KR101242591B1 - Deposition method of anti-finger layer - Google Patents

Deposition method of anti-finger layer Download PDF

Info

Publication number
KR101242591B1
KR101242591B1 KR1020110048414A KR20110048414A KR101242591B1 KR 101242591 B1 KR101242591 B1 KR 101242591B1 KR 1020110048414 A KR1020110048414 A KR 1020110048414A KR 20110048414 A KR20110048414 A KR 20110048414A KR 101242591 B1 KR101242591 B1 KR 101242591B1
Authority
KR
South Korea
Prior art keywords
deposition
thin film
layer
sputtering
sio
Prior art date
Application number
KR1020110048414A
Other languages
Korean (ko)
Other versions
KR20120130468A (en
Inventor
유흥상
Original Assignee
유흥상
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유흥상 filed Critical 유흥상
Priority to KR1020110048414A priority Critical patent/KR101242591B1/en
Publication of KR20120130468A publication Critical patent/KR20120130468A/en
Application granted granted Critical
Publication of KR101242591B1 publication Critical patent/KR101242591B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

지문방지층 증착방법에 있어서, 챔버(10) 내에서 Si타겟 또는 SiO₂타겟을 스퍼터링하여 소재에 SiO₂ 박막층을 증착하는 SiO₂ 박막층 스퍼터링 증착단계와; 상기 SiO₂ 박막층 위에 thermal evaporation source로 Hydrophobic 물질을 증발시켜 지문방지박막층을 증착하는 내지문용 Hydrophobic 박막층 저항가열 증착단계;를 포함하는 것으로, 본 발명은 스퍼터링 방식과 저항가열방식을 함께 사용하여 유리 또는 필름에 지문방지층을 형성함으로써 챔버 내에 한 번에 제품을 많이 비치할 수 있고, 작업속도가 빠르고 경제적이며, 증착층의 품질이 양호하다는 현저한 효과가 있다.An anti-fingerprint layer deposition method comprising: an SiO₂ thin film layer sputtering deposition step of depositing a SiO 2 thin film layer on a material by sputtering a Si target or a SiO 2 target in a chamber 10; Hydrophobic thin film resistive heating deposition for depositing a fingerprint layer by evaporating a hydrophobic material as a thermal evaporation source on the SiO₂ thin film layer; The present invention includes a sputtering method and a resistive heating method in a glass or film By forming the anti-fingerprint layer, a large number of products can be provided in the chamber at once, the work speed is fast and economical, and the quality of the deposited layer is good.

Description

지문방지층 증착방법 {DEPOSITION METHOD OF ANTI-FINGER LAYER}Anti-fingerprint layer deposition method {DEPOSITION METHOD OF ANTI-FINGER LAYER}

본 발명은 유리나 필름 위에 지문방지층을 형성하는 지문방지층 증착방법에 관한 것이다.The present invention relates to an anti-fingerprint layer deposition method for forming an anti-fingerprint layer on glass or film.

사용자가 직접 화면에 손을 닿게 되는 핸드폰과 같은 통신기기에 있어서는, 사용자의 부주의나 또는 터치스트린과 같은 손이 닿아야만 입출력이 되는 구조에서는 손이 닿게 되면 지문이 묻어 지저분해지며 또한 문자나 숫자 들을 인식하는데 곤란성이 있었다.In a communication device such as a mobile phone in which the user directly touches the screen, in a structure in which input / output only needs to be touched by the user's carelessness or a touch screen, the fingerprint gets dirty when the user touches it. There was a difficulty in recognizing them.

따라서 이러한 지문이 묻는 것을 방지하는 구성(AF : ANTI-FINGER)이 종래기술로 개발되고 있다.      Therefore, a construction (AF: ANTI-FINGER) to prevent such fingerprints are being developed in the prior art.

종래기술인 공개특허공보 10-2006-0095442호 방오막 피복 수지 물품의 제조 방법에 종래기술로 기재된 바와 같이, 방오막의 기술로서, 일본 공개특허공보 평7-16940호에는, 이산화규소를 주로 하는 광학 박막을 갖는 광학 물품의 이 광학박막 상에 퍼플루오로알킬(메트)아크릴레이트와 알콕시실란기를 갖는 단량체의 공중합체의 박막을 형성하는 것이 알려져 있다.      As described in the prior art in the manufacturing method of the prior art JP-A-10-2006-0095442 antifouling film coating resin article, JP-A-7-16940 discloses an optical thin film mainly containing silicon dioxide as a technique of an antifouling film. It is known to form a thin film of a copolymer of a perfluoroalkyl (meth) acrylate and a monomer having an alkoxysilane group on this optical thin film of an optical article having.

일본 공개특허공보 2000-327818호에는, 퍼플루오로기 함유 트리에톡시실란을 용질로 하는 용액에, 퍼플루오로기 함유 인산에스테르를 촉매로서 첨가한 코팅제를, 표층부에 SiO₂ 층을 갖는 반사 방지막을 갖는 광학 물품의 이 반사 방지막 상에 도포하여 방오층을 형성하는 것이 기재되어 있다.      Japanese Laid-Open Patent Publication No. 2000-327818 discloses an antireflection film having a SiO 2 layer at a surface layer of a coating agent in which a perfluoro group-containing triethoxysilane is added as a solute to a solution containing a perfluoro group-containing phosphate ester as a catalyst. It is described to apply | coat on this antireflection film of the optical article which has, and to form an antifouling layer.

일본 공개특허공보 2001-188102호에는, 투명 필름 기재 상면에 반사 방지층을 갖는 반사 방지 필름의 최상층에, 퍼플루오로폴리에테르기 함유 실란커플링제를 진공 증착에 의해 막을 형성하여 방오층을 형성하는 것이 제안되어 있다.      Japanese Laid-Open Patent Publication No. 2001-188102 discloses forming an antifouling layer by forming a perfluoropolyether group-containing silane coupling agent by vacuum deposition on a top layer of an antireflection film having an antireflection layer on an upper surface of a transparent film substrate. It is proposed.

또, 일본 공개특허공보 평11-71682호에는, 표면을 미리 산소를 함유하는 플라즈마 또는 코로나 분위기에서 처리하여 친수성화하거나, 또는 기재 표면을 산소를 함유하는 분위기 속에서 200 ~ 300 ㎚ 부근 파장의 자외선을 조사하여 친수성화 처리를 한 플라스틱 기재의 표면에, 실리콘알콕시드 (또는, 그 가수 분해물의 단량체 또는 19 량체 이하의 중합체), 플루오로알킬기 함유 실란 화합물 및 산을 함유하는 용액을 도포하고, 그 후 건조시켜 발수성 피막을 형성하는 발수성 물품의 제조 방법이 기재되어 있다.
Japanese Laid-Open Patent Publication No. 11-71682 discloses hydrophilic treatment of a surface in a plasma or corona atmosphere containing oxygen in advance, or ultraviolet rays having a wavelength of around 200 to 300 nm in an atmosphere containing oxygen. Was applied to a surface of the plastic substrate subjected to the hydrophilization treatment, and a solution containing a silicon alkoxide (or a monomer or a polymer of 19 or less monomers), a fluoroalkyl group-containing silane compound, and an acid was applied. A method for producing a water repellent article, which is subsequently dried to form a water repellent coating, is described.

그리고 공개특허공보 10-2009-0056913호에는 종래기술로서 UV 경화형 관능기 함유 바인더, 불소계 UV 경화형 관능기 함유 화합물, 광개시제 및 나노 미립자를 포함하는 코팅 조성물에 관한 기술이 종래기술로 기재되어 있고, 구체적인 기재로서 2회 코팅방식으로 내마모 코팅층 위에 내오염성을 부여하는 코팅층을 별도로 형성하는 방법이 있으며, 일본국 특개평07-16940에는 실리카가 주성분인 저반사층 위에 퍼플루오로기를 가지는 아크릴레이트와 실리카의 공중합체를 별도로 코팅하는 방법이 기재되어 있다. 이와 같은 방법은 필름 표면의 러빙시에도 내오염 특성이 지속되는 효과는 있으나, 이를 위해서는 내마모 코팅층에 내오염층의 물질과 반응할 수 있는 결합기가 있어야 하는 제약이 있으며, 2회 코팅방식으로 생산됨에 따라 제조 경비가 상승하는 문제가 있다. 또한, 지문 등의 오일 성분 등이 지속적으로 묻을 경우, 오일이 막으로 침투하여 막 특성이 급격히 저하되는 문제를 개선할 수 없다는 기재가 있다.
In Patent Publication No. 10-2009-0056913, a technique related to a coating composition comprising a UV-curable functional group-containing binder, a fluorine-based UV-curable functional group-containing compound, a photoinitiator, and nanoparticles is described in the prior art as a conventional technique. There is a method of separately forming a coating layer imparting fouling resistance on the wear-resistant coating layer by a double coating method, Japanese Patent Laid-Open No. 07-16940 has a copolymer of acrylate and silica having a perfluoro group on the low reflection layer composed mainly of silica It is described a method of coating separately. Such a method has the effect that the fouling resistance property persists even when rubbing the film surface, but for this purpose, there is a restriction that a bond group capable of reacting with the material of the fouling resistant layer is required in the wear-resistant coating layer, and is produced by a double coating method. There is a problem that the manufacturing cost rises. In addition, there is a description that it is not possible to improve the problem that the oil penetrates into the membrane and the membrane characteristic is sharply deteriorated when oil components such as fingerprints and the like are continuously buried.

그러나 종래의 지문방지(AF) 증착을 위한 기존의 증착 방식은 저항가열식 혹은 전자총 방식을 사용하였으며, 이 방식은 샘플을 거치하는 기판이 챔버 윗면에 설치되어야 하므로 작업 능률이 떨어지고 양산 수량을 증가하기에 구조적인 한계가 있었으며, 증착층의 품질이 양호하지 못한 단점이 있었다.     However, the conventional deposition method for the anti-fingerprint (AF) deposition used a resistive heating or electron gun method, because the substrate is placed on the upper surface of the chamber to reduce the work efficiency and increase the production volume There was a structural limitation, and the quality of the deposited layer had a disadvantage.

따라서 본발명은 상기와 같은 문제점을 해결하고자 안출된 것으로서, 스퍼터링 방식과 저항가열방식을 함께 사용하여 지문방지층을 형성함으로써 챔버 내에 한 번에 제품을 많이 비치할 수 있고, 작업속도가 빠르고 경제적이며, 증착층의 품질이 양호한 지문방지층 형성방법을 제공하고자 하는 것이다.Therefore, the present invention has been made to solve the above problems, by using a sputtering method and a resistance heating method together to form a fingerprint layer to have a large number of products in the chamber at a time, work speed is fast and economical, It is an object of the present invention to provide a method for forming an anti-fingerprint layer having good quality of the deposited layer.

지문방지층 증착방법에 있어서, 챔버(10) 내에서 Si타겟을 스퍼터링하여 O₂ gas와 반응시켜 SiO₂ 막을 증착하는 반응성 스퍼터링 (Reactive Sputtering) 방식, 또는 직접 SiO₂ 타겟을 스퍼터링하여 소재에 SiO₂ 박막층을 증착하는 SiO₂ 박막층 스퍼터링 증착단계와; 상기 SiO₂ 박막층 위에 텅스텐 보트(Tungsten Boat)를 이용한 저항가열 (thermal evaporation) 방식으로 지문방지 (AF;Anti-Finger) 물질을 증발시켜 지문방지박막층을 증착하는 소수성 (Hydrophobic) 박막층 저항가열 증착단계;를 포함하는 것을 특징으로 한다.In the anti-fingerprint layer deposition method, a reactive sputtering method in which a Si target is sputtered in the chamber 10 and reacted with O 2 gas to deposit a SiO 2 film, or a SiO 2 thin film layer deposited on a material by sputtering a SiO 2 target directly. A thin film layer sputter deposition step; Hydrophobic (Hydrophobic) thin film resistive heating deposition step of depositing an anti-fingerprint thin film layer by evaporating an anti-finger (AF) material by a thermal evaporation method using a tungsten boat (Tungsten Boat) on the SiO₂ thin film layer; It is characterized by including.

본 발명은 스퍼터링 방식과 저항가열방식을 함께 사용하여 유리 또는 필름에 지문방지층을 형성함으로써 챔버 내에 한 번에 제품을 많이 비치할 수 있고, 작업속도가 빠르고 경제적이며, 증착층의 품질이 양호하다는 현저한 효과가 있다.According to the present invention, a sputtering method and a resistive heating method are used together to form an anti-fingerprint layer on glass or film, so that a large number of products can be provided in the chamber at once, and the work speed is fast and economical, and the quality of the deposition layer is remarkable. It works.

도 1은 본발명의 Sputter module, Linear ion source 및 Thermal evaporation source가 설치된 진공증착장치 내부개략도
도 2는 본발명의 Sputte rmodule, Linear ion source 및 Thermal evaporation source가 설치된 진공증착장치 절개개략도
도 3은 본발명의 Sputter module, Linear ion source 및 Thermal evaporation source가 설치된 진공증착장치 분해개략도
도 4는 본발명의 Sputter module, Linear ion source 및 Thermal evaporation source가 설치된 진공증착장치 평면개략도
도 5는 도 4의 부분확대도
도 6은 본발명의 텅스텐 보우트(Tungsten boat) 설치 방법에 대한 도면
도 7은 본발명의 써멀 소스(Thermal Source) 개략도
도 8은 본발명의 써멀 소스(Thermal Source) 조립도
1 is a schematic diagram of a vacuum deposition apparatus installed with a sputter module, a linear ion source and a thermal evaporation source of the present invention.
Figure 2 is a schematic diagram of a vacuum deposition apparatus installed Sputte rmodule, linear ion source and Thermal evaporation source of the present invention
3 is an exploded schematic view of a vacuum deposition apparatus installed with a sputter module, a linear ion source and a thermal evaporation source of the present invention.
Figure 4 is a schematic plan view of a vacuum deposition apparatus installed with a sputter module, a linear ion source and a thermal evaporation source of the present invention
5 is an enlarged partial view of FIG. 4.
6 is a view of a tungsten boat installation method of the present invention
7 is a schematic diagram of a thermal source of the present invention.
Figure 8 is a thermal source (Thermal Source) assembly of the present invention

본 발명은 지문방지층 증착방법에 관한 것으로, 지문방지층 증착방법에 있어서, 챔버(10) 내에서 Si타겟 또는 SiO₂타겟을 스퍼터링방법에 의하여 피증착물 소재 표면에 SiO₂ 박막층을 증착하는 SiO₂ 박막층 스퍼터링 증착단계와; 상기 SiO₂ 박막층 위에 저항가열식 증발원(thermal evaporation source)을 사용하여 지문방비 소수성 (Hydrophobic)(60) 물질을 증발시켜 지문방지박막층을 증착하는 내지문용 소수성 (Hydrophobic) 박막층 저항가열 증착단계;를 포함하는 것을 특징으로 한다.The present invention relates to a method for depositing an anti-fingerprint layer, in the method for depositing an anti-fingerprint layer, an SiO ₂ thin film layer sputtering deposition step of depositing a SiO ₂ thin film layer on a surface of a material to be deposited by sputtering a Si target or a SiO ₂ target in a chamber 10; ; A hydrophobic (Hydrophobic) thin film resistive heating deposition step of depositing an anti-fingerprint thin film layer by evaporating a fingerprint-protective hydrophobic (60) material using a resistive heating evaporation source on the SiO 2 thin film layer; It features.

또한, 상기 SiO₂ 박막층 스퍼터링 증착단계는 스퍼터링 전단계로서, 선형 이온 소스(Linear ion source)(50)를 사용하여 아르곤 이온으로 소재 표면을 에칭하는 단계;를 더 포함하는 것을 특징으로 한다.
In addition, the SiO 2 thin film layer sputtering deposition step is a step prior to the sputtering, using a linear ion source (Linear ion source) 50, the step of etching the material surface with argon ions; characterized in that it further comprises a.

본 발명을 첨부도면에 의해 상세히 설명하면 다음과 같다. 도 1은 본발명의 Sputter module, Linear ion source 및 Thermal evaporation source가 설치된 진공증착장치 내부개략도, 도 2는 본 발명의 Sputter module, Linear ion source 및 Thermal evaporation source가 설치된 진공증착장치 절개개략도, 도 3은 본 발명의 Sputter module, Linear ion source 및 Thermal evaporation source가 설치된 진공증착장치 분해개략도, 도 4는 본 발명의 Sputter moduls, Linear ion source 및 Thermal evaporation source가 설치된 진공증착장치 평면개략도, 도 5는 도 4의 부분확대도, 도 6은 본 발명의 텅스텐 보우트(Tungsten boat) 설치 방법에 대한 도면, 도 7은 본 발명의 저항가열식 증발원(Thermal evaporation source) 개략도, 도 8은 본 발명의 저항가열식 증발원(Thermal evaporation source) 조립도이다.
The present invention will be described in detail with reference to the accompanying drawings. 1 is a schematic diagram of a vacuum deposition apparatus installed with a sputter module, a linear ion source and a thermal evaporation source of the present invention, Figure 2 is a schematic diagram of a vacuum deposition apparatus installed with a sputter module, a linear ion source and a thermal evaporation source of the present invention, Figure 3 Is an exploded schematic view of a vacuum deposition apparatus installed with a sputter module, a linear ion source and a thermal evaporation source of the present invention, FIG. 4 is a schematic plan view of a vacuum deposition apparatus installed with a sputter moduls, a linear ion source and a thermal evaporation source of the present invention, and FIG. Figure 4 is a partially enlarged view, Figure 6 is a view of the tungsten boat (Tungsten boat) installation method of the present invention, Figure 7 is a schematic diagram of the resistance evaporation source (Thermal evaporation source) of the present invention, Figure 8 is a resistive heating evaporation source of the present invention ( Thermal evaporation source.

본 장치는 기존의 sputter 증착 방식에 chamber 중앙에 AF 증착을 위한 저항가열식 증발원(thermal evaporation source)을 장착함으로써 SiO₂와 AF 증착을 효율적으로 구현 할 수 있다. This device can efficiently implement SiO₂ and AF deposition by installing a resistive heating evaporation source for AF deposition in the center of the existing sputter deposition method.

Linear ion source는 chamber 벽면에 설치하여 Ar을 이용한 sample의 전처리 (pre - treatment) 공정과 etching 공정을 수행한다.     The linear ion source is installed on the chamber wall to perform pre-treatment and etching of the sample using Ar.

그리고 본 발명에서 사용되는 스퍼터링 방법은 관용의 스퍼터링(sputtering) 기술을 말하는 것으로, 구체적으로 설명하면 스퍼터링(sputtering)이란 plasma 상태에서 형성된 Ar 양이온(positive ion)이 sputter module에 장착된 cathode에 인가된 전기장에 의해 cathode 위에 놓여있는 target 쪽으로 가속되어 target과 충돌함으로써 target을 구성하고 있는 원자가 튀어나오는 현상이다.     The sputtering method used in the present invention refers to a conventional sputtering technique. Specifically, sputtering is a technique in which a positive ion formed in a plasma state is applied to an electric field applied to a cathode mounted on a sputter module The target is accelerated to the target located on the cathode and collides with the target, so that the atoms constituting the target protrude.

이 스퍼터링은 가열과정이 없기 때문에 텅스텐과 같은 고용점 금속이라도 증착이 가능하다. 일반적인 진공증착에서는 금속을 고온으로 가열하여 증발시키기 때문에 합금인 경우 그 성분 금속 각각의 증기압이 서로 달라 문제가 생긴다. 그러나 스퍼터링은 금속뿐만 아니라 석영 등 무기물이라도 박막을 용이하게 만들 수 있다.     This sputtering can be deposited even with a solid-state metal such as tungsten because there is no heating process. In general vacuum deposition, since the metal is heated to a high temperature and evaporated, the vapor pressure of each of the constituent metals differs in the case of an alloy, thereby causing a problem. However, sputtering can easily make a thin film even if it is an inorganic substance such as quartz as well as a metal.

스퍼터링 장치는 간단한 2극 전극으로 구성되어 있으며 아르곤(Ar) 가스를 흘리면서 글로우(glow) 방전을 시킨다. 증착하고자하는 물질을 원형 또는 직사각형의 타겟(target)으로 만들어 여기에 음의 고전압을 인가하면 Ar+ ion의 충돌에 의해 튀어나온 타겟 원자가 마주 보고 있는 기판에 쌓여 박막이 형성된다.      The sputtering system consists of a simple bipolar electrode, which discharges argon (Ar) gas while glowing. When the material to be deposited is made into a circular or rectangular target and a negative high voltage is applied thereto, a thin film is formed by stacking target atoms protruding by the collision of Ar + ions on the facing substrate.

스퍼터링은 진공증착과 비교하면 날아가는 타깃 원자의 속도가 100배 정도 빠르기 때문에 박막과 기판의 부착강도가 크다. 2극 스퍼터링 이외에 기판과 타깃 사이에서 음극과 양극으로 플라즈마를 발생시키는 4극 스퍼터링 방식, 그리고 고주파를 이용하는 RF 방식, 최근에는 전기장 이외에 자기장을 이용한 마그네트론 스퍼터링 방식 등이 있다.     Sputtering has a high adhesion strength between the thin film and the substrate because the speed of the flying target atoms is about 100 times faster than that of vacuum deposition. In addition to bipolar sputtering, a quadrupole sputtering method in which a plasma is generated between a substrate and a target as a cathode and an anode, an RF method using a high frequency, and a magnetron sputtering method using a magnetic field in addition to an electric field.

그리고 상기 스퍼터링방식과 저항가열방식에 대한 기본원리는 본출원인인 기 출원하여 등록받은 등록번호 20-0185068에는 스퍼터링방식과 저항가열방식의 기본 원리에 대하여 기재되어 있다. 그 구성을 인용하면, 스퍼터링되는 타겟은 sputter module의 cathode에 clamp로 장착되어 있다.     The basic principle of the sputtering method and the resistance heating method is disclosed in the registration number 20-0185068 filed by the applicant of the present application and describes the basic principle of the sputtering method and the resistance heating method. In reference to its configuration, the target to be sputtered is clamped to the cathode of the sputter module.

여기서 상기 이베퍼레이터는 저항가열식 또는 전자빔 방식으로 코팅물질을 용융증발시켜 코팅하고, 상기 스퍼터링 타겟은 코팅물질을 스퍼터하여 비산시켜 피증착물를 증착하게 된다.     Here, the evaporator is coated by melting and evaporating the coating material by resistance heating or electron beam method, and the sputtering target sputters and scatters the coating material to deposit the deposit.

상기 저항 가열방식은 저항체에 전류를 흘려 주울열을 발생하는것을 이용한 가열방식을 사용한다. 여기서는 물체에 직접 전류를 흘려서 가열하는 직접식과 발열체의 열을 복사 대류 전도 등으로 피가열물에 전달하는 간접식의 양자 방식을 모두 채택할 수 있다.     In the resistance heating method, a heating method using a current which flows in a resistor to generate heat is used. In this case, both a direct method of heating a current directly through an object and an indirect method of transferring heat from a heating element to a heated object by radiative convection conduction can be adopted.

플라즈마 또는 글로우 방전은 상기한 방전 수단 사이에서 상기한 불활성 주입가스와 전원 공급장치으로부터 공급된 고압 전압의 스파크에 의해서 플라즈마 또는 글로우 방전대가 형성된다. 이러한 상태에서 상기 내통이 회전하면서 치구에 안착되어 있는 피코팅체의 코팅부위에 상기한 방전대를 거치면서 에칭이 이루어지고, 이와 동시에 스퍼터링 타겟 및 이베퍼레이터에 의해서 용융된 코팅물질이 비산 또는 스퍼터되어 상기한 피증착물에 다층의 박막이 형성되게 된다.     A plasma or glow discharge is formed between the above-mentioned discharge means by the spark of the above-mentioned inert injection gas and the high voltage voltage supplied from the power supply device. In this state, the coating is applied to the coating portion of the coating body, which is seated on the jig while rotating the inner cylinder, while passing through the discharge bar. Simultaneously, the coating material melted by the sputtering target and the evaporator is scattered or sputtered. So that a multilayer thin film is formed on the above-mentioned deposited material.

피증착물의 증착 공정을 요약하면, 증착하고자 하는 기판(피증착물)을 내통의 치구에 장착한 후, 진공배기 장치를 통하여 진공증착 챔버를 진공배기하고, 챔버 내부가 일정한 진공상태에 도달하면 치구가 장착된 내통을 회전시켜 피증착물의 증착할 부분이 상기 스퍼터링 타겟 또는 이베퍼레이터로부터 용융 비산 또는 스퍼터되는 증착물질이 피증착물 표면에 균일하게 증착이 이루어지는 것이 일반적인 방법이다.
Summarizing the deposition process of the deposit, after mounting the substrate (deposit) to be deposited on the jig of the inner cylinder, the vacuum deposition chamber is evacuated through the vacuum exhaust device, and when the inside of the chamber reaches a constant vacuum state, the jig is It is a common method that the deposition material in which the portion to be deposited to be deposited is melted or sputtered from the sputtering target or evaporator is uniformly deposited on the surface of the deposit.

한편, 본 발명의 증착 공정은 여러 가지 조합이 가능하여 각 공정의 역할은 다음과 같다.
On the other hand, the deposition process of the present invention can be various combinations, the role of each process is as follows.

1. 에칭(Etching)은 선형 이온 소스(Linear ion source)를 사용하여 아르곤 양이온(Ar positive ion)으로 피증착물의 표면을 에칭한다.  1. Etching uses a linear ion source to etch the surface of the deposit with ar positive ions.

2. Si 스퍼터링(Sputtering) 공정은 아르곤 가스(Ar gas)와 O₂ gas를 적절한 비율로 동시에 주입하고 Si target을 스퍼터링함으로서 Si와 O₂가 반응하여 SiO₂ 박막을 증착한다. 2. Si sputtering process injects argon gas and O₂ gas at the proper ratio simultaneously and sputters Si target to react with Si and O₂ to deposit SiO₂ thin film.

3. Evaporating Hydrophobic 공정은 Si와 O₂의 반응성 스퍼터링에 의해 증착된 SiO₂ 박막 위에 thermal source를 사용하여 AF를 증착한다.3. Evaporating Hydrophobic process deposits AF using a thermal source on a SiO₂ thin film deposited by reactive sputtering of Si and O₂.

4. 반전(Reversing substrate)공정은 피증착물이 거치된 기판을 수직축을 기준으로 180°회전하는 것이다. 4. Reversing substrate process is to rotate the substrate on which the deposit is placed 180 ° about the vertical axis.

조합 1은 에칭→반전→에칭→SiO₂ 스퍼터링→반전→SiO₂ 스퍼터링→Hydrophobic저항가열증발증착→반전→Hydrophobic 저항가열증발증착의 과정을 거친다.
Combination 1 undergoes etching → inversion → etching → SiO2 sputtering → inversion → SiO2 sputtering → Hydrophobic resistive heating evaporation → inversion → Hydrophobic resistive heating evaporation.

조합 2는 에칭→SiO₂ 스퍼터링→Hydrophobic저항가열증발증착→반전 →에칭→SiO₂ 스퍼터링→Hydrophobic 저항가열증발증착의 과정을 거친다.
Combination 2 is etched → SiO₂ sputtering → Hydrophobic resistance heating evaporation → inversion → etching → SiO₂ sputtering → Hydrophobic resistance heating evaporation.

조합 3은 에칭→SiO₂ 스퍼터링→반전→에칭→SiO₂ 스퍼터링→Hydrophobic 저항가열증발증착→반전→Hydrophobic 저항가열증발증착의 과정을 거친다.
Combination 3 is etched → SiO₂ sputtering → inversion → etching → SiO₂ sputtering → Hydrophobic resistance heating evaporation → inversion → Hydrophobic resistance heating evaporation.

본 발명의 기본 공정에 대해 기술하면, 우선 챔버 측면에 수직 방향으로 설치된 스퍼터를 사용하여 SiO₂를 증착한다. 증착이 완료되면 AF 증착을 위하여 기판을 180°반전한 다음 챔버 중앙에 설치된 저항 가열식 증발원을 사용하여 AF 물질을 증착한다.     Referring to the basic process of the present invention, SiO 2 is first deposited using a sputter placed perpendicular to the chamber side. When the deposition is completed, the substrate is inverted by 180 ° for AF deposition, and then the AF material is deposited using a resistive heating evaporation source installed in the center of the chamber.

경우에 따라서는 위의 공정을 기본으로 하여 SiO₂ 증착 전에 선형 이온 소스(linear ion source)를 사용한 전처리 공정을 추가 할 수 있다. 이 공정은 선형 이온 소스(linear ion source)에서 방출된 Ar+ ion을 소재 표면에 조사시켜 그 영향으로 표면의 전자배치 등의 성질을 변화시킴으로써 이후 증착되는 SiO₂ 등의 물질을 기존 방법인 저항가열 방식 또는 전자총 방식에 비하여 견고하고 원활하게 증착 할 수 있도록 하여준다.
In some cases, based on the above process, a pretreatment process using a linear ion source can be added prior to SiO2 deposition. This process irradiates Ar + ion emitted from the linear ion source to the surface of the material and changes the properties of the electron arrangement on the surface under the influence of the material. Compared to the electron gun method, it enables to deposit more robustly and smoothly.

피증착물이 거치되는 기판(substrate) 구조는 크게 2 가지로 구분된다. 우선 모든 소재가 챔버 벽면을 향하는 설치 방식인 공전(revolution) 방식이 있다.     Substrate structure on which the deposit is placed is largely classified into two types. First of all, there is a revolution method in which all materials face the chamber wall.

이 방식은 먼저 SiO₂를 증착한 후 기판을 180°반전시켜 AF 를 증착하는 방식이다. 경우에 따라서 SiO₂ 증착 이전에 선형 이온 소스(linear ion source)를 사용하여 에칭공정을 추가 할 수 있다.     This method first deposits SiO2 and then inverts the substrate by 180 ° to deposit AF. In some cases, an etching process may be added using a linear ion source prior to SiO 2 deposition.

나머지 방식은 공, 자전(revolution - rotation) 방식이다.     The rest is ball, revolution (rotation).

이 방식은 자전하는 소형의 기판 회전 장치를 공전하는 장치에 설치하여 소재가 자전과 공전을 동시에 할 수 있는 방식이다. 이 방식의 장점은 일반적인 공전 방식에 비하여 장입가능한 수량이 증가함으로서 대량 양산에 적합한 방식이다.     This method is a method in which the material rotates and rotates at the same time by installing a small rotating substrate rotating device in the rotating device. The advantage of this method is that it is suitable for mass production by increasing the quantity that can be charged compared to the general idle method.

이 경우에는 반전을 할 필요가 없으므로 SiO₂ 증착 후 AF 물질을 증착한다. 이 경우에도 SiO₂ 증착 전 선형 이온 소스(linear ion source)를 사용한 에칭 공정을 추가 할 수 있다.      In this case, since there is no need for reversal, AF material is deposited after SiO₂ deposition. In this case, an etching process using a linear ion source prior to SiO 2 deposition may be added.

AF 물질을 증착하기 위하여 기존의 저항 가열식 방법 또는 전자총 방법을 사용할 경우 증발된 물질이 챔버의 상부로 향하게 된다. 따라서 본 발명에서는 AF 물질이 챔버 중앙에서 벽면으로 향하도록 기존의 보트(boat) 2개를 아래 위로 포개어 설치한다.      When conventional resistive heating or electron gun methods are used to deposit the AF material, the evaporated material is directed to the top of the chamber. Therefore, in the present invention, two existing boats are piled up and down so that the AF material is directed from the center of the chamber to the wall.

즉, 도 7, 8에서 알 수 있는 바와 같이 두 개의 구리 재질의 서포트 사이에서 구리 재질의 클램프에 의해 결합되는 기존 텅스턴 재질의 보트(boat)를 아래 위로 포개어 설치하면 그 내부에서 증발된 AF 물질이 위로 가지 못하고 양 측면으로 분출된다. 따라서 증발된 물질들이 챔버의 수직방향으로 장착된 기판의 소재 표면에 증착된다.      That is, as can be seen in Figures 7 and 8, when the existing tungsten boat, which is joined by a copper clamp between two copper supports, is installed on the bottom, the AF material evaporated therein. It does not go above this, but it erupts on both sides. Thus evaporated materials are deposited on the material surface of the substrate mounted vertically in the chamber.

따라서 본 발명은 스퍼터링 방식과 저항가열방식을 함께 사용하여 유리 또는 필름에 지문방지층을 형성함으로써 챔버 내에 한 번에 제품을 많이 비치할 수 있고, 작업속도가 빠르고 경제적이며, 증착층의 품질이 양호하게 된다.     Therefore, in the present invention, by using a sputtering method and a resistance heating method together to form an anti-fingerprint layer on glass or film, a large number of products can be provided in the chamber at once, the speed of work is fast and economical, and the quality of the deposition layer is good. do.

10 : 챔버
50 : 선형 이온 소스(Linear ion source)
60 : 지문방지 소수성(Anti-Finger Hydrophobic) 물질
70 : 보트 80 : 클램프
90 : 지지대 100 : 스퍼트
110 : 저항가열식 증발원
10: chamber
50: Linear ion source
60: anti-finger hydrophobic material
70: boat 80: clamp
90: support 100: spurt
110: resistance heating evaporation source

Claims (3)

삭제delete 삭제delete 챔버(10) 내에서 Si타겟 또는 SiO2타겟을 스퍼터링방법에 의하여 피증착물 소재 표면에 SiO2 박막층을 증착하는 SiO2 박막층 스퍼터링 증착단계와; 상기 SiO2 박막층 위에 저항가열식 증발원(thermal evaporation source)을 사용하여 지문방비 소수성 (Hydrophobic)(60) 물질을 증발시켜 지문방지박막층을 증착하는 내지문용 소수성 (Hydrophobic) 박막층 저항가열 증착단계;를 포함하는 지문방지층 증착방법에 있어서,
상기 SiO2 박막층 스퍼터링 증착단계는 스퍼터링 전단계로서, 선형 이온 소스(Linear ion source)(50)를 사용하여 증착 전 아르곤양이온으로 피증착물 표면을 에칭하여 AF 증착을 원활하게 하는 전처리 (Pretreatment) 단계;를 더 포함하며,
또한, 상기 소재가 설치된 기판을 수직축을 기준으로 180°회전하여 반전하여 증착하는 것을 특징으로 하는 지문방지층 증착방법
Chamber (10) SiO 2 thin-film layer sputter deposition step of depositing a SiO 2 thin film deposition on the skin material surface by a Si target or the SiO 2 target and a sputtering method within; A hydrophobic (Hydrophobic) thin film resistive heating deposition step of depositing an anti-fingerprint thin film layer by evaporating a fingerprint anti-hydrophobic (60) material using a resistive heating evaporation source on the SiO 2 thin film layer; In the fingerprint layer deposition method,
The SiO 2 thin film layer sputtering deposition step is a pretreatment step of sputtering, pretreatment step of smoothing AF deposition by etching the surface of the deposit with argon cation before deposition using a linear ion source (50); More,
In addition, the anti-fingerprint layer deposition method, characterized in that for depositing the substrate is installed by rotating the substrate 180 ° inverted relative to the vertical axis
KR1020110048414A 2011-05-23 2011-05-23 Deposition method of anti-finger layer KR101242591B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110048414A KR101242591B1 (en) 2011-05-23 2011-05-23 Deposition method of anti-finger layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110048414A KR101242591B1 (en) 2011-05-23 2011-05-23 Deposition method of anti-finger layer

Publications (2)

Publication Number Publication Date
KR20120130468A KR20120130468A (en) 2012-12-03
KR101242591B1 true KR101242591B1 (en) 2013-03-19

Family

ID=47514530

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110048414A KR101242591B1 (en) 2011-05-23 2011-05-23 Deposition method of anti-finger layer

Country Status (1)

Country Link
KR (1) KR101242591B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150100252A (en) 2014-02-25 2015-09-02 동우 화인켐 주식회사 Preparing method for anti-finger layer
KR20180089172A (en) 2017-01-31 2018-08-08 동우 화인켐 주식회사 Anti-Fingerprint Coating Composition and Image Display Device Using the Same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076673A1 (en) * 2014-11-14 2016-05-19 유흥상 Coating method for forming hmdso layer and af layer together on aluminum metal layer and forming hmdso layer and af layer together on aluminum metal layer using ion source
CN111364014A (en) * 2020-04-26 2020-07-03 蓝思科技(长沙)有限公司 Processing technology of invisible fingerprint film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932694B1 (en) 2009-03-24 2009-12-21 한국진공주식회사 Device and method for coating multi-layer thin film
KR20120019794A (en) * 2010-08-27 2012-03-07 삼성코닝정밀소재 주식회사 Anti-pollution coating layer and method for manufacturing the same
KR20120079716A (en) * 2011-01-05 2012-07-13 바코스 주식회사 Anti-fingerprint coating method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932694B1 (en) 2009-03-24 2009-12-21 한국진공주식회사 Device and method for coating multi-layer thin film
KR20120019794A (en) * 2010-08-27 2012-03-07 삼성코닝정밀소재 주식회사 Anti-pollution coating layer and method for manufacturing the same
KR20120079716A (en) * 2011-01-05 2012-07-13 바코스 주식회사 Anti-fingerprint coating method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150100252A (en) 2014-02-25 2015-09-02 동우 화인켐 주식회사 Preparing method for anti-finger layer
KR20180089172A (en) 2017-01-31 2018-08-08 동우 화인켐 주식회사 Anti-Fingerprint Coating Composition and Image Display Device Using the Same

Also Published As

Publication number Publication date
KR20120130468A (en) 2012-12-03

Similar Documents

Publication Publication Date Title
JP5116812B2 (en) Film-forming method and oil-repellent substrate
KR101242591B1 (en) Deposition method of anti-finger layer
KR20120079716A (en) Anti-fingerprint coating method and device
US20130157044A1 (en) Coated article and method for making same
KR100336621B1 (en) Method of depositing an io or ito thin film on polymer substrate
KR101252568B1 (en) Black color coating method for cellular phone case
TWI824379B (en) PECVD coating system and coating method
JP3128554B2 (en) Method for forming oxide optical thin film and apparatus for forming oxide optical thin film
JP2004349064A (en) Organic el element and its manufacturing method
JP2012512327A (en) Method for forming an insulating layer with particles having low energy
KR101662627B1 (en) Thin film type transparent glass having high hardness, method for manufacturing the same, thin film type transparent glass having high hardness and conductivity, and touch panel including the same
JP2009179866A (en) Method for producing reflection preventing film for ultraviolet wavelength region
Junghähnel et al. Thin‐Film Deposition on Flexible Glass by Plasma Processes
KR101541256B1 (en) HMDSO layer and AF layer coating method on aluminum metal layer with ion source
KR101541255B1 (en) HMDSO layer and AF layer coating method on aluminum metal layer
KR101763176B1 (en) Apparatus for producing gas barrier film by vacuum deposition
JP2006348376A (en) Vacuum deposition method, and vacuum deposition system
CN114086143A (en) Substrate coating process
JP2008062561A (en) Method of manufacturing article equipped with hydrophilic laminated film, and article equipped with hydrophilic laminated film
JPH06306591A (en) Production of water-repellent hard-coated coating film
CN104508365A (en) Method for preparing reflector
JP4520107B2 (en) Translucent thin film and method for producing the same
JP2014174459A (en) Reflector and manufacturing method thereof
JP4772680B2 (en) Method for depositing an amorphous layer exclusively containing fluorine and carbon and apparatus for carrying it out
JPH03153859A (en) Surface-modified plastic

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160303

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180220

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190218

Year of fee payment: 7