노복합체 제조시, 고분자 사슬이 나노그래핀시트(NGPs) 층간 삽입이 용이하게 이루어지게 하기 위하여, 그래파이트 박리를 위한 초음파 처리 외에 추가적인 초음파 처리를 하게 되는데, 본 발명은 이와 같은 추가적인 초음파 처리로 고분자 매트릭스 내에 NGPs가 내첨형의 형태로 균일하게 분산되는 것을 특징으로 한다.In addition, in the preparation of the polymer nanocomposite, in order to facilitate the intercalation of the nanographene sheets (NGPs), the polymer chain is subjected to additional sonication in addition to sonication for graphite exfoliation. NGPs are uniformly dispersed in the form of internal additives in the polymer matrix.

상기 추가적인 초음파 처리는 50-700 W의 크기로 10-120 분 동안 실시하는 것이 바람직하다. 초음파의 세기가 50 W 미만에서는 너무 약하여 나노그래핀시트(NGPs)의 추가 박리 및 분산이 잘 이루어지지 않으며, 700 W를 넘어가게 되면 그 세기가 너무 강해 고분자 매트릭스에 열화가 발생하여 물성이 저하될 가능성이 있으며, NGPs의 구조가 파괴되는 결함 현상이 발생할 여지가 있다.The additional sonication is preferably carried out for 10-120 minutes with a size of 50-700 W. When the intensity of the ultrasonic wave is less than 50 W, it is too weak to further exfoliate and disperse the nanographene sheets (NGPs), and when it exceeds 700 W, the strength is too strong to cause deterioration of the polymer matrix and deteriorate physical properties. There is a possibility, and there is a possibility of a defect phenomenon that destroys the structure of NGPs.

본 발명에서 사용되는 그래파이트로는 natural 그래파이트, expanded 그래파이트, expandable 그래파이트 또는 synthetic 그래파이트가 있으며, 이들을 혼합하여 사용할 수도 있다. 다만 본 발명이 상기 그래파이트의 종류에 한정되는 것은 아니다.Graphite used in the present invention is natural graphite, expanded graphite, expandable graphite or synthetic graphite, may be used by mixing them. However, the present invention is not limited to the type of graphite.

또한, 본 발명에서 사용되는 용매는, NGPs의 분산에 유리하고 고분자를 녹일 수 있어야 한다. 이러한 용매로서, 소듐 도데실벤젠설포네이트(SDBS) 및 소듐 도데실설포네이트(SDS) 중에서 선택된 어느 하나를 포함하는 수용액 또는 N,N-다이메틸포름아마이드(DMF), N,N-다이메틸아세트아마이드(DMAc), N-메틸-2-피롤리돈(NMP), 테트라히드로퓨란(THF) 등이 있지만, 상기 용매의 종류에 한정되는 것은 아니다.
In addition, the solvent used in the present invention should be advantageous for the dispersion of NGPs and to dissolve the polymer. As such a solvent, an aqueous solution comprising any one selected from sodium dodecylbenzenesulfonate (SDBS) and sodium dodecylsulfonate (SDS) or N, N-dimethylformamide (DMF), N, N-dimethylacet Amide (DMAc), N-methyl-2-pyrrolidone (NMP), tetrahydrofuran (THF), and the like, but are not limited to the kind of the solvent.

이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않고, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. It will be clear to those who have knowledge.

실시예 1. 고분자/나노그래핀시트 나노복합체 필름의 제조Example 1 Preparation of Polymer / Nanographene Sheet Nanocomposite Film

(1) 하기 도 1과 같은 미량의 expanded 그래파이트와 하기 구조식의 N,N-다이메틸아세트아미드(N,N-dimethylacetamide, DMAc)를 혼합한 뒤, 60 분간 상온 조건에서 초음파 처리하여 나노그래핀(NGPs) 용액을 제조하였다.(1) After mixing a small amount of expanded graphite as shown in Figure 1 and N, N-dimethylacetamide (DMAc) of the following structural formula, and then ultrasonically treated at room temperature for 60 minutes to nanographene ( NGPs) solution was prepared.

[DMAc][DMAc]

Figure 112011070776317-pat00001

Figure 112011070776317-pat00001

(2) 폴리(비닐 알콜-co-에틸렌)(Poly(vinylalcohol-co-ethylene))을 DMAc에서 60 분간 130 ℃의 조건 하에서 용해시켜 고분자 용액을 제조하였다.
(2) Poly (vinyl alcohol-co-ethylene) (Poly (vinylalcohol-co-ethylene)) was dissolved in DMAc for 60 minutes at 130 ° C. to prepare a polymer solution.

(3) 상기 두 용액을 130 ℃ 조건 하에서 기계적 교반을 통해 혼합한 후, 30 분간 추가적인 초음파 처리를 실시하였다. 원심분리를 통해 상대적으로 박리가 이루어지지 않은 NGPs를 제거한 최종 용액을 깨끗한 유리 기판에 드랍 코팅하고 건조시켜서 나노복합체 필름을 제조하였다.
(3) The two solutions were mixed by mechanical stirring under 130 ° C., followed by additional sonication for 30 minutes. The nanocomposite film was prepared by drop coating and drying the final solution from which NGPs, which had not been relatively separated through centrifugation, was coated on a clean glass substrate and dried.

실시예 2. 고분자/나노그래핀시트 나노복합체 필름의 제조Example 2. Preparation of Polymer / Nanographene Sheet Nanocomposite Film

(1) 하기 도 1과 같은 미량의 expanded 그래파이트와 하기 구조식의 나트륨 도데실벤젠설포네이트(Sodium dodecylbenzenesulfonate, SDBS)를 소량 녹인 수용액을 혼합한 뒤, 60 분간 상온 조건에서 초음파 처리하여 나노그래핀(NGPs) 용액을 제조하였다.(1) A small amount of expanded graphite as shown in FIG. 1 and a small amount of sodium dodecylbenzenesulfonate (SDBS) of the following structural formula are mixed, followed by ultrasonic treatment at room temperature for 60 minutes to obtain nanographene (NGPs). ) Solution was prepared.

[SDBS][SDBS]

Figure 112011070776317-pat00002

Figure 112011070776317-pat00002

(2) 폴리(비닐 알콜)(Poly(vinyl alcohol)을 SDBS 수용액에 60 분간 80 ℃ 조건에서 용해시켜 고분자 용액을 제조하였다.
(2) Poly (vinyl alcohol) was dissolved in an SDBS aqueous solution at 80 ° C. for 60 minutes to prepare a polymer solution.

(3) 상기 두 용액을 80 ℃ 조건 하에서 기계적 교반을 통해 혼합한 후, 30 분간 추가적인 초음파 처리를 실시하였다. 원심분리를 통해 상대적으로 박리가 이루어지지 않은 NGPs를 제거한 최종 용액을 깨끗한 유리 기판에 드랍 코팅하고 건조시켜서 나노복합체 필름을 제조하였다.
(3) The two solutions were mixed by mechanical stirring under the condition of 80 ° C., followed by additional sonication for 30 minutes. The nanocomposite film was prepared by drop coating and drying the final solution from which NGPs, which had not been relatively separated through centrifugation, was coated on a clean glass substrate and dried.

평가예 1. 산소투과도 측정Evaluation Example 1. Oxygen Permeability Measurement

상기 실시예 1과 동일한 방법으로 제조하고, NGPs 함량을 0.1 wt%, 0.5 wt%로 하여 제조한 후, 이에 대해서 각각 산소 투과도를 측정하였다.Prepared in the same manner as in Example 1, and prepared by the NGPs content of 0.1 wt%, 0.5 wt%, and the oxygen permeability was measured for each.

또한, 상기 실시예 1 내지 2와는 달리 나노그래핀 시트를 포함하지 않고, 폴리(비닐 알콜)로 제조한 필름(비교예 1)에 대해서 산소 투과도를 측정하였다.Also, unlike Examples 1 to 2, oxygen permeability was measured for a film (Comparative Example 1) made of a poly (vinyl alcohol) without a nanographene sheet.

산소 투과도 측정은 시험기기 OX-TRAN(MODEL 2/61, MOCON, 미국)에서 시험방법 ASFM F 1927:2007에 의해서 23±2 ℃에서 측정하여 ㎤/(㎡·day)로 산소투과도를 하기 [표 1]에 나타내었다.Oxygen permeability was measured at 23 ± 2 ° C by test method ASFM F 1927: 2007 on test equipment OX-TRAN (MODEL 2/61, MOCON, USA). 1].

구분division 산소투과도(㎤/(㎡·day))Oxygen permeability (cm 3 / (㎡ · day)) 실시예 1 (NGPs 0.1 wt%)Example 1 (NGPs 0.1 wt%) 1.01.0 실시예 1 (NGPs 0.5 wt%)Example 1 (NGPs 0.5 wt%) 0.80.8 비교예 1Comparative Example 1 1.8-2.51.8-2.5

상기 [표 1]에서 보는 바와 같이, 나노그래핀 시트를 포함하지 않은 폴리비닐알콜 시트에 비해서 본 발명의 폴리비닐알콜/나노그래핀시트 나노복합체 필름의 기체 차단성이 우수함을 알 수 있다.As shown in Table 1, it can be seen that the polyvinyl alcohol / nanographene sheet nanocomposite film of the present invention is excellent in gas barrier properties compared to the polyvinyl alcohol sheet not containing the nanographene sheet.

Claims (7)

(a) 층상 구조의 그래파이트를 용매에 분산시킨 후, 초음파 처리하여 용액 내에서 나노그래핀시트를 박리시키는 단계;
(b) 상기 나노그래핀시트 용액과 고분자 용액을 혼합한 후 초음파 처리하는 단계; 및
(c) 상기 초음파 처리한 혼합 용액을 드랍 코팅하고 건조하여 필름을 제조하는 단계;를 포함하고,
상기 (a) 및 (b) 단계에서의 초음파 처리는 50-700 W의 세기로 10-120 분 동안 실시하는 것을 특징으로 하며,
상기 고분자 내에 상기 나노그래핀시트가 내첨형으로 분산되어 있는 것을 특징으로 하는 고분자/나노그래핀시트 나노복합체 필름의 제조방법.
(a) dispersing the layered graphite in a solvent, followed by sonication to release the nanographene sheet in the solution;
(b) sonicating the nanographene sheet solution and the polymer solution after mixing; And
(c) drop coating and drying the sonicated mixed solution to prepare a film;
The ultrasonication in the steps (a) and (b) is characterized in that for 10-120 minutes at an intensity of 50-700 W,
Method for producing a polymer / nanographene sheet nanocomposite film, characterized in that the nanographene sheet is dispersed in the polymer in an internal form.
제 1 항에 있어서,
상기 (a) 단계의 용매는 소듐 도데실벤젠설포네이트(SDBS) 및 소듐 도데실설포네이트(SDS) 중에서 선택된 어느 하나를 포함하는 수용액 또는 N,N-다이메틸포름아마이드(DMF), N,N-다이메틸아세트아마이드(DMAc), N-메틸-2-피롤리돈(NMP) 및 테트라히드로퓨란(THF) 중에서 선택되는 어느 하나인 것을 특징으로 하는 고분자/나노그래핀시트 나노복합체 필름의 제조방법.
The method of claim 1,
The solvent of step (a) is an aqueous solution containing any one selected from sodium dodecylbenzenesulfonate (SDBS) and sodium dodecylsulfonate (SDS) or N, N-dimethylformamide (DMF), N, N Method for producing a polymer / nanographene sheet nanocomposite film, characterized in that any one selected from dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and tetrahydrofuran (THF) .
제 1 항에 있어서,
상기 (b) 단계의 고분자는 폴리(비닐 알코올), 폴리(비닐알코올-co-에틸렌) 또는 폴리(비닐아세테이트-co-에틸렌)이고, 상기 고분자 용액에 사용된 용매는 소듐 도데실벤젠설포네이트(SDBS) 및 소듐 도데실설포네이트(SDS) 중에서 선택된 어느 하나를 포함하는 수용액 또는 N,N-다이메틸포름아마이드(DMF), N,N-다이메틸아세트아마이드(DMAc), N-메틸-2-피롤리돈(NMP) 및 테트라히드로퓨란(THF) 중에서 선택되는 어느 하나인 것을 특징으로 하는 고분자/나노그래핀시트 나노복합체 필름의 제조방법.
The method of claim 1,
The polymer of step (b) is poly (vinyl alcohol), poly (vinyl alcohol-co-ethylene) or poly (vinylacetate-co-ethylene), and the solvent used in the polymer solution is sodium dodecylbenzenesulfonate ( SDBS) and aqueous solution comprising any one selected from sodium dodecylsulfonate (SDS) or N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methyl-2- Method for producing a polymer / nanographene sheet nanocomposite film, characterized in that any one selected from pyrrolidone (NMP) and tetrahydrofuran (THF).
삭제delete 제 1 항에 있어서,
상기 나노복합체 필름 총중량 기준 나노그래핀시트의 중량이 0.1-1.0 중량%인 것을 특징으로 하는 고분자/나노그래핀시트 나노복합체 필름의 제조방법.
The method of claim 1,
Method for producing a polymer / nanographene sheet nanocomposite film, characterized in that the weight of the nano-composite film total weight of the nanographene sheet is 0.1-1.0% by weight.
제 1 항에 있어서,
상기 고분자/나노그래핀시트 나노복합체 필름의 산소투과도가 0.5-1.0 ㎤/(㎡·day)인 것을 특징으로 하는 고분자/나노그래핀시트 나노복합체 필름의 제조방법.
The method of claim 1,
Oxygen permeability of the polymer / nanographene sheet nanocomposite film is 0.5-1.0 cm 3 / (m 2 · day) method for producing a polymer / nanographene sheet nanocomposite film.
제 1 항 내지 제 3 항 및 제 5 항 내지 제 6 항 중 어느 한 항에 따른 제조방법에 따라 제조되는 고분자/나노그래핀시트 나노복합체 필름으로서,
상기 고분자 질량 대비 나노그래핀시트의 중량이 0.1-1.0 중량%이고, 상기 나노복합체 필름의 산소투과도가 0.5-1.0 ㎤/(㎡·day)인 것을 특징으로 하는 고분자/나노그래핀시트 나노복합체 필름.
As a polymer / nanographene sheet nanocomposite film prepared according to the manufacturing method according to any one of claims 1 to 3 and 5 to 6.
The weight of the nano-graphene sheet to the polymer mass is 0.1-1.0% by weight, and the polymer / nanographene sheet nanocomposite film, characterized in that the oxygen permeability of the nanocomposite film is 0.5-1.0 cm 3 / (m 2 · day) .
KR1020110091824A 2011-09-09 2011-09-09 Process of preparing polymer/NGPs nanocomposite films with enhanced gas barrier properties KR101308967B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110091824A KR101308967B1 (en) 2011-09-09 2011-09-09 Process of preparing polymer/NGPs nanocomposite films with enhanced gas barrier properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110091824A KR101308967B1 (en) 2011-09-09 2011-09-09 Process of preparing polymer/NGPs nanocomposite films with enhanced gas barrier properties

Publications (2)

Publication Number Publication Date
KR20130028341A KR20130028341A (en) 2013-03-19
KR101308967B1 true KR101308967B1 (en) 2013-09-17

Family

ID=48178890

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110091824A KR101308967B1 (en) 2011-09-09 2011-09-09 Process of preparing polymer/NGPs nanocomposite films with enhanced gas barrier properties

Country Status (1)

Country Link
KR (1) KR101308967B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133849A1 (en) * 2014-03-07 2015-09-11 한양대학교 산학협력단 Graphene oxide nanocomposite membrane having improved gas barrier characteristics and method for manufacturing same
US9969682B2 (en) 2015-03-17 2018-05-15 Nitto Denko Corporation Functionalized graphene barrier element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6514343B2 (en) * 2015-01-14 2019-05-15 日東電工株式会社 Graphene oxide barrier film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100996883B1 (en) 2010-01-08 2010-11-26 전남대학교산학협력단 Method of green synthesis of graphene nano-sheets and graphene nano-sheets
KR20110016289A (en) * 2009-08-11 2011-02-17 고양미 Producing method of carbon-nanosheets composits

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110016289A (en) * 2009-08-11 2011-02-17 고양미 Producing method of carbon-nanosheets composits
KR100996883B1 (en) 2010-01-08 2010-11-26 전남대학교산학협력단 Method of green synthesis of graphene nano-sheets and graphene nano-sheets

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ACS NANO, 2010 *
POLYM INT, 2011 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133849A1 (en) * 2014-03-07 2015-09-11 한양대학교 산학협력단 Graphene oxide nanocomposite membrane having improved gas barrier characteristics and method for manufacturing same
US9969682B2 (en) 2015-03-17 2018-05-15 Nitto Denko Corporation Functionalized graphene barrier element

Also Published As

Publication number Publication date
KR20130028341A (en) 2013-03-19

Similar Documents

Publication Publication Date Title
Shen et al. Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications
Jiang et al. Lightweight spongy bone-like graphene@ SiC aerogel composites for high-performance microwave absorption
Phiri et al. General overview of graphene: Production, properties and application in polymer composites
Chen et al. A temperature-induced conductive coating via layer-by-layer assembly of functionalized graphene oxide and carbon nanotubes for a flexible, adjustable response time flame sensor
Yu et al. Permittivity, thermal conductivity and thermal stability of poly (vinylidene fluoride)/graphene nanocomposites
Cai et al. Recent advance in functionalized graphene/polymer nanocomposites
US10472243B2 (en) Industrial method for preparing large-sized graphene
WO2016074393A1 (en) Method for large-scale preparation of bulky graphene
KR20180094874A (en) Chemical-free manufacturing of graphene reinforced polymer matrix composites
JP2016505649A (en) Film-forming composition comprising graphene material and conductive polymer
JP2018530497A (en) Production of highly oriented graphene oxide films and graphite films obtained therefrom
WO2011014347A1 (en) Mass production of pristine nano graphene materials
Liu et al. Largely enhanced oxidation of graphite flakes via ammonium persulfate-assisted gas expansion for the preparation of graphene oxide sheets
EP2570462A1 (en) Method of producing graphene layers and paste comprising graphene nanoplatelets
KR101678817B1 (en) Manufacturing method of reduced graphene oxide, reduced graphene oxide, manufacturing method of barrier film using the reduced graphene oxide and barrier film
CN108137415B (en) Monolithic membranes of integrated highly oriented halogenated graphene
KR101308967B1 (en) Process of preparing polymer/NGPs nanocomposite films with enhanced gas barrier properties
KR101071224B1 (en) Methods for fabricating the thin film graphene
KR20130134446A (en) Functionalized graphene and polymer-functionalized graphene hybrid complex and the fabrication methods thereof
JP2015160945A (en) ink
CN111003703B (en) Structure function integrated graphene material and preparation method thereof
CN108314024B (en) Plasma preparation method of graphene transparent conductive film
JP2010042959A (en) Graphite film and method for manufacturing graphite film
CN107082416A (en) A kind of method that graphene is prepared based on ozone oxidation
Karachevtsev et al. Composite films of single-walled carbon nanotubes with strong oxidized graphene: characterization with spectroscopy, microscopy, conductivity measurements (5–291 K) and computer modeling

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160901

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170828

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180903

Year of fee payment: 6