KR101240204B1 - Method for manufacturing a cylindrical sputtering target - Google Patents

Method for manufacturing a cylindrical sputtering target Download PDF

Info

Publication number
KR101240204B1
KR101240204B1 KR1020110137586A KR20110137586A KR101240204B1 KR 101240204 B1 KR101240204 B1 KR 101240204B1 KR 1020110137586 A KR1020110137586 A KR 1020110137586A KR 20110137586 A KR20110137586 A KR 20110137586A KR 101240204 B1 KR101240204 B1 KR 101240204B1
Authority
KR
South Korea
Prior art keywords
target
backing tube
cylindrical
indium
ceramic target
Prior art date
Application number
KR1020110137586A
Other languages
Korean (ko)
Inventor
박장우
김상희
Original Assignee
주식회사 나노신소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노신소재 filed Critical 주식회사 나노신소재
Priority to KR1020110137586A priority Critical patent/KR101240204B1/en
Priority to PCT/KR2012/011092 priority patent/WO2013094973A1/en
Application granted granted Critical
Publication of KR101240204B1 publication Critical patent/KR101240204B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • C04B2237/406Iron, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/52Pre-treatment of the joining surfaces, e.g. cleaning, machining
    • C04B2237/525Pre-treatment of the joining surfaces, e.g. cleaning, machining by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: A method for manufacturing cylindrical sputtering target is provided to prevent decrease bonding efficiency due to indium being oxidized by overheating to smoothly charge liquid indium by making a flow of the liquid indium smooth, thereby improving properties of bonding a target and a tube. CONSTITUTION: A method for manufacturing cylindrical sputtering target comprises; a step for arranging a hollow cylindrical ceramic target in the outer periphery of a cylindrical backing tube; a step for controlling the temperature of a gap between the ceramic target and the backing tube by circulating or charging liquid thermal medium inside the backing tube while heating the ceramic target; and a step for bonding the ceramic target and the backing tube by charging molten indium between the ceramic target and the backing tube. [Reference numerals] (AA) Thermal medium circulation

Description

원통형 스퍼터링 타겟의 제조방법{Method for manufacturing a cylindrical sputtering target}Method for manufacturing a cylindrical sputtering target

본 발명은 원통형 스퍼터링 타겟의 제조방법에 관한 것이다.The present invention relates to a method for producing a cylindrical sputtering target.

LCD, OLED, PDP, 터치 패널 등의 평판 디스플레이와 박막형 태양전지에 사용되는 투명도전막은 높은 광투과율과 전기전도도가 요구된다. 예를 들어, 가시광선 영역에서 광투과율이 85%이상 확보되어야 하며, 비저항(resistivity)도 1 x 10-3Ω·㎝보다 낮아야 한다. Transparent conductive films used in flat panel displays such as LCDs, OLEDs, PDPs, and touch panels and thin film solar cells require high light transmittance and electrical conductivity. For example, the light transmittance should be secured to 85% or more in the visible light region, and the resistivity should be lower than 1 × 10 −3 Ω · cm.

상기 투명도전막으로는 산화주석계(SnO2)계 박막, 산화아연(ZnO)계 박막 또는 산화인듐(In2O3)계 박막 등이 알려져 있다. As the transparent conductive film, tin oxide (SnO 2 ) based thin films, zinc oxide (ZnO) based thin films or indium oxide (In 2 O 3 ) based thin films and the like are known.

이 중에서 인듐 주석 산화물(Indium Tin Oxide, 이하 ‘ITO’라 한다) 박막 또는 인듐 아연 산화물(Indium Zinc Oxide, 이하 ‘IZO’라 한다) 박막 등의 산화인듐계 박막은 양호한 광학적 특성 및 전기적 특성을 가지므로 현재 투명 전극 재질로 널리 사용되고 있다.Among these, an indium oxide thin film such as an indium tin oxide thin film (ITO) thin film or an indium zinc oxide thin film (IZO) thin film has good optical and electrical characteristics. Therefore, it is widely used as a transparent electrode material.

한편, 상기 투명도전막은 스프레이 코팅(Spray Coating), 스핀 코팅(Spin Coating), 화학기상증착(Chemical Vapor Deposition (CVD)), 증착법(Evaporation), 마그네트론 스퍼터링법(Magnetron Sputtering) 등 다양한 공정에 의해 제작되고 있다. The transparent conductive film is manufactured by various processes such as spray coating, spin coating, chemical vapor deposition (CVD), evaporation, magnetron sputtering, and the like. It is becoming.

이러한 방법들 중 투명 전극재료용으로 사용되고 있는 실용화 투명 전도막의 제막법으로는, 박막과 기판과의 부착력이 높다는 점, 대면적에 균일한 성막이 가능한 점, 그리고 어느 정도의 높은 성막속도를 얻을 수 있다는 점에서, DC 마그네트론 스퍼터링법(DC Magnetron Sputtering)이 가장 널리 사용되고 있다. Among these methods, as a method for forming a commercially available transparent conductive film used for transparent electrode materials, it is possible to obtain a high adhesion between the thin film and the substrate, to form a uniform film on a large area, and to obtain a certain high film forming speed. In that sense, DC Magnetron Sputtering is the most widely used.

마그네트론 스퍼터링법(Magnetron Sputtering)의 경우, 플라즈마 중에 생성된 이온이 캐소드에 장착된 타겟에 인가된 전압에 의해 가속되어 타겟에 충돌하여 타겟 구성원자를 스퍼터링시키고, 스퍼터링된 원자는 기판상에 도달하여 확산과정을 통하여 박막을 형성한다. In the case of magnetron sputtering, ions generated in the plasma are accelerated by the voltage applied to the target mounted on the cathode and collide with the target to sputter target members, and the sputtered atoms reach the substrate to diffuse. Form a thin film through.

한편, 성막속도를 향상시키기 위하여 타겟의 후면에는 자석을 사용하게 되는데, 자석으로 인해 형성된 자력선을 따라 포획된 전자와 스퍼터 가스 분자간의 효율적인 충돌전리 과정에 의해 생성된 이온은, 특정부분만이 가속 충격에 의해 집중적으로 스퍼터링되기 때문에 이로우젼(Erosion)이라고 하는 영역이 생성된다. On the other hand, in order to improve the film formation speed, a magnet is used on the back of the target, and the ion generated by the efficient collision ionization process between the electrons and the sputter gas molecules trapped along the magnetic lines formed by the magnet is accelerated and impacted only at a certain portion. Because it is intensively sputtered by, regions called erosion are created.

또한, 이로우젼(Erosion) 영역 주위의 가속이온들의 충격에 의해 발생하는 열은 타겟 표면에 노듈(Nodule)이라고 하는 저급산화물을 형성하게 되고, 이러한 노듈(Nodule)은 박막물성을 저하시키는 직접적인 원인이 되는 이상방전을 야기시킨다. 제조 프로세스상 박막물성이 변화하는 이상방전의 빈도가 증가하는 시점에서는 타겟을 클리닝하거나 교환하여야 하며, 이 경우 제조라인을 정지시켜야 하기 때문에 노듈은 박막 제조 비용의 증가의 원인이 되고 있다. In addition, the heat generated by the impact of the acceleration ions around the erosion region forms a lower oxide called a nodule on the target surface, and this nodule is a direct cause of deterioration of thin film properties. Cause abnormal discharge. When the frequency of abnormal discharge in which the thin film properties change in the manufacturing process increases, the target must be cleaned or replaced. In this case, the manufacturing line must be stopped.

현재, TFT LCD용 투명전극으로 사용되고 있는 ITO 타겟의 경우, 이상방전이 급격히 증가하여 박막의 물성을 저하시키는 시점까지의 타겟 사용률은 약 20% 정도이며, 이 시점에서 타겟을 교환하여야만 한다. 따라서, 대면적 기판 성막이 가능한 고품질 투명도전막의 물성을 만족함과 동시에 타겟 사용률을 30% 이상 향상 시킬 수 있는 고효율의 타겟이 필요하다.Currently, in the case of the ITO target used as the transparent electrode for the TFT LCD, the target utilization rate is about 20% until the abnormal discharge rapidly increases and the physical properties of the thin film are reduced. At this point, the target must be replaced. Therefore, there is a need for a highly efficient target capable of satisfying the physical properties of a high-quality transparent conductive film capable of forming a large area substrate and improving the target utilization rate by 30% or more.

최근 스퍼터링 타겟 시장에서 스퍼터 설비업체와 타겟 제조업체들의 노력으로 원통형 형태의 로타리 타겟(Rotary target)이 개발되었다. 로타리 타겟은 스퍼터링 공정 중에 로타리 형태의 타겟을 지속적으로 회전시키며 스퍼터링 함으로써 노듈의 발생이 현저하게 줄어들어 고품질의 박막을 얻을 수 있다. 또한, 종래의 평판형 타겟이 비균일한 스퍼터링으로 인하여 최대 30%까지만 사용할 수 있는 것과 달리 로타리 타겟의 경우 75%이상의 사용률을 달성할 수 있으므로, 타겟 사용업체는 가격경쟁력을 가짐과 동시에 타겟 교체 주기가 길어져 생산성 향상에 크게 기여할 수 있다. Recently, in the sputtering target market, cylindrical targets were developed by sputter equipment manufacturers and target manufacturers. The rotary target continuously rotates and sputters the rotary type target during the sputtering process, thereby significantly reducing the generation of nodules, thereby obtaining a high quality thin film. In addition, unlike conventional flat targets, which can only be used up to 30% due to non-uniform sputtering, the use of rotary targets can achieve 75% or more. It can be extended, which greatly contributes to productivity improvement.

그러나, 원통형 타겟을 제작하는 과정에서 타겟의 고밀도화가 어렵고, 접합(본딩) 과정에서 접합율(본딩율)이 낮아 스퍼터링 과정에서 타겟의 크랙 및 타겟의 이탈 문제가 발생하고 있다. 실제 원통형 세라믹 타겟을 원통형 금속 튜브에 접합할 경우, 평판형 타겟을 평판금속판에 접합하는 것과 달리, 접합 시 가압이 어려워 접합에 결함이 발생할 수 있다.However, it is difficult to increase the density of the target in the process of manufacturing the cylindrical target, and the bonding rate (bonding rate) is low in the bonding (bonding) process, causing problems of cracking of the target and detachment of the target in the sputtering process. When the actual cylindrical ceramic target is bonded to the cylindrical metal tube, unlike the flat plate target to join the flat metal plate, it is difficult to press at the time of joining may cause defects in the joint.

종래의 원통형 세라믹 접합방식은, 도 2와 같이 원통형 세라믹 타겟을 금속 튜브 주변에 배치시키고 외부에 열을 가하여 세라믹과 금속 튜브, 그리고 그 사이 간극을 일정온도까지 승온한 후, 용융상태의 인듐을 충진시키고 강온시킴으로써 접합을 완성시키고 있다.In the conventional cylindrical ceramic joining method, as shown in FIG. 2, the cylindrical ceramic target is disposed around the metal tube and heated to the outside to raise the ceramic and the metal tube, and the gap therebetween to a predetermined temperature, and then fill the molten indium. The joint is completed by letting it cool down.

그러나, 종래 방식은 세라믹 타겟과 금속 튜브의 승온 특성이 다르고, 세라믹과 금속 튜브 사이의 좁은 간극의 온도를 측정할 수 없어 온도조절이 어렵다. 그 결과, 세라믹과 금속 튜브 사이의 간극이 쉽게 과열되어 산화막이 형성되거나, 온도가 너무 낮아 액상 인듐이 고화되어 흐름이 좋지 않게 됨으로써, 원통형 세라믹 튜브의 접합에 치명적인 결함이 발생되는 문제점이 있었다.However, in the conventional method, the temperature rise characteristics of the ceramic target and the metal tube are different, and it is difficult to control the temperature because the temperature of the narrow gap between the ceramic and the metal tube cannot be measured. As a result, the gap between the ceramic and the metal tube is easily overheated to form an oxide film, or the temperature is so low that the liquid indium solidifies and the flow is not good, thereby causing a fatal defect in the joining of the cylindrical ceramic tube.

KRKR 2011-00251692011-0025169 AA KRKR 2011-00545472011-0054547 AA

본 발명은, 원통형 세라믹 타겟과 원통형 백킹 튜브(Backing Tube)로 이루어진 원통형 스퍼터링 타겟을 제조함에 있어서, 세라믹 타겟과 백킹 튜브 사이에 형성된 간극의 온도를 정밀하게 제어하여, 세라믹 타겟과 백킹 튜브를 접합하기 위해 인듐을 충진할 경우, 과열에 의해 인듐이 산화되어 접합 효율을 저하시키는 것을 방지하고 액상 인듐의 흐름성을 좋게 하여 충진을 원활하게 함으로써 타겟과 백킹 튜브 간의 접합 특성을 향상시킬 수 있는, 원통형 스퍼터링 타겟의 제조 방법을 제공하는데 목적이 있다.The present invention, in manufacturing a cylindrical sputtering target consisting of a cylindrical ceramic target and a cylindrical backing tube, by precisely controlling the temperature of the gap formed between the ceramic target and the backing tube, to join the ceramic target and the backing tube In order to prevent indium from being oxidized due to overheating to reduce the bonding efficiency and to improve the bonding property between the target and the backing tube, the sputtering can be improved. It is an object to provide a method for producing a target.

상기 목적을 달성하기 위하여, 본 발명은,In order to achieve the above object,

원통형 세라믹 타겟과 원통형 백킹 튜브(Backing Tube)로 이루어진 원통형 스퍼터링 타겟을 제조함에 있어서,In manufacturing a cylindrical sputtering target consisting of a cylindrical ceramic target and a cylindrical backing tube,

원통형 백킹 튜브의 외주에, 중공 원통형 세라믹 타겟을 배치하는 제1 단계;Placing a hollow cylindrical ceramic target on an outer circumference of the cylindrical backing tube;

상기 세라믹 타겟의 외부를 가온하면서, 상기 백킹 튜브 내부에 액체 열매체를 순환 또는 충진시켜, 세라믹 타겟과 백킹 튜브의 간극 온도를 제어하는 제2 단계; 및A second step of controlling a gap temperature between the ceramic target and the backing tube by circulating or filling a liquid heat medium inside the backing tube while warming the outside of the ceramic target; And

상기 세라믹 타겟과 상기 백킹 튜브 사이에 용융상태의 인듐을 충진하여세라믹 타겟과 백킹 튜브를 접합시키는 제3 단계를 포함하는 것을 특징으로 하는, 원통형 스퍼터링 타겟의 제조 방법을 제공한다.And a third step of bonding the ceramic target and the backing tube by filling indium in a molten state between the ceramic target and the backing tube.

본 발명의 원통형 스퍼터링 타겟의 제조방법은, 원통형 세라믹 타겟과 원통형 백킹 튜브 사이에 형성된 간극의 온도를 정밀하게 제어하여, 원통형 세라믹 타겟과 백킹 튜브를 접합하기 위해 인듐을 충진할 경우, 과열에 의해 인듐이 산화되거나 온도가 낮아 액상 인듐이 고화되는 것을 방지하여 타겟과 백킹 튜브 간의 접합 특성이 향상된, 원통형 스퍼터링 타겟을 제공할 수 있다.The method for producing a cylindrical sputtering target of the present invention precisely controls the temperature of the gap formed between the cylindrical ceramic target and the cylindrical backing tube, and when indium is filled to join the cylindrical ceramic target and the backing tube, The oxidation or low temperature can prevent the liquid indium from solidifying, thereby providing a cylindrical sputtering target with improved bonding properties between the target and the backing tube.

도 1은 본 발명의 원통형 스퍼터링 타겟의 조립도이다.
도 2는 종래의 원통형 스퍼터링 타겟의 본딩 방법을 나타낸 개략도이다.
도 3은 본 발명의 열매체 순환을 이용한 원통형 스퍼터링 타겟의 본딩 방법을 나타낸 개략도이다.
도 4는 실시예 1에 따라 제조한 원통형 스퍼터링 타겟의 초음파 탐상기 측정 결과이다.
도 5는 실시예 2에 따라 제조한 원통형 스퍼터링 타겟의 초음파 탐상기 측정 결과이다.
도 6은 비교예 1에 따라 제조한 원통형 스퍼터링 타겟의 초음파 탐상기 측정 결과이다.
도 7은 비교예 2에 따라 제조한 원통형 스퍼터링 타겟의 초음파 탐상기 측정 결과이다.
1 is an assembly view of a cylindrical sputtering target of the present invention.
2 is a schematic view showing a bonding method of a conventional cylindrical sputtering target.
3 is a schematic view showing a bonding method of a cylindrical sputtering target using the heat medium circulation of the present invention.
4 is an ultrasonic flaw detector measurement result of the cylindrical sputtering target prepared according to Example 1.
5 is a measurement result of the ultrasonic flaw detector of the cylindrical sputtering target prepared according to Example 2.
6 is an ultrasonic flaw detector measurement result of the cylindrical sputtering target prepared according to Comparative Example 1.
7 is an ultrasonic flaw detector measurement result of the cylindrical sputtering target prepared according to Comparative Example 2.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은,The present invention,

원통형 세라믹 타겟과 원통형 백킹 튜브(Backing Tube)로 이루어진 원통형 스퍼터링 타겟을 제조함에 있어서,In manufacturing a cylindrical sputtering target consisting of a cylindrical ceramic target and a cylindrical backing tube,

원통형 백킹 튜브의 외주에, 중공 원통형 세라믹 타겟을 배치하는 제1 단계;Placing a hollow cylindrical ceramic target on an outer circumference of the cylindrical backing tube;

상기 세라믹 타겟의 외부를 가온하면서, 상기 백킹 튜브 내부에 액체 열매체를 순환 또는 충진시켜, 세라믹 타겟과 백킹 튜브의 간극 온도를 제어하는 제2 단계; 및A second step of controlling a gap temperature between the ceramic target and the backing tube by circulating or filling a liquid heat medium inside the backing tube while warming the outside of the ceramic target; And

상기 세라믹 타겟과 상기 백킹 튜브 사이에 용융상태의 인듐을 충진하여세라믹 타겟과 백킹 튜브를 접합시키는 제3 단계를 포함하는 것을 특징으로 하는, 원통형 스퍼터링 타겟의 제조 방법에 관한 것이다.
And a third step of bonding the ceramic target and the backing tube by filling indium in the molten state between the ceramic target and the backing tube.

상기 원통형 세라믹 타겟은 원통형 백킹 튜브의 외측면과 간극을 두고 배치되며, 피성막체에 박막을 형성하는데 사용된다. The cylindrical ceramic target is disposed with a gap between the outer surface of the cylindrical backing tube and used to form a thin film on the film to be formed.

상기 세라믹 타겟은 인듐(In), 주석(Sn), 아연(Zn), 구리(Cu), 알루미늄(Al), 탄탈륨(Ta), 니오브(Nb) 및 티타늄(Ti)으로 이루어진 군에서 선택되는 적어도 하나의 원소를 주성분으로 포함하는 금속물 또는 산화물, 예컨대 ITO(Indium Thin Oxide), AZO(Aluminum Zinc Oxide) 또는 IZO(Indium Zinc Oxide)로 이루어질 수 있다.
The ceramic target is at least selected from the group consisting of indium (In), tin (Sn), zinc (Zn), copper (Cu), aluminum (Al), tantalum (Ta), niobium (Nb), and titanium (Ti). Metal or oxide containing one element as a main component, such as indium thin oxide (ITO), aluminum zinc oxide (AZO) or indium zinc oxide (IZO).

상기 원통형 백킹 튜브는 상기 원통형 세라믹 타겟을 지지하며, 상기 원통형 세라믹 타겟의 열팽창율과 유사한 금속재질, 예컨대 무산소 구리(Cu), 티타늄(Ti), 또는 스테인리스 스틸로 이루어질 수 있다.
The cylindrical backing tube supports the cylindrical ceramic target and may be made of a metal material similar to the thermal expansion rate of the cylindrical ceramic target, such as oxygen-free copper (Cu), titanium (Ti), or stainless steel.

본 발명의 일 구체예는, 상기 제1 단계에서, 상기 원통형 세라믹 타겟과 원통형 백킹 튜브(Backing Tube)를 예열시키고, 타겟의 내면과 백킹 튜브의 외면에 인듐을 코팅시켰다. 복수의 타겟을 사용할 경우, 타겟과 타겟 사이를 폴리이미드 테이프로 밀봉한 후, 타겟과 백킹 튜브를 조립하였다.
According to one embodiment of the present invention, in the first step, the cylindrical ceramic target and the cylindrical backing tube are preheated, and the indium is coated on the inner surface of the target and the outer surface of the backing tube. When using a plurality of targets, the targets were sealed between the targets with polyimide tape, and then the targets and the backing tubes were assembled.

상기 제2 단계에서, 원통형 세라믹 타겟의 외부는 150~200℃, 바람직하게는 150~170℃로 가온된다.In the second step, the outside of the cylindrical ceramic target is heated to 150 ~ 200 ℃, preferably 150 ~ 170 ℃.

또한, 상기 액체 열매체의 온도는 158~200℃, 바람직하게는 158~180℃ 이다. Moreover, the temperature of the said liquid heat medium is 158-200 degreeC, Preferably it is 158-180 degreeC.

상기 범위 내로 원통형 세라믹 타겟의 외부 및 내부 온도를 유지하면, 타겟의 외부 및 내부 온도를 본딩재로 사용되는 인듐의 용용점 158℃과 비슷하거나 높게 유지하여 본딩재로 사용되는 인듐의 흐름성을 좋게 할 수 있다.
If the external and internal temperatures of the cylindrical ceramic target are maintained within the above ranges, the external and internal temperatures of the target may be maintained at or near the melting point of 158 ° C. of the indium used as the bonding material to improve the flowability of the indium used as the bonding material. can do.

상기 제2 단계에서, 액체 열매체는 백킹 튜브를 가열하는 작용과, 과열된 부분의 열을 흡수하는 냉각제 작용을 함께 수행하게 되어, 세라믹 타겟과 백킹 튜브의 간극 온도 및 백킹 튜브의 온도를 정밀하게 제어하는 역할을 한다. In the second step, the liquid heat medium performs the action of heating the backing tube together with the coolant action of absorbing the heat of the overheated portion, thereby precisely controlling the gap temperature between the ceramic target and the backing tube and the temperature of the backing tube. It plays a role.

상기 액체 열매체로는 비열이 큰 오일이 사용될 수 있으나, 특별히 그 종류는 한정하지 않는다. As the liquid heat medium, an oil having a large specific heat may be used, but the type thereof is not particularly limited.

상기 제2 단계에서, 액체 열매체의 온도는 인듐의 용융점보다 높은 158~200℃, 바람직하게는 158~180℃이다.
In the second step, the temperature of the liquid heat medium is 158 ~ 200 ℃, preferably 158 ~ 180 ℃ higher than the melting point of indium.

상기 제3 단계는, 용융 상태의 인듐을 원통형 세라믹 타겟과 원통형 백킹 튜브 사이에 충진하여 세라믹 타겟과 백킹 튜브를 접합시키는 단계이다.The third step is filling the indium in the molten state between the cylindrical ceramic target and the cylindrical backing tube to bond the ceramic target and the backing tube.

인듐은 스퍼터링 타겟 본딩재로서 사용된다. 바람직하게는, 인듐 충진시 흐름성을 좋게하기 위해 인듐을 158℃ 이상에서 용융시킨 후, 원통형 세라믹 타겟과 원통형 백킹 튜브 사이에 충진한다.
Indium is used as a sputtering target bonding material. Preferably, indium is melted at 158 ° C. or higher to improve flowability during indium filling, followed by filling between the cylindrical ceramic target and the cylindrical backing tube.

본 발명의 원통형 스퍼터링 타겟의 제조방법은, 인듐을 충진한 후 불활성 가스를 주입하는 단계를 포함할 수 있다.Method for producing a cylindrical sputtering target of the present invention may include the step of injecting an inert gas after filling indium.

상기 불활성 가스로 헬륨, 네온, 아르곤 등을 사용할 수 있다. 또한, 상기 불활성 가스의 압력은 0.1bar이상인 것이 바람직하다.Helium, neon, argon, or the like may be used as the inert gas. In addition, the pressure of the inert gas is preferably 0.1 bar or more.

불활성가스를 주입함으로써 대기중의 산소 또는 수분을 차단할 수 있고, 그 결과 본딩재로 사용하는 인듐이 대기중의 산소 또는 수분에 노출되어 산화되는 것을 방지할 수 있다.
By injecting an inert gas, oxygen or moisture in the atmosphere can be blocked, and as a result, indium used as a bonding material can be prevented from being exposed to oxygen or moisture in the atmosphere and being oxidized.

본 발명의 원통형 스퍼터링 타겟의 제조방법은, 원통형 세라믹 타겟의 외부를 가온하면서, 백킹 튜브 내부에 열용량이 큰 액체 열매체를 순환 또는 충진시켜, 원통형 세라믹 타겟과 원통형 백킹 튜브의 간극 온도 및 백킹 튜브의 온도를 정밀하게 제어함으로써, 원통형 세라믹 타겟과 원통형 백킹 튜브의 본딩율을 높이는 것을 특징으로 한다.
The manufacturing method of the cylindrical sputtering target of the present invention circulates or fills a liquid heat medium having a large heat capacity inside the backing tube while warming the outside of the cylindrical ceramic target, and thus the gap temperature between the cylindrical ceramic target and the cylindrical backing tube and the temperature of the backing tube. By precisely controlling the, it is characterized in that the bonding rate of the cylindrical ceramic target and the cylindrical backing tube to increase.

이하, 실시예를 통해 본 발명을 보다 상세히 설명한다. 그러나, 하기 실시예가 본 발명의 권리범위를 한정하는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples do not limit the scope of the present invention.

[실시예 1]Example 1

복수의 8.5세대용 원통형 ITO 타겟과 티타늄 백킹 튜브(Backing Tube)를 준비하고, 각각 180℃의 열을 가하고, 25khz의 초음파 발생기를 이용하여 타겟의 내면과 백킹 튜브의 외면에 인듐을 코팅시켰다. 준비된 백킹 튜브의 노출구를 하부 받침대에 고정시키고, 타겟과 타겟 사이를 폴리이미드 테이프로 밀봉하여 타겟과 백킹 튜브를 조립하였다.A plurality of 8.5 generation cylindrical ITO targets and titanium backing tubes were prepared, and each was heated at 180 ° C. and coated with indium on the inner surface of the target and the outer surface of the backing tube using an ultrasonic generator of 25 kHz. The exposed opening of the prepared backing tube was fixed to the lower pedestal, and the target and the backing tube were assembled by sealing between the target and the target with polyimide tape.

타겟 외부의 온도를 160℃ 이상으로 유지시키며, 백킹 튜브 내부로 200℃ 열매체 오일을 순환시켰다. 이때, 타겟과 백킹 튜브 사이 간극의 온도는 180℃를 넘지 않도록 하였다. The temperature outside the target was maintained at 160 ° C. or higher, and the 200 ° C. heat medium oil was circulated into the backing tube. At this time, the temperature of the gap between the target and the backing tube did not exceed 180 ° C.

이후, 175℃에서 용용시킨 인듐을 타겟과 백킹 튜브 사이 간극에 채우고, 30분간 유지시키며, 실온까지 2시간 동안 천천히 냉각시켰다.The indium dissolved at 175 ° C. was then filled in the gap between the target and the backing tube, held for 30 minutes, and slowly cooled to room temperature for 2 hours.

본딩이 완료된 타겟을, 초음파 탐상기를 이용하여 감도 3dB, 펄스전압 190V, 펄스폭 29ns의 조건으로 본딩율을 검사하였으며, 97.74%의 본딩율을 확인하였다(도 4).
Bonding was completed, the bonding rate was examined using an ultrasonic flaw detector under conditions of sensitivity 3dB, pulse voltage 190V, and pulse width 29ns, and a bonding rate of 97.74% was confirmed (FIG. 4).

[실시예 2][Example 2]

실시예 1과 동일하게, 타겟과 백킹 튜브를 조립하였다. 그 다음, 타겟 외부의 온도를 160℃로 유지시키며, 백킹 튜브 내부로 200℃ 열매체 오일을 순환시켰다. 이때, 타겟과 백킹 튜브 사이 간극의 온도는 180℃가 넘지 않도록 하였다. 이후 175℃에서 용융시킨 인듐을 타겟과 백킹 튜브 사이에 채우고, 인듐 주입구를 통하여 아르곤 가스를 0.2bar의 압력으로 30분간 유지시키며, 실온까지 2시간 동안 천천히 냉각시켜 타겟과 백킹 튜브를 본딩하였다. In the same manner as in Example 1, the target and the backing tube were assembled. The temperature outside the target was then maintained at 160 ° C. and the 200 ° C. heat medium oil was circulated into the backing tube. At this time, the temperature of the gap between the target and the backing tube did not exceed 180 ° C. Thereafter, the indium melted at 175 ° C was filled between the target and the backing tube, the argon gas was maintained at a pressure of 0.2 bar for 30 minutes through the indium inlet, and slowly cooled to room temperature for 2 hours to bond the target and the backing tube.

본딩이 완료된 타겟을, 초음파 탐상기를 이용하여 감도 3dB, 펄스전압 190V, 펄스폭 29ns의 조건으로 본딩율을 검사하였으며, 99.01%의 본딩율을 확인하였다(도 5).
Bonding was completed, the bonding rate was examined using an ultrasonic flaw detector under conditions of sensitivity 3dB, pulse voltage 190V, and pulse width 29ns, and a bonding rate of 99.01% was confirmed (FIG. 5).

[비교예 1]Comparative Example 1

실시예 1과 동일하게, 타겟과 백킹 튜브를 조립하였다. 그 다음, 타겟 외부의 온도를 160℃ 이상으로 유지시키며, 내부 가열히터를 사용하여 백킹 튜브 내부를 170℃ 이상으로 가열하되, 180℃가 넘지 않도록 하였으며, 이후 175℃에서 용융시킨 인듐을 타겟과 백킹 튜브 사이 간극에 채우고 30분간 유지시키며, 실온까지 2시간 동안 천천히 냉각시켜 타겟과 백킹 튜브를 본딩하였다. In the same manner as in Example 1, the target and the backing tube were assembled. Then, the temperature outside the target is maintained at 160 ° C. or higher, and the inside of the backing tube is heated to 170 ° C. or higher using an internal heating heater, but does not exceed 180 ° C. Then, the indium melted at 175 ° C. is subjected to the backing with the target. The gap between the tubes was filled and held for 30 minutes, and the target and backing tubes were bonded by slowly cooling to room temperature for 2 hours.

본딩이 완료된 타겟을, 초음파 탐상기(ultrasonic inspection meter)를 이용하여 감도 3dB, 펄스전압 190V, 펄스폭 29ns의 조건으로 본딩율을 검사하였으며, 85.69%의 본딩율을 확인하였다(도 6).
Bonding was completed, the bonding rate was examined using an ultrasonic inspection meter under conditions of sensitivity 3dB, pulse voltage 190V, and pulse width 29ns, and a bonding rate of 85.69% was confirmed (FIG. 6).

[비교예 2]Comparative Example 2

실시예 1과 동일하게, 타겟과 백킹 튜브를 조립하였다. 그 다음, 타겟 외부의 온도를 160℃ 이상으로 유지하되, 180℃가 넘지 않도록 하였으며, 이후 175℃에서 용융시킨 인듐을 타겟과 백킹 튜브 사이에 채우고 30분간 유지시키며, 실온까지 2시간 동안 천천히 냉각시켰다. In the same manner as in Example 1, the target and the backing tube were assembled. Then, the temperature outside the target was maintained at 160 ° C. or higher but not higher than 180 ° C. Then, indium melted at 175 ° C. was filled between the target and the backing tube, held for 30 minutes, and slowly cooled to room temperature for 2 hours. .

본딩이 완료된 타겟을, 초음파 탐상기를 이용하여 감도 3dB, 펄스전압 190V, 펄스폭 29ns의 조건으로 본딩율을 검사하였으며, 85.30%의 본딩율을 확인하였다(도 7).Bonding was completed, the bonding rate was examined using an ultrasonic flaw detector under conditions of sensitivity 3dB, pulse voltage 190V, and pulse width 29ns, and the bonding rate of 85.30% was confirmed (FIG. 7).

도 4 내지 도 7은 실시예 1 내지 2 및 비교예 1 내지 2의 접합이 완료된 타겟을 초음파 탐상기로 분석한 결과이다. 실시예 1 내지 2의 분석 결과인 도 4 내지 도 5는, 비교예 1 내지 2의 분석 결과인 도 6 내지 도 7에 비해 붉은색으로 나타나는 부분이 훨씬 적다. 붉은색으로 나타나는 부분은 본딩재가 비어있거나 본딩재가 산화된 부분이다. 따라서, 본 발명에 따르면 타겟과 백킹 튜브 간의 접합 특성이 향상됨을 확인할 수 있다.4 to 7 show results of analyzing the targets of the bonding of Examples 1 to 2 and Comparative Examples 1 to 2 by using an ultrasonic flaw detector. 4 to 5, which are the analysis results of Examples 1 and 2, have much less red portions than those of FIGS. 6 to 7 which are the analysis results of Comparative Examples 1 and 2. The part appearing in red is the part where the bonding material is empty or the bonding material is oxidized. Therefore, according to the present invention, it can be seen that the bonding property between the target and the backing tube is improved.

Claims (5)

원통형 세라믹 타겟과 원통형 백킹 튜브(Backing Tube)로 이루어진 원통형 스퍼터링 타겟을 제조함에 있어서,
원통형 백킹 튜브의 외주에, 중공 원통형 세라믹 타겟을 배치하는 제1 단계;
상기 세라믹 타겟의 외부를 가온하면서, 상기 백킹 튜브 내부에 액체 열매체를 순환 또는 충진시켜, 세라믹 타겟과 백킹 튜브 사이 간극의 온도를 제어하는 제2 단계; 및
상기 세라믹 타겟과 상기 백킹 튜브 사이에 용융상태의 인듐을 충진하여 세라믹 타겟과 백킹 튜브를 접합시키는 제3 단계를 포함하며,
상기 제2 단계에서, 액체 열매체의 온도는 158~200℃인 것을 특징으로 하는, 원통형 스퍼터링 타겟의 제조 방법.
In manufacturing a cylindrical sputtering target consisting of a cylindrical ceramic target and a cylindrical backing tube,
Placing a hollow cylindrical ceramic target on an outer circumference of the cylindrical backing tube;
A second step of controlling a temperature of a gap between the ceramic target and the backing tube by circulating or filling a liquid heat medium inside the backing tube while warming the outside of the ceramic target; And
A third step of bonding the ceramic target and the backing tube by filling molten indium between the ceramic target and the backing tube,
In the second step, the temperature of the liquid heat medium is 158 ~ 200 ℃, characterized in that the manufacturing method of the cylindrical sputtering target.
청구항 1에 있어서,
상기 제2 단계에서, 원통형 세라믹 타겟의 외부는 150~200℃로 가온되는 것을 특징으로 하는, 원통형 스퍼터링 타겟의 제조 방법.
The method according to claim 1,
In the second step, characterized in that the outside of the cylindrical ceramic target is heated to 150 ~ 200 ℃, cylindrical sputtering target manufacturing method.
삭제delete 청구항 1에 있어서,
상기 제3 단계에서, 인듐을 158℃ 이상에서 용융하는 것을 특징으로 하는, 원통형 스퍼터링 타겟의 제조 방법.
The method according to claim 1,
In the third step, the indium is melted at 158 ℃ or more, characterized in that the manufacturing method of the cylindrical sputtering target.
청구항 1에 있어서,
상기 제3 단계에서, 인듐을 충진한 후, 0.1bar이상의 압력의 아르곤 가스를 추가로 주입하는 것을 특징으로 하는, 원통형 스퍼터링 타겟의 제조 방법.
The method according to claim 1,
In the third step, after filling with indium, further comprising argon gas of a pressure of 0.1bar or more, characterized in that the manufacturing method of the cylindrical sputtering target.
KR1020110137586A 2011-12-19 2011-12-19 Method for manufacturing a cylindrical sputtering target KR101240204B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020110137586A KR101240204B1 (en) 2011-12-19 2011-12-19 Method for manufacturing a cylindrical sputtering target
PCT/KR2012/011092 WO2013094973A1 (en) 2011-12-19 2012-12-18 Method for manufacturing cylindrical sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110137586A KR101240204B1 (en) 2011-12-19 2011-12-19 Method for manufacturing a cylindrical sputtering target

Publications (1)

Publication Number Publication Date
KR101240204B1 true KR101240204B1 (en) 2013-03-07

Family

ID=48181238

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110137586A KR101240204B1 (en) 2011-12-19 2011-12-19 Method for manufacturing a cylindrical sputtering target

Country Status (2)

Country Link
KR (1) KR101240204B1 (en)
WO (1) WO2013094973A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108546921A (en) * 2018-05-10 2018-09-18 苏州精美科光电材料有限公司 A kind of method in pipe target fitting control gap

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110312821B (en) * 2017-01-09 2022-08-23 应用材料公司 Method, apparatus and target for depositing material on a substrate in a vacuum deposition process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10502707A (en) * 1995-01-25 1998-03-10 アプライド コマツ テクノロジー株式会社 Autoclave bonding of sputtering target assembly
US20070074969A1 (en) * 2005-10-03 2007-04-05 Simpson Wayne R Very long cylindrical sputtering target and method for manufacturing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3618005B2 (en) * 1994-08-23 2005-02-09 三井金属鉱業株式会社 Manufacturing method of sputtering target for rotating cathode
KR101137912B1 (en) * 2009-11-18 2012-05-03 삼성코닝정밀소재 주식회사 Cylinderical sputtering target

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10502707A (en) * 1995-01-25 1998-03-10 アプライド コマツ テクノロジー株式会社 Autoclave bonding of sputtering target assembly
US20070074969A1 (en) * 2005-10-03 2007-04-05 Simpson Wayne R Very long cylindrical sputtering target and method for manufacturing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108546921A (en) * 2018-05-10 2018-09-18 苏州精美科光电材料有限公司 A kind of method in pipe target fitting control gap

Also Published As

Publication number Publication date
WO2013094973A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
US5830336A (en) Sputtering of lithium
TWI491750B (en) Cylindrical sputtering target and method for manufacturing the same
CN102016111B (en) Cylindrical sputtering target and method for manufacturing the same
KR101240204B1 (en) Method for manufacturing a cylindrical sputtering target
CN110747438B (en) Binding method of high-bonding-strength rotary target material
TW202309319A (en) Copper alloy sputtering target and manufacturing method thereof capable of preventing generation of particles that are undesirable in the industry during a sputtering process
CN109161842A (en) The manufacturing method of coating system and coated glass
US9127353B2 (en) Film-Forming apparatus and Film-Forming method
TW201411724A (en) Transparent conductive film and method for producing same
JPH02232358A (en) Production of transparent conductive film and apparatus for producing such film
JP5447240B2 (en) Magnetron sputtering apparatus and method for producing transparent conductive film
US9546421B2 (en) Method for forming film layer and substrate including the film layer
JP3542475B2 (en) Manufacturing method of membrane
KR102204230B1 (en) Apparatus for deposition of material on a substrate in a vacuum deposition process, a system for sputter deposition on a substrate, and a method for manufacturing an apparatus for deposition of material on a substrate
JPH08144052A (en) Ito sputtering target
JP2005076105A (en) Method for forming titanium oxynitride film
JP2010106330A (en) Method for manufacturing sputtering target, sputtering target, and sputtering apparatus
JP2012067331A (en) Film deposition method and sputtering apparatus
CN107614737A (en) Anodic protection cover
WO2021215953A1 (en) Method of ion-plasma application of corrosion-resistant film coatings on articles made from zirconium alloys
JPH02240250A (en) Conductive color filter substrate and coating method
JPH0273963A (en) Formation of thin film on low-temperature substrate
CN108588642A (en) Prevent plate and Pvd equipment
CN204080100U (en) Sputter cathode
KR101302480B1 (en) Bonding material for Sputtering Targets and Sputtering Targets using the same

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170202

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180111

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190214

Year of fee payment: 7