KR101248998B1 - 박막 형성 방법 - Google Patents

박막 형성 방법 Download PDF

Info

Publication number
KR101248998B1
KR101248998B1 KR1020120054242A KR20120054242A KR101248998B1 KR 101248998 B1 KR101248998 B1 KR 101248998B1 KR 1020120054242 A KR1020120054242 A KR 1020120054242A KR 20120054242 A KR20120054242 A KR 20120054242A KR 101248998 B1 KR101248998 B1 KR 101248998B1
Authority
KR
South Korea
Prior art keywords
gas
precursor
reaction
thin film
purge
Prior art date
Application number
KR1020120054242A
Other languages
English (en)
Other versions
KR20120062672A (ko
Inventor
전성진
한영기
박상기
김헌도
Original Assignee
주성엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주성엔지니어링(주) filed Critical 주성엔지니어링(주)
Priority to KR1020120054242A priority Critical patent/KR101248998B1/ko
Publication of KR20120062672A publication Critical patent/KR20120062672A/ko
Application granted granted Critical
Publication of KR101248998B1 publication Critical patent/KR101248998B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 박막 증착 방법에 관한 것으로, 반응 챔버 내의 서셉터 상에 복수개의 기판을 안착시키는 단계와, 반응 챔버 내로 전구체 가스, 퍼지 가스 및 반응 가스를 독립적으로 분사하는 복수의 가스 분사기를 통해 동시에 공급하는 단계와, 서셉터에 안착된 각각의 기판에 상기 전구체 가스, 퍼지 가스, 반응 가스 및 퍼지 가스를 차례대로 분사하여 원자층 증착을 순차적으로 다수 반복 진행하는 단계를 포함하는 박막 증착 방법이 제시된다.

Description

박막 형성 방법 {METHOD FOR FORMING THIN FILM}
본 발명은 반도체용 박막 제조 방법의 하나인 원자층 박막 형성 방법에 관한 것으로서, 특히 기존의 원자층 증착 방법과 달리 전구체와 반응 가스를 연속적으로 반응면에 흡착시켜 박막을 형성하는 방법으로 높은 증착률을 갖지며, 상질의 원자층을 형성할 수 있는 원자층 박막 형성 방법에 관한 것이다.
반도체 제조 공정에서 박막 증착 공정은 크게 물리 증착 방법과 화학 증착 방법으로 나눌 수 있다. 화학 증착 방법을 이용한 박막 형성 방법은 박막이 형성되는 하부막의 구조가 3차원 구조인 경우, 화학종들의 균일한 전달이 가능하여 물리 증착 방법에 비하여 우수한 단차 피복성(step coverage)과 함께 높은 박막 증착율을 얻을 수 있다는 장점을 갖는다.
최근의 반도체 디바이스의 고집적화 추세에 따라, 박막이 형성되는 하부막의 종횡비(aspect ratio)가 더욱 커질 뿐만 아니라 구조 자체도 더욱 복잡해지고 있다. 이와 같이, 하부 구조가 복잡해지면 하부막 안쪽 영역으로 공급되는 화학종의 물질 전달 속도가 누센 확산에 의해 지배되므로 화학종의 분자량에 반비례하여 물질 전달 속도가 결정된다. 이것은 화학종이 하부막의 전면에 고르게 퍼지기 어려워 우수한 단차 피복성을 갖는 박막을 형성하기 어렵다는 것을 의미한다. 또한, 박막 형성에 필요한 반응 가스가 동시에 공급되므로, 반응가스의 반응성이 높은 경우반응 가스가 기판에 도달되기 전에 이미 기상에서의 반응을 가지게 되어 기판 상에 도달될 때에는 원하지 않는 입자로 형성된다. 따라서, 반응 소자의 집적화에 따른 기존의 화학 증착 방법의 문제점들을 개선하기 위하여, 원자층 증착 방법이 티. 선톨라(T. Suntola) 등에 의해 제안되었고, 현재 이와 관련된 많은 연구와 양산화가 진행되고 있다.
도 1은 종래 기술에 따라 원자층 박막을 형성하기 위한 반응기를 도시한다. 도 1에 도시된 원자층 형성용 반응기는 반응 챔버(20)와, (도시되지 않은) 웨이퍼가 안착되는 서셉터(22)와, 반응 챔버(20) 내에 반응 가스가 공급되는 가스 유입구(24)와, 챔버 내의 압력을 조절하고 반응이 완료된 가스를 배출하기 위한 배출구(26)를 포함한다. 이러한 반응기에서 웨이퍼 상에 원자층 박막을 형성하기 위하여, 먼저 서셉터(22)에 웨이퍼를 로딩한 후 공급되는 화학종의 활성을 위하여 섭씨 400 내지 500도의 온도로 유지한다. 이후, 원자층 형성용 전구체와 이의 리간드를 분해시키기 위한 반응 가스를 유입구(24)를 통하여 반응 챔버(20) 내에 순차적으로 공급한다. 반응 챔버(20) 내에 유입된 전구체 및 반응 가스는 서셉터(22) 위를 통과하여 배출구(26)를 통하여 배출된다.
이때, 도 2에 도시된 바와 같이 종래 기술에 따른 원자층 형성용 반응법에서는 유입되는 전구체와 반응 가스 사이의 접촉을 방지하기 위하여 전구체와 반응 가스는 소정의 시간차를 두고 유입된다. 즉, 전구체가 유입되고 반응 가스가 유입되기 전에 시간 차이를 두고 번갈아 공급된다는 것이다. 따라서, 전구체가 반응 챔버에 공급되어 기판 상에 전구체의 원자층이 형성된 후에 반응 가스가 챔버 내에 공급되어 이미 형성된 전구체의 원자층과 반응하여 원하는 조성의 원자층을 적층한다.
이때, 응축성이 강한 전구체의 경우, 전구체가 유입되고 반응 가스가 유입되기 전에 이미 유입된 전구체의 가스를 희석 및 배출시키기 위하여 비반응 가스를 사용하여 퍼지를 행함으로써 유입되는 전구체와 반응 가스가 배출구(26) 이전의 반응 챔버(20)에서 접촉되는 것이 방지된다. 즉, 전구체의 물리적 흡착에 의한 원자층을 넘어서는 클러스터링(clustering) 및 반응 가스의 공급 후 반응에 의하여 발생되는 부산물의 잔류를 방지하기 위하여 퍼지(purge) 공정이 수반된다.
그러나, 이러한 원자층 증착 방법은 전구체와 반응 가스가 단계적으로 공급되고 퍼지 공정을 통하여 화학 증착된 원자층을 제외한 물리 흡착을 배제하는 방법이므로 기존의 화학 증착 방법에 비해 박막 증착율이 떨어지고, 퍼지 공정 후에도 전구체가 반응 챔버 내에 잔류되는 경우 원하지 않은 기상 반응이 발생되어 박막의 질이 저하되는 문제가 나타날 수 있다. 따라서, 90nm 이하의 공정에 양산적 개념으로 원자층 증착 방법이 사용되기 위해서는 물리 증착법이나 화학 기상 증착법에 버금가는 증착율을 가지면서도 상대적으로 낮은 온도에서 양질의 박막을 증착하는 기술이 필요하다.
더욱이, 이와 같은 종래 기술에 따른 원자층 형성용 반응 방법에는 몇 가지 문제점이 있다. 그 중 양산 적용에 있어 가장 큰 문제점은 원자층 형성 과정에서 서셉터(22)에서 전구체 및 반응 가스가 기상에서 만나지 않도록 하기 위하여 이들의 공급 사이에 시간 간격을 두거나 혹은 이들 사이에 퍼지 공정을 수행함으로써 낮은 증착율을 나타낸다는 점이다. 이는 단위 시간당 처리할 수 있는 웨이퍼의 매수에 제한을 두게 됨으로써 우수한 막질을 갖게 하는 원자층 증착 방법의 양산 적용에 걸림돌로 작용한다.
본 발명은 원자층의 증착 속도를 높일 수 있는 박막 형성 방법을 제공한다.
본 발명은 높은 증착률과 우수한 막질을 갖게 하면서도 양산화를 가능하게 하는 박막 형성 방법을 제공한다.
본 발명의 실시 예들에 따른 박막 증착 방법은 반응 챔버 내의 서셉터 상에 복수개의 기판을 안착시키는 단계; 상기 반응 챔버 내로 전구체 가스, 퍼지 가스 및 반응 가스를 독립적으로 분사하는 복수의 가스 분사기를 통해 동시에 공급하는 단계; 및 상기 서셉터에 안착된 각각의 기판에 상기 전구체 가스, 퍼지 가스, 반응 가스 및 퍼지 가스를 차례대로 분사하여 원자층 증착을 순차적으로 다수 반복 진행하는 단계를 포함한다.
상기 전구체 가스는 소정의 시간을 두고 분사가 중단되는 단계를 더 포함한다.
상기 소정의 시간은 상기 복수의 기판 모두에 상기 전구체 가스를 공급하는 일 주기의 배수가 된다.
상기 전구체 가스의 분사가 중단되는 동안 상기 퍼지 가스의 분사도 중단된다.
상기 서셉터와 상기 가스 분사기 중 적어도 하나가 회전한다.
상기 기판에는 소정의 시간을 두고 반응 가스가 1회 더 공급되는 단계를 더 포함한다.
상기 각각의 기판에 상기 퍼지 가스와 상기 반응 가스가 순차적으로 분사되는 사이에, 반응 가스가 더 공급되는 단계를 더 포함한다.
낮은 증착율을 갖는 원자층 증착 방법의 양산 적용을 위한 높은 증착율을 갖는 원자층 증착 방법을 제공하기 위한 본 발명의 전술된 구성에 따라서, 원자층으로 형성되는 박막 성분이 동일한 범위에서 웨이퍼 상으로 공급되는 전구체 및 반응 가스를 시공분할함으로써 원자층 증착 방식을 유지하면서 챔버 내에서는 전구체와 반응 가스가 동시에 유입되어 전구체와 반응 가스 사이의 분리를 위한 시간을 단축하여 반응을 효과적으로 수행할 수 있다. 따라서, 종래의 원자층 증착 방법에 비하여 월등히 높은 증착율을 갖는 원자층 증착 방법을 제공할 수 있다. 더욱이, 반응 가스가 반응하기 위한 시간을 제어함으로써, 미반응 불순물을 최소화하여 면저항 값을 낮출 수 있어 박막의 특성을 향상시키고 단차 피복성의 향상도 꾀할 수 있다. 따라서, 본 발명에 따른 원자층 증착 방법은 화학 기상 증착 방법이 갖는 시간당 처리할 수 있는 웨이퍼의 수량에 근접하는 생산량을 가지면서 화학 기상 증착 방법이 갖는 단점을 극복할 수 있다.
도 1은 종래 기술에 따른 원자층 박막 형성을 위한 반응기의 개략 종단면도.
도 2는 종래 기술에 따른 원자층 박막 형성 방법을 위한 전구체, 퍼지가스 및 반응 가스의 공급을 나타내는 공정도.
도 3은 본 발명에 따른 원자층 박막 형성을 위한 반응기의 개략 종단면도.
도 4는 도 3에 도시된 회전형 분사 장치의 하우징과 구동축을 도시한 종단면도.
도 5는 도 3에 도시된 회전형 분사 장치의 하우징을 도시한 단면사시도.
도 6은 도 3에 도시된 회전형 분사 장치의 구동축에 연결된 가스 분사기를 도시한 사시도.
도 7은 본 발명에 따른 원자층 박막 형성을 위한 반응기의 개략 횡단면도.
도 8은 본 발명에 따른 원자층 박막 형성 방법을 위한 전구체, 퍼지가스 및 반응 가스의 공급 예들을 나타내는 공정도.
도 9a 내지 도 13b는 본 발명에 따른 원자층 박막 형성 방법을 위한 전구체, 퍼지가스 및 반응 가스의 다른 공급 예들을 나타내는 공정도.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 대하여 설명하고자 한다.
도 3은 본 발명에 따른 원자층 박막 형성을 위한 반응기를 도시한다. 도면을 참조하면, 도시된 반응기(100)는 반응 챔버(110)와, (도시되지 않은) 기판 또는 웨이퍼가 안착되는 복수개의 (예를 들어 4개의) 서셉터(120)와, 반응 챔버(110) 내에 반응 가스를 공급하기 위한 가스 분사 장치(140)와, 챔버 내의 압력을 조절하고 반응이 완료된 가스를 배출하기 위한 배출구(160)를 포함한다. 상기 서셉터(120)에는 (도시되지 않은) 히터가 구비되어, 웨이퍼 상에 박막을 형성하기 위해 주입된 가스의 반응성을 유지하기 위하여 서셉터(120) 상에 안착되는 웨이퍼를 소정의 활성 온도로 유지시킨다. 상기 배출구(160)는 복수개가 서셉터(120) 각각의 둘레의 챔버(110) 바닥에 형성되어, 각각의 서셉터(120)에서 반응 완료 및 퍼지된 가스, 즉 처리 완료된 가스가 즉시 외부로 배출될 수 있게 배열 및 형성된다.
상기 가스 분사 장치(140)는 복수개의 가스 공급관(146)으로부터 가스를 공급받아 다채널의 가스 분사기(156)를 통하여 서셉터(120) 위로 공급한다. 이때, 가스 분사기(156)의 각각은 챔버의 중심에서 방사상으로 길게 연장된 형상이고, 가스 분사기(156)의 하부에는 다수 개의 분사공(157)이 형성되어 이를 통하여 가스가 분사된다. 한편, 서셉터(120)의 각각은 그 위에 안착되는 웨이퍼가 하나의 가스 분사기(156)에서 분사되는 가스를 공급받을 수 있는 크기 및 위치를 가져야 한다.
가스가 서셉터(120) 상에 안착된 웨이퍼에 도달하기 전에 챔버(110)의 상판(112)에 부착되거나 가스 분사 장치(140)의 내면에 부착될 수 있다. 이를 방지하기 위하여 가스 공급관(146)을 통하여 챔버(110) 내에 유입된 가스는 유입된 후에도 활성 상태를 유지하는 것이 바람직하다. 이를 위하여 히터(180)가 마련된다. 이러한 히터(180)는 챔버의 외측 둘레를 감싸는 형태로 배치되어 있으나, 이에 한정되지 않는다. 즉, 히터는 상기 상판(112)에 균일하게 내재된 절연선이 바람직하고, 유입되는 가스와 접촉되는 상판(112)의 표면에 구비된 가열판 또는 전열판일 수 있으며, 외부의 고온 유체를 통하여 가스를 가열하는 형태일 수도 있다. 예를 들어, TiCl4와 NH3의 반응을 이용한 TiN 박막인 경우, 섭씨 150 내지 200도의 온도 구간에서 TiCl4와 NH3는 TiN 박막으로 반응하지 않으므로, 상기 히터(180)는 챔버(110) 및 상판(112) 등을 섭씨 150 내지 200도로 유지하여 반응 영역 이외의 영역에서 부수적인 반응에 의한 박막 형성을 방지한다.
한편, 본 발명의 실시예에서 사용되는 상기 가스 분사 장치(140)는 회전형 분사 장치로서, 이하에서는 이에 대하여 설명한다. 도 4 내지 도 6은 회전형 분사 장치를 설명하기 위한 것이다. 도 4를 참조하면, 내부에 다수의 공급관(154)이 형성되어 있는 구동축(141)과, 구동축(141)의 외부를 둘러싸는 원통 형상의 하우징(142)과, 상기 하우징(142)의 측벽 일부에 형성되어 상기 복수개의 가스 공급관(146)과 각각 연결되는 주입공(151)과, 하우징(142)과 챔버(110)를 결합하는 플랜지부(150)와, 상기 구동축(141)과 하우징(142) 사이에 고리 모양으로 형성되는 다수의 마그네틱 시일(152, Magnetic Seal)로 구성된다. 구동축(141)은 하우징(142) 내벽에 삽입되어 챔버(110) 내부로 수직하게 내삽된다. 하우징(142)은 챔버(110)의 상부 외벽인 상판(112)에 수직하게 플랜지 결합된다. 하우징(142)에는 챔버의 상판(112)과 밀착되는 부분에서 리크(leak)가 발생하지 않도록 오링(153)이 마련된다.
구동축(141)의 내부에는 각각이 길이 방향으로 연장된 4개의 공급관(154)이 90도씩 서로 이격 형성된다. 하우징(142)의 내벽 둘레를 따라서는 4개의 환형홈(155)이 형성되어 있다. 각각의 공급관(154)의 일단은 환형홈(155)과 연통되도록 설치된다. 하우징(142)의 측벽에는 측벽을 관통하여 4개의 환형홈(155)과 각각 연결되는 주입공(151)이 4개 마련된다. 환형홈(155) 및 공급관(154)은 서로 일대일 대응하도록 동일한 개수로 설치된다.
도 5는 회전형 분사 장치의 하우징에 형성된 환형홈(155)과 이에 연결되는 주입공(151)을 도시한 단면사시도이다. 도 5에서는 이해를 돕기 위하여 복수개의 동일한 환형홈(155) 중에서 하나만을 도시하였다. 도면을 참조하여 가스의 공급에 대하여 설명하면, 하우징(142)의 측벽 일부에 형성된 주입공(151)을 통해 소정의 가스가 주입된다. 주입된 가스는 주입공(151)에 연통된 환형홈(155)을 통해 구동축(141)에 형성된 공급관(154)에 유입되고, 각 공급관(154)의 끝에 위치하는 가스 분사기(156)를 통하여 챔버(110) 내부로 분산된다. 구동축(141)이 회전하더라도, 4개의 가스 분사기(156)와 4개의 환형홈(155)은 일대일 대응 상태로 항상 연통하기 때문에, 상기의 가스 공급은 구동축(141)의 회전에 관계없이 항상 이루어진다. 구동축(141)은 하우징(142)과 밀착되면서 회전 운동할 수 있도록 설치된다. 구동축(141)이 용이하게 회전할 수 있도록 하우징(142)의 내벽에는 베어링이 설치되며, 구동축(141)과 하우징(142)은 마그네틱 실링(152)에 의해 서로 밀착된다.
도 6은 회전형 분사 장치의 구동축의 하부와 그에 연결된 분사기를 도시한 사시도이다. 도면을 참조하면, 구동축(141)의 입 끝단에서는 공급관(154)과 각각 연결되어 수평하게 방사형으로 분기되는 4개의 가스 분사기(156)가 구비되며, 각각의 가스 분사기(156) 하부에는 다수 개의 분사공(157)이 마련된다. 상기 가스 분사기(156)는 구동축(141)의 회전 운동에 의해 수평 회전한다. 따라서, 주입공(151)으로 공급된 가스는 주입공(151)에 대응하는 환형홈(155)과, 이에 연통되는 공급관(154)을 거쳐, 최종적으로 분사기의 분사공(157)을 통하여 챔버(110)의 내부로 분사된다.
본 발명의 경우, 상기와 같이 구성된 가스 분사 장치(140)에 의해 가스 분사기(156)를 일정 속도로 회전시키면서, 전구체와 퍼지 가스와 반응 가스를 챔버(110) 내로 동시에 유입시킨다. 즉, 4개의 가스 분사기(156)에서 각각 전구체, 퍼지 가스, 반응 가스, 퍼지 가스가 분사되도록 상기 가스 분사 장치(140)의 주입공(151)에 해당 가스의 가스 공급관(146)을 연결시킨 후, 구동축(141)을 회전시킨다. 그에 따라서, 전구체의 원자층 흡착, 퍼지, 반응 가스에 의한 반응 후 원하는 박막의 원자층 형성, 반응 불순물의 퍼지의 4 단계를 각각의 웨이퍼에 대해 순차적으로 진행된다.
챔버(110)의 내부를 도시한 도 7을 참조하여 전술된 공정을 설명한다. 도 7에서 4개의 가스 분사기(156)를 각각 제1 내지 제4 가스 분사기(156a 내지 156d)로 구분하고, 4개의 서셉터(120)를 각각 제1 내지 제4 서셉터(120a 내지 120d)로 구분하였다. 챔버 내에 원주 방향으로 배치된 제1 내지 제4 서셉터(120a 내지 120d)의 각각에는 웨이퍼가 안착되고, 제1 내지 제4 가스 분사기(156a 내지 156d)는 각각 전구체, 퍼지 가스, 반응 가스, 퍼지 가스를 분사하면서 도 7에 도시된 화살표 방향(반시계 방향)으로 회전한다. 이때 분사되는 각각의 가스는 도 8에 도시된 바와 같이 일정하게 공급된다. 따라서, 제1 가스 분사기(156a)가 제1 서셉터(120a)를 지나가면서 그 위에 안착된 웨이퍼 상에 전구체를 분사하고, 그 뒤를 이어서 제2 가스 분사기(156b)가 상기 제1 서셉터(120a)에 안착된 웨이퍼 상에 퍼지 가스를 분사하면서 지나가고, 다시 이어서 제3 및 제4 가스 분사기(156c 및 156d)가 상기 제1 서셉터(120a)에 안착된 웨이퍼 상에 반응 가스, 퍼지 가스를 분사한다. 따라서, 제1 서셉터(120a)에 안착된 웨이퍼에는 전구체, 퍼지 가스, 반응 가스, 퍼지 가스가 차례대로 분사되어, 전구체의 원자층 흡착, 퍼지, 반응 가스에 의한 반응 후 원하는 박막의 원자층 형성, 반응 불순물의 퍼지의 4 단계를 순차적으로 다수 회 반복 진행하게 된다. 이는 제2 내지 제4 서셉터(120b 내지 120d)에 안착된 웨이퍼도 동일하게 이들 단계가 진행된다. 제1 내지 제4 가스 분사기(156a 내지 156d)에서 각각 전구체, 퍼지 가스, 반응 가스 및 퍼지 가스가 처음부터 분사되면, 제2 내지 제4 서셉터(120b 내지 120d)에 안착된 웨이퍼는 초기에 퍼지 가스, 반응 가스 및 퍼지 가스가 각각 분사되지만 이들에 의해서는 증착이 되지 않으므로, 이들 웨이퍼 상에서 증착은 제1 가스 분사기(156a)가 지나간 뒤부터 수행된다.
한편, 전구체를 공급하고 퍼지 후 반응 가스가 원자층을 충분히 형성하기 위해서는 일정 시간이 필요하게 된다. 이를 위하여, 도 9a에서는 제1 가스 분사기(156a)가 1회전하는 주기(T)동안 전구체를 공급한 후, 그 다음 1회전하는 주기(T)동안에 전구체의 공급을 중단하면, 웨이퍼 상에 전구체가 1회 공급된 후에 반응 가스가 추가로 1회 더 공급된다. 이때, 도시된 실시예와 같이 기판이 4개인 경우, 초기에 제1 서셉터(120a)에 안착된 웨이퍼에 전구체를 공급하는 동안, 제2 내지 제4 서셉터(120b 내지 120d)에 안착된 웨이퍼에는 도 9b에 도시된 바와 같이, 퍼지 가스, 반응 가스 및 퍼지 가스의 공급을 제한할 수 있다. 즉, 초기에 제2 내지 제4 서셉터(120b 내지 120d)에 안착된 웨이퍼에 공급되는 퍼지 가스, 반응 가스 및 퍼지 가스는 각각 T/4, T/2, 3T/4의 시간 지연을 두고 공급할 수 있다. 물론 공정이 완료될 때에도, 이와 유사하게 T/4의 시간 간격을 가지고 제1, 제2, 제3, 제4 가스 분사기(156a 내지 156d)의 순서대로 가스의 공급을 중단시킬 수 있다. 또한, 도 10a에서와 같이, 제1 가스 분사기(156a)가 1회전하는 주기(T)동안 전구체를 공급한 후, 그 다음 2회전하는 2주기(2T)동안에 전구체의 공급을 중단하면, 웨이퍼 상에 전구체가 1회 공급된 후에 반응 가스가 추가로 2회 더 공급된다. 이와 같이 전구체를 분사한 후 반응 가스를 분사하는 회수를 조절함으로써, 반응 가스가 원자층을 형성하기에 충분한 시간을 제어할 수 있다. 이때에도, 도 10b에 도시된 바와 같이, 초기에 제2 내지 제4 서셉터(120b 내지 120d)에 안착된 웨이퍼에 공급되는 퍼지 가스, 반응 가스 및 퍼지 가스는 각각 T/4, T/2, 3T/4의 시간 지연을 두고 공급할 수 있다.
이때, 전구체의 공급이 중단된 동안에는 전구체를 퍼지할 필요는 없고, 반응 가스 공급후 반응 불순물의 퍼지만이 필요하게 된다. 따라서, 도 11a에 도시된 바와 같이, 전구체의 공급이 중단된 동안에 반응 가스가 분사되기 전에 분사되는 퍼지 가스(즉, 제2 가스 분사기(156b)에서 분사되는 퍼지 가스)의 공급을 중단시킬 수 있다. 물론, 도 12a에 도시된 바와 같이, 제2 가스 분사기(156b)에서 분사되는 퍼지 가스는 계속적으로 공급하는 대신, 전구체의 공급이 중단되기 직전에 분사되는 퍼지 가스(즉, 제4 가스 분사기(156d)에서 분사되는 퍼지 가스)의 공급을 중단시킬 수도 있다. 또한, 제2 및 제4 가스 분사기(156b, 156d)의 퍼지 가스 공급을 교대로 중단시킬 수도 있다. 이때에도, 도 11b, 도 12b 및 도 13b 에 도시된 바와 같이, 초기에 제2 내지 제4 서셉터(120b 내지 120d)에 안착된 웨이퍼에 공급되는 퍼지 가스, 반응 가스 및 퍼지 가스는 각각 T/4, T/2, 3T/4의 시간 지연을 두고 공급할 수 있다.
한편, 전술된 실시예에서는 서셉터가 챔버 내에 고정되고 분사 장치가 회전하는 형태를 예로서 설명하였으나, 그에 한정되지 않고 서셉터가 챔버 내에서 회전하고 분사 장치가 고정된 형태이거나, 이와 달리 서셉터 및 분사 장치가 챔버 내에서 반대 방향으로 또는 동일 방향으로 서로 다른 속도로 회전할 수도 있다. 더욱이, 상기 박막 형을 위하여 4개의 가스 분사기는 각각 소스 가스, 퍼지 가스, 반응 가스, 퍼지 가스를 순차적으로 분사하였으나, 필요에 따라 이들 순서 또는 가스의 종류가 바뀔 수 있음은 물론이다.
100: 반응기 110: 반응 챔버
120: 서셉터 140: 가스 분사 장치
146: 가스 공급관 156: 가스 분사기
160: 배출구 180: 히터

Claims (7)

  1. 반응 챔버;
    반응 챔버 내부에 마련되어 복수개의 가스 공급관으로부터 가스를 공급받아 상기 반응 챔버 내부로 분사하는 다채널의 가스 분사기; 및
    그 위에 안착되는 기판이 상기 다채널의 가스 분사기 중 하나의 가스 분사기에서 분사되는 가스를 공급받는 복수의 서셉터를 포함하는 반응기를 이용하고,
    상기 반응 챔버 내의 상기 복수의 서셉터 상에 복수개의 기판을 각각 안착시키는 단계;
    상기 다채널의 가스 분사기를 통해 전구체 가스, 퍼지 가스 및 반응 가스를 상기 반응 챔버 내로 공급하는 단계; 및
    상기 복수개의 서셉터에 안착된 기판 중 하나에 박막이 증착될 때 나머지 서셉터 상의 기판은 박막이 증착되지 않는 단계를 포함하는 박막 증착 방법.
  2. 제 1 항에 있어서,
    상기 다채널의 가스 분사기와 상기 복수개의 서셉터 중 적어도 하나가 회전하는 박막 증착 방법.
  3. 제 2 항에 있어서,
    상기 반응 챔버 내로 상기 기판에 상기 전구체 가스, 상기 퍼지 가스 및 상기 반응 가스를 동시에 유입시키는 박막 증착 방법.
  4. 제 3 항에 있어서,
    상기 반응 챔버 내로 상기 기판에 전구체 가스, 퍼지 가스 및 반응 가스를 시간 지연을 두고 공급하는 박막 증착 방법.
  5. 제 4 항에 있어서,
    상기 기판에 상기 전구체 가스를 공급하는 동안 상기 퍼지 가스 또는 상기 반응 가스의 공급을 중단하는 박막 증착 방법.
  6. 제 4 항에 있어서,
    상기 기판에 상기 반응 가스를 공급하는 동안 상기 전구체 가스의 공급을 중단하는 박막 증착 방법.
  7. 제 2 항에 있어서,
    상기 기판에 상기 전구체 가스, 상기 퍼지 가스 및 상기 반응 가스를 공급한 후 상기 전구체 가스의 공급없이 상기 반응 가스를 추가로 더 공급하는 박막 증착 방법.

KR1020120054242A 2012-05-22 2012-05-22 박막 형성 방법 KR101248998B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120054242A KR101248998B1 (ko) 2012-05-22 2012-05-22 박막 형성 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120054242A KR101248998B1 (ko) 2012-05-22 2012-05-22 박막 형성 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020050065532A Division KR101199953B1 (ko) 2005-07-19 2005-07-19 박막 형성 방법

Publications (2)

Publication Number Publication Date
KR20120062672A KR20120062672A (ko) 2012-06-14
KR101248998B1 true KR101248998B1 (ko) 2013-04-02

Family

ID=46683529

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120054242A KR101248998B1 (ko) 2012-05-22 2012-05-22 박막 형성 방법

Country Status (1)

Country Link
KR (1) KR101248998B1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020088621A (ko) * 2001-05-18 2002-11-29 주식회사 피에스티 원자층 증착장치의 가스 분사장치
KR20040105195A (ko) * 2003-06-05 2004-12-14 삼성전자주식회사 원자층 박막 증착 설비의 가스공급방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020088621A (ko) * 2001-05-18 2002-11-29 주식회사 피에스티 원자층 증착장치의 가스 분사장치
KR20040105195A (ko) * 2003-06-05 2004-12-14 삼성전자주식회사 원자층 박막 증착 설비의 가스공급방법

Also Published As

Publication number Publication date
KR20120062672A (ko) 2012-06-14

Similar Documents

Publication Publication Date Title
KR100458982B1 (ko) 회전형 가스분사기를 가지는 반도체소자 제조장치 및 이를이용한 박막증착방법
TWI438300B (zh) 原子層沈積系統及方法
KR101554334B1 (ko) 샤워헤드 어셈블리 및 이를 구비한 박막증착장치 및 박막증착방법
US20130196078A1 (en) Multi-Chamber Substrate Processing System
US20130192761A1 (en) Rotary Substrate Processing System
US20070215036A1 (en) Method and apparatus of time and space co-divided atomic layer deposition
KR101804125B1 (ko) 기판처리장치
US6656284B1 (en) Semiconductor device manufacturing apparatus having rotatable gas injector and thin film deposition method using the same
CN104805415A (zh) 基板处理方法和基板处理装置
KR100531555B1 (ko) 회전가능한 1개 이상의 가스분사기가 구비된 박막증착장치 및 이를 이용한 박막 증착방법
KR20050104981A (ko) 박막 증착방법 및 분리된 퍼지가스 분사구를 구비하는박막 증착장치
KR101635085B1 (ko) 박막증착장치
KR101199953B1 (ko) 박막 형성 방법
KR101248998B1 (ko) 박막 형성 방법
KR101907973B1 (ko) 가스분사장치 및 이를 구비하는 기판처리장치
KR100422398B1 (ko) 박막 증착 장비
KR101829669B1 (ko) 박막 증착 방법 및 박막 증착 장치
KR101828989B1 (ko) 기판처리장치
KR101839409B1 (ko) 가스 공급 장치, 가스 공급 방법 및 이를 구비하는 기판 처리 장치
KR20070038206A (ko) 가스 분사 장치
KR101804127B1 (ko) 박막 증착 방법
KR20060100961A (ko) 샤워헤드 및 이를 구비한 원자층 증착설비
KR102501681B1 (ko) 원자층 증착 장치
KR20190087046A (ko) 기판처리장치
KR20220080467A (ko) 기판 지지 어셈블리 및 기판 처리 장치

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151125

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161222

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171120

Year of fee payment: 6