KR101246661B1 - 대기 중의 부유입자의 실시간 형광검출장치 - Google Patents

대기 중의 부유입자의 실시간 형광검출장치 Download PDF

Info

Publication number
KR101246661B1
KR101246661B1 KR1020120069541A KR20120069541A KR101246661B1 KR 101246661 B1 KR101246661 B1 KR 101246661B1 KR 1020120069541 A KR1020120069541 A KR 1020120069541A KR 20120069541 A KR20120069541 A KR 20120069541A KR 101246661 B1 KR101246661 B1 KR 101246661B1
Authority
KR
South Korea
Prior art keywords
particle
particles
nozzle
suspended particles
optical chamber
Prior art date
Application number
KR1020120069541A
Other languages
English (en)
Inventor
최기봉
하연철
이재경
김민철
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to KR1020120069541A priority Critical patent/KR101246661B1/ko
Priority to EP12184837.8A priority patent/EP2679985B1/en
Application granted granted Critical
Publication of KR101246661B1 publication Critical patent/KR101246661B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2208Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with impactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N2001/222Other features
    • G01N2001/2223Other features aerosol sampling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

본 발명은 대기 중의 부유입자를 흡입하여 농축한 후 이송된 단일 입자에 레이저빔을 조사하여 발생한 산란광과 함께 미약한 형광을 모아 이를 다수의 파장대별로 분리하여 부유입자에 포함된 생물입자를 실시간으로 신속하고 확실하게 검출할 수 있는 형광검출장치를 제공한다.
본 발명에 따른 형광검출장치는 대기 중의 부유입자를 선별 농축하는 입자농축부; 입자농축부 하단에 설치되는 입자광측부; 를 포함하고, 입자광측부는 입자농축부에서 선별 농축된 입자 및 공기를 유입하기 위한 노즐을 갖는 입자도입부; 입자도입부의 하단과 연결되며 내부에 입자측정공간을 갖는 광학챔버; 광학챔버의 전면에 연결 설치되어 입자측정공간 내에 도입되는 입자에 레이저빔을 조사하기 위한 빔형성광학계; 빔형성광학계에 대향하여 광학챔버의 후면에 연결 설치되어 빔형성광학계로부터 조사되는 레이저빔을 빔을 소멸시키기 위한 빔흡수계; 입자측정공간 내에 레이저빔의 진행방향과 90°방향으로 배치된 한 쌍의 반사경; 광학챔버의 하면에 연결 설치되어 입자측정공간에서 레이저빔과의 상호작용을 한 후의 입자와 공기를 노즐을 통하여 외부로 토출시키기 위한 입자토출부; 광학챔버의 우측면에 연결 설치되어 입자측정공간에서 레이저빔과 입자와의 상호작용에 의해 생성된 산란광과 형광 신호를 동시에 검출하는 산란광검출기와 형광검출기를 구비하는 빔분리광학계; 를 포함하는 것을 특징으로 한다.

Description

대기 중의 부유입자의 실시간 형광검출장치{Real Time Particle Fluorescence Detection Device}
본 발명은 대기 중의 부유입자의 실시간 형광검출장치에 관한 것으로서, 보다 상세하게는 대기 중의 부유입자를 흡입하여 농축한 후 이송된 단일 입자에 레이저빔을 조사하여 발생한 산란광과 함께 미약한 형광을 모아 이를 다수의 파장대별로 분리하여 부유입자에 포함된, 형광신호가 미약한 소량의 입자(생물입자 포함) 를 실시간으로 신속하고 확실하게 검출할 수 있는 형광검출장치에 관한 것이다.
최근 국제사회의 긴장화에 따라 테러 사건의 발생 위험성이 고조되고 있다. 특히 생물학 테러사건은 생물학적 무기를 쉽게 제조할 수 있을 뿐만 아니라 생물학 무기의 이동 및 살포가 용이하기 때문에 그 위험성이 더욱 증대되고 있다. 또한 생물학 테러는 세균 등의 잠복기에 의한 전염성의 증대로 심리적 공황 상태와 막대한 경제적 피해를 발생시킨다.
이와 같이 인체에 유해한 세균이 대기 중에 포함될 경우 이를 단시간 내에 검출하여 이에 대응하는 조치를 취해야 하나, 세균은 대기 중에 부유하는 미세입자로서 존재하기 때문에 육안으로 쉽게 확인이 되지 않아 별도의 검출시스템이 필요하다.
그리고 이와 같은 세균은 수십 ㎞ 전방에서 풍향 및 풍속 등을 고려하여 살포되며, 피해지역에 도착할 때는 농도가 매우 낮아진다. 그러나 세균의 농도가 극히 낮더라도 세균에 의한 피해가 줄어드는 것은 아니기 때문에, 대기 환경의 특성 상 저농도와 고농도의 세균에 대한 샘플링 및 검출은 매우 중요하다.
일반적으로 대기 중에 부유하고 있는 박테리아, 바이러스, 또는 곰팡이 등과 같은 생물입자(biological aerosol)를 포집 또는 검출하는 것은 전통적인 방법으로써, 대부분 배지에서 수 시간 내지 수 일 동안의 배양을 필요로 한다. 즉, 대기 중의 부유입자에 포함되어 있는 생물입자를 판독하기 위해서는 먼저, 대기 중에서 측정을 위한 샘플을 포집하고, 포집된 샘플에서 생물입자의 양이나 종류를 측정하는 단계가 필요하다. 그런데 전통적으로 사용되는 생물입자 측정 방법은 시간과 노력을 많이 요구하며 수 시간 내지 수 일 이상의 배양을 필요로 하는 경우가 많다. 이는 시료를 직접 배지에 배양하고 형성된 콜로니의 수를 계수하여 생물입자의 존재 유무를 판독하는 방법이다. 그러나 시료의 배양에 통상적으로 24시간 이상이 소요되며 진균류의 검출을 위해서는 1주일 이상이 소요되기 때문에 신속한 검출이 불가능하다.
한편 이러한 생물입자를 광학적으로 검출하는 방법으로 레이저 유도 형광법이 많이 사용되고 있는데, 이 방법은 레이저빔원으로부터 발생되는 레이저빔을 대기 중의 부유입자에 조사하면서 생긴 산란광과 형광을 통하여 부유입자 중의 생물입자를 검출하는 것이나, 미약한 형광을 모으는 집광장치가 구비되어 있지 않아 미약한 형광측정이 곤란하기 때문에 고농도로 형광입자가 부유해야만 측정이 가능하다는 문제점이 있었다.
또한 종래와 같이 부유입자 중의 형광을 띄는 비(非)생물입자(non-biological aerosol)를 포함하여 생물입자에 레이저빔을 조사하여 산란광과 형광을 검출하는 장비에 있어서, 외부요인에 의한 진동이나 충격에 의해 레이저빔의 조사방향이 틀어지거나, 장비의 내부를 청소하기 위해 분해 후 다시 조립하는 경우 입자 크기의 측정에 대한 정확도 및 반복도가 떨어지는 문제뿐만 아니라 그 레이저빔을 제대로 정렬하는 작업이 용이하지 않다는 문제가 있다.
따라서 본 발명은 상기한 종래의 문제점을 감안하여 이루어진 것으로, 대기 중의 부유입자를 흡입하여 농축한 후 이송된 단일 입자에 레이저빔을 조사하여 발생한 산란광과 함께 미약한 형광을 모아 이를 다수의 파장대별로 분리하여 부유입자에 포함된, 형광신호가 미약한 소량의 입자를 실시간으로 신속하고 확실하게 검출할 수 있도록 하는 것을 일반적인 목적으로 한다.
또한 본 발명의 다른 목적은 외부 요인에 의한 진동이나 충격, 그리고 장비의 분해 후 재 조립시에도 안정성을 유지하여 부유입자 중의 형광을 띄는 비생물입자와 생물입자의 측정에 대한 정확도 및 반복도를 향상시킴과 함께 레이저빔의 정렬작업을 확실하고 용이하게 하는 데 있다.
상기 목적을 달성하기 위해, 본 발명은 대기 중의 부유입자를 선별 및 농축하여 부유입자에 포함된 생물입자의 형광을 검출하는 형광검출장치에 있어서,
대기 중의 부유입자가 흡입되는 통로를 형성하며, 부유입자 중에 이물질과 일정 크기의 입자를 걸러내는 선분리기와, 관성력을 이용하여 상기 선분리기를 통과한 부유입자를 정해진 범위의 크기로 선별하여 농축하는 복수의 가상 임팩터로 이루어진 노즐이 2단으로 설치되며 상기 선분리기에 연결되는 원통 케이싱을 포함하는 입자농축부;
상기 입자농축부 하단의 케이싱 조립체 내에 설치되는 입자광측부;
를 포함하고,
상기 입자광측부는,
상기 입자농축부에서 선별 농축된 부유입자 및 공기를 유입하기 위한 입자도입부;
상면에 개구가 형성되어 있고 그 개구를 통하여 상기 입자도입부의 하단과 연결되며 내부에 입자측정공간을 갖는 육면체 광학챔버;
상기 광학챔버의 전면에 형성된 개구에 연결 설치되어 상기 입자도입부를 통해 상기 입자측정공간 내에 도입되는 입자에 레이저빔을 조사시키기 위한 빔형성광학계;
상기 빔형성광학계에 대향하여 상기 광학챔버의 후면에 형성된 개구에 연결 설치되어 빔형성광학계로부터 조사되는 레이저빔을 소멸시키기 위한 빔흡수계;
상기 입자측정공간 내에 상기 레이저빔의 진행방향과 90°방향으로 배치된 한 쌍의 반사경;
상기 광학챔버의 하면에 형성된 개구에 연결 설치되어 상기 입자측정공간에서 레이저빔과의 상호작용을 한 후의 입자와 공기를 노즐을 통하여 외부로 토출시키기 위한 입자토출부;
상기 빔형성광학계와 수직을 이루도록 상기 광학챔버의 우측면에 형성된 개구에 연결 설치되어 상기 광학챔버 내부의 입자측정공간에서 레이저빔과 입자와의 상호작용에 의해 생성된 산란광과 형광 신호를 두 개의 빔스플리터의 차단 주파수에 따라 한 개의 산란광과 두 개의 형광을 동시에 검출하는 산란광검출기와 형광검출기를 구비하는 빔분리광학계;
를 포함하는 것을 특징으로 하는 부유입자의 실시간 형광검출장치가 제공된다.
본 발명에 있어서, 상기 선분리기는 공기와 부유입자가 유입되는 흡입관과, 상기 흡입관의 상단을 따라 설치되며 메쉬 구조를 이용하여 부유입자에 포함된 이물질을 제거하는 거름망과, 상기 거름망의 상단을 막아줌과 아울러 가장자리 부분이 상기 거름망으로부터 이격되도록 형성된 거름망 덮개와, 상기 흡입관의 내측에 위치하며 흡입된 부유입자 중에서 목표로 하는 입자의 크기보다 큰 입자를 걸러내는 깔때기 및 깔때기의 하단에 연결 형성되고 측방에 공기통로를 구비하며 상기 깔때기를 통과하여 상기 걸러진 큰 입자를 담아두는 컵을 포함하는 것을 특징으로 한다.
본 발명에 있어서, 상기 입자농축부는 상기 컵의 공기통로를 통과한 부유입자중 일정 크기의 입자만 통과시키는 복수의 가상 임팩터로 이루어진 제1단 노즐과, 상기 제1단 노즐로부터 이격되게 설치되어 일정 크기 범위의 부유입자를 선별 농축하는 복수의 가상 임팩터로 이루어진 제2단 노즐을 포함하는 것을 특징으로 한다.
본 발명에 있어서, 상기 입자도입부는 입자농축부의 하단과 연결되도록 상하 관통된 개방부를 갖는 연결구와, 상기 연결구와 분리 가능하게 상호 결합되어 하단부가 상기 광학챔버의 상면 개구와 연결 고정되는 외측 노즐과, 상기 연결구와 외측 노즐의 내부에 설치되어 상기 입자농축부의 하단에 돌출 연장된 입자배출구가 끼워지는 삽입공을 갖는 삽입관과, 상기 삽입관 내에 연결 고정되는 내측 노즐과, 상기 외측 노즐의 끝단에 상기 입자토출부의 토출 노즐과 대향하여 고정 연결된 노즐팁과, 상기 외측 노즐의 외측에 형성되어 외부로부터 깨끗한 공기를 유입하기 위한 공기유입구를 포함하는 것을 특징으로 한다.
본 발명에 있어서, 상기 입자도입부는 상기 내측 노즐을 상기 연결구와 외측 노즐 내에 설치할 때, 상기 내측 노즐의 위치 결정을 위한 제1위치결정수단을 더 포함하고,
상기 제1위치결정수단은 상기 삽입관의 외주면에 설치된 링부재의 일측에 형성된 요홈과, 상기 외측 노즐의 상면 일측에 형성된 핀홀에 삽입 고정되어 상기 요홈에 삽입되는 핀으로 이루어져 있는 것을 특징으로 한다.
본 발명에 있어서, 상기 입자도입부는 입자도입부를 광학챔버에 장착할 때, 입자도입부 자체의 위치 결정을 위한 제2위치결정수단을 더 포함하고,
제2위치결정수단은 상기 외측 노즐의 하단 부근 외주면에 설치된 환형(環形) 돌출턱의 일측에 형성된 요홈과, 상기 광학챔버의 상면 개구의 주변 일측에 형성되어 상기 요홈에 삽입되는 핀으로 이루어져 있는 것을 특징으로 한다.
본 발명에 있어서, 상기 입자도입부는 상부 내면이 상기 외측 노즐의 외주면에 설치된 환형 돌출턱의 상면에 지지되고 내주면에 나사산이 형성된 너트부재와, 상기 광학챔버의 상면 개구의 테두리를 따라 상향 돌출되어 외주면에 나사산이 형성된 연결부와의 나사체결에 의해 상기 광학챔버에 연결 고정되는 것을 특징으로 한다.
본 발명에 있어서, 상기 핀홀은 상기 연결부의 상면 일측에 형성된 것을 특징으로 한다.
본 발명에 있어서, 상기 입자도입부의 외측 노즐의 하단부에는, 입자도입부를 광학챔버로부터 분리후 다시 장착할 때 광학챔버의 정해진 장착 위치로부터 횡방향으로 편심됨이 없이 광학챔버의 장착 위치에 정렬되도록, 광학챔버의 상면에 형성된 개구를 향하여 경사지는 역원뿔형 구조의 편심방지 경사부가 형성되어 있고,
상기 광학챔버의 상면 개구의 내측 하단은 상기 편심방지 경사부와 맞닿아 밀착되는 경사면을 갖는 것을 특징으로 한다.
본 발명에 있어서, 상기 편심방지 경사부와 경사면의 경사각도는 동일하고, 그 경사각도는 상기 입자도입부의 중심축에 대하여 25°∼ 35°인 것을 특징으로 한다.
본 발명에 있어서, 상기 입자토출부의 토출 노즐은 상기 입자도입부의 외측 노즐에 연결된 노즐팁과 일정 간격을 두고 대향하여 있고 상기 노즐팁을 향하여 선단(先端)쪽으로 갈수록 가늘어지는 테이퍼(taper) 형상으로 되어 있는 것을 특징으로 한다.
본 발명에 있어서, 상기 빔형성광학계는 양단부가 개방되는 내부공간을 갖고 그 내부공간에 비구면렌즈가 장착되는 몸체와 몸체의 전방측에 레이저다이오드가 내장된 소켓을 갖는 덮개판으로 이루어지는 광원부;
상기 광원부와 분리 가능하게 조립되고 내부에 레이저다이오드로부터 발생되어 비구면렌즈를 통과한 레이저빔의 종방향 크기를 조절하는 제1렌즈군, 제1렌즈군을 통과한 레이저빔의 횡방향 크기를 조절하는 제2렌즈군, 및 윈도우가 순차적으로 배열되어 있는 빔형성조정부를 포함하며, 내부면이 흑염처리된 것을 특징으로 한다.
본 발명에 있어서, 상기 광원부는 덮개판의 가장자리 안쪽 둘레에 일정 간격을 두고 형성된 복수개의 제1관통탭과 제1관통탭에 대응하여 몸체에 형성된 복수개의 미관통탭을 통하여 삽입 설치되고 외주면에 스프링이 장착되어 몸체에 대한 덮개판의 가압력을 조절하는 복수개의 육각볼트;
덮개판에 형성된 복수개의 제1관통탭 사이 사이에 형성된 제2관통탭을 통하여 삽입 설치되어 조임정도에 따라 몸체에 대한 덮개판의 밀림력을 조절하기 위한 무두볼트; 를 포함하는 레이저빔 정렬수단을 구비하는 것을 특징으로 한다.
본 발명에 있어서, 상기 무두볼트는 상기 제2관통탭 내에 끼워지는 부싱 내부에 삽입되고, 회전력 상쇄를 위해 끝단에 볼이 들어 있고, 상기 부싱은 일측면이 길이방향으로 절결된 절결홈을 구비하는 것을 특징으로 한다.
본 발명에 있어서, 상기 레이저빔 정렬수단은 덮개판의 외주면 둘레를 따라 일정 간격을 두고 형성되고, 상기 제2관통탭의 각각과 연통되는 3그룹의 제3관통탭을 통하여 삽입 설치되어 상기 무두볼트가 삽입된 부싱을 조여 고정하기 위한 조임볼트를 더 포함하는 것을 특징으로 한다.
본 발명에 있어서, 상기 제3관통탭의 각 그룹은 삼각 형상을 이루며 형성된 3개의 관통탭으로 이루어진 것을 특징으로 한다.
본 발명에 있어서, 상기 덮개판의 일측면에는, 상기 몸체를 향하여 수평방향으로 돌출 형성되어 레이저다이오드로부터 발생되는 레이저빔이 통과되도록 내부공간을 갖는 원통부가 구비되고,
상기 몸체의 전단부 내부에는, 원통부의 외주면을 감싸는 형태로 원통부를 수용하는 개방부를 갖는 고정판이 설치되어 몸체와 체결볼트에 의해 고정되며,
상기 비구면렌즈는 상기 원통부의 내부공간에 장착되어 양단부가 개방된 구조를 갖는 비구면렌즈 고정부의 내부공간에 고정 설치되어 있는 것을 특징으로 한다.
본 발명에 있어서, 상기 원통부의 상면에는, 원통부의 내부공간과 연통되는 제4관통탭이 형성되어 있고 이 제4관통탭을 통하여 조임나사가 삽입 설치되고,
상기 비구면렌즈 고정부의 후단부 상면에는 비구면렌즈 고정부의 위치 정렬을 위한 정렬홈이 형성되고,
상기 광원부의 몸체의 상면 일측에는, 원통부의 중심축의 위치와 비구면렌즈 고정부의 중심축의 위치를 외부에서 조정하기 위해, 몸체의 내부공간과 연통됨과 함께 원통부의 제4관통탭에 삽입 설치된 조임나사와 비구면렌즈 고정부의 정렬홈의 형성 위치에 대응하는 위치에 형성된 정렬용 홀이 구비된 것을 특징으로 한다.
본 발명에 있어서, 상기 빔흡수계는 상기 광학챔버의 후면에 고정되는 몸체(261);
상기 몸체의 중앙부에 관통 형성된 삽입공에 끼워넣는 초점렌즈 조립체;
상기 초점렌즈 조립체의 광축이 핀홀을 지나도록, 상기 몸체의 후면에 형성된 오목부에 삽입하는 핀홀 조립체;
상기 핀홀 조립체의 후면에 고정하는 하우징;
상기 초점렌즈 조립체의 광축에 직교하는 기준면에 대해 일정한 각도로 경사지도록, 상기 하우징의 후면에 고정하는 광원출력검출기;
를 포함하고,
상기 핀홀 조립체의 핀홀을 통과한 레이저빔이, 상기 광원출력검출기에 점점 가까워짐에 따라 레이저빔 폭이 점차 퍼지도록, 상기 핀홀 조립체와 상기 하우징의 중앙부에는 공동이 형성되어 있는 것을 특징으로 한다.
본 발명에 있어서, 상기 한 쌍의 반사경은 상기 빔분리광학계에 향하여 배치되어 코팅된 유리재질의 구면반사경과, 구면반사경에 대향하여 설치되어 코팅된 알루미늄 재질의 비구면반사경으로 이루어져 있고,
상기 구면반사경은 상기 빔형성광학계로부터 발생된 레이저빔이 상기 입자도입부로부터 도입되는 입자에 조사됨으로써 생성된 산란광과 형광 신호가 상기 비구면반사경에 반사되어 상기 빔분리광학계를 향하도록 중앙 부분이 코팅되어 있지 않은 것을 특징으로 한다.
본 발명에 있어서,
상기 비구면반사경은 상기 광학챔버의 좌측면에 형성된 개구측에 위치되며 상기 개구는 분리 가능한 밀폐판에 의해 밀폐되어 있는 것을 특징으로 한다.
본 발명에 있어서, 상기 산란광검출기는 아발란체 포토다이오드(APD; Avalanche Photodiode)와 증폭기를 구비하는 것을 특징으로 한다.
본 발명에 있어서, 상기 형광검출기의 어느 하나는 장파장의 신호를 검출하도록 구성되어 있고, 다른 하나는 단파장의 신호를 검출하도록 구성되어 있으며, 상기 형광검출기의 전면(前面)에는 산란된 광을 차단하고 유도된 형광을 통과시키도록 광학필터가 장착되어 있는 것을 특징으로 한다.
본 발명에 있어서, 상기 형광검출기는 광전증배관(PMT; Photomultiplier Tube)인 것을 특징으로 한다.
본 발명에 의하면, 대기 중의 부유입자를 흡입하여 일정 크기에 해당하는 부유입자만을 선별, 농축한 후 이송된 단일 입자에 레이저빔을 조사하여 발생한 산란광(scattering light) 세기와 미약한 형광(fluorescent light) 세기를 모아 다수의 파장대별로 분리, 검출할 수 있고, 이에 의해 고속신호처리회로를 사용하여 초당 15만개의 고농도 대기 상태를 실시간으로 분석할 수 있다.
또한 본 발명에 의하면, 외부 요인에 의한 진동이나 충격, 그리고 장비의 분해 후 재 조립시에도 안정성을 유지하여 부유입자 중의 형광을 띄는 비생물입자를 포함하여 생물입자의 측정에 대한 정확도 및 반복도를 향상시킴과 함께 광학챔버에 장착되는 입자도입부의 중심축 및 레이저빔의 정렬작업을 확실하고 용이하게 행할 수 있다.
또한 본 발명에 의하면, 레이저빔과 입자가 만나는 광학챔버 내의 입자측정공간에서 레이저빔의 크기 조정 및 정렬이 가능하며, 특히 광학챔버 내의 입자측정공간에 구면반사경과 비구면반사경을 대향 배치함으로써 미약한 산란광과 형광 신호를 최대한 수집할 수 있다.
또한 본 발명에 의하면, 광학챔버 내의 입자측정공간에서 상호작용하여 생성된 한 채널의 산란광과 두 채널의 생물입자의 형광을 동시에 측정하여 최적화 과정을 수행할 수 있다.
따라서, 본 발명은 중요 시설 인근에서 테러범 등에 의해 대기 중에 살포된 유해한 생물입자를 실시간으로 신속하고 확실하게 감시하는 형광검출장비로서 유용하게 사용될 수 있다.
도 1은 본 발명에 따른 형광검출장치의 구성도.
도 2는 본 발명에 따른 형광검출장치의 입자농축부의 구성도.
도 3은 입자농축부의 단면 구성도.
도 4는 입자농축부의 제1단 노즐을 나타낸 도면.
도 5는 입자농축부의 제2단 노즐을 나타낸 도면.
도 6은 본 발명에 따른 형광검출장치의 입자광측부의 결합 사시도.
도 7은 본 발명에 따른 형광검출장치의 입자광측부의 분해 사시도.
도 8은 입자도입부의 분해 사시도.
도 9는 광학챔버의 단면도.
도 10은 입자도입부가 광학챔버에 설치된 상태를 나타낸 단면도.
도 11 내지 도 13은 본 발명에 따른 형광검출장치의 입자광측부를 여러 방향에서 바라본 단면도.
도 14는 본 발명에 따른 형광검출장치의 입자광측부를 구성하는 빔형성광학계에 설치되는 여러 렌즈의 개략적인 배열을 나타낸 도면.
도 15는 레이저빔의 진행방향에 대하여 90°방향에 설치된 구면반사경과 비반사경의 구성도.
도 16은 빔형성광학계를 구성하는 광원부의 단면도.
도 17은 광원부의 덮개판의 체결상태를 나타낸 구성도.
도 18은 광원부의 덮개판의 평면도.
도 19는 본 발명에 따른 형광검출장치의 입자광측부의 일부 사시도.
도 20은 빔흡수계의 외형도.
도 21은 빔흡수계의 분해 사시도.
도 22는 빔흡수계의 단면도.
도 23은 빔흡수계의 작용 원리를 설명하기 위한 도면.
도 24는 입자광측부의 빔분리광학계의 분해 사시도.
도 25는 빔스플리터의 구조를 나타낸 것으로서, (a)는 단면도, (b)는 후면도.
도 26은 빔분리광학계의 하우징에의 빔스플리터의 장착 상태를 나타낸 도면.
이하, 첨부한 도면을 참조하여 본 발명에 대하여 상세히 설명한다.
본 발명에 따른 형광검출장치는 대기 중의 부유입자에 레이저빔을 조사할 때 발생하는 산란광과 레이저 유도 형광을 파장대별로 분리하여 형광을 내는 입자(생물입자 포함)의 농도 변화를 실시간으로 감시하는 장비이며, 도 1에 도시한 바와 같이, 입자농축부(100)와 입자농축부(100) 하단의 케이싱 조립체(300) 내에 설치되는 입자광측부(200, 도 6 참조)로 구성되어 있다. 입자농축부(100)와 입자광측부(200)는 내부 오염에 의한 청소 및 고장수리가 쉽도록 분리 가능하게 조립되어 있다.
입자농축부(100)는 대기 중 부유입자를 흡입하여 선별, 농축한 입자를 입자광측부(200)로 이송하기 위한 것으로, 대기 중 부유입자를 높은 효율로 농축함으로써 미세한 대기의 농도 변화를 실시간으로 분석할 수 있다. 일반적으로 대기 중의 부유입자에 포함되는 미세 입자에는 생물입자와 비생물입자가 있다. 따라서 미약한 형광을 내는 1㎛ 이상의 입자(형광을 내는 생물입자와 일부 비생물입자 포함)에 대하여 농도 변화를 실시간으로 분석하기 위해서는, 1㎛ 이상의 입자(특히 형광입자)를 계수하여야 하나 실제로 이러한 크기의 입자가 많지 않아 실시간으로 통계적인 접근이 어려운 것이 현실이다. 또한 역으로 국내의 지역적 특성상 형광검출장치를 사용하는 장소에는, 대부분 봄철 꽃가루(수백 ㎛ 이상의 크기)가 많이 날리기 때문에, 부유입자를 측정하는 동안 이물질이 입자측정공간인 광학챔버로 수일간 도입되면 내부가 오염되어 청소를 자주 해야하는 불편함이 있다. 그래서 본 발명자는, 이를 고려하여 분당 100리터/분의 효율이 높은 소형의 입자농축부(100)를 제작함으로써, 실시간으로 형광입자의 변화량에 대한 접근, 즉 농도 변화 측정의 신뢰성 증가가 가능하도록 함과 함께, 필요한 크기의 입자만을 걸러 오염 문제를 해결하도록 하고 있다. 이러한 입자농축부(100)는 상술한 바와 같은 측정 대상이 아닌 큰 입자와 극히 작은 입자를 걸러 내는 역할을 함께 수행한다.
이러한 역할을 하는 입자농축부(100)는 도 2에 도시하는 바와 같이, 부유입자가 흡입되는 통로를 형성하며, 일정 크기 이상의 입자를 걸러내는 선(先)분리기(110)와; 관성력을 이용하여 선분리기(110)를 통과한 부유입자를 크기별로 선별하여 농축하는 복수의 가상 임팩터(virtual impactor)로 이루어진 노즐(121, 122)이 2단으로 설치되며 입자광측부(200)가 수용 설치된 케이싱 조립체(300)의 상면에 수직으로 설치되어 선분리기(110)에 연결되는 원통 케이싱(120);을 포함하고 있다.
선분리기(110)는 공기와 부유입자가 유입되는 흡입관(111)과, 상기 흡입관(111)의 상단을 따라 설치되는 메쉬 구조를 이용하여 부유입자에 포함된 곤충과 조대입자(coarse particle) 등을 제거하는 거름망(112)과, 거름망(112)의 상단을 막아줌과 아울러 가장자리 부분이 거름망(112)으로부터 이격되도록 형성된 거름망 덮개(113)와, 상기 흡입관(111)의 내측에 위치하며 흡입된 부유입자 중에서 목표로 하는 입자의 크기보다 큰 입자를 걸러내는 깔때기(114) 및 깔때기(114)의 하단에 연결 형성되고 측방에 공기통로(115a)를 구비하며 깔때기(114)를 통과하여 상기 걸러진 큰 입자를 담아두는 컵(115)으로 이루어진다.
원통 케이싱(120)은 컵(115)의 공기통로(115a)를 통과한 부유입자 중 일정 크기 범위의 입자만 통과시키는 복수의 가상 임팩터로 이루어진 제1단 노즐(121)과, 제1단 노즐(121)로부터 이격되게 설치되어 일정 크기 범위의 입자를 선별 농축하는 복수의 가상 임팩터로 이루어진 제2단 노즐(122)을 내부에 수용하는 상태로 지지하는 관형 구조로 이루어져 있다.
여기서, 제1단 노즐(121)을 구성하는 가상 임팩터는 15∼20개로, 바람직하게는 18개(도 3 참조)가 사용되며, 제2단 노즐(122)을 구성하는 가상 임팩터는 3∼5개로, 바람직하게는 4개(도 4 참조)가 사용된다. 가상 임팩터는 가상의 관을 사용하여 입자가 대기 중에 부유하는 상태에서 입자를 포집하게 되므로, 입자의 비산 현상이 발생하지 않는 장점이 있다. 이러한 가상 임팩터에 관한 기술은 국내특허 제10-0121552호에 소개되어 있으므로, 여기서는 그에 대한 상세한 설명은 생략한다.
이러한 2단 노즐(121)(122)을 설치함으로써, 도 3에 도시한 바와 같이 컵(115)의 공기통로(115a)를 통과한 공기의 유량을 예컨대 90리터/분이라고 할 때 제1단 노즐(121)을 통과한 공기의 유량은 농축된 유량 9리터/분이 되고 나머지 81리터/분이 측면으로 토출되고, 제2단 노즐(122)을 통과하여 하단의 입자광측부(200)로 공급되는 공기의 유량은 농축된 유량 1리터/분이 되고 나머지 8리터/분이 측면으로 토출된다. 이 때 2단 노즐(121)(122)을 통과한 농축된 유량 1리터/분의 입자의 크기는 예컨대 2∼10㎛가 대부분이다.
이와 같은 구조의 입자농축부(100)는, 원통 케이싱(120)의 하단 일측에 설치된 유량펌프(도시하지 않음)의 작동에 의해 선분리기(110)의 흡입관(111)을 통해 부유입자가 공기와 함께 유입된다. 이때, 대기 중에서 부유하는 곤충의 사체나 조대입자 등의 이물질은 거름망에 의해 걸러진다. 거름망을 통과한 공기는 선분리기(110)의 컵(115)의 공기통로(115a)를 통과하게 되고, 그 과정에서 일정 크기를 초과하는 입자, 예컨대 크기가 10㎛를 초과하는 입자가 걸러진다. 걸러진 대형 입자는 선분리기(115)의 컵(115)에 모이게 되고, 크기가 10㎛ 이하인 입자만 선분리기(110)의 컵(115)의 공기통로(115a)를 통과하여 원통 케이싱(120)으로 공급된다.
컵(115)의 공기통로(115a)를 통과한 공기는 원통 케이싱(120)의 제1단 노즐(121)로 유입되며 제1단 노즐(121)을 구성하는 18개의 가상 임팩터에 의해 크기가 2㎛ 이상의 입자가 관성력에 의해 분리된다. 이어서, 제1단 노즐(121)의 가상 임팩터를 통과하지 못한 공기는 원통 케이싱(120)의 하단 일측에 형성된 출구(123)를 통해 빠져나가게 된다. 이때, 깔때기(114)를 예컨대 분당 90리터 씩 통과한 공기 중 분당 9리터의 공기만 제1단 노즐(121)을 통과하고, 나머지 분당 81리터의 공기는 배출된다.
제1단 노즐(121)을 통과한 공기는 그 하부에 위치된 제2단 노즐(122)을 구성하는 4개의 가상 임팩터에 의해 농축된다. 제2단 노즐(122)에서도 관성력에 의해 크기가 2㎛ 이상인 입자가 분리되어 농축되고, 크기가 2㎛ 미만인 입자는 제2단 노즐(122)을 통과하지 못한 공기와 함께 상기 유로를 따라 외부로 배출된다. 그리고, 제2단 노즐(122)을 통과한 공기는 제2단 노즐(122)크기가 2∼10㎛인 입자와 함께 하단으로부터 돌출 연장된 입자배출구(123)를 통하여 아래에 설명하는 입자광측부(200)의 입자도입부(210)로 유입된다.
이상 설명한 바와 같은 입자농축부(100)의 구조에 의해, 대기 중에 포함된 부유입자 중 일정 크기의 입자를 선별적으로 수집하여 농축할 수 있다.
한편 입자광측부(200)는 도 6 - 도 26에 도시한 바와 같이 미약한 생물입자(형광을 띄는 비생물입자도 포함)의 레이저유도형광을 측정할 수 있도록, 케이싱 조립체(300, 도 1 참조) 내에 설치된 입자도입부(210), 광학챔버(220), 반사경(231)(232), 입자토출부(240), 빔형성광학계(250), 빔흡수계(260) 및 빔분리광학계(270)를 포함하고 있다.
광학챔버(220)는 도 7 및 도 9에 도시한 바와 같이 내부에 입자측정공간(S)을 갖는 직육면체로 이루어져 있고, 상 · 하면, 좌 · 우측면 및 전 · 후면에 각각 개구(222, 223, 224, 225, 226, 227)가 형성되어 있다.
이러한 개구(222, 223, 224, 225, 226, 227)에 의해, 입자도입부(210)와 입자토출부(240)는 광학챔버(220)의 상면과 하면에 각각 설치되고, 빔형성광학계(250)와 빔흡수계(260)는 서로 대향하는 관계로 광학챔버(220)의 전면과 후면에 각각 설치되며, 빔분리광학계(270)는 광학챔버(220)의 우측면에 설치된다. 광학챔버(220)의 좌측면에 형성된 개구(226, 도 9)는 밀폐판(280)에 의해 밀폐된다(도 12 및 도 17 참조). 광학챔버(220)의 모든 개구에는 기밀 유지를 위해 오링(도시하지 않음)이 설치되어 있으며, 광학챔버(220) 내부의 모든 면은 흑염 처리하여 미광(迷光, stray light)을 효율적으로 흡수하도록 하였다.
입자도입부(210)는 입자농축부(100)의 하단과 연결되어 입자농축부(100)에서 선별 농축된 입자 및 공기가 유입되도록 구성되어 있다. 즉, 입자도입부(210)는 도 8에 도시한 바와 같이, 입자농축부의 하단과 연결되도록 상하 관통된 개방부를 갖는 연결구(211)와, 연결구(211)와 분리 가능하게 상호 결합되어 하단부가 상기 광학챔버(220)의 상면 개구(222)와 연결 고정되는 외측 노즐(212)과, 연결구(211)와 외측 노즐(212)의 내부에 설치되어 입자농축부(100)의 하단에 돌출 연장된 입자배출구(123)가 끼워지는 삽입공을 갖는 삽입관(213)과, 삽입관(213) 내에 연결 고정되는 내측 노즐(214)과, 외측 노즐(212)의 끝단에 고정 연결되는 노즐팁(215)을 포함하고 있다. 그리고 삽입관(213)의 외주면에는 그 외주면을 감싼 상태로 돌출되는 링부재(213a)가 구비되어 있고, 링부재(213a)의 일측에는 요홈(213b)이 형성되어 있다. 외측 노즐(212)의 상면 일측에는 핀홀(도시하지 않음)이 형성되어 있고, 이 핀홀에는 핀(212a)이 삽입 고정되어 있다. 이와 같은 요홈(213b)과 핀(212a)은 내측 노즐(214)의 위치 결정을 위한 제1위치결정수단으로서 기능한다. 즉, 내측 노즐(214)을 연결구(211)와 외측 노즐(212) 내에 설치할 때, 외측 노즐(212)의 상면에 있는 핀(212a)이 내측 노즐(214)과 연결 고정된 삽입관(213)의 링부재(213a)에 형성된 요홈(213b)에 삽입됨으로써 내측 노즐(214)의 위치가 결정된다.
또한 외측 노즐(212)의 상단 외측에는 외부로부터 깨끗한 공기를 유입하기 위한 공기유입구(216)를 끼우기 위한 끼움구멍(212b)이 형성되어 있다. 그리고 외측 노즐(212)의 하단 외주에는 일측에 요홈(212d)이 형성된 환형(環形) 돌출턱(212c)이 구비되어 있다. 이러한 구조를 갖는 입자도입부(210)는 내주면에 나사산이 형성되어 있고 외측 노즐(212)의 하단 외주와 체결되는 너트부재(217)에 의해 광학챔버(220)의 상면 개구(222)에 연결 고정된다. 즉, 도 7 및 도 9에 도시한 바와 같이 광학챔버(220)의 상면 개구(222)의 테두리를 따라 상향 돌출되어 외주면에 나사산이 형성된 연결부(221)가 형성되어 있고, 또한 연결부(221)의 상면 일측에 형성된 핀홀에는 핀(221a)이 삽입 고정되어 있으므로, 입자도입부(210)의 하부 본체(212)의 하단부를 광학챔버(220)의 상면 개구(222)에 삽입할 때, 핀(221a)이 외측 노즐(212)의 외주에 구비된 환형 돌출턱(212b)의 요홈(21c)에 수용되는 상태로 입자도입부(210)를 광학챔버(220)의 상면 개구(222)에 삽입한 후, 입자도입부(210)의 연결구(211)의 외주를 통과하여 외측 노즐(212)의 외주에 삽입되어 상부 내면이 환형 돌출턱(212b)의 상면에 걸려 지지된 너트부재(217)를 광학챔버(220)의 상면 개구(222) 외주면에 형성된 나사산과 나사결합시킴으로써 입자도입부(210)를 광학챔버(220)에 확실하게 연결 고정할 수 있다(도 10 참조). 여기서, 환형 돌출턱(212b)의 요홈(212c)과 광학챔버(220)의 연결부(221)의 핀(221a)은 입자도입부(210)를 광학챔버(220)의 장착 위치에 정확히 위치 결정하기 위한 제2위치결정수단으로서 기능한다. 그리고 노즐팁(215)은 외측 노즐(212)의 끝단에 억지 끼워 맞춤식으로 끼워지고, 이 때 내측 노즐(214)은 그 끝단이 노즐팁(215)의 끝단과 일정한 갭을 두고 위치되도록 스냅링(218)에 의해 외측 노즐(212) 내부에 지지된다. 즉, 도 10에 원 안에 확대하여 도시한 바와 같이, 스냅링(218)의 외주면은 외측 노즐(212)의 내주면에 밀착되고 스냅링(218)의 내주면은 내측 노즐(214)의 외주면에 밀착된다. 다만, 외측 노즐(212)의 공기유입구(216)로부터 유입된 깨끗한 공기가 노즐팁(215)을 향하여 통과되도록 스냅링(218)의 내주면에는 일정 간격을 두고 복수개의 공기통로(218a)가 형성되어 있다. 이러한 구조에 의해, 내측 노즐(214) 내로 유입된 부유입자와 공기와 외측 노즐(212)의 공기유입구(216)를 통해 외측 노즐(212) 내로 유입된 깨끗한 공기는 노즐팁(215)을 통해 광학챔버(220)의 입자광측공간(S) 내로 분사하기 직전에 내측 노즐(214)의 끝단과 노즐팁(215)의 끝단 사이의 갭에서 합류된다. 미설명 부호 219는 외측 노즐(212)의 하단부 부근에 그 둘레를 따라 형성된 요홈(212f)에 끼워지는 O링을 표시한 것이다.
한편 광학챔버(220) 내부를 청소하기 위해 입자도입부(210)를 광학챔버(220)로부터 분리한 후 다시 장착할 때, 입자도입부(210)의 장착 및 탈착에 따른 입자 크기 측정의 정확성에 대한 영향을 줄이기 위해, 입자도입부(210)의 외측 노즐(212)의 하단부, 즉 O링(219)이 끼워지는 요홈(212f)과 노즐팁(215)이 끼워지는 외측 노즐(212)의 끝단 사이에는, 광학챔버(220)의 상면 개구(222)를 향하여 경사지는 역원뿔형 구조의 편심방지 경사부(212e)가 형성되어 있다. 이 편심방지 경사부(212e)에 대응하여, 광학챔버(220)의 상면 개구(222)의 내측 하단은 도 9에 도시한 바와 같이 경사면(222a)을 갖도록 설계되어 있다. 이러한 편심방지 경사부(212e)와 경사면(222a)의 구조에 대하여 구체적으로 설명하면 다음과 같다. 황사 혹은 극단 환경에서 입자도입부(210) 또는 광학챔버(220)를 청소할 상황이 발생하는 경우, 입자도입부(210)를 광학챔버(220)로부터 분리한 후 다시 장착하여야 하는데, 이 때 입자도입부(210)의 하단부는 광학챔버(220) 내의 입자측정공간(S)의 정해진 위치에서 수십 ㎛ 공차 이내의 정확도를 갖도록 장착되어야 한다. 만일 입자도입부(210)가 광학챔버(220)의 상면 개구(222)에 정확히 장착되지 않으면, 즉, 입자측정공간(S) 내에 위치되는 외측 노즐(212)의 중심축이 광학챔버(220)의 원래의 장착 위치에서 어긋나면 그 중심축이 수백 ㎛의 크기를 갖는 레이저빔과 교차되지 않거나 교차되더라도 정확한 위치에 있지 않게 됨으로써, 입자 크기의 측정 및 형광 세기의 측정에 악영향을 미칠 수 있다. 그런데, 부유입자를 측정하는 OPC(Optical Particle Counter) 방식에 있어서는 그 정확도를 올리는 것이 쉽지 않다. 따라서 본 발명에서는, 이를 해결하기 위한 방안으로서, 도 8에 도시한 바와 같이 입자도입부(210)의 외측 노즐(212) 상면에 형성된 핀홀에 삽입된 핀(212a)과 함께 핀(212a)을 수용하는 요홈(213b)을 내측 노즐(214)과 연결되는 삽입관(213)에 적용한 구조와, 광학챔버(220)의 연결부(221)의 핀홀에 삽입된 핀(221a)과 함께 핀(221a)을 수용하는 요홈(212c)을 입자도입부(210)의 외측 노즐(212) 외주에 구비된 환형 돌출턱(212c)에 적용한 구조와, 입자도입부(210)의 외측 노즐(212)의 하단부와 광학챔버(220)의 상면 개구(222)가 서로 맞닿는 접촉면을 역원뿔형태로 가공한 구조를 도입하고 있다.
이러한 구조에 의하면, 광학챔버(220)로부터 분리한 입자도입부(210)를 광학챔버(220)에 다시 장착할 때, 내측 노즐(214)과 연결되는 삽입관(213)의 요홈(213c)을 외측 노즐(212) 상면에 구비된 핀(212a)에 위치 맞춰 내측 노즐(214)을 장착함으로써 내측 노즐(214)의 중심축이 어긋나는 것을 방지할 수 있고, 하부 본체(212) 외주에 구비된 환형 돌출턱(212c)의 요홈(212d)을 광학챔버(220)의 연결부(221)에 구비된 핀(221a)에 위치 맞춰 입자도입부(210)의 본체(211, 212)를 광학챔버(220)에 장착함으로써 입자도입부(210) 자체의 정렬이 틀어지는 것을 방지할 수 있고, 또한 외측 노즐(212)의 편심방지 경사부(212e)가 광학챔버(220)의 상면 개구(222) 내의 경사면(222a)에 밀착됨으로써 입자도입부(210)가 횡방향으로 편심되는 일이 없이 그 중심축이 항상 광학챔버(220)의 정해진 위치에 정렬되게 되므로, 입자도입부(210)를 광학챔버(220)에 쉽고 정확하게 장착할 수 있다. 또한 이러한 구조에 의하면, 외부의 충격에 의하여 발생되는 진동을 더 강화시킬 수 있다는 부수적인 효과도 있다. 본 발명에 있어서, 상기 편심방지 경사부(212e)와 경사면(222a)의 경사각도는 동일하고, 그 경사각도는 입자도입부(210)의 중심축에 대하여 30.0°± 5.0°(즉, 25°∼ 35°)의 범위에 있다. 이와 같이 입자도입부(210)가 청소 등을 이유로 광학챔버(220)로부터 분리된 후 광학챔버(220)에 다시 장착되는 작업이 반복되더라도, 핀(216)과 요홈(213c)의 결합 구조와 편심방지 경사부(212d)와 경사면(222a)의 결합 구조에 의해, 입자도입부(210)를 광학챔버(220)에 확실하게 정렬하여 장착할 수 있다.
이러한 입자도입부(210)의 구조에 의해, 입자농축부(100)에서 선별 농축된 입자 및 일정한 유량의 공기는 입자도입부(210)의 삽입관(213), 내측 노즐(214) 및 외측 노즐(212)을 차례대로 통과하면서 광학챔버(220) 내의 입자측정공간(S)(도 11 참조)으로 배출된다. 그리고 광학챔버(220) 내의 입자측정공간(S)으로 입자 및 공기를 배출할 때, 입자도입부(210)의 외측 노즐(212)에 설치된 공기유입구(216)를 통해 깨끗한 공기가 유입되도록 하는 것이 바람직하다. 이렇게 공기유입구(216)를통해 외측 노즐(212)로 유입되는 깨끗한 공기는 전술한 바와 같이 내측 노즐(214)과 외측 노즐(212) 사이의 갭(대략 1.3mm)에서 내측 노즐(214)를 통해 흐르는 공기와 만나 노즐팁(215)을 통과하게 되는데, 이 때 외측 노즐(212)로 유입된 깨끗한 공기는 내측 노즐(214) 내부의 공기를 감싼 형태로 노즐팁(215)을 통해 광학챔버(220) 내의 토출 노즐(241)을 향해 분사되게 된다. 이와 같이 미세한 갭에서 농축된 공기가 광학챔버(220) 내의 반사경(231)(232)을 오염하지 않고 통과할 수 있도록 함으로써, 입자도입부(210)의 상단을 통하여 유입되는 공기 중의 미세입자가 광학챔버(220) 내부의 표면에 부착되어 오염되는 것을 막아 준다.
이와 같이 입자도입부(210)가 광학챔버(220)에 장착된 상태에서, 입자도입부(210)의 상단을 통해 광학챔버(220) 내로 들어온 입자는 이후에 설명하는 광학챔버(220) 내부의 입자측정공간(S)에서 레이저빔(L)과 상호작용을 한 후 입자토출부(240)에 설치된 토출 노즐(241)을 통하여 흡입된 후 필터를 거쳐 외부로 토출된다.
광학챔버(220) 내부의 입자측정공간(S)에는, 미약한 산란광 및 형광 신호를 모아 빔분리광학계(270)로 반사하는 한 쌍의 반사경(230)이 설치되어 있다. 한 쌍의 반사경(230)은 도 12 및 도 15로부터 알 수 있는 바와 같이, 구면반사경(231)과, 구면반사경(231)에 대향하는 비구면반사경(232)으로 이루어져 있고, 레이저빔(L)의 진행방향에 대해 90°방향으로 배치되어 있다. 이러한 배치에 의해, 미약한 측면산란광(side scattering)과 형광을 최대한 수집하여 신호대잡음비(SNR)를 높일 수 있다.
그리고 구면반사경(231)은 유리 재질의 반사경으로 이루어져 있고, 비구면반사경(232)은 알루미늄 재질의 구조물에 유리 재질의 반사경이 접착제로 접착되어 이루어져 있다. 비구면반사경(232)은 알루미늄 구조물과 유리 재질의 반사경 사이에 오링이 개재되어 있다. 특히 두 반사경(231, 232) 표면은 외부로부터 입자도입부(210)의 노즐(214, 215)을 통해 유입된 불순물이나 자외선에 의해 반사경(231, 232)의 표면이 손상되지 않도록 코팅되어 있다. 다만, 구면반사경(231)은 빔형성광학계(250)로부터 발생된 레이저빔(L)이 입자도입부(210)로부터 도입되는 입자에 조사됨으로써 생성된 산란광과 형광 신호가 비구면반사경(232)에 반사되어 빔분리광학계(270)를 향하도록 중앙 부분이 코팅되지 않게 구성되어 있다(도 15 참조). 이와 같이, 구면반사경(231)을 구성하면, 유리 재질의 가공성이 용이할 뿐만 아니라 미약한 신호를 모을 수 있는 코팅면적을 넓힐 수 있다는 이점이 있다.
구면반사경(231)은 도 19에 도시한 바와 같이 중앙에 통공(281a)을 갖는 고정판(281)에 착탈 가능하게 결합되며, 이 고정판(281)은 광학챔버(220)의 우측면 개구(224) 주변에 볼트 등의 체결수단에 의해 체결된다.
또한 광학챔버(220)의 청소가 쉽도록, 도 12에 도시한 바와 같이, 비구면반사경(232)은 광학챔버(220) 내에 위치하여 바깥쪽의 착탈 가능한 밀폐판(280)에 의해 고정되어 있다.
입자토출부(240)는 도 12에 도시한 바와 같이 광학챔버(220)의 아래에 고정 설치되어, 입자도입부(210) 의 외측 노즐(212)의 끝단에 연결된 노즐팁(215)과 일정 간격을 두고 대향 설치된 토출 노즐(241)과, 토출 노즐(241)과 연결되는 배기구(242)를 포함하고 있다. 이에 의해, 입자토출부(240)는 입자도입부(210)의 외측 노즐(212)을 통해 광학챔버(220)의 입자측정공간(S)으로 도입되는 미세 입자와 공기를 토출 노즐(241)을 통해 흡입하여 배기구(242)로 토출한다. 여기서, 입자토출부(240)의 토출 노즐(241)은 레이저빔(L)이 통과하고, 또한 생성된 신호가 간섭하는 영역을 줄일 수 있도록 선단(先端)쪽으로 갈수록 가늘어지는 테이퍼(taper) 형상으로 되어 있다.
빔형성광학계(250)는 도 6, 도 7, 도 11 및 도 14에 도시한 바와 같이, 레이저빔의 발생과 함께 레이저빔의 모양을 형성할 수 있도록, 광원으로서 레이저다이오드(253)를 사용하고 비구면렌즈(254)가 장착되어 있는 광원부(251)와, 도 14에 도시한 바와 같이 광원부(251)와 분리 가능하게 조립되고 내부에 복수의 렌즈군(255, 256)과 윈도우(257)가 순차적으로 배열되어 있는 빔형성조정부(252)를 포함하고 있다. 빔형성광학계(250)는 하면이 지지판(201)에 고정 설치된 수직 지지대(202)의 관통공을 통하여 수평하게 지지되는 상태로 광학챔버(220)에 연결되어 있다.
빔형성광학계(250)는 잡음신호를 흡수하기 위해 내부면을 흑염 처리하였으며, 광원부(251)의 비구면렌즈(254), 빔형성광학계(250)의 렌즈군(255, 256), 윈도우(257) 등의 부품은 레이저 출력 손실을 최소화하기 위해 반사율 0.25% 이하인 무반사 코팅으로 형성되어 있다. 도면에는 도시하지 않았지만, 광원부(251) 주변이 일정한 온도를 유지하여 외부 온도의 변화에 따른 레이저빔의 출력 변화를 줄이기 위해 광원부(251) 외측에 펠티어 소자를 설치할 수도 있다.
전술한 바와 같이, 빔형성조정부(252)는 광원부(251)와 분리 가능하게 조립되어 있으므로, 내부의 렌즈군(255, 256)의 배열 위치를 외부에서 조절함으로써 광원부(251)로부터 발생되는 레이저빔의 모양을 적절히 조절할 수 있다. 여기서 광원부(251)의 비구면렌즈(254)는 레이저다이오드(253)로부터 발생되는 레이저빔을 10배율 확대하는 역할을 하고, 빔형성조정부(252)의 제1렌즈군(255)은 레이저빔을 x방향(횡방향)으로 20∼80배율 확대하는 빔 크기 조절부로서 역할을 하며, 제2렌즈군(256)은 레이저빔을 y방향(종방향)으로 10∼20배율 확대하는 종횡비 조절부로서 역할을 한다. 이러한 렌즈 배열에 의해 광학챔버(220) 내의 입자측정공간(S)에서 레이저빔의 종방향 및 횡방향 크기 조절을 자유롭게 행할 수 있다. 이와 같이, 비구면렌즈(254)에 의해 레이저빔의 배율을 확대한 후, 확대된 빔의 크기를 종축과 횡축으로 별도로 조정할 수 있으므로, 개발 중 혹은 개발 후에 레이저다이오드가 단종되더라도 혹은 변종되더라도 이후에 설명하는 바와 같이 레이저빔 축 정렬작업만으로 동일한 성능을 얻을 수 있다.
한편 형광검출장치를 탑재한 차량이 산악지역을 이동하는 경우, 레이저다이오드가 장착된 광원부는 외부충격으로부터의 미세한 진동에도 민감하기 때문에, 잦은 광정렬 작업을 할 필요가 있다. 또한 빠른 기술의 발전으로 개발 중 혹은 개발 후 레이저다이오드의 사양이 변동됨으로 인하여 광원부 전체를 수정하여야 하는 불편함이 있다.
또한 빔형성부(250)와 광원부(251)가 진동 등에 의해 정렬이 틀어졌을 때나 먼지 등에 의해 내부가 오염되었을 때 레이저다이오드로부터 발생되는 레이저빔 출력이 약해지고, 이러한 경우에 입자 크기의 측정에 대한 정확성이 떨어지는 문제가 발생한다. 특히 UV 혹은 파장이 짧은 레이저빔은 각종 먼지와 작용하여 렌즈에 고착되는 것이 일반적이기 때문에, 먼지에 의해 레이저빔 출력이 크게 변하지 않았더라도 레이저빔이 다수의 오염된 렌즈에 의해 가려져 최종단에서 출력이 저하되고, 그 결과 입자 크기 측정의 정확성이 떨어지는 문제가 발생한다. 이러한 문제는 레이저다이오드 자체의 출력과 이후에 설명하는 빔흡수계(260)의 포토다이오드의 출력을 비교하여 감지할 수 있다. 이는 유지보수에 있어 매우 중요한 요소로서 본 발명에서는 상시 최종단에서 포토다이오드가 레이저빔 출력을 감지하여 레이저빔 축 정렬이 틀어지거나 그 출력의 변화가 한계치를 넘으면 즉시 이상신호를 사용자에게 알려줌으로써 레이저빔 축 정렬작업을 할 수 있도록 하고 있다.
즉, 본 발명에서는, 광원부(251) 전체를 정렬할 필요 없이 레이저빔 축만 정렬하여 동일한 성능을 유지할 수 있는 광원부(251)를 구성하고 있다.
이하, 도 16 - 도 18을 참조하여 본 발명에 따른 광원부(251)에 대하여 설명한다.
도 16 - 도 18에 도시한 바와 같이, 광원부(251)는 몸체(251a)와 몸체(251a)의 전방측에 레이저다이오드(253)가 내장된 소켓을 갖는 덮개판(251b)으로 이루어져 있다. 몸체(251a)와 덮개판(251b)은 3개의 육각볼트(251c)에 의해 고정되는데, 이 3개의 육각볼트(251c) 각각은 부드러운 조정을 위해 그 외주면에 스프링(251d)이 장착되어 있어, 덮개판(251b)이 몸체(251a)에 대해 이동 가능하게 된다. 그리고 이러한 3개의 육각볼트(251c)는 덮개판(251b)의 가장자리 안쪽 둘레에 일정 간격을 두고 형성된 3개의 제1관통탭(251g1)과 몸체(251a)에 형성된 3개의 미관통탭(251h)을 통하여 삽입 설치된다. 여기서 제1관통탭(251g1)은 육각볼트(251c)의 출몰이 가능하도록 관통홀 내에 탭으로 가공 처리된 것이며, 미관통탭(251h)은 육각볼트(251c)의 나사부가 삽입되도록 홈 내에 탭으로 가공처리된 것이다. 또한 덮개판(251b)에 형성된 3개의 제1관통탭(251g1) 사이 사이에는, 제2관통탭(251g2)이 형성되어 있고 이 제2관통탭(251g2)을 통하여 무두볼트(251e)가 삽입 설치되어 있다. 무두볼트(251e)로서는, 회전력 상쇄를 위해 끝단에 볼이 들어 있는 볼트를 사용할 수 있으며, 무두볼트(251e) 대신에 무두스크류도 사용가능하다. 무두볼트(251e)는 제2관통탭(251g2) 내에 끼워지는 부싱(251i) 내부에 삽입된다. 부싱(251i)은 도 16에 도시한 바와 같이 일측면이 길이방향으로 절결된 절결홈(251i1)을 갖고 있다.
제1관통탭(251g1)과 미관통탭(251h)을 통하여 육각볼트(251c)를 삽입하여 조이면, 스프링(251d)의 힘으로 덮개판(251b)이 몸체(251a)를 가압하면서 몸체(251a)에 밀착됨으로써 레이저다이오드(253)의 조사(照射) 방향을 공간적으로 조정할 수 있고, 그 가압력은 육각볼트(251c)를 조이는 정도에 의존한다. 반면에, 무두볼트(251e)를 삽입하여 조이면 덮개판(251b)이 몸체(251a)로부터 밀려지게 되어 마찬가지로 레이저다이오드의 조사 방향을 공간적으로 조정할 수 있다. 이러한 조정이 완료되면, 덮개판(251a)의 둘레에 일정 간격을 두고 형성되어 제2관통탭(251g2)과 연통되는 3그룹의 제3관통탭(251g3)에 조임볼트(251f; 251f1, 251f2, 251f3)를 삽입하여 무두볼트(251e)를 측면에서 조여 고정한다. 여기서 제3관통탭(251g3)의 각 그룹은 삼각 형상을 이루며 형성된 3개의 관통탭으로 이루어져 있다. 그리고 조임볼트(251f1, 251f2, 251f3)가 무두볼트(251e)를 고정함에 있어서, 먼저 무두볼트(251e)를 수용한 부싱(251i)의 절결홈(251i) 부근을 조이도록 부싱(251i)의 절결홈(251i) 부근을 향하여 위치되는 조임볼트(251f1)를 하나의 제3관통탭(251g3)을 통하여 삽입하여 부싱(251i) 내면이 무두볼트(251e)의 외면과 접촉되게 한 후, 다른 2개의 조임볼트(251f2, 251f3)를 다른 2개의 제3관통탭(251g3)을 통하여 삽입하여 부싱(251i)의 외면을 조이는 작업을 행한다. 이와 같은 모든 작업이 완료되면, 외부충격으로부터의 강력한 진동에도 광원부(251)의 덮개판(251b)이 몸체(251a)로부터 유동되는 것을 확실하게 방지할 수 있다.
한편 덮개판(251b)의 일측면에 몸체(251a)를 향하여 수평방향으로 돌출 형성되어, 레이저다이오드(253)로부터 발생되는 레이저빔이 통과되도록 내부공간을 갖는 원통부(251j)의 상면에는 그 내부공간과 연통되는 제4관통탭(251g3)이 형성되어 있고 이 제4관통탭(251g3)을 통하여 조임나사(251k)가 삽입 설치되어 있다. 이 원통부(251j)의 내부공간에는 레이저빔을 확대하는 비구면레즈(254)이 장착되어 있는데, 비구면렌즈(254)는 그 유동 방지를 위해 원통부(251j)의 내부공간에 삽입되어 고정되는 비구면렌즈 고정부(2511)에 의해 고정 설치되어 있다. 비구면렌즈 고정부(2511)는 레이저빔이 비구면렌즈(254)를 통하여 통과되도록 양단부가 개방되는 내부공간을 갖는 원통형 구조로 되어 있고 그 후단부가 원통부(251j)의 후단부로부터 돌출되는 확경 단차부를 갖고 있다. 비구면렌즈(254)는 비구면렌즈 고정부(2511)의 전단부 내부에 위치되어 있다. 또한 비구면렌즈 고정부(2511)의 후단부 상면, 즉 단차부 상면에는 비구면렌즈 고정부(2511)의 위치 정렬을 위한 정렬홈(251m)이 형성되어 있다.
그리고 광원부(251)의 몸체(251a)는 그 양단부가 개방되는 내부공간을 갖고, 원통부(251j)와 비구면렌즈 고정부(2511)는 몸체(251a)의 전단부 내부에 위치되어 있다. 몸체(251a)의 전단부 내부에는 덮개판(251b)의 원통부(251j)의 외주면을 감싸는 형태로 원통부(251j)를 수용하는 개방부를 갖는 고정판(251o)이 설치되어 몸체(251a)와 체결볼트(251p)에 의해 고정되어 있다. 또한 광원부(251)의 몸체(251a)의 상면 일측에는, 원통부(251j)의 제4관통탭(251g3)에 삽입 설치된 조임나사(251k)와 비구면렌즈 고정부(2511)의 정렬홈(251m)의 형성 위치에 대응하는 위치에 형성된 정렬용 홀(251n)이 구비되어 있고, 이 정렬용 홀(251n)은 몸체(251a)의 내부공간과 연통되어 있다. 이에 의해, 레이저빔 축 정렬을 위해 필요시 사용자가 외부에서 정렬용 홀(251n)을 통하여 외부에서 원통부(251j)의 제4관통탭(251g3)에 삽입 설치된 조임나사(251k)를 풀고 조이면서 원통부(251j)의 중심축의 위치를 조정할 수 있고, 또한 비구면렌즈(254)가 장착된 비구면렌즈 고정부의 중심축의 위치를 조정할 필요가 있는 경우, 원통부(251j)에 설치된 조임나사(251k)를 푼 후 비구면렌즈 고정부(2511)의 정렬용 홈(251m)에 드라이버 등의 공구를 삽입하여 그 위치를 적당히 조정할 수 있다.
상기한 육각볼트(251c), 무두볼트(251e) 및 조임볼트(251f) 등은 열팽창 계수가 같은 알루미늄의 재질을 사용하는 것이 좋다.
상술한 바와 같은 육각볼트(251c)와 제1관통탭(251g1) 및 미관통탭(251h), 무두볼트(251e)와 제2관통탭(251g2), 조임볼트(251f)와 제3관통탭(251g3), 그리고 조임나사(251k)와 정렬용 홈(251m) 등은 레이저빔의 조사방향을 정렬하기 위한 레이저빔 정렬기구를 이룬다. 이와 같이 레이저빔 정렬기구를 마련하고 있는 이유는, 앞서 말한 바와 같이 형광검출장비를 탑재한 차량이 산악지형과 같이 울퉁불퉁한 장소로 이동할 때, 외부충격으로부터의 진동에 의해 광원부가 민감하게 반응을 받을 수 있기 때문에, 필요시에 레이저빔 축 정렬을 하기 위해서이다.
즉, 레이저다이오드(253)에서 나오는 레이저빔의 크기는 1×2㎛이고 이를 확대하여 원하는 모양으로 만드는데, 만약 외부 영향에 의해 조사각이 약간만 틀어져도 원하는 위치에 있지 않게 되기 때문에, 레이저빔이 광학챔버(220)의 입자측정공간(S)에 정확하게 도달할 수 있도록 하기 위해서 상기한 정렬기구를 이용하여 그 조사방향을 정렬한다.
빔흡수계(260)는 도 20 내지 도 23에 도시한 바와 같이, 빔형성광학계(250)에 대향하여 광학챔버(220)의 후면에 나사로 고정되는 몸체(261)와, 몸체(261)의 중앙부에 관통 형성된 삽입공(262a)에 끼우는 초점렌즈 조립체(291)와, 삽입공(262a)이 중심에 위치하도록 몸체(261)의 전면(前面)에 오목하게 형성된 장착홈(262b)과, 장착홈(262b)에 삽입 고정되는 윈도우(297)와, 초점렌즈 조립체(291)의 외측 둘레에 끼워져 윈도우(297)로 덮이는 고정링(290)과, 삽입공(262a)이 중심에 위치하도록 몸체(261)의 후면에 오목하게 형성된 오목부에 끼우는 핀홀 조립체(296)와, 몸체(261) 후단(後端)에 나사로 고정되는 하우징(263)과, 하우징(263)의 후단에 나사로 고정되는 광원출력검출기(264)와, 광원출력검출기(264)의 후면 중앙부에 형성된 환형홈에 끼우는 밀폐링(298)과, 광원출력검출기(264)의 후면에 고정하는 덮개판(299)으로 이루어져 있다.
초점렌즈 조립체(291)는, 초점렌즈로서 볼록렌즈(292)를 사용하여 레이저빔이 핀홀 조립체(296)의 핀홀(293a)(예컨대, 지름 0.3㎜)을 통과할 수 있도록 한다.
핀홀 조립체(296)는, 전면(前面)의 중앙부에 핀홀(293a)이 관통 형성된 원통형 캡(293)과, 캡(293)의 외측 둘레와 몸체(261) 후면에 오목하게 형성된 오목부의 내측 둘레 사이에 끼우는 다수(예컨대, 4개)의 블록(294)과, 캡(293)의 후면에 접하도록 설치하는 단부부재(295)로 이루어져 있다.
핀홀(293a)은, 캡(293)의 전면 쪽으로 다가갈수록 지름이 줄어드는 형태로 형성되어 있다.
단부부재(295)는, 전면 쪽 지름보다 후면 쪽 지름이 더 큰 구멍이 중앙에 관통 형성되어 있는데, 이 구멍의 전면 쪽 지름은, 캡(293)의 후면에 오목하게 형성된 오목부의 안지름과 같다.
다음으로, 몸체(261)의 둘레에는 다수(예컨대, 4개)의 위치조절구(265)가 일정 간격으로 관통 결합되어 있다. 이 위치조절구(265)에는, 도 22에 도시한 바와 같이 캡(293)의 둘레 쪽으로 블록(294)을 누르는 스프링(266)이 구비되어 있어, 위치조절구(265)를 풀거나 조임에 따라, 몸체(261) 후면의 오목부 내에서, 캡(293)의 위치가 조절 가능하다.
또한 하우징(263)은 중앙에 구멍이 뚫려 있는데, 이 구멍의 전면 쪽 지름은 후면 쪽에서 관찰되는 지름보다 더 크다. 하우징의 전면 쪽에서 관찰되는 이 구멍의 지름은, 단부부재(295)의 중앙에 관통 형성된 구멍의 후면 쪽 지름과 같다.
또한 하우징(263)의 후면(後面)은, 광축에 직교하는 기준면에 대해 일정한 각도(예컨대, 10°)로 기울어져 있다.
광원출력검출기(264)는, 광학챔버(220)의 전후측에 설치되는 빔형성광학계(250)와 빔흡수계(260)가 일렬로 정렬되지 않았거나 빔형성광학계(250)에 이상이 있어 레이저빔의 세기에 변동이 생기면, 이 변동을 검출하여, 경고장치(도시하지 않음)를 통해 경고를 발생시킨다. 광원출력검출기(264)로는 포토다이오드가 사용된다.
이러한 구조를 갖는 빔흡수계(260)는, 일부의 부품은 끼워 맞추기를 하고 일부의 부품은 나사로 고정하여 일체화한 것이므로, 부품 간 분해결합이 용이하고, 형광검출장치에 장착하기도 편리하다.
또한 몸체(261)의 전면(前面)과 광학챔버(220)의 후면(後面)에 형성된 개구(開口) 사이를 윈도우(297)와 고정링(290)으로 밀폐시켰기 때문에, 광학챔버(220)의 내부압력이 유지됨은 물론, 레이저빔이 통과하는 빔흡수계(260)의 내부경로(또는 내부공간)가 외부와 차단되어, 외부로부터 광학챔버(220)나 빔흡수계(260)의 내부로, 공기나 빛이 유입되지 않는다. 따라서 측정의 정확도와 신뢰도가 향상된다.
또한 빔흡수계(260)는 빔형성광학계(250)로부터 발생된 레이저빔(입사빔)이 광학챔버(220)의 입자측정공간(S)으로 향하여 미세 입자에 조사되면서 윈도우(297)를 거쳐 통과한 후, 초점렌즈 조립체(291)의 볼록렌즈(292)를 통해, 핀홀 조립체(296)의 캡(293)의 전면에 뚫려 있는 지름 0.3㎜의 핀홀(293a)을 거쳐, 광원출력검출기(264)에 도달되도록 구성되어 있다. 게다가, 광원출력검출기(264)의 표면은, 입사빔의 진행경로(광축)에 수직한 기준면에 대해 10°가량 경사져 있다. 이러한 구성에 의해, 레이저빔의 세기를 측정하는 과정에서, 입사빔의 일부가 광원출력검출기(264)의 표면으로부터 반사되더라도, 반사빔이 입사빔과는 다른 경로가 반사되어, 핀홀(293a)로 직진하는 반사빔의 양은 현저히 줄어들게 된다.
이에 대해, 더 구체적으로 설명하면, 도 23에 도시한 바와 같이, 입사빔은 초점렌즈 조립체(291)의 볼록렌즈(292)를 통해 핀홀 조립체(296)의 핀홀(293a)로 모여지는데, 이 핀홀(293a)을 통과한 입사빔은, 핀홀(293a)의 뒤쪽으로 빔흡수계(260)의 내부에 형성된 공동(空洞, cavity)을 지나면서 광원출력검출기(264)에 점점 가까워짐에 따라 빔 폭이 점차 퍼지게 된다.
이와 같이 빔 폭이 넓어진 입사빔이 광원출력검출기(264)에 도달되면, 입사빔의 세기가 광원출력검출기(264)에 의해 검출됨과 아울러, 입사빔의 일부가 광원출력검출기(264)의 표면에서 반사된다.
광원출력검출기(264)의 표면에서 반사된 반사빔은, 핀홀 조립체(296)에 가까워질수록 빔 폭이 더 넓어져 핀홀(293a)의 지름보다 20배 이상 퍼지게 된다.
광원출력검출기(264)로서 실리콘 소재의 포토다이오드를 사용한다는 전제 하에, 입사빔이 포토다이오드의 표면에 수직(90°)으로 입사할 때는 반사율이 30% 정도이지만, 일정한 각도(90°-10°= 80°)로 경사져서 입사할 때는 반사율이 0.075%밖에 되지 않는다. 빔의 가우시안 분포를 감안하면, 빔의 에너지는 0.2% 정도이다.
본 발명의 빔흡수계(260)에 따르면, 광원출력검출기(264)의 표면에서 반사된 반사빔의 대부분은 핀홀(293a)을 통과하지 않다. 또, 반사빔이 핀홀(293a)을 지나는 경우에도 가우시안 분포의 외곽 세기가 낮은 지역을 통과하게 되므로, 지극히 적은 양의 에너지만 광학챔버(220)로 유입될 뿐이다.
그 결과, 광원출력검출기(264)의 표면에서 반사된 반사광과 빔흡수계(260) 내에서 발생한 잡광이 광학챔버(220)의 내부로 거의 유입되지 않아, 빔분리광학계(270)의 신호대잡음비(신호와 잡음의 에너지 비)가 개선됨과 아울러 형광검출장치의 측정의 정확도와 신뢰도가 향상된다.
빔분리광학계(270)는 하면이 지지판(201)에 고정 설치된 수직 지지대(203)의 관통공을 통하여 수평하게 지지되는 상태로 광학챔버(220)에 연결되어 있다.
이와 같은 빔분리광학계(270)는 광학챔버(220) 내부의 입자측정공간(S)에 배치된 구면반사경(231)과 비구면반사경(232)으로 모은 미약한 산란광과 형광을 분리하여 검출하기 위한 것으로, 전면(前面)이 광학챔버(220)의 구면반사경(231)을 향하도록 구면반사경(231)과 착탈 가능하게 결합되는 고정판(281)에 연결되는 중공형 하우징(271); 하우징(271) 내에 설치되어 제1렌즈군(277a)을 수용하는 제1수용부(276) 및 두 개의 빔스플리터(279a, 279b)와 제2렌즈군(277b, 277c)을 수용하는 제2수용부(278); 레이저빔 출력을 측정하는 포토다이오드(도시하지 않음); 및 빔스플리터(279a, 279b)의 차단 주파수(cut-off frequency)에 따라 정해진 방향으로 분리되도록 하우징(271)의 후면측에 설치된 산란광 검출기(274, 도 6 참조)와 하우징(271)의 일측면에 형성된 연결공(271a, 271b)에 하우징(171)과 수직하게 연결되어 두 갈래로 분기된 두 개의 형광검출기(272, 273)를 포함하고 있다.
여기서 빔스플리터(279a, 279b)는 동일한 구조를 가지며, 그 각각은 도 24에 도시한 바와 같이, 하우징(271)의 후면에 이격 형성된 빔스플리터 장착공(271c, 271d)을 통하여 체결볼트 등에 의해 분리 가능하게 장착되는 장착부를 갖는 몸체(279a1)와 몸체(279a)의 일면에 경사지게 설치된 반사요소(279a2)를 포함하는 구조로 이루어져 있다. 이와 같은 구조에 의하면, 레이저다이오드(253)의 파장이 바뀌었을 때 빔스플리터(279a, 279b)의 교체가 용이한 점이 있다.
그리고 형광검출기(272, 273)의 어느 하나는 장파장의 신호를 검출하고 다른 하나는 단파장의 신호를 검출할 수 있도록 구성되어 있다.
산란광검출기(274)는 입자에서 발생한 산란광 신호를 측정하는 아발란체 포토다이오드(APD; Avalanche Photodiode)와 증폭기를 구비한다. 그리고 아발란체 포토다이오드의 이득은 주변 온도의 영향을 받기 때문에 이를 보정하는 수단으로 아발란체 포토다이오드의 주변 온도를 측정하는 센서를 더 포함하는 것이 바람직하다.
형광검출기(272, 273)는 입자에서 발생한 미약한 고유의 형광 신호를 증폭시켜 검출하는 광전증배관(PMT; Photomultiplier Tube)인 것이 바람직하다. 형광검출기(272, 273)의 전면(前面)에는 산란된 광을 차단하고 유도된 형광을 통과시키도록 광학필터(275)가 장착되어 있다.
산란광검출기(274)에 의해 검출된 산란광 신호는 신호처리부(도시하지 않음)를 거쳐 입자 크기로 환산되며, 또한 두 개의 형광검출기(272, 273)에 의해 검출된 형광 신호는 신호처리부를 거쳐 형광세기로 환산된다.
이상과 같이, 본 발명에 따른 입자광측부(200)는 입자도입부(210)를 통해, 대기 중의 부유입자가 일정 유량의 공기와 함께 광학챔버(220)의 내부로 유입될 때, 빔형성광학계(250)에서 빔흡수계(260) 쪽으로 조사된 레이저빔을 통과하는 미세 입자에 의해 광학챔버(220) 내의 입자측정공간(S)에서 산란광이 발생한다. 그리고 이 산란광을 산란광검출기(274)에 의해 검출하고, 특히 부유입자에 생물입자가 포함된 경우에는, 산란광과 함께 형광도 발생하므로, 이러한 형광을 파장대별로 검출하여 대기 중 미세 입자의 크기 분포 및 농도 변화를 실시간으로 감시할 수 있다. 최종적으로, 검출된 산란광과 형광 신호는 광검출센서를 거쳐 전기신호로 변환된 후 고속신호처리회로를 사용하여 대기 상태를 실시간으로 분석할 수 있다. 또한 대기 중에 존재하는 부유입자의 형광을 가변 시간 단위로 입자 크기별 농도와 입자 크기별 형광입자의 농도, 입자 크기별 형광의 세기를 실시간 분석하여 유해물질의 존재 여부를 검출할 수 있다.
이상, 본 발명은 바람직한 실시형태를 통하여 상세히 설명하였으나, 본 발명은 이에 한정되는 것은 아니며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양하게 변경, 응용될 수 있음은 당업자에게 자명하다. 따라서, 본 발명의 진정한 보호 범위는 다음의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.
100 : 입자농축부
110 : 선분리기
121, 122 : 노즐
113 : 거름망 덮개
114 : 깔때기
115 : 컵
123 : 입자배출구
200 : 입자광측부
210 : 입자도입부
211 : 연결구
212 : 외측 노즐
212a : 핀
212d : 요홈
212e : 편심방지 경사부
213b : 요홈
214 : 내측 노즐
215 : 노즐팁
216 : 공기유입구
217 : 너트부재
218 : 스냅링
220 : 광학챔버
221 : 연결부
221a : 핀
222∼227 : 개구
230 : 반사경
231 : 구면반사경
232 : 비구면반사경
240 : 입자토출부
241 : 노즐
242 : 배기구
250 : 빔형성광학계
251 : 광원부
251a : 몸체
251b : 덮개판
251c : 육각볼트
251e : 무두볼트
251f, 251f1, 251f2, 251f3 : 조임볼트
251g1 : 제1관통탭
251g2 : 제2관통탭
251g3 : 제3관통탭
251h : 미관통탭
251i : 부싱
251j : 원통부
251k : 조임나사
251l : 비구면렌즈 고정부
251m : 정렬홈
251n : 정렬용 홀
251o : 고정판
251p : 체결볼트
252 : 빔형성조정부
253 : 레이저다이오드
254 : 비구면렌즈
255∼257 : 렌즈군
260 : 빔흡수계
264 : 광원출력검출기
265 : 위치조절구
270 : 빔분리광학계
272, 273 : 형광검출기
274 : 산란광검출기
277a, 277b, 277c : 렌즈군
279a, 279b : 빔스플리터
280 : 밀폐판
292 : 볼록렌즈
293a : 핀홀
296 : 핀홀 조립체
297 : 윈도우
L : 레이저빔
S : 입자측정공간

Claims (24)

  1. 대기 중의 부유입자를 선별 및 농축하여 부유입자에 포함된 생물입자의 형광을 검출하는 형광검출장치에 있어서,
    대기 중의 부유입자가 흡입되는 통로를 형성하며, 부유입자 중에 이물질과 일정 크기의 입자를 걸러내는 선분리기(110)와, 관성력을 이용하여 상기 선분리기(110)를 통과한 부유입자를 정해진 범위의 크기로 선별하여 농축하는 복수의 가상 임팩터(virtual impactor)로 이루어진 노즐(121, 122)이 2단으로 설치되며 상기 선분리기(110)에 연결되는 원통 케이싱(120)을 포함하는 입자농축부(100);
    상기 입자농축부(100) 하단의 케이싱 조립체(300) 내에 설치되는 입자광측부(200);를 포함하고,
    상기 입자광측부(200)는,
    상기 입자농축부(100)에서 선별 농축된 부유입자 및 공기를 유입하기 위한 입자도입부(210);
    상면에 개구(222)가 형성되어 있고 그 개구(222)를 통하여 상기 입자도입부(210)의 하단과 연결되며 내부에 입자측정공간(S)을 갖는 육면체 광학챔버(220);
    상기 광학챔버(220)의 전면에 형성된 개구(223)에 연결 설치되어 상기 입자도입부(210)를 통해 상기 입자측정공간(S) 내에 도입되는 입자에 레이저빔(L)을 조사시키기 위한 빔형성광학계(250);
    상기 빔형성광학계(250)에 대향하여 상기 광학챔버(220)의 후면에 형성된 개구(225)에 연결 설치되어 빔형성광학계(250)로부터 조사되는 레이저빔(L)을 빔을 소멸시키기 위한 빔흡수계(260);
    상기 입자측정공간(S) 내에 상기 레이저빔(L)의 진행방향과 90°방향으로 배치된 한 쌍의 반사경(230);
    상기 광학챔버(220)의 하면에 형성된 개구(227)에 연결 설치되어 상기 입자측정공간(S)에서 레이저빔(L)과의 상호작용을 한 후의 입자와 공기를 노즐(241)을 통하여 외부로 토출시키기 위한 입자토출부(240);
    상기 빔형성광학계(250)와 수직을 이루도록 상기 광학챔버(220)의 우측면에 형성된 개구(224)에 연결 설치되어 상기 광학챔버(220) 내부의 입자측정공간(S)에서 레이저빔(L)과 입자와의 상호작용에 의해 생성된 산란광과 형광 신호를 두 개의 빔스플리터(279a, 279b)의 차단 주파수(cut-off frequency)에 따라 한 개의 산란광과 두 개의 형광을 동시에 검출하는 산란광검출기(274)와 형광검출기(272, 273)를 구비하는 빔분리광학계(270);
    를 포함하는 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  2. 제1항에 있어서,
    상기 선분리기(110)는 공기와 부유입자가 유입되는 흡입관(111)과, 상기 흡입관(111)의 상단을 따라 설치되며 메쉬 구조를 이용하여 부유입자에 포함된 이물질을 제거하는 거름망(112)과, 상기 거름망(112)의 상단을 막아줌과 아울러 가장자리 부분이 상기 거름망(112)으로부터 이격되도록 형성된 거름망 덮개(113)와, 상기 흡입관(111)의 내측에 위치하며 흡입된 부유입자 중에서 목표로 하는 입자의 크기보다 큰 입자를 걸러내는 깔때기(114) 및 깔때기(114)의 하단에 연결 형성되고 측방에 공기통로(115a)를 구비하며 깔때기(114)를 통과하여 상기 걸러진 큰 입자를 담아두는 컵(115)을 포함하는 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  3. 제2항에 있어서,
    상기 입자농축부(100)는 상기 컵(115)의 공기통로(115a)를 통과한 부유입자 중 일정 크기의 입자만 통과시키는 복수의 가상 임팩터로 이루어진 제1단 노즐(121)과, 상기 제1단 노즐(121)로부터 이격되게 설치되어 일정 크기 범위의 부유입자를 선별 농축하는 복수의 가상 임팩터로 이루어진 제2단 노즐(122)을 포함하는 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  4. 제1항에 있어서,
    상기 입자도입부(210)는 입자농축부(100)의 하단과 연결되도록 상하 관통된 개방부를 갖는 연결구(211)와, 상기 연결구(211)와 분리 가능하게 상호 결합되어 하단부가 상기 광학챔버(220)의 상면 개구(222)와 연결 고정되는 외측 노즐(212)과, 상기 연결구(211)와 외측 노즐(212)의 내부에 설치되어 상기 입자농축부(100)의 하단에 돌출 연장된 입자배출구(123)가 끼워지는 삽입공을 갖는 삽입관(213)과, 상기 삽입관(213) 내에 연결 고정되는 내측 노즐(214)과, 상기 외측 노즐(212)의 끝단에 상기 입자토출부(240)의 토출 노즐(241)과 대향하여 고정 연결된 노즐팁(215)과, 상기 외측 노즐(212)의 외측에 형성되어 외부로부터 깨끗한 공기를 유입하기 위한 공기유입구(216)를 포함하는 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  5. 제4항에 있어서,
    상기 입자도입부(210)는 상기 내측 노즐(214)을 상기 연결구(211)와 외측 노즐(212) 내에 설치할 때, 상기 내측 노즐(214)의 위치 결정을 위한 제1위치결정수단을 더 포함하고,
    상기 제1위치결정수단은 상기 삽입관(213)의 외주면에 설치된 링부재(213a)의 일측에 형성된 요홈(213b)과, 상기 외측 노즐(212)의 상면 일측에 형성된 핀홀에 삽입 고정되어 상기 요홈(213b)에 삽입되는 핀(212a)으로 이루어져 있는 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  6. 제4항에 있어서,
    상기 입자도입부(210)는 상기 입자도입부(210)를 상기 광학챔버(220)에 장착할 때, 상기 입자도입부(210) 자체의 위치 결정을 위한 제2위치결정수단을 더 포함하고,
    제2위치결정수단은 상기 외측 노즐(212)의 하단 부근 외주면에 설치된 환형(環形) 돌출턱(212c)의 일측에 형성된 요홈(212d)과, 상기 광학챔버(220)의 상면 개구(222)의 주변 일측에 형성되어 상기 요홈(212d)에 삽입되는 핀(221a)으로 이루어져 있는 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  7. 제6항에 있어서,
    상기 입자도입부(210)는 상부 내면이 상기 외측 노즐(212)의 외주면에 설치된 환형 돌출턱(212c)의 상면에 지지되고 내주면에 나사산이 형성된 너트부재(217)와 상기 광학챔버(220)의 상면 개구(222)의 테두리를 따라 상향 돌출되어 외주면에 나사산이 형성된 연결부(221)와의 나사체결에 의해 상기 광학챔버(220)에 연결 고정되는 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  8. 제7항에 있어서,
    상기 핀(221a)은 상기 연결부(221)의 상면 일측에 형성된 핀홀에 삽입 고정된 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  9. 제4항에 있어서,
    상기 입자도입부(210)의 외측 노즐(212)의 하단부에는, 상기 입자도입부(210)를 광학챔버(220)로부터 분리후 다시 장착할 때 광학챔버(220)의 정해진 장착 위치로부터 횡방향으로 편심됨이 없이 광학챔버(220)의 장착 위치에 정렬되도록, 상기 광학챔버(220)의 상면에 형성된 개구(222)를 향하여 경사지는 역원뿔형 구조의 편심방지 경사부(212e)가 형성되어 있고,
    상기 광학챔버(220)의 상면 개구(222)의 내측 하단은 상기 편심방지 경사부(212e)와 맞닿아 밀착되는 경사면(222a)을 갖는 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  10. 제9항에 있어서,
    상기 편심방지 경사부(212e)와 경사면(222a)의 경사각도는 동일하고, 그 경사각도는 상기 입자도입부(210)의 중심축에 대하여 25°∼ 35°인 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  11. 제1항에 있어서,
    상기 입자토출부(240)의 토출 노즐(241)은 상기 입자도입부(210)의 외측 노즐(212)에 연결된 노즐팁(215)과 일정 간격을 두고 대향하여 있고 상기 노즐팁(215)을 향하여 선단(先端)쪽으로 갈수록 가늘어지는 테이퍼(taper) 형상으로 되어 있는 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  12. 제1항에 있어서,
    상기 빔형성광학계(250)는 양단부가 개방되는 내부공간을 갖고 그 내부공간에 비구면렌즈(254)가 장착되는 몸체(251a)와 몸체(251a)의 전방측에 레이저다이오드(253)가 내장된 소켓을 갖는 덮개판(251b)으로 이루어지는 광원부(251);
    상기 광원부(251)와 분리 가능하게 조립되고 내부에 레이저다이오드(253)로부터 발생되어 비구면렌즈(254)를 통과한 레이저빔의 종방향 크기를 조절하는 제1렌즈군(255), 제1렌즈군(255)을 통과한 레이저빔의 횡방향 크기를 조절하는 제2렌즈군(256), 및 윈도우(257)가 순차적으로 배열되어 있는 빔형성조정부(252)를 포함하며, 내부면이 흑염처리된 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  13. 제12항에 있어서,
    상기 광원부(251)는 덮개판(251b)의 가장자리 안쪽 둘레에 일정 간격을 두고 형성된 복수개의 제1관통탭(251g1)과 제1관통탭(251g1)에 대응하여 몸체(251a)에 형성된 복수개의 미관통탭(251h)을 통하여 삽입 설치되고 외주면에 스프링(251d)이 장착되어 몸체(251a)에 대한 덮개판(251b)의 가압력을 조절하는 복수개의 육각볼트(251c);
    덮개판(251b)에 형성된 복수개의 제1관통탭(251g1) 사이 사이에 형성된 제2관통탭(251g2)을 통하여 삽입 설치되어 조임정도에 따라 몸체(251a)에 대한 덮개판(251b)의 밀림력을 조절하기 위한 무두볼트(251e);
    를 포함하는 레이저빔 정렬수단을 구비하는 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  14. 제13항에 있어서,
    상기 무두볼트(251e)는 상기 제2관통탭(251g2) 내에 끼워지는 부싱(251i) 내부에 삽입되고, 회전력 상쇄를 위해 끝단에 볼이 들어 있고, 상기 부싱(251i)은 일측면이 길이방향으로 절결된 절결홈(251h1)을 구비하는 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  15. 제13항에 있어서,
    상기 레이저빔 정렬수단은 덮개판(251a)의 외주면 둘레를 따라 일정 간격을 두고 형성되고, 상기 제2관통탭(251g2)의 각각과 연통되는 3그룹의 제3관통탭(251g3)을 통하여 삽입 설치되어 상기 무두볼트(251e)가 삽입된 부싱(251i)을 조여 고정하기 위한 조임볼트(251f; 251f1, 251f2, 251f3)를 더 포함하는 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  16. 제15항에 있어서,
    상기 제3관통탭(251g3)의 각 그룹은 삼각 형상을 이루며 형성된 3개의 관통탭으로 이루어진 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  17. 제13항에 있어서,
    상기 덮개판(251b)의 일측면에는, 몸체(251a)를 향하여 수평방향으로 돌출 형성되어 레이저다이오드(253)로부터 발생되는 레이저빔이 통과되도록 내부공간을 갖는 원통부(251j)가 구비되고,
    상기 몸체(251a)의 전단부 내부에는, 원통부(251j)의 외주면을 감싸는 형태로 원통부(251j)를 수용하는 개방부를 갖는 고정판(251o)이 설치되어 몸체(251a)와 체결볼트에 의해 고정되며,
    상기 비구면렌즈(254)는 상기 원통부(251j)의 내부공간에 장착되어 양단부가 개방된 구조를 갖는 비구면렌즈 고정부(2511)의 내부공간에 고정 설치되어 있는 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  18. 제17항에 있어서,
    상기 원통부(251j)의 상면에는, 원통부(251j)의 내부공간과 연통되는 제4관통탭(251g3)이 형성되어 있고 이 제4관통탭(251g3)을 통하여 조임나사(251k)가 삽입 설치되고,
    상기 비구면렌즈 고정부(2511)의 후단부 상면에는 비구면렌즈 고정부(2511)의 위치 정렬을 위한 정렬홈(251m)이 형성되고,
    상기 광원부(251)의 몸체(251a)의 상면 일측에는, 원통부(251j)의 중심축의 위치와 비구면렌즈 고정부(2511)의 중심축의 위치를 외부에서 조정하기 위해, 몸체(251a)의 내부공간과 연통됨과 함께 원통부(251j)의 제4관통탭(251g3)에 삽입 설치된 조임나사(251k)와 비구면렌즈 고정부(2511)의 정렬홈(251m)의 형성 위치에 대응하는 위치에 형성된 정렬용 홀(251n)이 구비된 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  19. 제1항에 있어서,
    상기 빔흡수계(260)는 상기 광학챔버(220)의 후면에 고정되는 몸체(261);
    상기 몸체(261)의 중앙부에 관통 형성된 삽입공(262a)에 끼워넣는 초점렌즈 조립체(291);
    상기 초점렌즈 조립체(291)의 광축이 핀홀(293a)을 지나도록, 상기 몸체(261)의 후면에 형성된 오목부에 삽입하는 핀홀 조립체(296);
    상기 핀홀 조립체(296)의 후면에 고정하는 하우징(263);
    상기 초점렌즈 조립체(291)의 광축에 직교하는 기준면에 대해 일정한 각도로 경사지도록, 상기 하우징(263)의 후면에 고정하는 광원출력검출기(264);
    를 포함하고,
    상기 핀홀 조립체(296)의 핀홀(293a)을 통과한 레이저빔(L)이, 상기 광원출력검출기(264)에 점점 가까워짐에 따라 레이저빔 폭이 점차 퍼지도록, 상기 핀홀 조립체(296)와 상기 하우징(263)의 중앙부에는 공동이 형성되어 있는 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  20. 제1항에 있어서,
    상기 한 쌍의 반사경(230)은 상기 빔분리광학계(270)에 향하여 배치되어 코팅된 유리재질의 구면반사경(231)과, 구면반사경(231)에 대향하여 설치되어 코팅된 알루미늄 재질의 비구면반사경(232)으로 이루어져 있고,
    상기 구면반사경(231)은 상기 빔형성광학계(250)로부터 발생된 레이저빔(L)이 상기 입자도입부(210)로부터 도입되는 입자에 조사됨으로써 생성된 산란광과 형광 신호가 상기 비구면반사경(232)에 반사되어 상기 빔분리광학계(270)를 향하도록 중앙 부분이 코팅되어 있지 않은 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  21. 제20항에 있어서,
    상기 비구면반사경(232)은 상기 광학챔버의 좌측면에 형성된 개구(226)측에 위치되며 상기 개구(226)는 분리 가능한 밀폐판(280)에 의해 밀폐되어 있는 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  22. 제1항에 있어서,
    상기 산란광검출기(274)는 아발란체 포토다이오드(APD; Avalanche Photodiode)와 증폭기를 구비하는 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  23. 제1항에 있어서,
    상기 형광검출기(272, 273)의 어느 하나는 장파장의 신호를 검출하도록 구성되어 있고, 다른 하나는 단파장의 신호를 검출하도록 구성되어 있으며, 상기 형광검출기(272, 273)의 전면(前面)에는 산란된 광을 차단하고 유도된 형광을 통과시키도록 광학필터(275)가 장착되어 있는 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
  24. 제12항에 있어서,
    상기 형광검출기(272, 273)는 광전증배관(PMT; Photomultiplier Tube)인 것을 특징으로 하는 부유입자의 실시간 형광검출장치.
KR1020120069541A 2012-06-28 2012-06-28 대기 중의 부유입자의 실시간 형광검출장치 KR101246661B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120069541A KR101246661B1 (ko) 2012-06-28 2012-06-28 대기 중의 부유입자의 실시간 형광검출장치
EP12184837.8A EP2679985B1 (en) 2012-06-28 2012-09-18 Real time particle fluorescence detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120069541A KR101246661B1 (ko) 2012-06-28 2012-06-28 대기 중의 부유입자의 실시간 형광검출장치

Publications (1)

Publication Number Publication Date
KR101246661B1 true KR101246661B1 (ko) 2013-03-25

Family

ID=47221928

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120069541A KR101246661B1 (ko) 2012-06-28 2012-06-28 대기 중의 부유입자의 실시간 형광검출장치

Country Status (2)

Country Link
EP (1) EP2679985B1 (ko)
KR (1) KR101246661B1 (ko)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101533936B1 (ko) * 2014-09-29 2015-07-06 성균관대학교산학협력단 입자 측정장치
KR101533935B1 (ko) * 2014-09-11 2015-07-06 성균관대학교산학협력단 입자 측정장치
KR101574435B1 (ko) * 2014-09-04 2015-12-04 (주)아이씨디 미세먼지 및 미생물 검출 장치
WO2016024652A1 (ko) * 2014-08-12 2016-02-18 삼양화학공업주식회사 유로 셀을 흐르는 액상물질 및 대기 중 생물입자의 실시간 검출장치
KR101623787B1 (ko) * 2015-11-06 2016-05-24 국방과학연구소 휴대용 생물입자 실시간 검출장치
KR20160103285A (ko) * 2015-02-24 2016-09-01 (주)미디어에버 미세 먼지 및 미생물 검출 장치
KR20160103287A (ko) * 2015-02-24 2016-09-01 (주)미디어에버 미세 먼지 및 미생물 검출 장치
KR101749994B1 (ko) * 2015-11-24 2017-06-22 (주)센서테크 형광신호와 산란신호 측정을 이용한 생물입자 탐지장치
KR101825159B1 (ko) 2017-03-24 2018-02-06 (주)미디어에버 난반사 감소 기능이 부가된 이종의 반사경이 결합된 미세먼지 및 미생물 검출장치
KR20180115954A (ko) * 2017-04-14 2018-10-24 엘지이노텍 주식회사 입자 센싱 장치
KR102055426B1 (ko) * 2018-10-15 2019-12-12 국방과학연구소 고출력 광섬유 레이저용 빔 덤퍼 및 이의 조립 방법
KR102311299B1 (ko) * 2020-04-28 2021-10-13 주식회사 원진일렉트로닉스 광 특성을 고려한 미세 먼지 측정 장치 및 방법
KR102388703B1 (ko) * 2021-09-23 2022-04-20 (주)엔아이디에스 생물 입자 및 비생물 입자를 검출하는 센서 장치
KR20220096212A (ko) * 2020-12-30 2022-07-07 (주)미디어에버 실시간 미생물 종판별 장치 및 이를 이용한 미생물 종판별 방법
KR20220111360A (ko) * 2021-02-02 2022-08-09 (주)미디어에버 실시간 미생물 종판별 장치
KR20220111362A (ko) * 2021-02-02 2022-08-09 (주)미디어에버 실시간 미생물 종판별 통합 시스템
KR20230013871A (ko) * 2021-07-20 2023-01-27 (주)미디어에버 나노파티클 검출장치의 진동저감 구조

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6328493B2 (ja) 2014-05-28 2018-05-23 東京エレクトロン株式会社 測定装置及び測定方法
CN105466822B (zh) * 2016-02-06 2018-03-06 无锡迈通科学仪器有限公司 气溶胶实时监测仪
US10209184B2 (en) * 2016-04-11 2019-02-19 Hamilton Associates, Inc. Removable insert for a test unit having a light source for illuminating an aerosol test chamber
FR3066598B1 (fr) 2017-05-17 2019-07-26 Eco Logic Sense Sas Capteur pour la mesure de la concentration de particules dans l’air
KR20190029209A (ko) * 2017-09-12 2019-03-20 주식회사 히타치엘지 데이터 스토리지 코리아 임팩터를 채용하는 먼지 센서
EP3461457A1 (de) 2017-09-28 2019-04-03 Otmar Kronenberg AG Sensor und system zur überwachung der tragedauer von kieferorthopädischen gummizügen
CN108318081B (zh) * 2018-03-30 2024-04-09 惠州华阳通用电子有限公司 一种检测汽车内外空气质量的装置
PL3844475T3 (pl) 2018-08-28 2024-03-04 Swisens Ag Układ pomiarowy do badania stężonych cząstek aerozolowych w fazie gazowej
FR3128994B1 (fr) * 2021-11-08 2024-03-15 Inst De Radioprotection Et De Surete Nucleaire Module d’observation et dispositif associe de detection de la presence d’au moins une particule d’un aerosol

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114511A (ja) 1997-06-25 1999-01-22 Mitsubishi Heavy Ind Ltd 大気中の浮遊微小物質の測定装置及びその測定システム
JP2006349448A (ja) 2005-06-15 2006-12-28 Kowa Co 大気中微粒子測定装置
KR20070045214A (ko) * 2004-07-30 2007-05-02 바이오비질런트 시스템즈 인코포레이티드 병원균 및 입자 탐지기 시스템과 방법
JP2008039735A (ja) 2006-08-10 2008-02-21 Matsushita Electric Ind Co Ltd 粒子計測装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788744A (en) * 1970-01-14 1974-01-29 Bio Physics Systems Inc Method and apparatus for photoanalysis
KR0121552B1 (ko) 1993-08-14 1997-11-15 김학옥 가상충돌기를 이용한 부유입자 분리장치
US5932795A (en) * 1997-01-22 1999-08-03 President And Fellows Of Harvard College Methods and apparatus for continuous ambient particulate mass monitoring
DE69922970T2 (de) * 1998-07-27 2005-12-08 Kowa Co., Ltd., Nagoya Verfahren und vorrichtung zum zählen von pollenkörnern
US6431014B1 (en) * 1999-07-23 2002-08-13 Msp Corporation High accuracy aerosol impactor and monitor
US7173257B1 (en) * 2005-02-18 2007-02-06 Hach Ultra Analytics, Inc. Integrated assembly for delivery of air stream for optical analysis
GB0801375D0 (en) * 2008-01-25 2008-03-05 Secr Defence Fluid-borne particle detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114511A (ja) 1997-06-25 1999-01-22 Mitsubishi Heavy Ind Ltd 大気中の浮遊微小物質の測定装置及びその測定システム
KR20070045214A (ko) * 2004-07-30 2007-05-02 바이오비질런트 시스템즈 인코포레이티드 병원균 및 입자 탐지기 시스템과 방법
JP2006349448A (ja) 2005-06-15 2006-12-28 Kowa Co 大気中微粒子測定装置
JP2008039735A (ja) 2006-08-10 2008-02-21 Matsushita Electric Ind Co Ltd 粒子計測装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024652A1 (ko) * 2014-08-12 2016-02-18 삼양화학공업주식회사 유로 셀을 흐르는 액상물질 및 대기 중 생물입자의 실시간 검출장치
KR20160019790A (ko) 2014-08-12 2016-02-22 삼양화학공업주식회사 유로 셀을 흐르는 액상물질 및 대기 중 생물입자의 실시간 검출장치
KR101574435B1 (ko) * 2014-09-04 2015-12-04 (주)아이씨디 미세먼지 및 미생물 검출 장치
KR101533935B1 (ko) * 2014-09-11 2015-07-06 성균관대학교산학협력단 입자 측정장치
KR101533936B1 (ko) * 2014-09-29 2015-07-06 성균관대학교산학협력단 입자 측정장치
KR102258807B1 (ko) * 2015-02-24 2021-06-09 (주)미디어에버 미세 먼지 및 미생물 검출 장치
KR20160103287A (ko) * 2015-02-24 2016-09-01 (주)미디어에버 미세 먼지 및 미생물 검출 장치
KR102258809B1 (ko) * 2015-02-24 2021-06-09 (주)미디어에버 미세 먼지 및 미생물 검출 장치
KR20160103285A (ko) * 2015-02-24 2016-09-01 (주)미디어에버 미세 먼지 및 미생물 검출 장치
KR101623787B1 (ko) * 2015-11-06 2016-05-24 국방과학연구소 휴대용 생물입자 실시간 검출장치
KR101749994B1 (ko) * 2015-11-24 2017-06-22 (주)센서테크 형광신호와 산란신호 측정을 이용한 생물입자 탐지장치
KR101825159B1 (ko) 2017-03-24 2018-02-06 (주)미디어에버 난반사 감소 기능이 부가된 이종의 반사경이 결합된 미세먼지 및 미생물 검출장치
KR20180115954A (ko) * 2017-04-14 2018-10-24 엘지이노텍 주식회사 입자 센싱 장치
KR102380173B1 (ko) 2017-04-14 2022-03-29 엘지이노텍 주식회사 입자 센싱 장치
KR102055426B1 (ko) * 2018-10-15 2019-12-12 국방과학연구소 고출력 광섬유 레이저용 빔 덤퍼 및 이의 조립 방법
KR102311299B1 (ko) * 2020-04-28 2021-10-13 주식회사 원진일렉트로닉스 광 특성을 고려한 미세 먼지 측정 장치 및 방법
KR102469049B1 (ko) 2020-12-30 2022-11-22 (주)미디어에버 실시간 미생물 종판별 장치 및 이를 이용한 미생물 종판별 방법
KR20220096212A (ko) * 2020-12-30 2022-07-07 (주)미디어에버 실시간 미생물 종판별 장치 및 이를 이용한 미생물 종판별 방법
KR102469053B1 (ko) 2021-02-02 2022-11-22 (주)미디어에버 실시간 미생물 종판별 장치
KR20220111362A (ko) * 2021-02-02 2022-08-09 (주)미디어에버 실시간 미생물 종판별 통합 시스템
KR20220111360A (ko) * 2021-02-02 2022-08-09 (주)미디어에버 실시간 미생물 종판별 장치
KR102469055B1 (ko) 2021-02-02 2022-11-22 (주)미디어에버 실시간 미생물 종판별 통합 시스템
KR20230013871A (ko) * 2021-07-20 2023-01-27 (주)미디어에버 나노파티클 검출장치의 진동저감 구조
KR102602447B1 (ko) * 2021-07-20 2023-11-16 (주)미디어에버 나노파티클 검출장치의 진동저감 구조
KR102388703B1 (ko) * 2021-09-23 2022-04-20 (주)엔아이디에스 생물 입자 및 비생물 입자를 검출하는 센서 장치
WO2023048406A1 (ko) * 2021-09-23 2023-03-30 (주)엔아이디에스 생물 입자 및 비생물 입자를 검출하는 센서 장치

Also Published As

Publication number Publication date
EP2679985A3 (en) 2014-04-23
EP2679985A2 (en) 2014-01-01
EP2679985B1 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
KR101246661B1 (ko) 대기 중의 부유입자의 실시간 형광검출장치
KR101623787B1 (ko) 휴대용 생물입자 실시간 검출장치
KR20160019790A (ko) 유로 셀을 흐르는 액상물질 및 대기 중 생물입자의 실시간 검출장치
US5631730A (en) Pseudo telecentric optical design for flow cytometric blood cell analyzer
US9816911B2 (en) Flow cytometry optics
US7659523B1 (en) Integrated assembly for delivery of air stream for optical analysis
US9880097B2 (en) Apparatus and system for simultaneously measuring particle concentration and biocontaminants in an aerosol particle flow
JP5667079B2 (ja) 粒径及び蛍光の同時検出のための小型検出器
US9766174B2 (en) Optical measuring device and optical measuring method
WO2017192244A1 (en) Realtime optical method and system for detecting and classifying biological and non-biological particles
KR20120071453A (ko) 미생물 검출장치
WO2004051238A1 (ja) 生物学的粒子の情報を得る装置
CN101639435B (zh) 粒子计数器
CA2242363A1 (en) Particle separation and detection apparatus
CN111795921B (zh) 粒子计数器传感器光束匀化和锐化的照明***
CN201016927Y (zh) 量子激光烟气连续分析传感器
US7869037B2 (en) Particle size distribution measuring device
US20130070243A1 (en) Method and apparatus for measuring optical properties of particles of a dispersion
RU2448340C1 (ru) Способ оптической регистрации сигналов флуоресценции и рассеяния аэрозольных частиц в потоке и оптическая система для его осуществления
KR20160103285A (ko) 미세 먼지 및 미생물 검출 장치
JP7214038B2 (ja) 光学チャンバのカーテンフロー設計
CN115389384A (zh) 基于前向粒子计数器耦合侧向光度计的颗粒物浓度检测***及方法
CN201532350U (zh) 微粒检测装置
US11287364B2 (en) System, apparatus and method for off-axis illumination in flow cytometry
Wilson et al. Autofluorescence detection using UV diode laser simultaneous excitation of multiple wavelengths

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160519

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170303

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180305

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200303

Year of fee payment: 8