KR101264257B1 - Method for preparing barrier film for plastic substrate by using low frequency plasma enhanced atomic layer deposition - Google Patents

Method for preparing barrier film for plastic substrate by using low frequency plasma enhanced atomic layer deposition Download PDF

Info

Publication number
KR101264257B1
KR101264257B1 KR1020090130898A KR20090130898A KR101264257B1 KR 101264257 B1 KR101264257 B1 KR 101264257B1 KR 1020090130898 A KR1020090130898 A KR 1020090130898A KR 20090130898 A KR20090130898 A KR 20090130898A KR 101264257 B1 KR101264257 B1 KR 101264257B1
Authority
KR
South Korea
Prior art keywords
substrate
atomic layer
low frequency
layer deposition
reactor
Prior art date
Application number
KR1020090130898A
Other languages
Korean (ko)
Other versions
KR20110074052A (en
Inventor
김성수
김현기
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020090130898A priority Critical patent/KR101264257B1/en
Publication of KR20110074052A publication Critical patent/KR20110074052A/en
Application granted granted Critical
Publication of KR101264257B1 publication Critical patent/KR101264257B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 저주파 PEALD 장비를 이용한 플라스틱 기판용 배리어 필름 제조방법에 관한 것으로, 보다 상세하게는 플라즈마 원자층 증착(PEALD, Plasma Enhanced Atomic Layer Deposition) 장비의 챔버 내에 저주파 전원을 인가하여 플라스틱 기판에 나노 크기의 무기 배리어 단일층을 형성함으로써 기체 투과 방지 특성을 향상시킬 수 있다.The present invention relates to a method for manufacturing a barrier film for plastic substrates using low-frequency PEALD equipment, and more particularly to applying a low-frequency power in the chamber of the plasma enhanced atomic layer deposition (PEALD) equipment to a nano-sized plastic substrate. By forming the inorganic barrier monolayer of, gas permeation prevention property can be improved.

저주파 PEALD 장비, 플라스틱 기판, 배리어 층 Low Frequency PEALD Equipment, Plastic Substrates, Barrier Layers

Description

저주파 PEALD 장비를 이용한 플라스틱 기판용 배리어 필름 제조방법{Method for preparing barrier film for plastic substrate by using low frequency plasma enhanced atomic layer deposition}Method for preparing barrier film for plastic substrate by using low frequency plasma enhanced atomic layer deposition}

본 발명은 저주파 PEALD 장비를 이용한 플라스틱 기판용 배리어 필름 제조방법에 관한 것으로, 보다 상세하게는 플라즈마 원자층 증착(PEALD, Plasma Enhanced Atomic Layer Deposition) 장비의 챔버 내에 저주파 전원을 인가하여 플라스틱 기판에 나노 크기의 무기 배리어 단일층을 형성함으로써 기체 투과 방지 특성을 향상시킨 저주파 PEALD 장비를 이용한 플라스틱 기판용 배리어 필름 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a barrier film for a plastic substrate using a low-frequency PEALD equipment, and more particularly to applying a low-frequency power in a chamber of a plasma enhanced atomic layer deposition (PEALD) equipment to a nano-sized plastic substrate. The present invention relates to a method for producing a barrier film for plastic substrates using a low frequency PEALD device having improved gas permeation prevention properties by forming an inorganic barrier monolayer.

플렉서블 디스플레이는 플라스틱 필름상에 유기발광소자(OLED), 액정표시장치(LCD) 등의 소자를 제작하여 형성된다. 상기 플라스틱 필름은 수분 및 산소와 같은 기체 차단 특성이 좋지 못하여 필름을 통해 수분 및 산소가 내부로 침투되어 산화 등에 의해 소자의 수명을 단축시키는 문제를 발생시킬 수 있으므로 이를 방지하 기 위해서는 우수한 기체 차단 특성을 나타내는 층이 플라스틱 필름상에 형성되어야 한다.The flexible display is formed by manufacturing an organic light emitting diode (OLED), a liquid crystal display (LCD), or the like on a plastic film. The plastic film has poor gas barrier properties such as moisture and oxygen, so that moisture and oxygen can penetrate the inside of the film to shorten the lifespan of the device due to oxidation, thereby preventing excellent gas barrier properties. Must be formed on the plastic film.

이에 따라 종래에는 화학기상증착(Chemical Vapor Deposition)(CVD) 공정 또는 물리기상증착(Physical vapor Deposition)(PVD) 공정 등을 적용하여 무기 박막을 형성하거나 코팅 방법에 의해 유기층을 도포하여 플라스틱 필름의 기체 차단 특성을 향상시키도록 하고 있다. Accordingly, conventionally, an inorganic thin film is formed by applying a chemical vapor deposition (CVD) process or a physical vapor deposition (PVD) process, or an organic layer is applied by a coating method to form a substrate of a plastic film. To improve the blocking characteristics.

특히 플라즈마 원자층 증착(PEALD) 방법에 의해 무기 박막을 플라스틱 필름 위에 증착할 경우 기체 투과도가 현저히 감소하는 특징이 있다. In particular, when the inorganic thin film is deposited on the plastic film by the plasma atomic layer deposition (PEALD) method, the gas permeability is significantly reduced.

종래의 PEALD 공정의 경우 대부분 고주파 전원을 사용하고 있으므로 높은 주파수로 인하여 공정의 불안정 하거나 기판의 손상 등의 문제가 발생할 수 있다.In the conventional PEALD process, since a high frequency power source is used, problems such as instability or damage to the substrate may occur due to high frequency.

본 발명의 목적은 저주파 전원을 이용한 플라즈마 원자층 증착 장비를 사용하여 기체 투과를 방지할 수 있는 플렉서블 디스플레이용 플라스틱 기판의 무기 배리어층 및 그 제조방법을 제공하는 것이다. An object of the present invention is to provide an inorganic barrier layer of a plastic substrate for flexible display and a method of manufacturing the same, which can prevent gas permeation using a plasma atomic layer deposition apparatus using a low frequency power source.

상기 목적을 달성하기 위하여, 본 발명은 수분투과도(WVTR, water vapor transmission rate)가 0.5 내지 0.004 g/m2day이고, 5 내지 50 nm의 두께를 갖는 기체 투과 방지막을 제공한다.In order to achieve the above object, the present invention provides a gas permeation prevention film having a water vapor transmission rate (WVTR) of 0.5 to 0.004 g / m 2 day and a thickness of 5 to 50 nm.

본 발명은 또한 플라즈마 원자층 증착장비를 이용하여 기체 투과 방지막을 제조함에 있어서,The present invention also provides a gas permeation prevention film using a plasma atomic layer deposition apparatus,

저주파 전원을 인가하여 기판 상에 알루미늄 옥사이드 층을 형성하는 단계를 포함하는 본 발명의 기체 투과 방지막의 제조방법을 제공한다.It provides a method for producing a gas permeation prevention film of the present invention comprising the step of applying a low frequency power source to form an aluminum oxide layer on a substrate.

상기 기판 상에 알루미늄 옥사이드 층을 형성하는 단계는 보다 구체적으로 Forming an aluminum oxide layer on the substrate is more specifically

플라스틱 기판을 플라즈마 원자층 증착장비의 반응기 내로 도입하여 반응 가스를 유입하는 단계;Introducing a plastic substrate into the reactor of the plasma atomic layer deposition apparatus to introduce a reaction gas;

상기 반응기 내에 소스 물질을 유입하여 기판 상에 흡착층을 형성하는 단계; 및Introducing a source material into the reactor to form an adsorption layer on the substrate; And

상기 반응기 내에 잔류하는 소스 물질 및 반응 부산물을 퍼지하는 단계를 포함하는 사이클을 10 내지 400회 반복하여 기판 상에 알루미늄 옥사이드 층을 형성하되, Repeating the cycle including purging the source material and the reaction by-product remaining in the reactor 10 to 400 times to form an aluminum oxide layer on the substrate,

상기 단계의 적어도 일부 동안 저주파 플라즈마를 인가하는 것을 특징으로 한다.The low frequency plasma is applied during at least part of the step.

본 발명은 또한 본 발명의 기체 투과 방지막이 증착된 플라스틱 기판 또는 상기 플라스틱 기판을 포함하는 플렉서블 디스플레이를 제공한다.The present invention also provides a plastic substrate on which the gas permeation barrier of the present invention is deposited or a flexible display including the plastic substrate.

본 발명에 따른 저주파 플라즈마 원자층 증착 장비를 이용하여 알루미늄 옥사이드 박막을 플라스틱 필름상부에 단일층을 형성함으로써 기체 투과 방지 특성을 향상하여 최소 0.004g/m2day 정도의 낮은 WVTR 투과율을 얻을 수 있다.By using a low-frequency plasma atomic layer deposition apparatus according to the present invention to form a single layer of an aluminum oxide thin film on the plastic film to improve the gas permeation prevention characteristics can be obtained a low WVTR transmittance of at least 0.004g / m 2 day.

또한, 기판의 온도와 반응가스의 퍼지시간을 조절함으로써 박막의 특성을 조절할 수 있다.In addition, the characteristics of the thin film may be controlled by adjusting the temperature of the substrate and the purge time of the reaction gas.

이하, 본 발명의 구성을 구체적으로 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the structure of this invention is demonstrated concretely.

본 발명은 수분투과도(WVTR, water vapor transmission rate)가 0.5 내지 0.004 g/m2day이고, 5 내지 50 nm의 두께를 갖는 기체 투과 방지막에 관한 것이다.The present invention relates to a gas permeation prevention membrane having a water vapor transmission rate (WVTR) of 0.5 to 0.004 g / m 2 day and having a thickness of 5 to 50 nm.

본 발명의 기체 투과 방지막은 저주파 플라즈마 원자층 증착법(low frequency plasma enhanced atomic layer deposition)을 이용하여 플렉서블 디스플레이용 플라스틱 기판 위에 증착되어 기체 투과도를 현저히 감소시킬 수 있는 무기 배리어 필름인 것을 특징으로 한다.The gas permeation prevention film of the present invention is characterized in that the inorganic barrier film that can be deposited on the plastic substrate for flexible display using a low frequency plasma enhanced atomic layer deposition method can significantly reduce the gas permeability.

상기 기체 투과 방지막은 금속산화물이라면 특별히 제한하지는 않으나, 알루미늄 옥사이드 단일층인 것이 좋다.The gas permeation barrier is not particularly limited as long as it is a metal oxide, but is preferably an aluminum oxide single layer.

상기 기체 투과 방지막은 플라스틱 기판 상에 5 내지 50 nm 크기의 두께를 가질 수 있다.The gas permeation prevention film may have a thickness of 5 to 50 nm on the plastic substrate.

상기 기체 투과 방지막은 기체 투과 방지 특성이 향상되어 0.5 내지 0.004 g/m2day 정도의 낮은 수분투과도(WVTR)를 가질 수 있다. The gas permeation prevention membrane may have a low water permeability (WVTR) of about 0.5 to 0.004 g / m 2 day due to improved gas permeation prevention characteristics.

본 발명은 또한 플라즈마 원자층 증착장비를 이용하여 기체 투과 방지막을 제조함에 있어서,The present invention also provides a gas permeation prevention film using a plasma atomic layer deposition apparatus,

저주파 전원을 인가하여 기판 상에 알루미늄 옥사이드 층을 형성하는 단계를 포함하는 본 발명의 기체 투과 방지막의 제조방법에 관한 것이다.It relates to a method for producing a gas permeation prevention film of the present invention comprising the step of applying a low frequency power source to form an aluminum oxide layer on a substrate.

상기 저주파 플라즈마 원자층 증착장비는 도 1에 도시된 바와 같이, 반응기 는 지름 50 내지 300 mm 크기의 실린더 형태이며, 기판은 정사각형 형태로 최대 크기 150×150mm 까지 장착될 수 있도록 구성되어 있다. As shown in FIG. 1, the low-frequency plasma atomic layer deposition apparatus has a cylindrical shape having a diameter of 50 to 300 mm, and a substrate is configured to be mounted to a maximum size of 150 × 150 mm in a square shape.

상기 기판 상에 알루미늄 옥사이드 층을 형성하는 단계는 보다 구체적으로 다음 단계를 포함할 수 있다:Forming an aluminum oxide layer on the substrate may more specifically include the following steps:

플라스틱 기판을 플라즈마 원자층 증착장비의 반응기 내로 도입하여 반응가스를 유입하는 단계;Introducing a plastic substrate into the reactor of the plasma atomic layer deposition apparatus to introduce a reaction gas;

상기 반응기 내에 소스물질을 유입하여 기판 상에 흡착층을 형성하는 단계; 및Introducing a source material into the reactor to form an adsorption layer on the substrate; And

상기 반응기 내에 잔류하는 소스물질 및 반응 부산물을 퍼지하는 단계를 포함하는 사이클을 10 내지 400회 반복하여 기판 상에 알루미늄 옥사이드 층을 형성하되, Repeating the cycle including purging the source material and the reaction by-products remaining in the reactor 10 to 400 times to form an aluminum oxide layer on the substrate,

상기 단계의 적어도 일부 동안 저주파 플라즈마를 인가하는 것을 특징으로 한다.The low frequency plasma is applied during at least part of the step.

상기 플라즈마 반응을 위한 반응가스로 산소, 질소, 아산화질소, 수소, 암모니아 등을 단독 또는 2종 이상 사용할 수 있으나, 이에 특별히 제한하는 것은 아니다.As the reaction gas for the plasma reaction, oxygen, nitrogen, nitrous oxide, hydrogen, ammonia, or the like may be used alone or in combination of two or more, but is not particularly limited thereto.

상기 알루미늄 옥사이드 박막을 증착하기 위한 소스물질로 알루미늄을 함유한 유기 또는 무기 화합물을 사용할 수 있다. 보다 구체적으로, TMA(트리메틸알루미늄) 등을 사용할 수 있다.An organic or inorganic compound containing aluminum may be used as a source material for depositing the aluminum oxide thin film. More specifically, TMA (trimethylaluminum) etc. can be used.

상기 기판은 테레프탈레이트, 폴리카보네이트, 사이클릭 올레핀 코폴리머, 폴리아릴레이트, 폴리에테르설폰, 또는 폴리에틸렌나프탈레이트 등을 단독 또는 2종 이상 사용할 수 있다.The substrate may be used alone or in combination of terephthalate, polycarbonate, cyclic olefin copolymer, polyarylate, polyethersulfone, polyethylene naphthalate, and the like.

상기 기판은 증착하기 전에 이소프로필알코올(IPA), 아세톤 또는 메탄올 등을 이용하여 10 내지 60분 간 초음파 세정하고, 50 내지 120℃ 오븐에서 건조한 후에 사용할 수 있으나, 이에 특별히 제한하는 것은 아니다.The substrate may be used after ultrasonic cleaning for 10 to 60 minutes using isopropyl alcohol (IPA), acetone or methanol before drying and drying in an oven at 50 to 120 ℃, but is not particularly limited thereto.

상기 반응기 내부 벽의 온도는 약 50℃로 유지한 상태에서 증착공정을 실시하고, 기판의 온도는 50℃ 내지 180℃까지 조절하여 공정을 실시할 수 있다. The temperature of the inner wall of the reactor is maintained at about 50 ℃ to perform the deposition process, the temperature of the substrate can be carried out by adjusting the temperature to 50 ℃ to 180 ℃.

상기 박막의 증착은 20℃로 항온을 유지한 상태에서 실시할 수 있다. Deposition of the thin film can be carried out while maintaining a constant temperature at 20 ℃.

반응기 내에 압력 유지와, 잔류하는 소스물질 및 반응 부산물은 아르곤, 질소, 또는 헬륨 등의 퍼지가스를 이용하여 일정한 양으로 3초 내지 15초 동안 반응기 안으로 유입시켜 퍼지시킬 수 있다.Maintaining pressure in the reactor and remaining source material and reaction by-products may be purged by introducing into the reactor in a constant amount for 3 to 15 seconds using a purge gas such as argon, nitrogen, or helium.

상기 퍼지시간은 소스물질과 반응가스의 반응 시 반응에 참여하지 않거나, 반응 후에 생기는 부산물을 기판 표면으로부터 효과적으로 제거하는데 영향을 줄 수 있어 퍼지시간이 증가함에 따라 굴절율이 증가된 치밀한 구조의 얇은 박막이 형성될 수 있다.The purge time may not participate in the reaction during the reaction of the source material and the reaction gas or may effectively remove the by-products generated after the reaction from the surface of the substrate. Can be formed.

상기 증착 공정 사이클의 횟수가 증가함에 따라 기체 투과 방지막의 두께가 증가하고, 수분투과도가 현저히 감소할 수 있다. 바람직하게는 10 내지 400회, 보다 바람직하게는 50 내지 200회가 좋다.As the number of cycles of the deposition process increases, the thickness of the gas permeation barrier may increase, and the moisture permeability may decrease significantly. Preferably it is 10-400 times, More preferably, it is 50-200 times.

상기 플라즈마는 증착 공정의 단계 전체 또는 일부 동안 인가될 수 있으며, 40 내지 500 Hz, 보다 바람직하게는 60Hz의 저주파 전원을 사용할 수 있다. The plasma may be applied during all or some of the steps of the deposition process, using a low frequency power source of 40 to 500 Hz, more preferably 60 Hz.

이러한 플라즈마의 발생 파워는 1200W 이하일 수 있다.The generated power of the plasma may be 1200 W or less.

상기 증착공정을 거친 알루미늄 옥사이드 층은 5 내지 50nm 두께의 단일층일 수 있다.The aluminum oxide layer subjected to the deposition process may be a single layer having a thickness of 5 to 50 nm.

본 발명은 또한 본 발명의 기체 투과 방지막이 증착된 플라스틱 기판 또는 상기 플라스틱 기판을 포함하는 플렉서블 디스플레이에 관한 것이다.The present invention also relates to a plastic substrate on which the gas permeation barrier of the present invention is deposited or to a flexible display including the plastic substrate.

본 발명의 기체 투과 방지막이 증착된 플라스틱 기판 또는 상기 플라스틱 기판을 포함하는 플렉서블 디스플레이는 기체 방지 특성이 향상되어 수분 및 산소가 상기 기판 내부로 침투되어 산화 등에 의한 소자의 수명 단축 등의 문제 발생을 방지할 수 있어 우수한 물성을 가질 수 있다.The plastic substrate on which the gas permeation prevention film of the present invention is deposited or the flexible display including the plastic substrate is improved in gas prevention properties to prevent moisture and oxygen from penetrating into the substrate, thereby preventing problems such as shortening the life of the device due to oxidation. It can have excellent physical properties.

이하, 본 발명에 따르는 실시예 및 본 발명에 따르지 않는 비교예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples according to the present invention and comparative examples not according to the present invention, but the scope of the present invention is not limited to the examples given below.

<실시예 1> 저주파 플라즈마 원자층 증착을 통한 알루미늄 옥사이드 박막 형성Example 1 Aluminum Oxide Thin Film Formation by Low Frequency Plasma Atomic Layer Deposition

알루미늄 옥사이드 박막을 형성하기 위한 저주파 플라즈마 원자층 증착장비는 도 1에 나타내었다. 증착장비 내 반응기는 지름 200mm 크기의 실린더 형태이며, 기판은 정사각형 형태로 최대크기 150×150mm까지 장착될 수 있도록 구성되어 있 다. 반응기 내부 벽의 온도는 50℃로 유지한 상태로 공정을 진행하였고, 기판의 온도는 50℃에서 180℃까지 조절하여 공정을 진행하였다. 알루미늄 옥사이드 박막을 증착하기 위한 소스물질로 TMA(트리메틸알루미늄)를 사용하였으며, 증착 동안 20℃로 항온을 유지하였다. 플라즈마 반응을 위한 반응가스로는 산소를 사용하였고 챔버내 압력 유지와 소스 및 반응가스의 퍼지를 위해 아르곤을 일정한 양으로 챔버 안으로 계속 유입하였다. 플라즈마는 60Hz의 저주파 전원을 사용하였다. 소스물질 및 반응가스의 유량 및 유입시간을 조절하여 반응 사이클을 구성하였으며 이를 표 1에 나타내었다. A low frequency plasma atomic layer deposition apparatus for forming an aluminum oxide thin film is shown in FIG. 1. The reactor in the deposition equipment is in the form of a cylinder having a diameter of 200 mm, and the substrate is configured to be mounted in a square shape to a maximum size of 150 × 150 mm. The process was performed while the temperature of the reactor inner wall was maintained at 50 ℃, the temperature of the substrate was controlled by adjusting the temperature from 50 ℃ to 180 ℃. TMA (trimethylaluminum) was used as a source material for depositing the aluminum oxide thin film, and the temperature was kept at 20 ° C. during the deposition. Oxygen was used as the reaction gas for the plasma reaction, and argon was continuously introduced into the chamber in a constant amount to maintain pressure in the chamber and purge the source and the reaction gas. The plasma used a low frequency power source of 60 Hz. The reaction cycle was configured by adjusting the flow rate and the inflow time of the source material and the reaction gas and are shown in Table 1.

기판은 폴리에테르설폰(PES)을 사용하였으며 증착하기 전에 이소프로필알코올(IPA)을 이용하여 30분 간 초음파 세정을 하였으며 100℃ 오븐에서 건조한 후에 사용하였다. 또한 증착을 위한 다른 전처리는 진행하지 않았다. The substrate was made of polyethersulfone (PES) and ultrasonically cleaned for 30 minutes using isopropyl alcohol (IPA) prior to deposition and used after drying in an oven at 100 ° C. Also, no other pretreatment for deposition proceeded.

<실험예 1> 공정 사이클 별 박막 두께Experimental Example 1 Thin Film Thickness by Process Cycle

반응 사이클을 50, 100, 150, 200회로 증가시켜 알루미늄 옥사이드 막을 형성하였다. The reaction cycle was increased to 50, 100, 150, 200 to form an aluminum oxide film.

Figure 112009080238183-pat00001
Figure 112009080238183-pat00001

표 1에 나타난 바와 같이, 저주파 플라즈마 원자층 증착장비를 사용하여 알루미늄 옥사이드 막을 형성함에 있어 증착 사이클이 증가함에 따라 형성되는 막의 두께가 각각 15.1, 31, 39.9, 48.5nm 증가하는 것으로 나타났다. As shown in Table 1, in forming the aluminum oxide film using the low frequency plasma atomic layer deposition apparatus, the thickness of the formed film was increased by 15.1, 31, 39.9, and 48.5 nm as the deposition cycle was increased.

<실험예 2> 공정 사이클 별 기판의 수분투과도Experimental Example 2 Moisture Permeability of Substrate by Process Cycle

실시예 1에서 형성된 단일층의 알루미늄 옥사이드 막을 코팅한 후 PES 필름의 수분투과도를 코팅전과 비교하였다. 수분투과도는 MOCON PERMATRAN 3/30 장비를 이용하여 온도 37.5℃, 습도 90%에서 측정하여 결과를 표 2에 나타내었다. After coating a single layer of aluminum oxide film formed in Example 1, the moisture permeability of the PES film was compared with before coating. Moisture permeability was measured at a temperature of 37.5 ℃, humidity 90% using a MOCON PERMATRAN 3/30 equipment and the results are shown in Table 2.

Figure 112009080238183-pat00002
Figure 112009080238183-pat00002

표 2에 나타난 바와 같이, 공정 사이클이 증가함에 따라 알루미늄 옥사이드 막이 형성된 후에 수분투과도가 현저히 감소하여 필름의 수분차단 특성이 상당히 향상되는 것을 알 수 있다.As shown in Table 2, it can be seen that as the process cycle increases, the moisture permeability is significantly reduced after the aluminum oxide film is formed, thereby significantly improving the moisture barrier property of the film.

<실험예 3> 반응가스 퍼지시간 별 기판의 굴절률Experimental Example 3 Refractive Index of Substrate by Reaction Gas Purge Time

원자층 증착 공정 동안에 소스 및 반응가스를 유입시킨 후에 아르곤 가스의 유입시간을 3, 6, 10, 15초로 증가시켜 알루미늄 옥사이드 막을 형성하였다. 원자층 증착 방법은 통상적으로 기존의 CVD 방법과는 달리 기판표면상의 한정된 수의 부위에서 반응이 이루어진다. 따라서 소스와 반응가스가 유입된 후 충분한 퍼지가 이루어질 경우 반응에 참여하지 않거나 혹은 반응 후에 생기는 부산물을 기판 표면으로부터 효과적으로 제거함으로써 원자층 박막 형성에 기여할 수 있다. After the source and the reaction gas were introduced during the atomic layer deposition process, the inflow time of the argon gas was increased to 3, 6, 10, and 15 seconds to form an aluminum oxide film. Atomic layer deposition methods typically react at a limited number of sites on the substrate surface, unlike conventional CVD methods. Therefore, if sufficient purge is performed after the source and the reaction gas are introduced, it may not contribute to the reaction or effectively remove the by-products generated after the reaction from the substrate surface, thereby contributing to the formation of the atomic layer thin film.

Figure 112009080238183-pat00003
Figure 112009080238183-pat00003

표 3에 나타난 바와 같이, 50 사이클인 경우 10초 퍼지시간에서, 100 사이클인 경우 6초에서 플라스틱 필름 위에 굴절율이 가장 크고 얇은 막을 형성함을 알 수 있었다. As shown in Table 3, it was found that the largest refractive index on the plastic film was formed on the plastic film at 10 seconds purge time for 50 cycles and 6 seconds for 100 cycles.

<실험예 4> 알루미늄 옥사이드 박막 코팅에 따른 플라스틱 필름의 수분투과도Experimental Example 4 Moisture Permeability of Plastic Film According to Aluminum Oxide Thin Film Coating

실험예 3에서 형성된 단일층의 알루미늄 옥사이드 박막을 코팅한 후 PES 필름의 수분투과도를 코팅전과 비교하였다. 수분투과도는 MOCON PERMATRAN 3/30 장비를 이용하여 온도 37.5℃, 습도 90%에서 측정하여 결과를 표 4에 나타내었다. After coating a single layer of aluminum oxide thin film formed in Experimental Example 3, the moisture permeability of the PES film was compared with before coating. Moisture permeability was measured at 37.5 ℃ temperature, 90% humidity using a MOCON PERMATRAN 3/30 equipment and the results are shown in Table 4.

Figure 112009080238183-pat00004
Figure 112009080238183-pat00004

표 4에 나타난 바와 같이, 알루미늄 옥사이드 막이 형성된 후에 수분투과도가 현저히 감소하여 필름의 수분차단 특성이 상당히 향상되는 것을 알 수 있다. As shown in Table 4, it can be seen that the moisture permeability is significantly reduced after the aluminum oxide film is formed, thereby significantly improving the moisture barrier properties of the film.

또한, 퍼지시간이 10내지 15초인 시료의 경우에 보다 치밀한 구조로 박막이 형성됨으로써 측정감도 수준의 낮은 수분투과도를 나타냄을 알 수 있다. In addition, in the case of the sample having a purge time of 10 to 15 seconds, it can be seen that the thin film is formed in a more dense structure, thereby exhibiting a low moisture permeability of the measurement sensitivity level.

도 1은 본 발명의 저주파 플라즈마 원자층 증착장비를 도시한 것이다.Figure 1 shows a low frequency plasma atomic layer deposition apparatus of the present invention.

Claims (13)

퍼지가스 유입 시간은 10초 내지 15초이고, 증착 사이클 횟수는 50 내지 100회이며, 60 Hz의 저주파 플라즈마를 인가하는 조건에서 플라즈마 원자층 증착법을 이용하여 11.8 nm 내지 25.8 nm의 두께를 갖는 알루미늄 옥사이드 단일층이 증착된 폴리에테르설폰 기판으로, 상기 폴리에테르설폰 기판의 수분투과도(WVTR, water vapor transmission rate)가 0.0042 내지 0.0041 g/m2 day인 폴리에테르설폰 기판.The purge gas inflow time is 10 to 15 seconds, the deposition cycle number is 50 to 100 times, and aluminum oxide having a thickness of 11.8 nm to 25.8 nm using a plasma atomic layer deposition method under the condition of applying a low frequency plasma of 60 Hz. A polyether sulfone substrate having a single layer deposited thereon, wherein the polyethersulfone substrate has a water vapor transmission rate (WVTR) of 0.0042 to 0.0041 g / m 2 day. 삭제delete 폴리에테르설폰 기판을 플라즈마 원자층 증착장비의 반응기 내로 도입하여 반응가스를 도입하는 단계;Introducing a reaction gas by introducing a polyethersulfone substrate into a reactor of a plasma atomic layer deposition apparatus; 상기 반응기 내에 소스물질을 유입하여 기판상에 흡착층을 형성하는 단계; 및Introducing a source material into the reactor to form an adsorption layer on the substrate; And 퍼지가스를 10초 내지 15초 동안 유입하여 상기 반응기 내에 잔류하는 소스물질 및 반응 부산물을 퍼지하는 단계를 포함하는 사이클을 50 내지 100회 반복하여 기판상에 알루미늄 옥사이드 단일층을 형성하되, Introducing a purge gas for 10 to 15 seconds to repeat the cycle including the step of purging the source material and the reaction by-products remaining in the reactor to form a single layer of aluminum oxide on the substrate, 상기 단계의 적어도 일부 동안 60 Hz의 저주파 플라즈마를 인가하는 것을 특징으로 하는 제1항의 폴리에테르설폰 기판의 제조방법.A method of manufacturing the polyethersulfone substrate of claim 1, wherein a low frequency plasma of 60 Hz is applied during at least part of the step. 삭제delete 제3항에 있어서,The method of claim 3, 반응가스는 산소, 질소, 아산화질소, 수소 및 암모니아로 이루어진 군으로부터 선택된 하나 이상인 폴리에테르설폰 기판의 제조방법.The reaction gas is at least one selected from the group consisting of oxygen, nitrogen, nitrous oxide, hydrogen and ammonia. 제3항에 있어서,The method of claim 3, 소스물질이 알루미늄을 함유한 유기 또는 무기 화합물인 폴리에테르설폰 기판의 제조방법.A method for producing a polyethersulfone substrate, wherein the source material is an organic or inorganic compound containing aluminum. 삭제delete 제3항에 있어서,The method of claim 3, 반응기 내 기판 온도가 50 내지 180℃인 폴리에테르설폰 기판의 제조방법.Method for producing a polyether sulfone substrate having a substrate temperature of 50 to 180 ℃ in the reactor. 제3항에 있어서,The method of claim 3, 퍼지가스는 아르곤, 질소 및 헬륨으로 이루어진 군으로부터 선택된 하나 이상인 폴리에테르설폰 기판의 제조방법.The purge gas is at least one selected from the group consisting of argon, nitrogen and helium polyether sulfone substrate manufacturing method. 삭제delete 삭제delete 삭제delete 제1항의 폴리에테르설폰 기판을 포함하는 플렉서블 디스플레이. A flexible display comprising the polyethersulfone substrate of claim 1.
KR1020090130898A 2009-12-24 2009-12-24 Method for preparing barrier film for plastic substrate by using low frequency plasma enhanced atomic layer deposition KR101264257B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090130898A KR101264257B1 (en) 2009-12-24 2009-12-24 Method for preparing barrier film for plastic substrate by using low frequency plasma enhanced atomic layer deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090130898A KR101264257B1 (en) 2009-12-24 2009-12-24 Method for preparing barrier film for plastic substrate by using low frequency plasma enhanced atomic layer deposition

Publications (2)

Publication Number Publication Date
KR20110074052A KR20110074052A (en) 2011-06-30
KR101264257B1 true KR101264257B1 (en) 2013-05-23

Family

ID=44404475

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090130898A KR101264257B1 (en) 2009-12-24 2009-12-24 Method for preparing barrier film for plastic substrate by using low frequency plasma enhanced atomic layer deposition

Country Status (1)

Country Link
KR (1) KR101264257B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103827350B (en) * 2011-07-11 2016-01-13 莲花应用技术有限责任公司 Mixed metal oxide barrier film and the Atomic layer deposition method for the preparation of mixed metal oxide barrier film
CN104037323A (en) * 2014-06-16 2014-09-10 浙江大学 Preparation method of RRAM (Resistive Random Access Memory)
CN113302334A (en) * 2019-01-25 2021-08-24 应用材料公司 Method of forming a moisture and oxygen barrier coating
KR102176986B1 (en) * 2019-11-27 2020-11-10 주성엔지니어링(주) Method for processing substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P. F. CARCIA et al., Journal of Applied Physics, vol. 106, 023533, 2009.07.15.*

Also Published As

Publication number Publication date
KR20110074052A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
KR101539635B1 (en) Method for depositing an encapsulating film
JP6107819B2 (en) Gas barrier film and electronic device using the same
JP5880442B2 (en) GAS BARRIER FILM, METHOD FOR PRODUCING GAS BARRIER FILM, AND ELECTRONIC DEVICE
US6743475B2 (en) Process for producing aluminum oxide films at low temperatures
US9957613B2 (en) Laminate, barrier film and method for manufacturing these
JP5893627B2 (en) Permeation barrier for device and substrate encapsulation
WO2014123201A1 (en) Gas barrier film and method for manufacturing same
JP6638401B2 (en) Gas barrier film laminate and method for producing the same
KR101264257B1 (en) Method for preparing barrier film for plastic substrate by using low frequency plasma enhanced atomic layer deposition
US11005065B2 (en) Laminate comprising tantalum oxide and method of producing the same, gas barrier film and method of producing the same, and organic light-emitting element
KR101557187B1 (en) Gas barrier film and the method for preparing the same
Lee et al. Defect-sealing of Al2O3/ZrO2 multilayer for barrier coating by plasma-enhanced atomic layer deposition process
Han et al. Water vapor and hydrogen gas diffusion barrier characteristics of Al 2 O 3–alucone multi-layer structures for flexible OLED display applications
KR102130530B1 (en) Laminate, gas barrier film, and manufacturing method therefor
CN109468607A (en) A kind of preparation method of gas barrier film
KR102450786B1 (en) Laminate and its manufacturing method
US20140319488A1 (en) Thin film formation for device sensitive to environment
JP6903872B2 (en) Manufacturing method of gas barrier film laminate
US11935759B2 (en) High voltage, low pressure plasma enhanced atomic layer deposition
KR101793897B1 (en) Deposition method of passivation film for light emitting diode
JP7410964B2 (en) Silicon metal oxide sealing film containing metal or metal oxide in thin film and method for producing the same
CN108780851B (en) Method for depositing protective film of light-emitting element
Kim et al. Study on the OLED Thin Film Encapsulation of the Al 2 O 3 Thin Layer Formed by Atomic Layer Deposition Method
Lee et al. 29.2: Atomic Layer Deposition of Al2O3/ZrO2 Nanolaminate on the Plastic Substrates for the Flexible Display
KR100971503B1 (en) Method of preparing passivation layer using electron cyclotron resonance plasma in organic device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
E601 Decision to refuse application
E801 Decision on dismissal of amendment
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170327

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee