KR101241714B1 - Solar cell and method for repairing the same - Google Patents

Solar cell and method for repairing the same Download PDF

Info

Publication number
KR101241714B1
KR101241714B1 KR1020110057130A KR20110057130A KR101241714B1 KR 101241714 B1 KR101241714 B1 KR 101241714B1 KR 1020110057130 A KR1020110057130 A KR 1020110057130A KR 20110057130 A KR20110057130 A KR 20110057130A KR 101241714 B1 KR101241714 B1 KR 101241714B1
Authority
KR
South Korea
Prior art keywords
solar cell
defect
electrode layer
layer
insulating layer
Prior art date
Application number
KR1020110057130A
Other languages
Korean (ko)
Other versions
KR20120137949A (en
Inventor
성명석
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020110057130A priority Critical patent/KR101241714B1/en
Publication of KR20120137949A publication Critical patent/KR20120137949A/en
Application granted granted Critical
Publication of KR101241714B1 publication Critical patent/KR101241714B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명의 태양전지 수리방법은 태양전지 박막 상에 결함부를 측정하는 단계와, 상기 결함부를 제거하는 단계와, 상기 결함부가 제거된 영역에 절연층을 형성하는 단계를 포함한다.
상기와 같은 발명은 태양전지 박막 상에 형성된 결함부를 제거하고 절연층을 형성함으로써, 결함부로부터 발생될 수 있는 누설 경로를 방지하여 전력 손실을 줄일 수 있는 효과가 있다.
The solar cell repairing method of the present invention includes measuring a defect on the solar cell thin film, removing the defect, and forming an insulating layer in the region where the defect is removed.
The invention as described above has the effect of reducing the power loss by removing the defect formed on the thin film of the solar cell and forming an insulating layer to prevent the leakage path that can be generated from the defect.

Description

태양전지 및 그의 수리방법{SOLAR CELL AND METHOD FOR REPAIRING THE SAME}SOLAR CELL AND METHOD FOR REPAIRING THE SAME

본 발명은 태양전지에 관한 것으로, 보다 상세하게는 태양전지의 불량을 방지하기 위한 태양전지 및 그의 수리방법에 관한 것이다.The present invention relates to a solar cell, and more particularly, to a solar cell and a repair method thereof for preventing a defect of the solar cell.

일반적으로, 태양전지는 태양광 에너지를 전기에너지로 변환시키는 역할을 하며, 이러한 태양전지는 최근 에너지의 수요가 증가함에 따라 상업적으로 널리 이용되고 있다.In general, solar cells serve to convert solar energy into electrical energy, and these solar cells are widely used commercially as the demand for energy increases.

이러한 태양전지는 기판 상에 다수의 태양전지 셀이 형성되고, 다수의 태양전지 셀을 전기적으로 연결함으로써 태양전지가 완성된다.In such a solar cell, a plurality of solar cells are formed on a substrate, and the solar cells are completed by electrically connecting the plurality of solar cells.

하지만, 종래 태양전지는 제조 공정 중 결함(Defect)가 발생될 수 있으며, 이로 인해 태양전지의 출력 저하 또는 불량을 야기시킨다.However, in the conventional solar cell, defects may occur during the manufacturing process, which causes a decrease or a poor output of the solar cell.

상기와 같은 문제점을 해결하기 위해, 본 발명은 태양전지 박막 상에 형성된 결함부로부터 태양전지의 전력 손실을 방지할 수 있는 태양전지 및 태양전지 수리 방법을 제공하는 것을 그 목적으로 한다.In order to solve the above problems, an object of the present invention is to provide a solar cell and a solar cell repair method that can prevent the power loss of the solar cell from a defect formed on the solar cell thin film.

상술한 목적을 달성하기 위하여, 본 발명의 태양전지는 기판과, 상기 기판 상에 형성된 이면 전극층과, 상기 이면 전극층 상에 형성된 광 흡수층과, 상기 광 흡수층 상에 형성된 투명 전극층과, 상기 투명 전극층 상의 일정 영역에 형성된 절연층을 포함한다.In order to achieve the above object, the solar cell of the present invention is a substrate, a back electrode layer formed on the substrate, a light absorbing layer formed on the back electrode layer, a transparent electrode layer formed on the light absorbing layer, and on the transparent electrode layer It includes an insulating layer formed in a predetermined region.

또한, 상술한 목적을 달성하기 위하여, 본 발명의 태양전지 수리방법은 태양전지 박막 상에 결함부를 측정하는 단계와, 상기 결함부를 제거하는 단계와, 상기 결함부가 제거된 영역에 절연층을 형성하는 단계를 포함한다.In addition, in order to achieve the above object, the solar cell repair method of the present invention is to measure the defect portion on the solar cell thin film, removing the defect portion, and forming an insulating layer in the region where the defect portion is removed Steps.

본 발명은 태양전지 박막 상에 형성된 결함부를 제거하고 절연층을 형성함으로써, 결함부로부터 발생될 수 있는 누설 경로를 방지하여 전력 손실을 줄일 수 있는 효과가 있다.The present invention has the effect of reducing the power loss by removing the defect formed on the thin film of the solar cell and forming an insulating layer to prevent the leakage path that can be generated from the defect.

또한, 본 발명은 절연층으로서 산화물, 질화물을 사용함으로써, 라미네이션 공정 시 기공 발생을 줄일 수 있는 효과가 있다.In addition, the present invention has the effect of reducing the generation of pores in the lamination process by using an oxide, nitride as the insulating layer.

도 1은 본 발명에 따른 태양전지 수리방법을 나타낸 블럭도.
도 2 내지 도 6은 본 발명에 따른 태양전지의 제조 과정을 나타낸 단면도.
도 7 내지 도 11은 본 발명에 따른 태양전지의 수리 과정을 나타낸 단면도 및 평면도.
1 is a block diagram showing a solar cell repair method according to the present invention.
2 to 6 are cross-sectional views showing a manufacturing process of a solar cell according to the present invention.
7 to 11 are cross-sectional views and plan views showing a repair process of the solar cell according to the present invention.

이하, 도면을 참조하여 본 발명의 실시예를 상세히 설명하기로 한다.
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 태양전지 수리방법을 나타낸 블럭도이고, 도 2 내지 도 6은 본 발명에 따른 태양전지의 제조 과정을 나타낸 단면도이고, 도 7 내지 도 11은 본 발명에 따른 태양전지의 수리 과정을 나타낸 단면도 및 평면도이다.1 is a block diagram showing a solar cell repair method according to the invention, Figures 2 to 6 is a cross-sectional view showing the manufacturing process of the solar cell according to the invention, Figures 7 to 11 of the solar cell according to the present invention A cross-sectional view and a plan view showing the repair process.

도 1을 참조하면, 본 발명에 따른 태양전지 수리방법은 태양전지 박막 상에 결함부를 측정하는 단계(S100)와, 상기 결함부를 제거하는 단계(S200)와, 상기 결함부가 제거된 영역에 절연층을 형성하는 단계(S300)를 포함한다.Referring to FIG. 1, the repairing method of a solar cell according to the present invention includes measuring a defect on a thin film of a solar cell (S100), removing the defect (S200), and an insulating layer in a region where the defect is removed. Forming step (S300).

본 실시예에서 사용되는 태양전지로는 CIGS(Cu(In,Ga)Se2)계 태양전지가 사용될 수 있으며, CIGS계 태양전지는 도 2 내지 도 6과 같이 제조될 수 있다.CIGS (Cu (In, Ga) Se 2 ) based solar cell may be used as the solar cell used in the present embodiment, and the CIGS based solar cell may be manufactured as shown in FIGS. 2 to 6.

도 2에 도시된 바와 같이, 투명한 기판(100)이 마련되면, 상기 기판(100)에 이면 전극층(200)을 형성할 수 있다. 이면 전극층(200)으로는 몰리브덴(Mo)이 사용될 수 있으며, 스퍼터링에 의해 기판(100) 상에 일정 두께를 가지도록 형성될 수 있다.As illustrated in FIG. 2, when the transparent substrate 100 is provided, the back electrode layer 200 may be formed on the substrate 100. Molybdenum (Mo) may be used as the back electrode layer 200, and may be formed to have a predetermined thickness on the substrate 100 by sputtering.

기판(100) 상에 이면 전극층(200)이 형성되면, 이면 전극층(200)을 스트립 형태로 분할하도록 제1 패턴라인(P1)을 형성할 수 있다. 제1 패턴라인(P1)은 레이저(Laser)에 의해 형성될 수 있다.When the back electrode layer 200 is formed on the substrate 100, the first pattern line P1 may be formed to divide the back electrode layer 200 into strips. The first pattern line P1 may be formed by a laser.

이어서, 도 3에 도시된 바와 같이, 이면 전극층(200) 상에 광 흡수층(300), 제1 버퍼층(400) 및 제2 버퍼층(500)을 순차적으로 형성한다.Subsequently, as illustrated in FIG. 3, the light absorbing layer 300, the first buffer layer 400, and the second buffer layer 500 are sequentially formed on the back electrode layer 200.

광 흡수층(300)은 이면 전극층(200) 상에 동시 증착법으로 형성할 수 있다. The light absorbing layer 300 may be formed on the back electrode layer 200 by a simultaneous deposition method.

광 흡수층(300)으로는 Ⅰ-Ⅲ-Ⅵ족계 화합물을 포함하며, CIGS, CIS, CGS, CdTe 중 적어도 어느 하나의 물질로 형성될 수 있다. The light absorbing layer 300 includes an I-III-VI group compound and may be formed of at least one of CIGS, CIS, CGS, and CdTe.

예컨대, 광 흡수층(300)은 CdTe, CuInSe2, Cu(In,Ga)Se2, Cu(In,Ga)(Se,S)2, Ag(InGa)Se2, Cu(In,Al)Se2, CuGaSe2로 이루어진 그룹으로부터 선택된 적어도 하나의 물질로 이루어질 수 있다. For example, the light absorbing layer 300 is made of CdTe, CuInSe 2, Cu (In, Ga) Se 2, Cu (In, Ga) (Se, S) 2, Ag (InGa) Se 2, Cu (In, Al) Se 2, CuGaSe 2. It may be made of at least one material selected from the group.

제1 버퍼층(400)은 황하 카드뮴(CdS)를 광 흡수층 상에 화학용액 성장법(Chemical Bath Deposition; CBD)으로 형성할 수 있다. 이러한 제1 버퍼층(400)은 2개 이상의 층으로 형성될 수도 있다.The first buffer layer 400 may form cadmium sulfide (CdS) on a light absorbing layer by a chemical bath deposition (CBD). The first buffer layer 400 may be formed of two or more layers.

제2 버퍼층(500)은 산화 아연(ZnO)을 스퍼터링 법에 의해 형성할 수 있다. 이러한 제2 버퍼층(500)은 고저항성을 가지도록 형성되며, 투명 전극층(600)과의 절연 및 충격 데미지를 방지할 수 있다.The second buffer layer 500 may form zinc oxide (ZnO) by a sputtering method. The second buffer layer 500 is formed to have high resistance, and may prevent insulation and impact damage from the transparent electrode layer 600.

이어서, 도 4에 도시된 바와 같이, 광 흡수층(300), 제1 버퍼층(400) 및 제2 버퍼층(500)에 제1 패턴라인(P1)과 이격되도록 제2 패턴라인(P2)을 형성한다.Next, as shown in FIG. 4, the second pattern line P2 is formed in the light absorbing layer 300, the first buffer layer 400, and the second buffer layer 500 so as to be spaced apart from the first pattern line P1. .

제2 패턴라인(P2)은 스크라이브(Scribe) 법에 의해 광 흡수층(300), 제1 버퍼층(400) 및 제2 버퍼층(500)의 일부가 제거되어 형성될 수 있으며, 이로 인해 이면 전극층(200)의 상부가 노출될 수 있다.The second pattern line P2 may be formed by removing a portion of the light absorbing layer 300, the first buffer layer 400, and the second buffer layer 500 by a scribe method, thereby forming the back electrode layer 200. The top of) may be exposed.

이어서, 도 5에 도시된 바와 같이, 제2 버퍼층(500) 상에 투명 전극층(600)을 형성할 수 있다.Subsequently, as illustrated in FIG. 5, the transparent electrode layer 600 may be formed on the second buffer layer 500.

투명 전극층(600)은 제2 버퍼층(500) 상에 일정 두께를 가지도록 스퍼터링(Sputtering)에 의해 증착시켜 형성할 수 있다. The transparent electrode layer 600 may be formed by being deposited on the second buffer layer 500 by sputtering to have a predetermined thickness.

투명 전극층(600)으로는 투명한 형태의 도전성 재질로 형성되며, 알루미늄이 도핑된 산화 아연인 AZO(ZnO:Al) 재질로 형성될 수 있다. The transparent electrode layer 600 may be formed of a conductive material having a transparent shape, and may be formed of an AZO (ZnO: Al) material, which is zinc oxide doped with aluminum.

투명 전극층(600)으로서 AZO 이외에도 광 투과율과 전기전도성이 높은 물질인 산화아연(ZnO), 산화주석(SnO2), 산화인듐주석(ITO) 중 어느 하나의 물질을 포함하여 형성될 수 있다.In addition to AZO, the transparent electrode layer 600 may include one of zinc oxide (ZnO), tin oxide (SnO 2 ), and indium tin oxide (ITO), which are materials having high light transmittance and high electrical conductivity.

이어서, 도 6에 도시된 바와 같이, 투명 전극층(600), 제2 버퍼층(500), 제1 버퍼층(400) 및 광 흡수층(300)에 제2 패턴라인(P2)과 이격되도록 제3 패턴라인(P3)을 형성할 수 있다.6, the third pattern line is spaced apart from the second pattern line P2 in the transparent electrode layer 600, the second buffer layer 500, the first buffer layer 400, and the light absorbing layer 300. (P3) can be formed.

제3 패턴라인(P3)은 스크라이브(Scribe) 법에 의해 투명 전극층(600), 제2 버퍼층(500), 제1 버퍼층(400) 및 광 흡수층(300)의 일부가 제거되어 형성될 수 있으며, 이로 인해 이면 전극층(200)의 상부가 노출될 수 있다.The third pattern line P3 may be formed by removing a part of the transparent electrode layer 600, the second buffer layer 500, the first buffer layer 400, and the light absorbing layer 300 by a scribe method. As a result, an upper portion of the back electrode layer 200 may be exposed.

도 1로 돌아가서, 태양전지의 제조가 완료되면 태양전지 박막 상에 결함부를 측정하는 단계(S200)를 수행한다.Returning to FIG. 1, when manufacturing of the solar cell is completed, a step (S200) of measuring a defect on the solar cell thin film is performed.

상기 태양전지 박막 상의 결함 여부는 특정 검사 장비를 사용하여 측정할 수 있으며, 예컨대, 일정 영역의 저항값이 그에 인접하는 영역보다 작게 측정되면 결함부가 발생하였다고 판단할 수 있다.Defects on the thin film of the solar cell may be measured using a specific inspection equipment. For example, when a resistance value of a predetermined region is measured to be smaller than a region adjacent thereto, it may be determined that a defect portion has occurred.

물론, 저항값 외에 누설되는 전류량을 측정할 수 있으며, 이로부터 도 7에 도시된 바와 같이 태양전지 박막 상에서 이상이 발생된 결함부(700)를 측정할 수 있다.Of course, the amount of current leaking in addition to the resistance value can be measured, and as shown in FIG. 7, the defective part 700 having an abnormality generated on the solar cell thin film can be measured.

이어서, 도 8에 도시된 바와 같이, 태양전지 박막 상에 형성된 결함부(700)와 대응되는 기판의 하부에서 레이저(L)를 조사할 수 있다.Subsequently, as shown in FIG. 8, the laser L may be irradiated from the lower portion of the substrate corresponding to the defect part 700 formed on the solar cell thin film.

레이저(L)는 500nm 내지 600nm 파장을 가지도록 형성할 수 있으며, 결함부(700)의 크기에 따라 적절하게 조절될 수 있다. 여기서, 레이저(L)가 조사되는 범위는 결함부(700)의 크기보다 넓은 범위를 가지도록 조사될 수 있다.The laser L may be formed to have a wavelength of 500 nm to 600 nm, and may be appropriately adjusted according to the size of the defect 700. Here, the range in which the laser L is irradiated may be irradiated to have a wider range than the size of the defect 700.

예컨대, 도 9에 도시된 바와 같이, 결함부가 제거되는 영역(800)의 직경(R2)은 결함부(700)의 직경(R1)의 크기보다 0.5nm 내지 5nm 크게 형성될 수 있으며, 이로부터 태양전지 박막 상에 형성된 결함부(700)를 안정적으로 제거하는 단계(S200)를 수행할 수 있다.For example, as shown in FIG. 9, the diameter R2 of the region 800 from which the defect portion is removed may be formed to be 0.5 nm to 5 nm larger than the size of the diameter R1 of the defect portion 700. The step S200 of stably removing the defect part 700 formed on the battery thin film may be performed.

도 10에 도시된 바와 같이, 레이저(L) 조사에 의해 결함부가 제거된 영역(800)은 투명 전극층(600), 제2 버퍼층(500), 제1 버퍼층(400) 및 광 흡수층(300)을 관통하도록 형성될 수 있다.As shown in FIG. 10, the region 800 in which the defect portion is removed by the laser L irradiation includes the transparent electrode layer 600, the second buffer layer 500, the first buffer layer 400, and the light absorbing layer 300. It may be formed to penetrate.

상기에서는 결함부(700)를 제거하기 위해 태양전지 박막 상에 레이저(L)를 조사하였으나, 이에 한정되지 않고 니들(Neadle)을 사용하여 태양전지 박막 상에 형성된 결함부(700)를 제거할 수도 있다.In the above, the laser (L) is irradiated on the thin film of the solar cell in order to remove the defective portion 700, but is not limited to this, it is also possible to remove the defective portion 700 formed on the thin film of the solar cell using a needle (Neadle). have.

또한, 상기에서는 결함부(700)를 원형으로 형성된 것으로 도시하였으나, 이에 한정되지 않고 다양한 형상의 다각형으로 형성될 수 있으며, 결함부를 제거하는 영역(800)의 형상도 변경될 수 있다.In addition, although the defect part 700 is illustrated as being formed in a circular shape, the shape of the defect part 700 may be changed into a polygon of various shapes, and the shape of the region 800 for removing the defect part may be changed.

상기와 같이, 태양전지 박막 상의 결함부가 제거되면, 상기 결함부가 제거된 영역에 절연층을 형성하는 단계(S300)를 수행할 수 있다.As described above, when the defect portion on the solar cell thin film is removed, a step (S300) of forming an insulating layer in the region where the defect portion is removed may be performed.

도 11에 도시된 바와 같이, 상기 절연층(900)은 스퍼터링, CVD 등의 증착 방법에 의해 결함부가 제거된 영역에 형성할 수 있으며, 절연층(900)의 상부면은 투명 전극층(600)의 상부면과 수평하도록 형성될 수 있다.As illustrated in FIG. 11, the insulating layer 900 may be formed in a region where defects are removed by a deposition method such as sputtering or CVD, and an upper surface of the insulating layer 900 is formed of the transparent electrode layer 600. It may be formed to be horizontal with the upper surface.

절연층(900)으로는 산화물 또는 질화물이 사용될 수 있으며, 구체적으로는 SiO2, Al2O3, AiN 중 어느 하나를 포함하는 물질이 사용될 수 있다.An oxide or nitride may be used as the insulating layer 900, and specifically, a material including any one of SiO 2 , Al 2 O 3 , and AiN may be used.

상기와 같은 발명은 결함부(700)가 제거된 영역에 절연층(900)을 형성함으로써, 결함부(700)에 의한 누설 경로를 방지함으로써, 태양전지의 전력 손실을 줄일 수 있다.As described above, the insulating layer 900 is formed in the region where the defect portion 700 is removed, thereby preventing a leakage path caused by the defect portion 700, thereby reducing power loss of the solar cell.

또한, 절연층(900)을 산화물, 질화물을 사용함으로써, 라미네이션 공정 시 기공 발생을 줄일 수 있는 효과가 있다.In addition, by using the oxide and nitride as the insulating layer 900, there is an effect that can reduce the generation of pores in the lamination process.

상기에서는 절연층이 투명 전극층, 제2 버퍼층, 제1 버퍼층 및 광 흡수층을 관통하도록 형성하였지만, 제2 패턴라인에 대응되는 영역에 결함이 발생되었을 경우, 절연층은 투명 전극층을 관통하도록 형성될 수 있다.In the above, the insulating layer is formed to penetrate the transparent electrode layer, the second buffer layer, the first buffer layer, and the light absorbing layer. However, when a defect occurs in a region corresponding to the second pattern line, the insulating layer may be formed to penetrate the transparent electrode layer. have.

또한, 결함부가 제1 패턴라인에 대응되는 영역에 발생되었을 경우, 절연층은 투명 전극층, 제2 버퍼층, 제1 버퍼층 및 광 흡수층을 관통하되 이면 전극층 상부가 아닌 기판 상부에 형성될 수 있다.In addition, when the defect part is generated in a region corresponding to the first pattern line, the insulating layer may pass through the transparent electrode layer, the second buffer layer, the first buffer layer, and the light absorbing layer, but may be formed on the substrate rather than the upper electrode layer.

상기에서는 도면 및 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 기술적 사상으로부터 벗어나지 않는 범위 내에서 본 발명은 다양하게 수정 및 변경시킬 수 있음은 이해할 수 있을 것이다.Although described above with reference to the drawings and embodiments, those skilled in the art that the present invention can be variously modified and changed within the scope without departing from the spirit of the invention described in the claims below I can understand.

100: 기판 200: 이면 전극층
300: 광 흡수층 600: 투명 전극층
700: 결함부 900: 절연층
100 substrate 200 back electrode layer
300: light absorbing layer 600: transparent electrode layer
700: defective portion 900: insulating layer

Claims (14)

기판;
상기 기판 상에 형성된 이면 전극층;
상기 이면 전극층 상에 형성된 광 흡수층;
상기 광 흡수층 상에 형성된 투명 전극층; 및
상기 투명 전극층 상의 일정 영역에 형성된 절연층; 및
상기 이면 전극층, 상기 광 흡수층 및 상기 투명 전극층 중 어느 하나에 포함되는 결함이 제거된 결함 제거 영역을 포함하고,
상기 결함 제거 영역은 상기 이면 전극층, 상기 광 흡수층 및 상기 투명 전극층 중 어느 하나를 관통하여 형성되고,
상기 절연층은 상기 결함 제거 영역 내에 위치하는 태양전지.
Board;
A back electrode layer formed on the substrate;
A light absorbing layer formed on the back electrode layer;
A transparent electrode layer formed on the light absorbing layer; And
An insulating layer formed in a predetermined region on the transparent electrode layer; And
A defect removal region in which defects included in any one of the back electrode layer, the light absorbing layer, and the transparent electrode layer are removed;
The defect removal region is formed through one of the back electrode layer, the light absorbing layer, and the transparent electrode layer,
The insulating layer is a solar cell located within the defect removal region.
청구항 1에 있어서,
상기 결함 제거 영역은 투명 전극층 및 광 흡수층을 관통하도록 연장 형성되고,
상기 절연층은 상기 결함 제거 영역 내에 위치하는 태양전지.
The method according to claim 1,
The defect removal region extends to penetrate the transparent electrode layer and the light absorbing layer,
The insulating layer is a solar cell located within the defect removal region.
청구항 2에 있어서,
상기 절연층은 이면 전극층 또는 기판 상에 형성된 태양전지.
The method according to claim 2,
The insulating layer is a solar cell formed on the back electrode layer or the substrate.
청구항 1에 있어서,
상기 결함 제거 영역은 투명 전극층을 관통하도록 연장 형성되고,
상기 절연층은 상기 결함 제거 영역 내에 위치하는 태양전지.
The method according to claim 1,
The defect removal region is formed to extend through the transparent electrode layer,
The insulating layer is a solar cell located within the defect removal region.
청구항 4에 있어서,
상기 절연층은 이면 전극층 상에 형성된 태양전지.
The method of claim 4,
The insulating layer is a solar cell formed on the back electrode layer.
청구항 1에 있어서,
상기 절연층은 SiO2, Al2O3, AiN 중 어느 하나를 포함하는 태양전지.
The method according to claim 1,
The insulating layer is a solar cell comprising any one of SiO 2 , Al 2 O 3 , AiN.
청구항 1에 있어서,
상기 절연층은 원 기둥 또는 다각 기둥 형상으로 형성되는 태양전지.
The method according to claim 1,
The insulating layer is a solar cell formed in the shape of a circle pillar or polygonal pillar.
태양전지 박막 상에 결함부를 측정하는 단계;
상기 결함부를 제거하는 단계; 및
상기 결함부가 제거된 영역에 절연층을 형성하는 단계;
를 포함하는 태양전지 제조방법.
Measuring defects on the solar cell thin film;
Removing the defect; And
Forming an insulating layer in the region where the defect portion is removed;
≪ / RTI >
청구항 8에 있어서,
상기 결함부는 레이저를 사용하여 제거하는 태양전지 제조방법.
The method according to claim 8,
Solar cell manufacturing method for removing the defect portion using a laser.
청구항 9에 있어서,
상기 레이저는 500nm 내지 600nm의 파장을 가지는 태양전지 제조방법.
The method according to claim 9,
The laser is a solar cell manufacturing method having a wavelength of 500nm to 600nm.
청구항 8에 있어서,
상기 결함부는 인접하는 영역의 저항보다 낮은 저항값을 가지는 태양전지 제조방법.
The method according to claim 8,
The defect part has a resistance value lower than the resistance of the adjacent region.
청구항 8에 있어서,
상기 결함부가 제거된 영역은 결함부의 크기보다 크게 형성되는 태양전지 제조방법.
The method according to claim 8,
The region in which the defect portion is removed is formed larger than the size of the defect portion.
청구항 12에 있어서,
상기 결함부가 제거된 영역은 결함부의 크기보다 0.5mm 내지 5mm 크게 형성된 태양전지 제조방법.
The method of claim 12,
The region where the defect portion is removed is a solar cell manufacturing method formed 0.5mm to 5mm larger than the size of the defect portion.
청구항 8에 있어서,
상기 절연층은 SiO2, Al2O3, AiN 중 어느 하나를 포함하는 태양전지 제조방법.
The method according to claim 8,
The insulating layer is a solar cell manufacturing method comprising any one of SiO 2 , Al 2 O 3 , AiN.
KR1020110057130A 2011-06-13 2011-06-13 Solar cell and method for repairing the same KR101241714B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110057130A KR101241714B1 (en) 2011-06-13 2011-06-13 Solar cell and method for repairing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110057130A KR101241714B1 (en) 2011-06-13 2011-06-13 Solar cell and method for repairing the same

Publications (2)

Publication Number Publication Date
KR20120137949A KR20120137949A (en) 2012-12-24
KR101241714B1 true KR101241714B1 (en) 2013-03-11

Family

ID=47904850

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110057130A KR101241714B1 (en) 2011-06-13 2011-06-13 Solar cell and method for repairing the same

Country Status (1)

Country Link
KR (1) KR101241714B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101998743B1 (en) * 2017-06-14 2019-07-10 엘지전자 주식회사 Compound semiconductor solar cell and method of manufacturing the same
KR102179339B1 (en) * 2018-04-23 2020-11-16 엘지전자 주식회사 Compound semiconductor solar cell and method for manufacturing the same
KR102285925B1 (en) * 2019-12-20 2021-08-04 청주대학교 산학협력단 Method for repairing crystalline solar cell module using laser irradiation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100030944A (en) * 2008-09-11 2010-03-19 엘지이노텍 주식회사 Method of fabricating solar cell
KR20110035733A (en) * 2009-09-30 2011-04-06 엘지이노텍 주식회사 Solar cell and method of fabircating the same
KR20110048724A (en) * 2009-11-03 2011-05-12 엘지이노텍 주식회사 Solar cell and method of fabircating the same
KR20110076398A (en) * 2009-12-29 2011-07-06 주식회사 티지솔라 Solar cell including barrier layer and method for fabricating of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100030944A (en) * 2008-09-11 2010-03-19 엘지이노텍 주식회사 Method of fabricating solar cell
KR20110035733A (en) * 2009-09-30 2011-04-06 엘지이노텍 주식회사 Solar cell and method of fabircating the same
KR20110048724A (en) * 2009-11-03 2011-05-12 엘지이노텍 주식회사 Solar cell and method of fabircating the same
KR20110076398A (en) * 2009-12-29 2011-07-06 주식회사 티지솔라 Solar cell including barrier layer and method for fabricating of the same

Also Published As

Publication number Publication date
KR20120137949A (en) 2012-12-24

Similar Documents

Publication Publication Date Title
Kushiya et al. Interface control to enhance the fill factor over 0.70 in a large-area CIS-based thin-film PV technology
WO2007086521A1 (en) Solar cell and its manufacturing method
US9741884B2 (en) Solar cell and method of fabricating the same
WO2007043219A1 (en) Solar battery and its fabrication method
US8779282B2 (en) Solar cell apparatus and method for manufacturing the same
JP2007317879A (en) Chalcopyrite solar cell, and manufacturing method thereof
KR20130109786A (en) Solar cell and manufacturing method thereof
KR101241714B1 (en) Solar cell and method for repairing the same
JP2012532442A (en) Solar cell and manufacturing method thereof
TW201104888A (en) Solar battery module and method for manufacturing the same
KR101283072B1 (en) Solar cell apparatus and method of fabricating the same
CN213519994U (en) Thin film solar cell
KR101218503B1 (en) Method of fabricating solar cell module by using Al thin film.
JP2013206889A (en) Isolation groove formation method of integrated thin film solar cell module
KR20130136739A (en) Solar cell and method of fabricating the same
KR20120085577A (en) Solar cell and manufacturing method of the same
KR101306529B1 (en) Solar cell and method of fabricating the same
JP5872416B2 (en) Method for manufacturing thin film solar cell
KR101210034B1 (en) Solar cell and method of fabricating the same
KR101272997B1 (en) Solar cell apparatus and method of fabricating the same
US20120135545A1 (en) Laser apparatus and method for manufacturing a solar cell module using the same
KR20150039536A (en) Solar cell
CN112133787B (en) Copper indium gallium selenide thin-film solar cell module and preparation method thereof
KR101865953B1 (en) Solar cell and method of fabricating the same
US20130186453A1 (en) Mitigating photovoltaic module stress damage through cell isolation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160205

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170207

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee