KR101284764B1 - Epoxy Compositions Having Enhanced Heat Conductivity - Google Patents

Epoxy Compositions Having Enhanced Heat Conductivity Download PDF

Info

Publication number
KR101284764B1
KR101284764B1 KR1020110044598A KR20110044598A KR101284764B1 KR 101284764 B1 KR101284764 B1 KR 101284764B1 KR 1020110044598 A KR1020110044598 A KR 1020110044598A KR 20110044598 A KR20110044598 A KR 20110044598A KR 101284764 B1 KR101284764 B1 KR 101284764B1
Authority
KR
South Korea
Prior art keywords
weight
epoxy
carbon nanotubes
parts
thermal conductivity
Prior art date
Application number
KR1020110044598A
Other languages
Korean (ko)
Other versions
KR20120126637A (en
Inventor
박수진
허건영
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020110044598A priority Critical patent/KR101284764B1/en
Publication of KR20120126637A publication Critical patent/KR20120126637A/en
Application granted granted Critical
Publication of KR101284764B1 publication Critical patent/KR101284764B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Abstract

본 발명은 열전도성이 우수한 에폭시 조성물에 관한 것으로서, 더욱 상세하게는 (a) 에폭시 수지; (b) 경화제; 및 (c) 무기질 충전제로서 알킬기를 도입한 평균 입자크기 5-100nm를 갖는 탄소나노튜브를 포함함으로써, 우수한 열전도도를 나타내어 반도체의 작동 과정 중에서 발생되는 열을 외부로 신속하게 발산하는 열전도성이 우수한 에폭시 조성물에 관한 것이다.The present invention relates to an epoxy composition having excellent thermal conductivity, and more particularly, (a) an epoxy resin; (b) curing agents; And (c) a carbon nanotube having an average particle size of 5-100 nm having an alkyl group introduced therein as an inorganic filler, thereby exhibiting excellent thermal conductivity and excellent thermal conductivity for quickly dissipating heat generated during operation of the semiconductor to the outside. It relates to an epoxy composition.

Description

열전도성이 우수한 에폭시 조성물{Epoxy Compositions Having Enhanced Heat Conductivity}Epoxy Compositions Having Enhanced Heat Conductivity

본 발명은 열전도성이 우수한 에폭시 조성물에 관한 것으로서, 더욱 상세하게는 (a) 에폭시 수지; (b) 경화제; 및 (c) 무기질 충전제로서 알킬기를 도입한 평균 입자크기 5-100nm를 갖는 탄소나노튜브를 포함함으로써, 우수한 열전도도를 나타내어 반도체의 작동 과정 중에서 발생되는 열을 외부로 신속하게 발산하는 열전도성이 우수한 에폭시 조성물에 관한 것이다.The present invention relates to an epoxy composition having excellent thermal conductivity, and more particularly, (a) an epoxy resin; (b) curing agents; And (c) a carbon nanotube having an average particle size of 5-100 nm having an alkyl group introduced therein as an inorganic filler, thereby exhibiting excellent thermal conductivity and excellent thermal conductivity for quickly dissipating heat generated during operation of the semiconductor to the outside. It relates to an epoxy composition.

전자소자의 경향이 경박 단소 및 고집적 형태로 진화하면서 열밀도의 증가로 열 방출 문제에 대한 대책이 요구되고 이를 해결할 수 있는 차세대 고방열 전자 패키징 기술이 최신 이슈로 대두되고 있는 추세이다. 초기 방열 재료로는 일반적인 열가소성 고분자가 사용되었으나 열가소성 고분자는 0.2 W/mK 이하의 낮은 열전도도를 가지고 있으며, 이와 같은 고분자는 고유 특성상 열팽창계수 (Coefficient of Thermal Expansion; CTE)와 같은 열안정성이 떨어지기 때문에 열전도도를 높이기 위한 방법으로 무기필러들을 첨가하는 연구가 오래 전부터 진행되어 왔으며, 일반적으로 세라믹 필러들이 널리 사용되어져 왔다. 그러나 기존 세라믹 필러는 고충진이 요구되고 그에 따른 비용 상승과 물성 저하가 발생해 이를 극복할 수 있는 대체 재료의 하나로서 카본재료들이 제시되었고, 탄소재료 중 가장 일반적인 흑연과 카본블랙이 초기에 널리 사용되었다. As the trend of electronic devices has evolved into thin and simple forms, high heat density is required to solve the heat emission problem, and next generation high heat dissipation electronic packaging technology is emerging as the latest issue. Although a general thermoplastic polymer was used as the initial heat dissipating material, the thermoplastic polymer has a low thermal conductivity of 0.2 W / mK or less, and such a polymer is inferior in thermal stability such as the coefficient of thermal expansion (CTE) due to its inherent characteristics. Therefore, researches for adding inorganic fillers as a method for increasing thermal conductivity have been conducted for a long time, and ceramic fillers have been widely used in general. However, existing ceramic fillers require high filling, resulting in higher cost and lowered physical properties, and carbon materials have been proposed as one of the alternative materials to overcome them, and graphite and carbon black, which are the most common carbon materials, were widely used in the early stage. .

하지만 흑연과 카본블랙의 경우 기저면에서 탄소의 sp2결합은 다른 어떤 결합보다 단단한 결합이지만, 면간 사이의 결합은 매우 약한 결합을 가지고 있기 때문에 그 구조의 불완전성으로 인해 면 방향으로는 우수한 전기전도도와 열전도도를 갖는 반면, 면의 수직 방향으로는 전도 특성이 저하되는 등의 단점을 가지고 있었다. 따라서 이러한 문제점을 극복하기 위해 탄소나노튜브 (Carbon Nanotubes)와 같은 sp2결합 구조로 이루어진 재료들이 개발되기에 이르렀다.However, in the case of graphite and carbon black, the sp 2 bond of carbon is harder than any other bond at the base surface, but since the bond between planes has a weak bond, due to the imperfection of the structure, While it has thermal conductivity, it has disadvantages such as deterioration of conduction characteristics in the vertical direction of the plane. Therefore, to overcome this problem, materials consisting of sp 2 bonding structures such as carbon nanotubes have been developed.

탄소나노튜브는 기존의 열전도도 필러들을 대체할 수 있는 가장 강력한 재료로 여겨져 왔으며, 한 가닥의 탄소나노튜브로 존재할 때의 매우 높은 열전도 성질을 이용하여 열전도성이 우수한 고분자 복합재료를 개발하기 위한 많은 연구가 진행되어 왔다. 그러나 한 가닥의 탄소나노튜브가 매우 높은 열전도도를 가지는데 비해 고분자 기재 내에 분산하여 복합재료화 하면 대부분의 경우 탄소나노튜브의 분산력 저하와 엉킴 상태로 인해 혼합법칙에 의한 예상값 보다 휠씬 낮은 열전도도 증가를 야기해 이 엉킴을 줄이기 위한 탄소나노튜브의 기능화와 분산이 해결해야할 선결 과제로 대두되었다.Carbon nanotubes have been regarded as the most powerful material to replace the existing thermally conductive fillers, and many of them have been developed to develop polymer composites having excellent thermal conductivity using the extremely high thermal conductivity when present as a single strand of carbon nanotubes. Research has been ongoing. However, one strand of carbon nanotubes has a very high thermal conductivity, but when dispersed and polymerized into a polymer substrate, in most cases, the thermal conductivity is much lower than expected by the mixing law due to the decrease in dispersion and entanglement of the carbon nanotubes. The functionalization and dispersion of carbon nanotubes to cause the increase and reduce this entanglement has emerged as a prerequisite to be solved.

본 발명자들은 에폭시 수지 내에서 탄소나노튜브의 상용성을 향상시키고 에폭시 조성물의 열전도도를 개선하기 위하여 노력한 결과, 탄소나노튜브에 여러 가지 알킬 관능기를 도입한 기능화된 탄소나노튜브를 제조하고 이를 포함하는 열전도도가 향상된 에폭시 조성물을 제조하고 본 발명을 완성하였다.The present inventors have made efforts to improve the compatibility of carbon nanotubes in the epoxy resin and to improve the thermal conductivity of the epoxy composition, and thus produce functionalized carbon nanotubes including various alkyl functional groups in the carbon nanotubes. Epoxy compositions with improved thermal conductivity were prepared and completed the present invention.

따라서, 본 발명의 목적은, 상용성이 우수한 알킬기를 도입한 탄소나노튜브 충전제를 포함하는 열전도성이 우수한 에폭시 조성물을 제공하는데 있다.Accordingly, an object of the present invention is to provide an epoxy composition having excellent thermal conductivity including a carbon nanotube filler having an alkyl group having excellent compatibility.

상기 목적을 달성하기 위하여, 본 발명은 (a) 에폭시 수지; (b) 경화제; 및 (c) 무기질 충전제로서 알킬기를 도입한 평균 입자크기 5-100nm를 갖는 탄소나노튜브를 포함하는 열전도성이 우수한 에폭시 조성물을 제공한다.In order to achieve the above object, the present invention (a) an epoxy resin; (b) curing agents; And (c) carbon nanotubes having an average particle size of 5-100 nm having an alkyl group introduced therein as an inorganic filler.

본 발명의 가장 큰 특징은 알킬기를 도입한 평균 입자크기 5-100nm를 갖는 탄소나노튜브를 이용하는 것이다. 이러한 탄소나노튜브를 무기질 충전제로 이용함으로써, 상용성 향상은 물론 에폭시 조성물에서 요구되는 열전도도가 개선된다.The biggest feature of the present invention is the use of carbon nanotubes having an average particle size of 5-100 nm introduced with an alkyl group. By using such carbon nanotubes as inorganic fillers, not only the compatibility is improved but also the thermal conductivity required in the epoxy composition is improved.

본 발명에 있어서, 에폭시 수지의 종류는 특별히 한정되지 아니하나, 예를 들면 에폭시 분자단을 포함하는 어떠한 에폭시 화합물도 포함되며, 바람직하게는 글라이시딜기가 2개 이상인 에폭시 수지이며, 상기 에폭시 수지는 화학식 1의 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 화학식 2의 3관능성 에폭시 수지, 화학식 3의 4관능성 에폭시, 화학식 4의 실록산 (siloxane)이 결합된 하이브리드 에폭시 수지 또는 상기 에폭시 수지들의 혼합물이다:In the present invention, the type of the epoxy resin is not particularly limited, but any epoxy compound including an epoxy molecular group is also included. Preferably, the epoxy resin is an epoxy resin having two or more glycidyl groups. Bisphenol A type epoxy resin of formula (1), bisphenol F type epoxy resin, bisphenol S type epoxy resin, trifunctional epoxy resin of formula (2), tetrafunctional epoxy of formula (3), hybrid epoxy combined with siloxane of formula (4) Resin or a mixture of the above epoxy resins:

[화학식 1][Formula 1]

Figure 112011035133786-pat00001
Figure 112011035133786-pat00001

상기 화학식 1에서, R1은 각각 독립적으로 수소, 메틸 또는 산소이고, R2는 탄소 또는 황이고, R3는 수소, 알킬 또는 할로겐이고 n은 0내지 10이고,In Formula 1, R 1 is each independently hydrogen, methyl or oxygen, R 2 is carbon or sulfur, R 3 is hydrogen, alkyl or halogen, n is 0 to 10,

[화학식 2][Formula 2]

Figure 112011035133786-pat00002
Figure 112011035133786-pat00002

상기 화학식 2에서, R1은 각각 독립적으로 탄소수 2 내지 12의 알킬기를 포함하는 에폭사이드기이고,In Formula 2, R 1 are each independently an epoxide group including an alkyl group having 2 to 12 carbon atoms,

[화학식 3](3)

Figure 112011035133786-pat00003
Figure 112011035133786-pat00003

상기 화학식 3에서, R1은 각각 독립적으로 수소, 메틸 또는 산소이고, R2는 탄소 또는 황이고, R3는 수소, 알킬 또는 할로겐이고 R4는 탄소수 2 내지 12의 알킬기를 포함하는 에폭사이드기이고,In Formula 3, R 1 is each independently hydrogen, methyl or oxygen, R 2 is carbon or sulfur, R 3 is hydrogen, alkyl or halogen and R 4 is an epoxide group containing an alkyl group having 2 to 12 carbon atoms ego,

[화학식 4][Formula 4]

Figure 112011035133786-pat00004
Figure 112011035133786-pat00004

상기 화학식 4에서, R1은 각각 독립적으로 수소, 메틸이고, R2는 탄소수 2 내지 12의 알킬기를 포함하는 에폭사이드기이다.
In Formula 4, R 1 is each independently hydrogen, methyl, R 2 is an epoxide group containing an alkyl group having 2 to 12 carbon atoms.

또한, 본 발명에 있어서, 관능기 도입 전 탄소나노튜브의 종류는 특별히 한정되지 아니하며, 모든 종류의 단일벽 탄소나노튜브 (single wall carbon nanotube), 모든 종류의 다중벽 탄소나노튜브 (multi wall carbon nanotube) 및 이들의 혼합물 또는 화합물 등을 포함할 수 있다. 또한, 탄소나노튜브의 형태에 있어서도 나선형, 일직선형, 가지모양의 형태 등 에폭시의 특정한 물성을 향상시키는데 요구되는 나노튜브라면 특별히 한정되지 아니한다. In addition, in the present invention, the kind of carbon nanotubes before the functional group introduction is not particularly limited, and all kinds of single wall carbon nanotubes and all kinds of multi wall carbon nanotubes may be used. And mixtures or compounds thereof. Also in the form of carbon nanotubes, the nanotubes are not particularly limited as long as they are required to improve specific physical properties of epoxy, such as spiral, straight, and branched forms.

또한, 본 발명의 목적인 상용성과 열전도도가 향상된 에폭시 조성물을 달성하기 위하여 상기 언급한 탄소나노튜브를 하기 화학식 5의 반응을 통하여 탄소나노튜브 표면에 알킬기를 도입하는 것을 특징으로 하며, 이를 에폭시 수지에 분산시켜 에폭시 조성물을 제공하는 것이 바람직하다.In addition, in order to achieve an epoxy composition having improved compatibility and thermal conductivity, which is an object of the present invention, the above-mentioned carbon nanotubes are characterized by introducing an alkyl group on the surface of the carbon nanotubes through the reaction of Chemical Formula 5, which is incorporated into the epoxy resin. It is preferable to disperse to provide an epoxy composition.

[화학식 5][Chemical Formula 5]

Figure 112011035133786-pat00005
Figure 112011035133786-pat00005

상기 화학식 5에서, R1은 각각 탄소수 1 내지 12의 탄소수 바람직하게는 2 내지 20의 알킬기를 포함하는 화합물이다.In Formula 5, R 1 is a compound including an alkyl group having 1 to 12 carbon atoms, preferably 2 to 20 carbon atoms, respectively.

또한, 본 발명에 있어서 화학식 5의 반응에 의해 제조된 탄소나노튜브는 에폭시 수지의 100 중량부를 기준으로 하여, 0.1-100중량부, 바람직하게는 0.2-80중량부, 더욱 바람직하게는 0.5-50중량부의 양으로 사용된다. In the present invention, the carbon nanotubes prepared by the reaction of Chemical Formula 5 are based on 100 parts by weight of the epoxy resin, 0.1-100 parts by weight, preferably 0.2-80 parts by weight, more preferably 0.5-50 Used in parts by weight.

본 발명에서 이용되는 경화제는 특별히 한정되지 아니하며, 에폭시 조성물에서 이용되는 어떠한 경화제도 포함한다. The curing agent used in the present invention is not particularly limited and includes any curing agent used in the epoxy composition.

바람직하게는, 본 발명에서 이용되는 경화제는 아민계, 이미다졸계, 산무수물계 또는 이의 혼합물이다.Preferably, the curing agent used in the present invention is an amine-based, imidazole-based, acid anhydride-based or a mixture thereof.

본 발명에서 이용되는 아민계 경화제는 선형아민, 지방족 아민, 변형된 지방족 아민, 방향족 아민, 제2급 아민 및 제3급 아민 등을 포함하며, 예를 들어, 벤질디메틸아민, 트리에탄올아민, 트리에틸렌 테트라민, 디에틸렌트리아민, 트리에틸렌아민, 디메틸아미노에탄올, 트리(디메틸아미노메틸)페놀 등을 포함한다.The amine curing agent used in the present invention includes linear amines, aliphatic amines, modified aliphatic amines, aromatic amines, secondary amines and tertiary amines, and the like, for example, benzyldimethylamine, triethanolamine, triethylene Tetramin, diethylenetriamine, triethyleneamine, dimethylaminoethanol, tri (dimethylaminomethyl) phenol and the like.

또한, 이미다졸계 경화제는 이미디졸, 이소이미디졸, 2-메틸 이미디졸, 2-에틸-4-메틸이미디졸, 2,4-디메틸이미디졸, 부틸이미디졸, 2-헵타데센일-4-메틸이미디졸, 2-메틸이미디졸, 2-운데센일이미디졸, 1-비닐-2-메틸이미디졸,2-n-헵타데실이미디졸, 2-운데실이미디졸, 2-헵타데실이미디졸, 2-페닐이미디졸, 1-벤질-2-메틸이미디졸, 1-프로필-2-메틸이미디졸, 1-시아노에틸-2-메틸이미디졸, 1-시아노에틸-2-에틸-4-메틸이미디졸, 1-시아노에틸-2-운데실이미디졸, 1-시아노에틸 -2-페닐이미디졸, 1-구아나미노에틸-2-메틸이미디졸, 이미디졸과 메틸이미디졸의 부가생성물,이미디졸과 트리멜리트산의 부가생성물, 2-n-헵타데실-4-메틸이미디졸, 페닐이미디졸, 벤질이미디졸, 2-메틸-4,5-디페닐이미디졸, 2,3,5-트리페닐이미디졸, 2-스티릴이미디졸, 1-(도데실 벤질)-2-메틸이미디졸, 2-(2-히드록실-4-t-부틸페닐)-4,5-디페닐이미디졸, 2-(2-메톡시페닐)-4,5-디페닐이미디졸, 2-(3-히드록시페닐)-4,5-디페닐이미디졸, 2-(p-디메틸-아미노페닐)-4,5-디페닐이미디졸, 2-(2-히드록시페닐)-4,5-디페닐이미디졸, 디(4,5-디페닐-2-이미디졸)-벤젠-1,4, 2-나프틸-4,5-디페닐이미디졸, 1-벤질-2-메틸이미디졸 및 2-p-메톡시스티릴이미디졸 등을 포함한다. In addition, imidazole series hardening | curing agents are imidazole, isimidazole, 2-methyl imidazole, 2-ethyl-4-methylimidazole, 2, 4- dimethyl imidazole, butyl imidazole, 2-heptadecenyl -4-methylimidazole, 2-methylimidazole, 2-undecenylimidazole, 1-vinyl-2-methylimidazole, 2-n-heptadecylimidazole, 2-undecylimidazole Sol, 2-heptadecylimidazole, 2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-propyl-2-methylimidazole, 1-cyanoethyl-2-methylimidi Sol, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-guana Minoethyl-2-methylimidazole, adduct of imidazole and methylimidazole, adduct of imidazole and trimellitic acid, 2-n-heptadecyl-4-methylimidazole, phenylimidazole, Benzylimidazole, 2-methyl-4,5-diphenylimidazole, 2,3,5-triphenylimidazole, 2-styrylimidazole, 1- (dodecyl benzyl) -2-methyl already Sol, 2- (2-hydroxy-4-t-butylphenyl) -4,5-diphenylimidazole, 2- (2-methoxyphenyl) -4,5-diphenylimidazole, 2- (3-hydroxyphenyl) -4,5-diphenylimidazole, 2- (p-dimethyl-aminophenyl) -4,5-diphenylimidazole, 2- (2-hydroxyphenyl) -4 , 5-diphenylimidazole, di (4,5-diphenyl-2-imidazole) -benzene-1,4, 2-naphthyl-4,5-diphenylimidazole, 1-benzyl-2 -Methylimidazole, 2-p-methoxystyrylimidazole and the like.

또한, 산무수물계 경화제에는 프탈릭 무수물, 말레익 무수물, 트리멜리틱 무수물, 파이로멜리틱 무수물, 헥사하이드로프탈릭 무수물, 테트라하이드로프탈릭 무수물, 메틸나딕 무수물, 나딕 무수물, 또는 메틸헥사하이드로프탈릭 무수물 등을 포함하며 이 산무수물계 경화제는 단독으로 사용되기 보다는 상기 경화제들을 촉매로 사용하여 혼합하여 사용되어진다.Further, the acid anhydride-based curing agent includes phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, or methyl hexahydroph. Talic anhydride and the like, and the acid anhydride-based curing agent is used by mixing the curing agent as a catalyst rather than being used alone.

아민계와 이미다졸계 경화제는 에폭시 수지의 100 중량부를 기준으로 0.1-100중량부, 바람직하게는 1-40중량부, 더욱 바람직하게는 4-30중량부이다. 경화제의 양이 100중량부를 넘을 경우 가사시간이 너무 짧고 반응 중 부산물 등의 영향으로 물성 저하를 보일 수 있으며, 0.1중량부 이하에서는 경화가 완전히 진행되지 않는 문제가 있다.The amine-based and imidazole-based curing agent is 0.1-100 parts by weight, preferably 1-40 parts by weight, more preferably 4-30 parts by weight based on 100 parts by weight of the epoxy resin. When the amount of the curing agent exceeds 100 parts by weight, the pot life may be too short and physical properties may be deteriorated due to the influence of by-products during the reaction.

본 발명에 있어서, 접착력 증진 등의 목적으로 경우에 따라 실란 커플링제를 추가적으로 사용할 수 있으며 상기 실란 커플링제에는 N-(2-아미노에틸)-3-아미노프로필메틸디메톡시실란, N-(2-아미노에틸)-3-아미노프로필트리메톡시실란, N-(2-아미노에틸)-3-아미노프로필트리스(2-에틸에톡시)실란, 3-아미노프로필트리에톡시실란, 3-아미노프로필트리메톡시실란, 3-클로로프로필트리메톡시실란, 2-(3,4-에폭시사이클로헥실)에틸트리메톡시실란, (3-글라이시독시프로필)메틸디에톡시실란, 3-글라이시독시프로필트리메톡시실란, N-페닐아미노프로필트리메톡시실란, 비스[3-(트리스에톡시실릴)프로필]테트라설파이드, 3-머캅토프로필메틸디메톡시실란 또는 3-머캅토프로필트리메톡시실란 등이 있다.In the present invention, a silane coupling agent may be additionally used in some cases for the purpose of improving adhesion, and the silane coupling agent may be N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2- Aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltris (2-ethylethoxy) silane, 3-aminopropyltriethoxysilane, 3-aminopropyltri Methoxysilane, 3-chloropropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, (3-glycidoxypropyl) methyldiethoxysilane, 3-glycidoxypropyltri Methoxysilane, N-phenylaminopropyltrimethoxysilane, bis [3- (triethoxysilyl) propyl] tetrasulfide, 3-mercaptopropylmethyldimethoxysilane or 3-mercaptopropyltrimethoxysilane, etc. have.

상기 실란 커플링제의 함량은 에폭시 수지 100 중량부를 기준으로 하여, 바람직하게는 0-10 중량부이며, 보다 바람직하게는 0.01-10 중량부이다. 실란 커플링제의 양이 10중량부를 넘을 경우는 접착력과 전기적 특성 등의 특성이 저하되는 문제가 있다.The content of the silane coupling agent is preferably 0-10 parts by weight, more preferably 0.01-10 parts by weight based on 100 parts by weight of the epoxy resin. When the amount of the silane coupling agent exceeds 10 parts by weight, there is a problem that properties such as adhesive force and electrical properties are deteriorated.

상기와 같은 본 발명에 따르면, 열전도성이 우수한 에폭시 조성물을 제공한다. 본 발명의 에폭시 조성물은 우수한 열전도도를 나타내어 반도체의 작동 과정 중에서 발생되는 열을 외부로 신속하게 발산할 수 있을 뿐만 아니라, 우수한 흐름성을 나타내어 전자소자의 접착, 밀봉 및 방열 재료로 사용되어 전자소자의 신뢰성을 향상시킬 수 있다.According to the present invention as described above, it provides an epoxy composition excellent in thermal conductivity. The epoxy composition of the present invention exhibits excellent thermal conductivity, which not only dissipates heat generated during the operation of the semiconductor to the outside quickly, but also exhibits excellent flowability and is used as an adhesive, sealing and heat dissipating material for electronic devices. Can improve the reliability.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

합성예Synthetic example 1. One.

탄소나노튜브에 관능기를 도입하기 위해서 황산과 질산의 부피비 3:1 비율의 혼합물을 사용하여 40℃에서 10시간 동안 교반시키면서 산처리를 실시하였으며 교반 후 반응물을 실온으로 식힌 후 무이온수를 이용하여 pH가 7이 될 때까지 세척과 감압을 반복하였다. 최종 감압 후 산화된 탄소나노튜브는 80℃의 진공오븐에서 24시간 동안 건조하였다.
In order to introduce the functional group into the carbon nanotubes, an acid treatment was performed using a mixture of sulfuric acid and nitric acid in a volume ratio of 3: 1 with stirring at 40 ° C. for 10 hours. After stirring, the reaction product was cooled to room temperature, and then pH-free using ionized water. Washing and depressurization were repeated until 7 was obtained. After the final pressure reduction, the oxidized carbon nanotubes were dried in a vacuum oven at 80 ° C. for 24 hours.

합성예Synthetic example 2. 2.

합성예 1에서 제조된 탄소튜브에 12개의 알킬기 도입을 위해 dodecylamine을 5:1 무게비로 에탄올 용매에서 80℃에서 24시간동안 교반 시킨 후 에탄올로 세척하여 잔존물을 제거한 후 최종 생성물을 진공오븐에서 건조하여 사용하였다
To introduce 12 alkyl groups into the carbon tube prepared in Synthesis Example 1, dodecylamine was stirred in an ethanol solvent at a weight ratio of 5: 1 for 24 hours at 80 ° C., washed with ethanol to remove the residue, and the final product was dried in a vacuum oven. Used

합성예Synthetic example 3.3.

합성 1에서 제조된 탄소튜브에 18개의 알킬기 도입을 위해 octadecylamine을 5:1 무게비로 에탄올 용매에서 80℃에서 24시간동안 교반 시킨 후 에탄올로 세척하여 잔존물을 제거한 후 최종 생성물을 진공오븐에서 건조하여 사용하였다
In order to introduce 18 alkyl groups into the carbon tube prepared in Synthesis 1, octadecylamine was stirred in an ethanol solvent at a weight ratio of 5: 1 for 24 hours at 80 ° C., washed with ethanol to remove residues, and the final product was dried in a vacuum oven. Was

실시예Example 1. One.

상기 합성 2의 방법으로 합성된 탄소나노튜브를 함유한 이관능성 에폭시 화합물은 에폭시 화합물 (화학식 1, R1은 각각 독립적으로 메틸, R2는 탄소, R3는 수소) 100중량부, 상기 합성 2의 방법으로 합성된 탄소나노튜브 1중량부, 경화제로서 2-에틸-4-메틸이미디졸 4중량부를 혼합하여 최종적으로 본 발명의 기능화된 탄소나노튜브를 혼합하여 제조된 상용성과 열전도도가 향상된 에폭시 조성물을 제조하였다.
The bifunctional epoxy compound containing the carbon nanotubes synthesized by the method of Synthesis 2 is 100 parts by weight of an epoxy compound (Formula 1, R 1 is independently methyl, R 2 is carbon, R 3 is hydrogen), and Synthesis 2 1 part by weight of the synthesized carbon nanotubes, 4 parts by weight of 2-ethyl-4-methylimidazole as a curing agent and finally mixed with the functionalized carbon nanotubes of the present invention to improve the compatibility and thermal conductivity An epoxy composition was prepared.

실시예Example 2. 2.

상기 합성 3의 방법으로 합성된 탄소나노튜브를 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 상용성과 열전도도가 향상된 에폭시 조성물을 제조하였다.Except for using the carbon nanotubes synthesized by the method of Synthesis 3, an epoxy composition having improved compatibility and thermal conductivity was prepared in the same manner as in Example 1.

실시예Example 3. 3.

이관능성 에폭시 화합물은 에폭시 화합물 (화학식 1, R1은 각각 독립적으로 수소, R2는 탄소, R3는 수소)을 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 상용성과 열전도도가 향상된 에폭시 조성물을 제조하였다.
The difunctional epoxy compound has improved compatibility and thermal conductivity in the same manner as in Example 1, except that an epoxy compound (Formula 1, R 1 is independently hydrogen, R 2 is carbon, and R 3 is hydrogen) is used. An epoxy composition was prepared.

실시예Example 4. 4.

이관능성 에폭시 화합물은 에폭시 화합물 (화학식 1, R1은 각각 독립적으로 수소, R2는 탄소, R3는 수소)을 사용하는 것을 제외하고는, 실시예 2와 동일한 방법으로 상용성과 열전도도가 향상된 에폭시 조성물을 제조하였다.
The difunctional epoxy compound has improved compatibility and thermal conductivity in the same manner as in Example 2, except that an epoxy compound (Formula 1, R 1 is independently hydrogen, R 2 is carbon, and R 3 is hydrogen) is used. An epoxy composition was prepared.

비교예Comparative example 1. One.

이관능성 에폭시 화합물은 에폭시 화합물 (화학식 1, R1은 각각 독립적으로 수소, R2는 탄소, R3는 수소) 100중량부, 상기 합성 2의 방법으로 합성된 탄소나노튜브 1중량부, 경화제로서 2-에틸-4-메틸이미디졸 4중량부를 혼합하여 에폭시 조성물을 제조하였다.
The bifunctional epoxy compound is 100 parts by weight of an epoxy compound (Formula 1, R 1 is independently hydrogen, R 2 is carbon, and R 3 is hydrogen), 1 part by weight of carbon nanotubes synthesized by the method of Synthesis 2, and a curing agent. An epoxy composition was prepared by mixing 4 parts by weight of 2-ethyl-4-methylimidazole.

비교예Comparative example 2. 2.

상기 합성 1의 방법으로 합성된 탄소나노튜브를 사용하는 것을 제외하고는, 실시예 3과 동일한 방법으로 혼합하여 에폭시 조성물을 제조하였다.An epoxy composition was prepared by mixing in the same manner as in Example 3, except that carbon nanotubes synthesized by the method of Synthesis 1 were used.

Figure 112011035133786-pat00006
Figure 112011035133786-pat00006

실험예Experimental Example 1. One.

상기 실시예 및 비교예에서 제조한 에폭시 조성물의 물성을 하기와 같은 방법으로 측정하였으며, 그 결과를 하기 표 2에 나타내었다.Physical properties of the epoxy compositions prepared in Examples and Comparative Examples were measured in the following manner, and the results are shown in Table 2 below.

에폭시 수지는 80℃로 유지되는 진공오븐 속에서 잔류한 유기용제와 수분 등을 1차로 제거한 뒤 사용하였고, 우선 경화제를 제외하고 상기 표1과 같이 배합하여 이를 적당한 온도에서 교반시킨 다음 실온의 진공오븐에서 상온 감압 건조시켜 에폭시내의 잔류 유기용매 및 기포 등을 제거하였다. 이 에폭시 혼합물들에 상기 표1의 함량비로 경화제를 첨가하여 2차 교반 한 후 몰드에 채운 후 대류오븐에서 110℃ (1시간), 140℃ (2시간), 170℃ (1시간)의 경화조건으로 시편을 제조하여 측정에 사용하였다.The epoxy resin was used after first removing the organic solvent and water remaining in the vacuum oven maintained at 80 ° C. First, except for the curing agent, the mixture was mixed as shown in Table 1 and stirred at an appropriate temperature, followed by vacuum oven at room temperature. After drying under reduced pressure at room temperature, residual organic solvent and bubbles in the epoxy were removed. Hardening conditions of 110 ℃ (1 hour), 140 ℃ (2 hours), 170 ℃ (1 hour) in the convection oven after adding the curing agent to the epoxy mixture in the content ratio of Table 1 and the second stirring and filling in the mold The specimen was prepared and used for the measurement.

열전도도는 Laser Flash 방법으로 상온 열전도도를 측정하였으며, 접착력은 Dage 4000의 Die shear Machine을 사용하여 BT Substrate에 칩을 부착하여 측정 (측정 칩은 80 x 80 at RT test)하였다. 또한, 파괴인성 요소 중 하나인 임계응력 세기인자(critical stress intensity factor, KIC)는 경화된 시편을 ASTM D 5045-95 1a에 준하여 5개의 SENB (single edge notched bending) 시편으로 준비한 뒤 UTM (united test machine, Lloyd)을 사용하여 측정하였다. 이 때 지지대간 거리와 시편 두께와의 비 (span-to-depth ratio)는 4:1로 고정하였으며, cross-head speed는 1mm/min로 유지하였고 KIC 값은 평균값을 사용하였다.Thermal conductivity was measured at room temperature thermal conductivity using the Laser Flash method, the adhesion was measured by attaching the chip to the BT substrate using a die shear machine of Dage 4000 (measurement chip 80 x 80 at RT test). In addition, the critical stress intensity factor (K IC ), one of the fracture toughness factors, was prepared using five single edge notched bending (SENB) specimens in accordance with ASTM D 5045-95 1a and then UTM (united). test machine, Lloyd). At this time, the span-to-depth ratio of the distance between the supports and the specimen thickness was fixed at 4: 1, the cross-head speed was maintained at 1 mm / min, and the average value of K IC was used.

Figure 112011035133786-pat00007
Figure 112011035133786-pat00007

상기 표 2에서 볼 수 있듯이, 본 발명의 에폭시 조성물은 열전도도, 접착력 그리고 기계적 물성이 향상되었다. 비교예의 에폭시 조성물은 0.3 mW/K 이하의 열전도성을 나타내었으나, 본 발명 실시예의 에폭시 조성물은 적은양의 첨가로도 모두 3 mW/K 이상의 개선된 열전도성을 나타내었다. 또한, 본 발명의 에폭시 조성물은 기계적의 물성의 척도가 될 수 있는 파괴인성치도 높게 측정되었으며 접착력 또한 우수한 것을 알 수 있다. 따라서 본 발명의 에폭시 조성물은 전자소자용 방열재료로 사용될 수 있는 에폭시 조성물을 제조 할 수 있었다.As can be seen in Table 2, the epoxy composition of the present invention has improved thermal conductivity, adhesion and mechanical properties. The epoxy composition of the comparative example showed a thermal conductivity of 0.3 mW / K or less, while the epoxy compositions of the inventive examples all showed improved thermal conductivity of 3 mW / K or more even with a small amount of addition. In addition, it can be seen that the epoxy composition of the present invention has a high fracture toughness value, which can be a measure of mechanical properties, and also has excellent adhesion. Therefore, the epoxy composition of the present invention was able to prepare an epoxy composition that can be used as a heat dissipating material for electronic devices.

이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 의하여 정의된다고 할 것이다. Having described specific portions of the present invention in detail, those skilled in the art will appreciate that these specific descriptions are only for the preferred embodiment and that the scope of the present invention is not limited thereby. It will be obvious. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (8)

(1) 탄소나노튜브를 황산과 질산이 3 : 1의 부피비로 혼합된 산 용액과 40 ℃에서 10 시간 동안 교반하고;
(2) pH가 7이 될 때까지 세척 및 감압한 후, 80 ℃에서 24 시간 동안 건조시키고;
(3) 상기 (2)단계에서 건조시킨 탄소나노튜브에 도데실아민(dodecylamine)을 5 : 1의 무게비로 혼합한 후, 에탄올 용매를 이용하여 80 ℃에서 24 시간 동안 교반하고;
(4) 에탄올로 세척하여 건조시키고;
(5) 하기 화학식 1의 에폭시 수지와 에폭시 수지 100 중량부에 대하여 상기 (4)단계에서 건조시킨 탄소나노튜브 1 중량부 및 2-에틸-4-메틸이미디졸 4 중량부를 혼합하는; 단계를 포함하는 탄소나노튜브/에폭시 복합체의 제조방법.
[화학식 1]
Figure 112013037537205-pat00013

상기 화학식 1에서 R1은 수소, R2는 탄소, R3는 수소이고, n은 0 내지 10이다.
(1) stirring the carbon nanotubes with an acid solution mixed with sulfuric acid and nitric acid in a volume ratio of 3: 1 at 40 ° C. for 10 hours;
(2) wash and depressurize until pH reaches 7, then dry at 80 ° C. for 24 h;
(3) mixing dodecylamine with a weight ratio of 5: 1 to the carbon nanotubes dried in step (2), and then stirring at 80 ° C. for 24 hours using an ethanol solvent;
(4) washed with ethanol and dried;
(5) 1 part by weight of carbon nanotubes dried in step (4) and 4 parts by weight of 2-ethyl-4-methylimidazole, based on 100 parts by weight of the epoxy resin and the epoxy resin of Formula 1; Method of producing a carbon nanotube / epoxy composite comprising a step.
[Formula 1]
Figure 112013037537205-pat00013

In Formula 1, R1 is hydrogen, R2 is carbon, R3 is hydrogen, and n is 0 to 10.
제 1항에 있어서,
상기 (5)단계에서 혼합하는 과정은 에폭시 수지 100 중량부에 대하여 0.01 내지 10 중량부의 실란 커플링제를 더 첨가하여 혼합하는 것을 특징으로 하되, 상기 실란 커플링제는 N-(2-아미노에틸)-3-아미노프로필메틸디메톡시실란, N-(2-아미노에틸)-3-아미노프로필트리메톡시실란, N-(2-아미노에틸)-3-아미노프로필트리스(2-에틸에톡시)실란, 3-아미노프로필트리에톡시실란, 3-아미노프로필트리메톡시실란, 3-클로로프로필트리메톡시실란, 2-(3,4-에폭시사이클로헥실)에틸트리메톡시실란, (3-글라이시독시프로필)메틸디에톡시실란, 3-글라이시독시프로필트리메톡시실란, N-페닐아미노프로필트리메톡시실란, 비스[3-(트리스에톡시실릴)프로필]테트라설파이드, 3-머캅토프로필메틸디메톡시실란 또는 3-머캅토프로필트리메톡시실란인 탄소나노튜브/에폭시 복합체의 제조방법.
The method of claim 1,
The mixing in step (5) is characterized in that 0.01 to 10 parts by weight of the silane coupling agent is further added to 100 parts by weight of the epoxy resin and mixed, wherein the silane coupling agent is N- (2-aminoethyl)- 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltris (2-ethylethoxy) silane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, (3-glycidoxy Propyl) methyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, bis [3- (triethoxysilyl) propyl] tetrasulfide, 3-mercaptopropylmethyldimeth Of carbon nanotube / epoxy complexes which are methoxysilane or 3-mercaptopropyltrimethoxysilane Article methods.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020110044598A 2011-05-12 2011-05-12 Epoxy Compositions Having Enhanced Heat Conductivity KR101284764B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110044598A KR101284764B1 (en) 2011-05-12 2011-05-12 Epoxy Compositions Having Enhanced Heat Conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110044598A KR101284764B1 (en) 2011-05-12 2011-05-12 Epoxy Compositions Having Enhanced Heat Conductivity

Publications (2)

Publication Number Publication Date
KR20120126637A KR20120126637A (en) 2012-11-21
KR101284764B1 true KR101284764B1 (en) 2013-07-17

Family

ID=47511931

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110044598A KR101284764B1 (en) 2011-05-12 2011-05-12 Epoxy Compositions Having Enhanced Heat Conductivity

Country Status (1)

Country Link
KR (1) KR101284764B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190027089A (en) 2017-09-06 2019-03-14 한국전기연구원 Nanocomposite insulation materials with enhanced thermal conductivity by dispersion of inorganic nanoparticles and their manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101427727B1 (en) * 2013-06-07 2014-08-13 인하대학교 산학협력단 Green epoxy composites containing cabon nanotube
KR20150144371A (en) 2014-06-16 2015-12-28 주식회사 블루폴리텍 Thermal conductive polyurethane resin
KR101716260B1 (en) * 2015-05-07 2017-03-15 윈엔윈(주) Carbon balance and whereby the shaft and the shaft made of the manufacturing method for the drawing comprises a nanotube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100073982A (en) * 2008-12-23 2010-07-01 임명진 Molding compound including a carbon nano-tube dispersion
US20100234503A1 (en) 2006-08-10 2010-09-16 Khabashesku Valery N Polymer composites mechanically reinforced with alkyl and urea functionalized nanotubes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100234503A1 (en) 2006-08-10 2010-09-16 Khabashesku Valery N Polymer composites mechanically reinforced with alkyl and urea functionalized nanotubes
KR20100073982A (en) * 2008-12-23 2010-07-01 임명진 Molding compound including a carbon nano-tube dispersion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190027089A (en) 2017-09-06 2019-03-14 한국전기연구원 Nanocomposite insulation materials with enhanced thermal conductivity by dispersion of inorganic nanoparticles and their manufacturing method

Also Published As

Publication number Publication date
KR20120126637A (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP4958106B2 (en) Dispersant, epoxy resin composition containing dispersant, and method for producing the same
JP6902193B2 (en) Manufacture method of composition for heat dissipation member, heat dissipation member, electronic device, heat dissipation member
JP6602865B2 (en) Epoxy resin composition, method for producing the same, and use of the composition
JP6348700B2 (en) Thermosetting resin composition for semiconductor bonding and semiconductor device using the same
US6893736B2 (en) Thermosetting resin compositions useful as underfill sealants
CN113845775B (en) Preparation method of hyperbranched polymer modified boron nitride heat-conducting and insulating composite material
KR101284764B1 (en) Epoxy Compositions Having Enhanced Heat Conductivity
Qian et al. Efficient thermal properties enhancement to hyperbranched aromatic polyamide grafted aluminum nitride in epoxy composites
JP2020145424A (en) Silicon carbide, gallium oxide, gallium nitride, and molding material composition for sealing diamond element, and electronic component device
CN104341774B (en) Moulding compound for semiconductor packages and the semiconductor packages using the moulding compound
CN107207835A (en) Conductive resin composition and semiconductor device
JP2016037529A (en) Liquid epoxy resin composition and heat sink, and adhesive for stiffener
JP5547369B2 (en) Curable liquid epoxy resin composition and cured product thereof
JP2002194057A (en) Thermosetting resin composition
KR20100113985A (en) Thermal conductive adhesive
JP2002179885A (en) Liquid epoxy resin composition for sealing semiconductor by screen printing
KR101373035B1 (en) Ultrahigh heat resistant epoxy resin composition
CN115926379A (en) Non-covalent modified boron nitride/epoxy resin heat-conducting and insulating composite material and preparation method thereof
JP5783248B2 (en) RESIN COMPOSITION FOR ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT DEVICE
JP2012007004A (en) Sealing material for mounting and semiconductor device sealed by using the same
KR100983096B1 (en) Underfill Hybrid Epoxy Compositions Having Improved Moisture Resistance and Fluidity
KR100943700B1 (en) Stage Epoxy Adhesive Composition Capable of A ccepting Variation Range in Stage Temperatures
JP6701039B2 (en) Resin composition for semiconductor adhesion and semiconductor device
JP4618407B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2001098049A (en) Liquid epoxy resin composition for sealing semiconductor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160602

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170626

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190703

Year of fee payment: 7