KR101236436B1 - High power anode material for lithium secondary battery and preparation method thereof - Google Patents

High power anode material for lithium secondary battery and preparation method thereof Download PDF

Info

Publication number
KR101236436B1
KR101236436B1 KR1020100095531A KR20100095531A KR101236436B1 KR 101236436 B1 KR101236436 B1 KR 101236436B1 KR 1020100095531 A KR1020100095531 A KR 1020100095531A KR 20100095531 A KR20100095531 A KR 20100095531A KR 101236436 B1 KR101236436 B1 KR 101236436B1
Authority
KR
South Korea
Prior art keywords
negative electrode
secondary battery
lithium secondary
electrode material
output negative
Prior art date
Application number
KR1020100095531A
Other languages
Korean (ko)
Other versions
KR20120033811A (en
Inventor
김형선
조병원
정지권
이형동
윤재돈
박성훈
Original Assignee
주식회사 모간
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 모간 filed Critical 주식회사 모간
Priority to KR1020100095531A priority Critical patent/KR101236436B1/en
Publication of KR20120033811A publication Critical patent/KR20120033811A/en
Application granted granted Critical
Publication of KR101236436B1 publication Critical patent/KR101236436B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬 카보네이트(Li2CO3), 바나듐 산화물(V2O3), 텅스텐 산화물(WO2) 및 몰리브덴 산화물 (MoO2)의 전구체 입자들을 혼합하고 이를 90mol%의 질소가스와 10mol%의 수소가스로 구성된 혼합 가스상에서 고상 반응(Solid-State Reaction)에 의해 열분해하는 방법으로 합성하는 리튬이차전지용 고출력 음극소재 및 그 제조방법에 관한 것으로서, 초기의 비가역용량과 계속되는 충/방전 반응에 의한 부피변화가 작기 때문에 고출력, 고용량, 고율 충/방전 특성을 가지며 싸이클 성능이 향상되는 리튬이차전지용 음극소재를 제공한다.The present invention mixes precursor particles of lithium carbonate (Li 2 CO 3 ), vanadium oxide (V 2 O 3 ), tungsten oxide (WO 2 ) and molybdenum oxide (MoO 2 ), which is 90 mol% nitrogen gas and 10 mol% The present invention relates to a high output negative electrode material for a lithium secondary battery synthesized by a method of pyrolysis by a solid-state reaction in a mixed gas phase composed of hydrogen gas, and to a volume of the initial irreversible capacity and the continuous charge / discharge reaction. Since the change is small, the present invention provides a negative electrode material for a lithium secondary battery having high output, high capacity, high rate charge / discharge characteristics, and improved cycle performance.

Description

리튬이차전지용 고출력 음극소재 및 그 제조방법{High power anode material for lithium secondary battery and preparation method thereof}High power anode material for lithium secondary battery and preparation method

본 발명은 리튬이차전지용 음극소재, 음극 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 리튬이차전지용 삼성분계 고출력 음극소재 및 그 제조방법에 관한 것이다.The present invention relates to a negative electrode material for a lithium secondary battery, a negative electrode and a method for manufacturing the same, and more particularly, to a samsung system high output negative electrode material for a lithium secondary battery and a method for manufacturing the same.

종래의 리튬이차전지용 산화물계 음극소재는 전구체인 리튬 카보네이트(Li2CO3)와 바나듐 산화물(V2O3) 등의 전구체를 이용하여 순수한 질소분위기 하에서 열분해하는 방법으로 제조하였다.Conventional lithium secondary battery oxide-based negative electrode material using a precursor such as lithium carbonate (Li 2 CO 3 ) and vanadium oxide (V 2 O 3 ) as a precursor was prepared by a method of pyrolysis under a pure nitrogen atmosphere.

이러한 리튬이차전지용 리튬/바나듐 산화물계 음극소재에 관한 종래의 기술은, Li2CO3, V2O5 등의 전구체와 (COOH)2 등의 유기산을 혼합하여 소성하는 방법(특허출원번호 10-2007-0120974, (주)삼성 에스디아이), LiNiVO4, LiMnVO4 등의 결정형 바나듐을 이용한 음극소재 제조방법(특허출원번호 10-2004-0056699, 한국전기연구원), Li0 .1-2.5M0 -0.5V0 .5-1.5O2 -2.5이며 M은 Al, Cr, Mo, Ti, W 및 Zr로 구성된 음극소재(특허번호 10-056537, (주)삼성 에스디아이), LiaMgbVOc(0.05<=a<=3, 0.12<=b<=2, 2<=2c-a-2b<=5)로 구성된 음극소재(일본공개 특허번호: 2002-216753, 스미토모), 리튬염, 바나듐염 등을 이용한 졸-겔 법에 의한 리튬바나듐 산화물계 음극소재 제조방법(특허출원번호 10-2007-0037983 ~ 0037988, (주)삼성 에스디아이), 리튬염, 바나듐염, 첨가물염 등의 수열용매와 혼합하여 활물질 전구체를 제조하는 방법 및 이를 환원하소하여 음극소재를 제조하는 방법(특허출원번호 10-2007-0073377, (주)삼성 에스디아이), LiaMgbVOc (0.05<=a<=3, 0.12<=b<=2, 2<=c-a-2b<=5) 형태의 음극소재 혹은 Ce0 .7Zr0 .3O1 .9 산화물을 포함하는 리튬바나듐 산화물계 음극소재 제조방법(미국특허 출원번호 2008/0241688), Li2CO3, V2O5 등의 전구체와 ((COOH)2) 유기산 전구체를 혼합하여 리튬바나듐 산화물계 음극소재를 제조하는 방법(미국특허 출원번호 2008/0182171), Li1 .1Ti0 .1V0 .9O2 리튬바나듐 산화물 음극소재 표면에 SiO2 등의 무기 산화물을 피복하는 표면처리 방법에 의한 제조방법(미국특허 출원번호 2008/0118840), 리튬바나듐 산화물과 ZrO2, Y2O3 등의 첨가제와 혼합하여 음극소재를 제조하는 방법(특허출원번호 10-2007-0120978, (주)삼성 에스디아이), 리튬바나듐 산화물에 탄소계 물질을 피복하는 표면처리 방법에 의한 제조방법(특허번호 10-08056123, (주)삼성 에스디아이) 등이 공지되어 있다.The conventional technology related to such a lithium / vanadium oxide negative electrode material for a lithium secondary battery is a method of mixing and firing precursors such as Li 2 CO 3 and V 2 O 5 and organic acids such as (COOH) 2 (Patent Application No. 10- 2007-0120974, Samsung SDI Co., Ltd., LiNiVO 4 , LiMnVO 4 and the like cathode material manufacturing method using crystalline vanadium (Patent Application No. 10-2004-0056699, Korea Electrotechnology Research Institute), Li 0 .1-2.5 M 0 -0.5 V 0 .5-1.5 O 2 -2.5, and M is Al, Cr, Mo, Ti, Zr and the negative electrode material consisting of W (Patent No. 10-056537, Ltd. Samsung SD children), Li a Mg b VO c (0.05 <= a <= 3, 0.12 <= b <= 2, 2 <= 2c-a-2b <= 5) anode material (Japanese Patent Laid-Open No. 2002-216753, Sumitomo), lithium salt, Hydrothermal method of manufacturing lithium vanadium oxide negative electrode material by sol-gel method using vanadium salt (patent application No. 10-2007-0037983 ~ 0037988, Samsung SDI Co., Ltd.), lithium salt, vanadium salt, additive salt Active material bulb by mixing with solvent Method for producing a method and by this reduction calcined for producing a cathode material (Patent Application No. 10-2007-0073377, Ltd. Samsung SD children), Li a Mg b VO c (0.05 <= a <= 3 , 0.12 <= b <= 2, 2 <= ca-2b <= 5) in the form of anode material, or Ce 0 .7 Zr 0 .3 O lithium vanadium oxide comprising at 0.9 Oxide-based anode material manufacturing method (US Patent Application No. 2008/0241688), Li 2 CO 3 , V 2 O 5 Precursor and ((COOH) 2) in a method of mixing a lithium vanadium oxide cathode material of the organic acid precursor (U.S. Patent Application No. 2008/0182171), Li 1 .1 Ti 0 .1 V 0 .9 O 2 Li SiO 2 on the surface of vanadium oxide anode material Manufacturing method by surface treatment method of coating inorganic oxide such as US Patent Application No. 2008/0118840, Method of manufacturing negative electrode material by mixing with lithium vanadium oxide and additives such as ZrO 2 , Y 2 O 3 (patent application No. 10-2007-0120978, Samsung SDI Co., Ltd., a manufacturing method (Patent No. 10-08056123, Samsung SDI Co., Ltd.) by a surface treatment method of coating a carbon-based material on lithium vanadium oxide, and the like are known. have.

그러나 이들 방법을 통해 제조된 종래의 음극소재들은 대체로 제조과정 중에서 Li3VO4 등의 불순물의 생성이 많고 바나듐의 산화수를 조절하기가 용이하지 않은 문제점이 있었다.However, conventional negative electrode materials manufactured through these methods are generally Li 3 VO 4 during the manufacturing process There is a problem in that generation of impurities, such as many, is difficult to control the oxidation number of vanadium.

따라서 그로 인한 초기 충/방전 용량 및 효율이 낮고 싸이클 성능이 감소되는 경향이 있기 때문에 이를 개선하기 위한 연구가 진행 중에 있다.Therefore, since the initial charge / discharge capacity and efficiency are low, and the cycle performance tends to be reduced, research to improve this is in progress.

본 발명은 위와 같은 종래의 리튬이차전지용 음극소재가 갖는 문제점을 해결하기 위한 것으로서, 리튬/바나듐 산화물계 음극소재의 상용화에 가장 큰 문제점으로 작용하는 초기의 낮은 충/방전 효율과 출력 특성 및 싸이클 성능을 향상시키고 불순물의 생성량을 낮춘 리튬이차전지용 고출력 음극소재 및 그 제조방법을 제공하는 것을 목적으로 한다.The present invention is to solve the problems of the conventional negative electrode material for lithium secondary batteries as described above, the initial low charge / discharge efficiency and output characteristics and cycle performance that is the biggest problem in the commercialization of lithium / vanadium oxide-based negative electrode material It is an object of the present invention to provide a high-output negative electrode material for a lithium secondary battery and a method for manufacturing the same, which improve the efficiency and lower the amount of impurities.

본 발명은 또한 리튬이차전지용 음극소재를 제조함에 있어서, 리튬 카보네이트(Li2CO3), 바나듐 산화물(V2O3)과 밀도가 높고 친환경적인 텅스텐 산화물(WO2), 몰리브덴 산화물(MoO2)의 금속산화물 입자를 혼합하고 이를 아르곤, 질소 등의 비활성가스와 수소가스가 혼합된 분위기 하에서 고상법에 의해 열분해하는 방법을 포함하는 리튬이차전지용 고출력 음극소재 및 그 제조방법을 제공하는 것을 목적으로 한다.The present invention also provides a lithium carbonate (Li 2 CO 3 ), vanadium oxide (V 2 O 3 ) and high density and environmentally friendly tungsten oxide (WO 2 ), molybdenum oxide (MoO 2 ) in manufacturing a negative electrode material for a lithium secondary battery It is an object of the present invention to provide a high-output negative electrode material for a lithium secondary battery comprising a method of mixing the metal oxide particles and thermally decomposing the same by an inert gas such as argon, nitrogen, and hydrogen gas by a solid phase method. .

본 발명은 또한 기존의 카본계 음극소재, 전이 금속계 음극소재, 리튬/바나듐 산화물계 등의 음극소재에 비해 전극 합제밀도가 향상된 삼성분계 음극소재를 이용하여 고출력, 고용량, 장수명의 특성을 갖는 리튬이차전지를 제공하는 것을 목적으로 한다.The present invention also uses lithium ternary negative electrode material with improved electrode mixture density compared to conventional carbon-based negative electrode material, transition metal negative electrode material, lithium / vanadium oxide-based negative electrode material, and has high power, high capacity, and long life. It is an object to provide a battery.

본 발명의 위와 같은 목적은, Li1 .1V0 .9-2x(M1)x(M2)xO2(x=0.01~0.09)의 혼합비를 가지는 리튬이차전지용 고출력 음극소재를 제공함으로써 달성된다.Above object of the present invention, Li 1 .1 V 0 .9-2x ( M1) x (M2) is achieved by providing a high-output lithium secondary battery negative electrode material having the mixture ratio of x O 2 (x = 0.01 ~ 0.09) .

본 발명에 의한 리튬이차전지용 음극소재의 제조에 있어서, 리튬 카보네이트(Li2CO3), 바나듐 산화물(V2O3), 금속성분1(M1), 금속성분2(M2)를 Li1 .1V0 .9-2x(M1)x(M2)xO2(x=0.01~0.09)의 비율로 혼합하는 단계; 혼합된 전구체의 평균입경이 100nm~20μm이 되도록 1시간 동안 200~300rpm으로 밀링하는 단계; 밀링된 전구체를 관형로에 장입시켜 비활성가스와 수소가스가 혼합된 가스상에서 400~1300℃의 온도로 5~20 시간 동안 열처리하는 단계; 및 열처리된 전구체를 냉각하고 분쇄한 후 200~270 메쉬의 체로 거르는 단계; 를 포함하여 구성되는 것을 특징으로 하는 리튬이차전지용 고출력 음극소재 제조방법이 제공된다.In the production of a lithium secondary battery negative electrode material according to the present invention, lithium carbonate (Li 2 CO 3), vanadium oxide (V 2 O 3), metal 1 (M1), metal 2 (M2) Li 1 .1 mixing in a ratio of V 0 .9-2x (M1) x ( M2) x O 2 (x = 0.01 ~ 0.09); Milling at 200-300 rpm for 1 hour so that the average particle diameter of the mixed precursor is 100 nm-20 μm; Charging the milled precursor to a tubular furnace and heat-treating at a temperature of 400-1300 ° C. for 5-20 hours in a gas mixture of inert gas and hydrogen gas; And cooling and pulverizing the heat-treated precursor, and then sieving through a sieve of 200 to 270 mesh. Provided is a method of manufacturing a high output negative electrode material for a lithium secondary battery, comprising a configuration.

위의 리튬이차전지용 고출력 음극소재 제조방법에 있어서, 열처리 단계는 1차로 450~550℃의 온도에서 6시간 진행하고, 2차로 1100℃까지 5℃/분의 속도로 온도를 올리면서 진행한다.In the above method of manufacturing a high-output negative electrode material for a lithium secondary battery, the heat treatment step proceeds first at a temperature of 450 ~ 550 ℃ 6 hours, and proceeds while raising the temperature at a rate of 5 ℃ / min to 1100 ℃ second.

위의 리튬이차전지용 고출력 음극소재 제조방법에 있어서, 열처리 단계에 앞서서 관형로에 90mol%의 비활성가스와 10mol%의 수소가스로 이루어진 혼합가스를 미리 1시간 이상 주입하여 비활성 분위기를 조성하는 단계를 더 포함할 수 있다.In the method of manufacturing a high-output negative electrode material for a lithium secondary battery, injecting a mixed gas of 90 mol% inert gas and 10 mol% hydrogen gas into the tubular furnace before the heat treatment step for 1 hour or more to create an inert atmosphere. It may include.

본 발명에 의해 제조된 음극소재를 이용한 리튬이차전지용 음극의 제조는, 본 발명에 의한 음극소재 80~90중량%, 결착제 5~10중량%, 도전재 5~10중량%를 혼합하는 단계; 이 혼합물에 그 중량의 1~2배의 NMP 유기용매를 첨가하여 1000~3000cP의 점도를 갖는 슬러리를 제조하는 단계; 제조된 슬러리를 혼합기에서 1000~3000rpm으로 30분 동안 회전시켜 교반하는 단계; 및 교반된 슬러리를 5~15μm 두께의 구리박막에 닥터블레이드 방법을 이용하여 30~200μm 두께로 도포하고 이를 70~90℃의 온도에서 건조하는 단계; 를 포함하는 방법에 의해 이루어진다.Preparation of the negative electrode for a lithium secondary battery using the negative electrode material prepared by the present invention, the negative electrode material according to the invention 80 to 90% by weight, the binder 5 to 10% by weight, the conductive material 5 to 10% by weight of mixing; Preparing a slurry having a viscosity of 1000 to 3000 cP by adding 1 to 2 times the NMP organic solvent to the mixture; Stirring the prepared slurry for 30 minutes at 1000 ~ 3000rpm in a mixer; And applying the stirred slurry to a copper thin film having a thickness of 5 to 15 μm using a doctor blade method at a thickness of 30 to 200 μm and drying it at a temperature of 70 to 90 ° C .; It is made by a method comprising a.

본 발명에 의한 리튬이차전지용 음극소재는 전극 합제밀도가 향상되어 기존의 음극소재에 비해 고출력, 고용량, 장수명의 특성을 가지며, 특히 초기의 충/방전 효율과 출력 특성이 높고 싸이클 성능이 향상되는 효과가 있다.The negative electrode material for a lithium secondary battery according to the present invention has the characteristics of high output, high capacity, and long life compared to the existing negative electrode material due to improved electrode mixture density, and particularly, the initial charge / discharge efficiency and output characteristics are high, and the cycle performance is improved. There is.

또한, 본 발명에 의한 리튬이차전지용 음극소재 제조방법은 종래의 방법에 비해 불순물이 적고 친환경적인 간단한 제조공정으로 이루어지기 때문에 적은 비용으로 성능이 우수한 대량의 리튬이차전지용 음극소재를 생산할 수 있는 효과가 있다.In addition, the method of manufacturing a negative electrode material for a lithium secondary battery according to the present invention has a small amount of impurities compared to the conventional method, and because it is made of a simple, environmentally friendly manufacturing process, it is effective to produce a large amount of anode material for excellent performance at a low cost. have.

도 1은 본 발명의 실시예 1~3에 의해 제조된 삼성분계 음극소재와 비교예에 의한 리튬/바나듐 산화물 음극소재의 XRD(X-ray diffraction) 분석결과를 그래프로 나타낸 그림이다.
도 2는 본 발명의 실시예 3에 의해 제조된 삼성분계 음극소재와 비교예에 의한 리튬/바나듐 산화물 음극소재의 SEM(Scanning electron microscopy) 분석결과를 나타낸 사진이다.
도 3A, 3B 및 3C는 본 발명의 실시예 1~3에 의해 제조된 삼성분계 음극과 리튬/바나듐 산화물 음극으로 구성된 전지의 전위/전류 순환특성곡선을 나타낸 그림이다.
도 4는 본 발명의 실시예 1~4에 의해 제조된 삼성분계 음극 및 비교예에 의한 리튬/바나듐 산화물 음극과 리튬/산화물 음극으로 구성된 전지의 저율 충/방전 전압특성곡선을 나타낸 그림이다.
도 5는 본 발명의 실시예 1~3에 의해 제조된 삼성분계 음극 및 비교예에 의한 리튬/바나듐 산화물 음극으로 구성된 전지의 고율 충/방전 전압특성곡선을 나타낸 그림이다.
도 6은 본 발명의 실시예 5에 의해 제조된 삼성분계 산화물계와 흑연 소재를 이용한 복합체 음극을 사용한 전지의 싸이클 특성을 나타낸 그림이다.
Figure 1 is a graph showing the X-ray diffraction (XRD) analysis results of the lithium-based negative electrode material prepared by Examples 1 to 3 and the lithium / vanadium oxide anode material according to a comparative example.
FIG. 2 is a photograph showing SEM (Scanning electron microscopy) analysis results of a lithium-based negative electrode material prepared in Example 3 of the present invention and a lithium / vanadium oxide negative electrode material according to a comparative example.
3A, 3B, and 3C are graphs showing potential / current circulating characteristic curves of a battery composed of a ternary negative electrode and a lithium / vanadium oxide negative electrode manufactured by Examples 1 to 3 of the present invention.
FIG. 4 is a graph showing a low-rate charge / discharge voltage characteristic curve of a battery composed of a lithium-based negative electrode prepared in Examples 1 to 4 and a lithium / vanadium oxide negative electrode and a lithium / oxide negative electrode according to a comparative example.
5 is a graph showing a high-rate charge / discharge voltage characteristic curve of a battery composed of a ternary negative electrode prepared in Examples 1 to 3 of the present invention and a lithium / vanadium oxide negative electrode according to a comparative example.
6 is a diagram showing the cycle characteristics of a battery using a composite anode using a ternary oxide based graphite material prepared in Example 5 of the present invention.

본 발명에 의한 음극소재는 Li1 .1V0 .9-2x(M1)x(M2)xO2의 화학식으로 표시되며, 여기서 x의 값은 0.01~0.09이고, M1과 M2는 마그네슘, 칼슘, 알루미늄, 티타늄, 구리, 크롬, 망간, 주석, 인듐, 아연, 갈륨, 게르마늄, 지르코늄, 몰리브덴, 안티몬, 텅스텐 중에서 선택되는 서로 다른 2개의 금속성분을 나타낸다.A negative electrode material according to the present invention is Li 1 .1 V 0 .9-2x (M1 ) x (M2) is represented by the following formula, where the value of x in the x O 2 is 0.01 ~ 0.09, M1 and M2 is Mg, Ca , Two different metals selected from aluminum, titanium, copper, chromium, manganese, tin, indium, zinc, gallium, germanium, zirconium, molybdenum, antimony and tungsten.

본 발명은 리튬카보네이트(Li2CO3), 바나듐산화물(V2O3), 텅스텐산화물(WO2), 몰리브덴산화물(MoO2) 등의 전구체 입자들을 다양한 화학양론비로 혼합하고 이를 아르곤, 질소 등의 비활성가스와 수소가스로 구성된 혼합가스를 이용하여 고온으로 열처리함으로써 Li1 .1V0 .9-2 xWxMoxO2(x=0.01~0.09)의 화합물로 제조된 리튬이차전지용 음극소재를 제공한다.The present invention lithium carbonate (Li 2 CO 3 ), vanadium oxide (V 2 O 3 ), Tungsten oxide (WO 2 ), Molybdenum Oxide (MoO 2 ) Precursors Mixing the particle ratio different stoichiometry and this by using an inert gas and a gas mixture consisting of hydrogen gas of argon, nitrogen or the like by heat treatment at a high temperature Li 1 .1 V 0 .9-2 x W x Mo x O 2 (x = It provides a negative electrode material for a lithium secondary battery made of a compound of 0.01 ~ 0.09).

이러한 리튬카보네이트, 바나듐 산화물, 텅스텐산화물, 몰리브덴 산화물 등의 입자를 화학양론적인 비율로 혼합한 후 이를 아르곤, 질소 등의 비활성가스와 수소가스로 구성된 혼합가스 분위기에서(아르곤과 질소는 각각 단독으로 수소와 혼합됨) 고온으로 열처리함으로써 제조된 리튬이차전지용 음극소재를 제조하는 방법 및 이 음극소재를 이용하여 리튬이차전지용 음극을 제조하는 방법에 대해 상세히 설명하면 다음과 같다.These particles such as lithium carbonate, vanadium oxide, tungsten oxide and molybdenum oxide are mixed in a stoichiometric ratio and then mixed in an atmosphere of a mixed gas composed of inert gas such as argon and nitrogen and hydrogen gas (argon and nitrogen are each independently hydrogen). And a method of manufacturing a negative electrode material for a lithium secondary battery manufactured by heat treatment at a high temperature and a method of manufacturing a negative electrode for a lithium secondary battery using the negative electrode material will be described in detail as follows.

먼저 리튬 카보네이트(Li2CO3), 바나듐 산화물(V2O3) 및 2종의 금속산화물의 전구체 입자를 Li1.1V0.9-2x(M1)x(M2)xO2의 화학식(여기서 x의 값은 0.01~0.09이고, M1과 M2는 마그네슘, 칼슘, 알루미늄, 티타늄, 구리, 크롬, 망간, 주석, 인듐, 아연, 갈륨, 게르마늄, 지르코늄, 몰리브덴, 안티몬, 텅스텐 중에서 각각 선택된 금속재료)으로 표시된 화학양론적인 비율로 혼합하고, 이를 볼밀에서 250rpm의 조건으로 1시간 동안 지르코니아볼을 이용하여 평균입경이 100nm~20μm이 되도록 밀링하고, 밀링하여 혼합된 전구체를 알루미나 도가니에 옮긴 후 지름 10cm의 관형로(tubular furnace)에 장입시키고 전구체 혼합물에 대하여 아르곤, 질소 등의 비활성가스와 수소가스로 구성된 혼합가스 분위기에서 고온으로 열처리한다.First, precursor particles of lithium carbonate (Li 2 CO 3 ), vanadium oxide (V 2 O 3 ), and two metal oxides were prepared using the formula of Li 1.1 V 0.9-2x (M1) x (M2) x O 2 , wherein Value is 0.01 ~ 0.09, and M1 and M2 are each selected from magnesium, calcium, aluminum, titanium, copper, chromium, manganese, tin, indium, zinc, gallium, germanium, zirconium, molybdenum, antimony and tungsten) Mix in a stoichiometric ratio, mill the ball to an average particle diameter of 100nm ~ 20μm using a zirconia ball for 1 hour at 250rpm in a ball mill, transfer the milled mixed precursor to an alumina crucible It is charged in a tubular furnace and heat-treated at high temperature in a mixed gas atmosphere composed of inert gas such as argon and nitrogen and hydrogen gas.

이때, 관형로에는 열처리를 하기 전에 미리 1시간 동안 아르곤, 질소와 같은 90mol%의 비활성가스와 10mol%의 수소가스로 구성된 혼합가스를 주입함으로써 비활성 분위기를 조성한다.At this time, the tubular furnace is inert atmosphere by injecting a mixed gas consisting of 90 mol% inert gas such as argon, nitrogen and 10 mol% hydrogen gas for 1 hour before heat treatment.

이것은 비활성 분위기를 미리 조성하여 관형로에 남아있는 잔류 산소를 제거함으로써 열처리시 전구체의 산화를 방지하고 불순물의 생성을 방지하기 위함이다.This is to prevent the oxidation of the precursor and the generation of impurities during the heat treatment by forming an inert atmosphere in advance to remove residual oxygen remaining in the tubular furnace.

열처리 공정의 온도와 시간은 400~1,300℃, 5~20 시간으로 하며, 이는 바나듐의 산화수가 과도하게 변함으로써 발생되는 불순물의 생성을 방지하기 위한 온도 및 시간 조건이다.Temperature and time of the heat treatment process is 400 ~ 1,300 ℃, 5 ~ 20 hours, which is a temperature and time conditions for preventing the generation of impurities generated by excessively changing the oxidation number of vanadium.

이러한 열처리 공정은 우선 약 500℃에서 6시간 정도 열처리를 한 후, 이후에 5℃/분의 속도로 1,100℃까지 점차적으로 온도를 올리는 2단계 열 처리법이 바람직하다.The heat treatment is preferably a two-stage heat treatment method in which the heat treatment is first performed at about 500 ° C. for about 6 hours, and then the temperature is gradually raised to 1,100 ° C. at a rate of 5 ° C./min.

다음, 열처리된 전구체 혼합물을 냉각한 후 막자사발로 분쇄하고 200~270 메쉬(mesh)의 체로 걸러 크기가 균일화된 리튬이차전지용 음극소재를 제조한다.Next, after cooling the heat-treated precursor mixture is pulverized with a mortar and sifted through a sieve of 200 ~ 270 mesh (mesh) to prepare a negative electrode material for a lithium secondary battery uniform size.

그리고, 이러한 리튬이차전지용 음극소재에 결착제(binder)와 도전재를 혼합 교반시킨다. 이때 음극소재의 비율은 80~90중량%를 취하고, 결착제의 비율은 5~10중량%, 도전재의 비율은 5~10중량%로 하며, 가장 이상적인 혼합비율은 음극소재 90중량%, 결착제 5중량%, 도전재 5중량%이다.In addition, the binder and the conductive material are mixed and stirred in the negative electrode material for the lithium secondary battery. At this time, the proportion of the negative electrode material is 80 to 90% by weight, the ratio of the binder is 5 to 10% by weight, the ratio of the conductive material is 5 to 10% by weight, and the most ideal mixing ratio is 90% by weight of the negative electrode material, the binder 5 weight% and 5 weight% of electrically conductive materials.

결착제와 도전재는 2차전지에 통상적으로 사용되는 모든 물질이 사용될 수 있으며, 결착제는 유기용매인 N-메틸-피리돈(NMP)에 폴리비닐리덴 플루오라이드(PVdF)가 5중량%로 포함되어 있는 고분자 용액을 사용하고, 도전재는 카본 블랙(denka black)을 사용하는 것이 바람직하다.As the binder and the conductive material, all materials conventionally used in secondary batteries can be used. The binder includes 5% by weight of polyvinylidene fluoride (PVdF) in N-methyl-pyridone (NMP), an organic solvent. It is preferable to use the polymer solution, and carbon black (denka black) as the conductive material.

이때 적절한 점도(viscosity), 즉 1,000~3,000 centi-poise의 점도를 갖는 슬러리를 제조하기 위해 순수한 NMP 유기용매를 혼합물 중량에 대하여 1~2배의 양을 첨가한다.In this case, to prepare a slurry having a suitable viscosity, that is, a viscosity of 1,000 to 3,000 centi-poise, a pure NMP organic solvent is added in an amount of 1 to 2 times the weight of the mixture.

또한, 제조된 슬러리를 균질하게 혼합하기 위하여 혼합기(homogenizer)를 사용하여 1,000~3,000rpm의 회전속도로 30분간 고속 교반시키고, 균질화된 슬러리를 음극의 집전체로 사용되는 10μm 두께의 구리박막(copper foil)에 닥터블레이드 방법을 이용하여 일정한 두께, 예컨대 30~200μm 두께로 도포하고 이를 70~90oC의 온도에서 건조하여 리튬이차전지용 음극을 제조한다.In addition, in order to homogeneously mix the prepared slurry using a homogenizer (homogenizer) at a high speed of stirring for 30 minutes at a rotation speed of 1,000 ~ 3000rpm, 10μm thick copper thin film (copper) used as a current collector of the negative electrode Using a doctor blade method on a foil) to a predetermined thickness, for example, 30 ~ 200μm thickness and dried at a temperature of 70 ~ 90 ° C to prepare a negative electrode for a lithium secondary battery.

이하 본 발명의 이해를 돕기 위해 바람직한 실시예와 비교예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 아래 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples.

아래 실시예에서 M1은 텅스텐(W)을 선택하였고, M2는 몰리브덴(Mo)을 선택하였다.In the examples below, M1 selected tungsten (W) and M2 selected molybdenum (Mo).

리튬 카보네이트(Li2CO3), 바나듐 산화물(V2O3), 텅스텐 산화물(WO2), 몰리브덴 산화물(MoO2)을 Li1.1V0.85W0.025Mo0.025O2의 혼합비로 혼합하여 기계적 밀링을 실시하고, 이 혼합물을 도가니에 담아 관형로에 넣고 90mol%의 질소가스와 10mol%의 수소가스로 구성된 혼합가스 분위기에서 약 500℃의 온도로 6시간 동안 1차 열처리하여 자연적으로 냉각하고, 다시 같은 분위기에서 약 1,100℃의 온도로 8시간 동안 2차 열처리하여 냉각하였다.Mechanical milling was performed by mixing lithium carbonate (Li 2 CO 3 ), vanadium oxide (V 2 O 3 ), tungsten oxide (WO 2 ), and molybdenum oxide (MoO 2 ) in a mixing ratio of Li 1.1 V 0.85 W 0.025 Mo 0.025 O 2 . The mixture was placed in a crucible, placed in a tubular furnace, and first cooled by natural heat treatment at a temperature of about 500 ° C. for 6 hours in a mixed gas atmosphere composed of 90 mol% nitrogen gas and 10 mol% hydrogen gas. It was cooled by secondary heat treatment for 8 hours at a temperature of about 1,100 ℃ in the atmosphere.

이때, 열처리 분위기는 혼합물의 산화를 방지하기 위해 관형로에 열처리하기 전에 미리 1시간 이상 90mol%의 질소가스와 수소가스가 혼합된 가스를 주입시켜 산소를 제거하였다.At this time, in order to prevent oxidation of the mixture, oxygen is removed by injecting a gas mixed with 90 mol% of nitrogen gas and hydrogen gas for at least 1 hour before heat treatment to the tubular furnace.

이후, 열처리된 혼합물을 막자사발에서 분쇄하고 200메쉬의 체로 걸러 입자의 크기가 균일화된 음극소재를 제조하였다.Thereafter, the heat-treated mixture was ground in a mortar and sieved through a 200 mesh sieve to prepare a negative electrode material having a uniform particle size.

이와 같이 제조된 삼성분계 음극소재 Li1 .1V0 .85W0 .025Mo0 .025O2 4.5g에 도전재인 카본 블랙 0.25g, 결착제인 5% PVdF 용액 5g을 혼합하고 NMP 5g을 더 첨가하여 구리박막에 도포하기 쉬운 2000cP의 점도를 갖는 슬러리를 제조하고, 이 슬러리를 혼합기에서 2000rpm의 고속으로 30분간 교반하였다.The thus produced ternary cathode material Li 1 .1 V 0 .85 W 0 .025 Mo 0 .025 O 2 To 4.5 g, 0.25 g of carbon black as a conductive material and 5 g of a 5% PVdF solution as a binder were mixed and 5 g of NMP was further added to prepare a slurry having a viscosity of 2000 cP, which was easy to apply to a copper thin film, and the slurry was mixed at a high speed of 2000 rpm in a mixer. Stirred for 30 minutes.

이후, 10μm 두께의 구리박막에 닥터블레이드 방법을 이용하여 80μm의 두께로 도포하고 이를 약 80℃에서 24시간 동안 건조하여 리튬이차전지용 음극을 제조하였다.Subsequently, a thickness of 80 μm was applied to the copper thin film having a thickness of 10 μm using the doctor blade method, and dried at about 80 ° C. for 24 hours to prepare a negative electrode for a lithium secondary battery.

이와 같이 제조된 리튬이차전지용 음극을 일정한 크기로 펀칭하여 리튬 금속전극과 교대로 적층하여 구성하고, 두 전극 사이에 폴리프로필렌(PP) 격리막을 넣으며, 에틸 카보네이트와 디에틸 카보네이트가 3:7의 부피비로 혼합된 유기용매(EC/DEC 용액)에 1M LiPF6 용해된 전해액을 주입하고, CR2032 코인셀을 이용한 전지를 조립하였다.The lithium secondary battery negative electrode thus prepared was punched to a predetermined size and laminated alternately with a lithium metal electrode. A polypropylene (PP) separator was inserted between the two electrodes, and the volume ratio of ethyl carbonate and diethyl carbonate was 3: 7. 1 M LiPF 6 was added to the organic solvent (EC / DEC solution) The dissolved electrolyte solution was injected, and the battery using the CR2032 coin cell was assembled.

실시예 1과 동일한 조건의 전구체들을 이용하고 화학양론비는 다르게 하여 동일한 열처리 조건으로 Li1 .1V0 .8W0 .05Mo0 .05O2의 음극소재를 제조하였다.Of Example 1, and the stoichiometric use of chemical precursors under the same conditions to prepare a ratio Li 1 .1 V 0 .8 W 0 .05 0 .05 O 2 cathode material of Mo with the same heat treatment conditions with different.

균일화된 음극소재 Li1 .1V0 .8W0 .05Mo0 .05O2 4.5g, 도전재인 카본 블랙 0.25g, 결착제인 5% PVdF 용액 5g을 혼합하고 NMP 5g을 더 첨가하여 구리박막에 도포하고 실시예 1과 동일한 방법으로 전극을 제조하고 전지를 조립하였다.A uniform cathode material Li 1 .1 V 0 .8 W 0 .05 Mo 0 .05 O 2 by mixing 4.5g, re-conductive carbon black 0.25g, 5% binder PVdF solution, and further adding the NMP 5g 5g copper film The electrode was prepared in the same manner as in Example 1, and the battery was assembled.

즉, 음극소재가 Li1 .1V0 .8W0 .05Mo0 .05O2의 혼합비를 가지는 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였다.That is, was carried out in the same manner as in Example 1 except that the negative electrode material having the mixing ratio of the Li 1 .1 V 0 .8 W 0 .05 Mo 0 .05 O 2.

실시예 1과 동일한 조건의 전구체들을 이용하고 화학양론비는 다르게 하여 동일한 열처리 조건으로 Li1 .1V0 .75W0 .075Mo0 .075O2의 음극소재를 제조하였다.Of Example 1, and the stoichiometric use of chemical precursors under the same conditions to prepare a ratio Li 1 .1 0 V cathode material of .75 W 0 .075 Mo 0 .075 O 2 in the same heat treatment conditions with different.

균일화된 음극소재 Li1 .1V0 .75W0 .075Mo0 .075O2 4.5g, 도전재인 카본 블랙 0.25g, 결착제인 5% PVdF 용액 5g을 혼합하고 NMP 5g을 더 첨가하여 구리박막에 도포하고 실시예 1과 동일한 방법으로 전극을 제조하고 전지를 조립하였다.A uniform cathode material Li 1 .1 V 0 .75 W 0 .075 Mo 0 .075 O 2 by mixing 4.5g, re-conductive carbon black 0.25g, 5% binder PVdF solution, and further adding the NMP 5g 5g copper film The electrode was prepared in the same manner as in Example 1, and the battery was assembled.

즉, 음극소재가 Li1 .1V0 .75W0 .075Mo0 .075O2의 혼합비를 가지는 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였다.That is, was carried out in the same manner as in Example 1 except that the negative electrode material having the mixing ratio of the Li 1 .1 V 0 .75 W 0 .075 Mo 0 .075 O 2.

실시예 1과 동일한 조건의 전구체들을 이용하고 화학양론비는 다르게 하여 동일한 열처리 조건으로 Li1 .1V0 .7W0 .1Mo0 .1O2의 음극소재를 제조하였다.Of Example 1, and the stoichiometric use of chemical precursors under the same conditions to prepare a ratio Li 1 .1 V 0 .7 W 0 .1 0 .1 O 2 cathode material of Mo with the same heat treatment conditions with different.

균일화된 음극소재 Li1 .1V0 .7W0 .1Mo0 .1O2 4.5g, 도전재인 카본 블랙 0.25g, 결착제인 5% PVdF 용액 5g을 혼합하고 NMP 5g을 더 첨가하여 구리박막에 도포하고 실시예 1과 동일한 방법으로 전극을 제조하고 전지를 조립하였다.A uniform cathode material Li 1 .1 V 0 .7 W 0 .1 Mo 0 .1 O 2 by mixing 4.5g, re-conductive carbon black 0.25g, 5% binder PVdF solution, and further adding the NMP 5g 5g copper film The electrode was prepared in the same manner as in Example 1, and the battery was assembled.

즉, 음극소재가 Li1 .1V0 .7W0 .1Mo0 .1O2의 혼합비를 가지는 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였다.That is, except that the negative electrode material having the mixing ratio of the Li 1 .1 V 0 .7 W 0 .1 Mo 0 .1 O 2 was performed in the same manner as in Example 1.

실시예 1~3에 의해 제조된 삼성분계 음극소재에 흑연을 1:4의 중량비로 혼합하여 복합체 음극을 제조하였다. The composite negative electrode was prepared by mixing graphite in a samsung based negative electrode material prepared in Examples 1 to 3 in a weight ratio of 1: 4.

복합체 음극소재 4.5g, 도전재인 카본 블랙 0.25g, 결착제인 5% PVdF 용액 5g을 혼합하고 NMP 5g을 더 첨가하여 구리박막에 도포하고 실시예 1과 동일한 방법으로 전극을 제조하고 전지를 조립하였다.4.5 g of the composite negative electrode material, 0.25 g of carbon black as a conductive material, and 5 g of a 5% PVdF solution as a binder were mixed, and 5 g of NMP was further added to the copper thin film. The electrode was manufactured in the same manner as in Example 1, and the battery was assembled.

[비교예][Comparative Example]

리튬 카보네이트(Li2CO3), 바나듐 산화물(V2O3) 전구체를 Li1 .1V0 .9O2의 혼합비로 혼합하여 기계적 밀링을 실시하고 실시예 1과 동일한 방법으로 Li1 .1V0 .9O2를 제조하였다.Lithium carbonate (Li 2 CO 3), vanadium oxide (V 2 O 3) mixing the precursor with the mixing ratio of the Li 1 .1 V 0 .9 O 2 subjected to mechanical milling, and the same method as in Example 1 Li 1 .1 a V 0 .9 O 2 was prepared.

제조된 Li1 .1V0 .9O2 음극소재에 대하여 실시예 1과 동일한 조건으로 전극을 제조하고 전지를 조립하였다.Manufactured Li 1 .1 V 0 .9 O 2 An electrode was manufactured under the same conditions as in Example 1 with respect to the negative electrode material, and a battery was assembled.

이러한 실시예 1~5 및 비교예에서 제조한 음극소재, 음극 및 전지를 이용하여 전지의 충/방전 전압특성과 싸이클 성능을 평가하고 그 결과를 도 1 내지 도 6에 나타내었다.The charge / discharge voltage characteristics and the cycle performance of the battery were evaluated using the negative electrode material, the negative electrode, and the battery prepared in Examples 1 to 5 and Comparative Examples, and the results are shown in FIGS. 1 to 6.

도 1은 본 발명의 실시예 1~3에 의해 제조된 삼성분계 음극소재와 비교예에 의한 리튬/바나듐 산화물 음극소재의 XRD(X-ray diffraction) 분석결과를 패턴으로 나타낸 그림이고, 도 2는 본 발명의 실시예 3에 의해 제조된 삼성분계 음극소재와 비교예에 의한 리튬/바나듐 산화물 음극소재의 SEM(Scanning electron microscopy) 분석결과를 나타낸 사진이고, 도 3A, 3B 및 3C는 본 발명의 실시예 1~3에 의해 제조된 삼성분계 음극과 리튬 금속전극으로 구성된 전지의 전위/전류 순환특성곡선을 나타낸 그림이고, 도 4는 본 발명의 실시예 1~4에 의해 제조된 삼성분계 음극 및 비교예에 의한 리튬/바나듐 산화물 음극과 리튬 금속전극으로 구성된 전지의 저율 충/방전 전압특성곡선을 나타낸 그림이고, 도 5는 본 발명의 실시예 1~3에 의해 제조된 삼성분계 음극 및 비교예에 의한 리튬/바나듐 산화물 음극과 리튬 금속전극으로 구성된 전지의 고율 충/방전 전압특성곡선을 나타낸 그림이고, 도 6은 본 발명의 실시예 5에 의해 제조된 삼성분계 산화물계와 흑연 소재를 이용한 복합체 음극과 리튬 금속전극으로 구성된 전지의 싸이클 특성을 나타낸 그림이다.1 is a view showing a pattern of XRD (X-ray diffraction) analysis results of a lithium-based negative electrode material prepared in Examples 1 to 3 of the present invention and a lithium / vanadium oxide negative electrode material according to a comparative example, and FIG. SEM (Scanning electron microscopy) analysis results of the lithium-based negative electrode material prepared in Example 3 of the present invention and the lithium / vanadium oxide negative electrode material according to the comparative example is a photograph, Figures 3A, 3B and 3C Figure 4 is a graph showing the potential / current circulating characteristic curve of a battery composed of a ternary negative electrode prepared by Examples 1 to 3 and a lithium metal electrode, and FIG. 4 is a ternary negative electrode prepared by Examples 1 to 4 of the present invention and a comparison The figure shows a low-rate charge / discharge voltage characteristic curve of a battery composed of a lithium / vanadium oxide negative electrode and a lithium metal electrode according to an example, and FIG. 5 is a ternary negative electrode prepared in Examples 1 to 3 of the present invention and a comparative example. Caused by lithium / Figure 6 shows a high-rate charge / discharge voltage characteristic curve of a battery composed of a vanadium oxide cathode and a lithium metal electrode, and FIG. 6 shows a composite anode and a lithium metal using a ternary oxide based graphite material prepared in Example 5 of the present invention. The figure shows the cycle characteristics of a battery composed of electrodes.

도 1에 나타낸 바와 같이, 본 발명의 실시예 1~3에 의한 음극소재가 텅스텐과 몰리브덴의 도핑으로 인해 음극소재의 주 피크의 축이 비교예의 음극소재와 비교하여 차이를 나타내고 있으며, 특히 일부 도핑되지 않은 텅스텐과 몰리브덴에 해당되는 각각의 피크가 관찰되고 있음을 알 수 있다.As shown in FIG. 1, due to the doping of tungsten and molybdenum in the negative electrode material according to Examples 1 to 3 of the present invention, the axis of the main peak of the negative electrode material showed a difference compared with that of the negative electrode material of the comparative example, and in particular, some doping It can be seen that the respective peaks corresponding to the non-tungsten and molybdenum are observed.

도 2에 나타낸 바와 같이, 본 발명의 실시예 3에 의한 삼성분계 음극소재는 비교예 보다 더 구형의 모습을 나타내고 있고, 그 직경이 평균 1~3μm의 크기를 갖는 것으로서 실시예 3의 음극소재가 비교예의 음극소재 보다 전극 제조시에 전극합제 밀도의 증가 및 충/방전 속도 향상을 기대할 수 있다.As shown in FIG. 2, the Samsung negative electrode material according to Example 3 of the present invention exhibits a more spherical shape than the comparative example, and the diameter of the negative electrode material of Example 3 is about 1 to 3 μm. An increase in the electrode mixture density and an improvement in the charge / discharge rate can be expected in manufacturing the electrode rather than the negative electrode material of the comparative example.

도 3A, 3B 및 3C에 나타낸 바와 같이, 본 발명의 실시예 1~3에 의한 음극소재와 리튬 금속전극으로 구성된 전지는 1번 싸이클에서 0.3~0.5V의 전위부근에서 비가역적인 반응이 나타났으나 이러한 비가역적인 반응이 2번째 싸이클부터는 나타나지 않았고 3,4,5번째 싸이클이 진행됨에 따라 충/방전 반응이 가역적으로 더 잘 나타나고 있음을 알 수 있다.As shown in FIGS. 3A, 3B, and 3C, the battery composed of the negative electrode material and the lithium metal electrode according to Examples 1 to 3 of the present invention showed an irreversible reaction near the potential of 0.3 to 0.5 V in the first cycle. This irreversible reaction did not appear from the second cycle, and as the third, fourth, and fifth cycles progressed, it can be seen that the charge / discharge reaction was more reversible.

특히 실시예 3의 경우 충/방전 용량이 다른 실시예들에 비해 더 큰 것을 알 수 있어서 실시예 3의 음극소재가 바람직한 혼합비임을 알 수 있다.In particular, in the case of Example 3 it can be seen that the charge / discharge capacity is larger than the other embodiments it can be seen that the negative electrode material of Example 3 is a preferred mixing ratio.

도 4에 나타낸 바와 같이, 본 발명의 실시예 1~3에 의한 음극소재와 리튬 금속전극으로 구성된 전지는 0.1C의 저율에서의 충/방전 전압특성을 측정한 결과 초기 싸이클 효율이 약 70%로서 비교예의 전지 보다 250mAh/g 이상 높은 비용량을 가지고 있음을 알 수 있다.As shown in FIG. 4, the battery composed of the negative electrode material and the lithium metal electrode according to Examples 1 to 3 of the present invention had an initial cycle efficiency of about 70% as a result of measuring charge / discharge voltage characteristics at a low rate of 0.1C. It can be seen that it has a specific capacity higher than 250 mAh / g higher than the battery of the comparative example.

이때, 본 발명의 실시예 4에 의한 전지는 실시예 1~3 및 비교예와 비교해 볼 때 평탄 전위가 없는 다른 형태의 충/방전 전압 특성곡선을 나타내고 있으므로 본 발명에 의한 음극소재에 도핑되는 W 및 Mo와 같은 금속재료의 최대 몰비는 0.1 이내로 조절되어야 함을 알 수 있다.In this case, the battery according to Example 4 of the present invention shows a different type of charge / discharge voltage characteristic curve without a flat potential as compared with Examples 1 to 3 and Comparative Examples, so that the battery is doped with the negative electrode material according to the present invention. And it can be seen that the maximum molar ratio of the metal material such as Mo should be adjusted to within 0.1.

도 5에 도시된 바와 같이, 본 발명의 실시예 1~3에 의한 전지는 1C와 5C의 고율에서의 충/방전 전압특성을 측정한 결과 비교예의 전지 보다 전반적으로 높은 비용량을 나타내고 있음을 알 수 있고, 특히 실시예 3의 경우 5C의 고율 충/방전 속도에서도 150mAh/g 이상의 비용량을 가지고 있어 가장 우수한 성능을 나타냄을 알 수 있다.As shown in Figure 5, the battery according to Examples 1 to 3 of the present invention, the charge / discharge voltage characteristics at high rates of 1C and 5C measured the overall specific capacity higher than the battery of the comparative example In particular, in the case of Example 3 has a specific capacity of 150mAh / g or more even at a high rate charge / discharge rate of 5C it can be seen that the best performance.

도 6에 도시된 바와 같이, 본 발명의 실시예 5에 의한 전지는 0.1C의 속도로 0.01~2V 전위구간에서 실시된 싸이클 특성을 나타낸 것으로서, 실시예 3의 삼성분계 음극소재에 천연흑연을 혼합한 복합체 음극소재가 평균 충/방전 용량이 330mAh/g으로 가장 높은 비용량을 나타냈으며, 2번째 싸이클부터는 모든 복합체 음극들의 싸이클 효율이 99% 이상의 우수한 성능을 나타내고 있음을 알 수 있다.As shown in FIG. 6, the battery according to Example 5 of the present invention exhibits cycle characteristics conducted at a potential range of 0.01 to 2 V at a speed of 0.1 C, and mixed natural graphite with the ternary negative electrode material of Example 3 One composite anode material showed the highest specific capacity with an average charge / discharge capacity of 330mAh / g, and from the second cycle, the cycle efficiency of all the composite anodes showed excellent performance of 99% or more.

위의 실시예 외에 여러 가지로 실험한 결과 Li1 .1V0 .9-2x(M1)x(M2)xO2(x=0.01~0.09)를 가지는 음극소재가 적합하고, 금속성분으로서 마그네슘, 칼슘, 알루미늄, 티타늄, 구리, 크롬, 망간, 주석, 인듐, 아연, 갈륨, 게르마늄, 지르코늄, 몰리브덴, 안티몬, 텅스텐을 사용할 수 있음이 확인되었다.After addition to the above embodiment experimenting with different magnesium as Li 1 .1 V 0 .9-2x (M1 ) x (M2) x O 2 (x = 0.01 ~ 0.09) for the negative electrode material is suitable, and a metal component having It has been found that calcium, aluminum, titanium, copper, chromium, manganese, tin, indium, zinc, gallium, germanium, zirconium, molybdenum, antimony and tungsten can be used.

위와 같이 본 발명을 특정 실시예를 들어 설명하였으나 본 발명의 범위가 반드시 이에 한정하는 것은 아니며, 본 발명의 기술적 사상의 범주 내에서는 얼마든지 수정 및 변형이 가능하다.While the present invention has been described with reference to specific embodiments, the scope of the present invention is not necessarily limited thereto, and modifications and variations may be made without departing from the scope of the technical idea of the present invention.

Claims (20)

Li1.1V0.9-2x(W)x(Mo)xO2(x=0.01~0.09)의 혼합비를 가지는 리튬이차전지용 고출력 음극소재.Li 1.1 V 0.9-2x (W) x (Mo) x O 2 (x = 0.01 ~ 0.09) A high output negative electrode material for a lithium secondary battery having a mixing ratio. 삭제delete 제1항에 있어서,
평균입경이 100nm~20μm인 것을 특징으로 하는 리튬이차전지용 고출력 음극소재.
The method of claim 1,
A high output negative electrode material for a lithium secondary battery, characterized in that the average particle diameter is 100nm ~ 20μm.
제1항에 있어서,
흑연이 더 포함되는 것을 특징으로 하는 리튬이차전지용 고출력 음극소재.
The method of claim 1,
High-output negative electrode material for a lithium secondary battery, characterized in that it further comprises graphite.
제1항의 음극소재의 음극을 포함하는 리튬이차전지.Lithium secondary battery comprising a negative electrode of the negative electrode material of claim 1. 제4항의 음극소재의 음극을 포함하는 리튬이차전지.Lithium secondary battery comprising a negative electrode of the negative electrode material of claim 4. 리튬 카보네이트(Li2CO3), 바나듐 산화물(V2O3), 금속성분1(M1), 금속성분2(M2)를 Li1.1V0.9-2x(M1)x(M2)xO2(x=0.01~0.09)의 비율[위에서 금속성분1(M1), 금속성분2(M2)는 마그네슘, 칼슘, 알루미늄, 티타늄, 구리, 크롬, 망간, 주석, 인듐, 아연, 갈륨, 게르마늄, 지르코늄, 몰리브덴, 안티몬, 텅스텐 중에서 선택되는 서로 다른 2개의 금속성분임]로 혼합하는 단계;
혼합된 전구체의 평균입경이 100nm~20μm이 되도록 1시간 동안 200~300rpm으로 밀링하는 단계;
밀링된 전구체를 관형로에 장입시켜 비활성가스와 수소가스가 혼합된 가스상에서 400~1300℃의 온도로 5~20 시간 동안 열처리하는 단계; 및
열처리된 전구체를 냉각하고 분쇄한 후 200~270 메쉬의 체로 거르는 단계; 를 포함하여 구성되는 것을 특징으로 하는 리튬이차전지용 고출력 음극소재 제조방법.
Lithium carbonate (Li 2 CO 3 ), vanadium oxide (V 2 O 3 ), metal component 1 (M1), metal component 2 (M2) Li 1.1 V 0.9-2x (M1) x (M2) x O 2 (x = 0.01 ~ 0.09) ratio (above the metal component 1 (M1), metal component 2 (M2) is magnesium, calcium, aluminum, titanium, copper, chromium, manganese, tin, indium, zinc, gallium, germanium, zirconium, molybdenum , Antimony, tungsten, and two different metal components selected from [2];
Milling at 200-300 rpm for 1 hour so that the average particle diameter of the mixed precursor is 100 nm-20 μm;
Charging the milled precursor to a tubular furnace and heat-treating at a temperature of 400-1300 ° C. for 5-20 hours in a gas mixture of inert gas and hydrogen gas; And
Cooling and pulverizing the heat-treated precursor and then sieving through a sieve of 200 to 270 mesh; Method for producing a high output negative electrode material for a lithium secondary battery, characterized in that comprises a.
삭제delete 제7항에 있어서,
상기 금속성분1(M1), 금속성분2(M2)는 각각 W와 MO인 것을 특징으로 하는 리튬이차전지용 고출력 음극소재 제조방법.
The method of claim 7, wherein
The metal component 1 (M1), metal component 2 (M2) is a high output negative electrode material manufacturing method for a lithium secondary battery, characterized in that W and MO, respectively.
제7항 또는 제9항에 있어서,
상기 열처리 단계는 1차로 450~550℃의 온도에서 6시간 진행하고, 2차로 1100℃까지 5℃/분의 속도로 온도를 올리면서 진행하는 것을 특징으로 하는 리튬이차전지용 고출력 음극소재 제조방법.
The method according to claim 7 or 9,
The heat treatment step is first proceeds for 6 hours at a temperature of 450 ~ 550 ℃, and secondly to a high output negative electrode material manufacturing method for a lithium secondary battery, characterized in that proceeding while increasing the temperature at a rate of 5 ℃ / min to 1100 ℃.
제7항 또는 제9항에 있어서,
상기 열처리 단계에 앞서서 관형로에 90mol%의 비활성가스와 10mol%의 수소가스로 이루어진 혼합가스를 미리 1시간 이상 주입하여 비활성 분위기를 조성하는 단계를 더 포함하는 것을 특징으로 하는 리튬이차전지용 고출력 음극소재 제조방법.
The method according to claim 7 or 9,
Prior to the heat treatment step, a high-output negative electrode material for a lithium secondary battery, further comprising the step of injecting a mixed gas consisting of 90 mol% inert gas and 10 mol% hydrogen gas into the tubular furnace for 1 hour or more in advance to form an inert atmosphere. Manufacturing method.
제7항 또는 제9항에 있어서,
상기 밀링 단계에서 흑연을 혼합하는 것을 특징으로 하는 리튬이차전지용 고출력 음극소재 제조방법.
The method according to claim 7 or 9,
Method for producing a high output negative electrode material for a lithium secondary battery, characterized in that for mixing the graphite in the milling step.
제11항에 있어서,
상기 비활성가스는 질소와 아르곤 중에서 선택된 하나인 것을 특징으로 하는 리튬이차전지용 고출력 음극소재 제조방법.
The method of claim 11,
The inert gas is a high output negative electrode material manufacturing method for a lithium secondary battery, characterized in that one selected from nitrogen and argon.
제7항 또는 제9항의 방법에 의해 제조된 음극소재를 이용한 리튬이차전지용 음극의 제조에 있어서,
음극소재 80~90중량%, 결착제 5~10중량%, 도전재 5~10중량%를 혼합하는 단계;
이 혼합물에 그 중량의 1~2배의 NMP 유기용매를 첨가하여 1000~3000cP의 점도를 갖는 슬러리를 제조하는 단계;
제조된 슬러리를 혼합기에서 1000~3000rpm으로 30분 동안 회전시켜 교반하는 단계; 및
교반된 슬러리를 5~15μm 두께의 구리박막에 닥터블레이드 방법을 이용하여 30~200μm 두께로 도포하고 이를 70~90℃의 온도에서 건조하는 단계; 를 포함하여 구성되는 것을 특징으로 하는 리튬이차전지용 고출력 음극 제조방법.
In the production of a negative electrode for a lithium secondary battery using the negative electrode material produced by the method of claim 7 or 9,
Mixing 80 to 90% by weight of the negative electrode material, 5 to 10% by weight of the binder, and 5 to 10% by weight of the conductive material;
Preparing a slurry having a viscosity of 1000 to 3000 cP by adding 1 to 2 times the NMP organic solvent to the mixture;
Stirring the prepared slurry for 30 minutes at 1000 ~ 3000rpm in a mixer; And
Applying the stirred slurry to a copper thin film having a thickness of 5 to 15 μm using a doctor blade method at a thickness of 30 to 200 μm and drying it at a temperature of 70 to 90 ° C .; High output negative electrode manufacturing method for a lithium secondary battery, characterized in that comprises a.
제14항에 있어서,
상기 혼합물의 혼합비율이 음극소재 90중량%, 결착제 5중량%, 도전재 5중량%인 것을 특징으로 하는 리튬이차전지용 고출력 음극 제조방법.
15. The method of claim 14,
The mixing ratio of the mixture is 90% by weight of the negative electrode material, 5% by weight of the binder, 5% by weight of the conductive material, a high output negative electrode manufacturing method for a lithium secondary battery.
제14항에 있어서,
상기 결착제는 N-메틸-피리돈(NMP) 유기용매에 폴리비닐리덴 플루오라이드(PVdF)를 5중량% 포함시킨 용액인 것을 특징으로 하는 리튬이차전지용 고출력 음극 제조방법.
15. The method of claim 14,
The binder is a high-output negative electrode manufacturing method for a lithium secondary battery, characterized in that the solution containing 5% by weight of polyvinylidene fluoride (PVdF) in the N-methyl-pyridone (NMP) organic solvent.
제14항에 있어서,
상기 도전재는 카본 블랙인 것을 특징으로 하는 리튬이차전지용 고출력 음극 제조방법.
15. The method of claim 14,
The conductive material is a high output negative electrode manufacturing method for a lithium secondary battery, characterized in that the carbon black.
제16항에 있어서,
상기 도전재는 카본 블랙인 것을 특징으로 하는 리튬이차전지용 고출력 음극 제조방법.
17. The method of claim 16,
The conductive material is a high output negative electrode manufacturing method for a lithium secondary battery, characterized in that the carbon black.
제15항에 있어서,
상기 결착제는 N-메틸-피리돈(NMP) 유기용매에 폴리비닐리덴 플루오라이드(PVdF)를 5중량% 포함시킨 용액인 것을 특징으로 하는 리튬이차전지용 고출력 음극 제조방법.
16. The method of claim 15,
The binder is a high-output negative electrode manufacturing method for a lithium secondary battery, characterized in that the solution containing 5% by weight of polyvinylidene fluoride (PVdF) in the N-methyl-pyridone (NMP) organic solvent.
제15항에 있어서,
상기 도전재는 카본 블랙인 것을 특징으로 하는 리튬이차전지용 고출력 음극 제조방법.
16. The method of claim 15,
The conductive material is a high output negative electrode manufacturing method for a lithium secondary battery, characterized in that the carbon black.
KR1020100095531A 2010-09-30 2010-09-30 High power anode material for lithium secondary battery and preparation method thereof KR101236436B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100095531A KR101236436B1 (en) 2010-09-30 2010-09-30 High power anode material for lithium secondary battery and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100095531A KR101236436B1 (en) 2010-09-30 2010-09-30 High power anode material for lithium secondary battery and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20120033811A KR20120033811A (en) 2012-04-09
KR101236436B1 true KR101236436B1 (en) 2013-02-21

Family

ID=46136500

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100095531A KR101236436B1 (en) 2010-09-30 2010-09-30 High power anode material for lithium secondary battery and preparation method thereof

Country Status (1)

Country Link
KR (1) KR101236436B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080092759A (en) * 2007-04-13 2008-10-16 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery
JP2010108603A (en) 2008-10-28 2010-05-13 Tayca Corp Manufacturing method of anode active material for lithium-ion battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080092759A (en) * 2007-04-13 2008-10-16 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery
JP2010108603A (en) 2008-10-28 2010-05-13 Tayca Corp Manufacturing method of anode active material for lithium-ion battery

Also Published As

Publication number Publication date
KR20120033811A (en) 2012-04-09

Similar Documents

Publication Publication Date Title
JP2023523667A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
JP2020504416A (en) Positive active material for lithium secondary battery, method for producing the same, electrode including the same, and lithium secondary battery including the electrode
JP6755253B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery including this
JP5980472B2 (en) Titanium dioxide, method for producing titanium dioxide, lithium ion battery, and electrode for lithium ion battery
JP2009224307A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2020504415A (en) Positive electrode active material for secondary battery, method for producing the same, and secondary battery including the same
JP2017228439A (en) Lithium ion secondary battery and method for manufacturing the same
JP2006351516A (en) Anode active material and nonaqueous electrolyte secondary battery
JP2011070789A (en) Nonaqueous electrolyte secondary battery
JPWO2009098835A1 (en) Method for producing lithium-containing transition metal oxide
KR20180059736A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR102386904B1 (en) A positive electrode active material for lithium secondary battery, method of preparing the positive electrode active material, and lithium secondary battery including the positive electrode active material
JP2009032689A (en) Manufacturing method of negative active material for nonaqueous electrolyte secondary battery and negative active material for nonaqueous electrolyte secondary battery manufactured thereby
JP2009217981A (en) Non-aqueous electrolyte secondary battery
JP2023523668A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
KR101528333B1 (en) Sodium Vanadium Oxide Anode Material for Sodium Ion Secondary Battery, Preparation Method Thereof and Sodium Ion Secondary Battery Having the same
JP2023509595A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
JP5997087B2 (en) Method for producing positive electrode material for lithium secondary battery
JP5505868B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same
KR20170076348A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR100927719B1 (en) Anode active material for lithium secondary battery and lithium secondary battery comprising same
JP6493408B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012079470A (en) Nonaqueous electrolyte secondary battery
JP5548523B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160115

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161114

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171220

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190109

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20200204

Year of fee payment: 8