KR101223386B1 - Imidazoline-based Corrosion Inhibitors Composition - Google Patents

Imidazoline-based Corrosion Inhibitors Composition Download PDF

Info

Publication number
KR101223386B1
KR101223386B1 KR1020060092952A KR20060092952A KR101223386B1 KR 101223386 B1 KR101223386 B1 KR 101223386B1 KR 1020060092952 A KR1020060092952 A KR 1020060092952A KR 20060092952 A KR20060092952 A KR 20060092952A KR 101223386 B1 KR101223386 B1 KR 101223386B1
Authority
KR
South Korea
Prior art keywords
corrosion
imidazoline
corrosion inhibitor
amide
weight
Prior art date
Application number
KR1020060092952A
Other languages
Korean (ko)
Other versions
KR20080027618A (en
Inventor
고재석
최정업
Original Assignee
에스케이종합화학 주식회사
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이종합화학 주식회사, 에스케이이노베이션 주식회사 filed Critical 에스케이종합화학 주식회사
Priority to KR1020060092952A priority Critical patent/KR101223386B1/en
Publication of KR20080027618A publication Critical patent/KR20080027618A/en
Application granted granted Critical
Publication of KR101223386B1 publication Critical patent/KR101223386B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/06Polyhydrazides; Polytriazoles; Polyamino-triazoles; Polyoxadiazoles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/145Amides; N-substituted amides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/173Macromolecular compounds

Abstract

본 발명은 이미다졸린(Imidazoline)계 부식억제제 조성물에 관한 것으로, 다이에틸렌트라이아민(Diethylenetriamine)과 올레아마이드(Oleamide)로 합성된 아미드 이미다졸리움(Amide imidazolium) 양이온 계면활성제를 주성분으로 하고, 폴리옥시에틸렌올레일아민(Polyoxyethylene oleyl amine) 비이온 계면활성제를 보조성분으로 하고 등유(Kerosene) 범위의 탄화수소계 용제로 구성된 복합 조성물로서 정유공장과 석유화학 공정 내 장치의 부식억제와 부식방지에 효과가 있다.The present invention relates to an imidazoline-based corrosion inhibitor composition, comprising an amide imidazolium cationic surfactant synthesized from diethylenetriamine and oleamide as a main component, and Polyoxyethylene oleyl amine A composite composition composed of a nonionic surfactant as a secondary component and a hydrocarbon solvent in the kerosene range. It is effective in preventing corrosion and preventing corrosion of oil refineries and equipment in petrochemical processes. have.

부식억제제, 아미드 이미다졸린, 계면활성제, 복합조성물 Corrosion inhibitors, amide imidazolines, surfactants, composite compositions

Description

이미다졸린계 부식억제제 조성물{Imidazoline-based Corrosion Inhibitors Composition}Imidazoline-based corrosion inhibitor composition {Imidazoline-based Corrosion Inhibitors Composition}

본 발명은 이미다졸린계 부식억제제 조성물에 관한 것이다. 보다 구체적으로는 아미드 이미다졸리움(Amide imidazolium) 양이온 계면활성제를 주성분으로 이미다졸린 분자의 금속표면에 대한 흡착력으로 부식방지 피막을 형성하여 부식억제 기능을 향상시키고 폴리옥시에틸렌올레일아민(Polyoxyethylene oleylamine) 비이온 계면활성제를 보조성분으로 분산기능과 침투력을 향상시켜 부식억제 상승효과(synergy effect)를 강화시켜 이미다졸린계 부식억제제 조성물에 관한 것이다.The present invention relates to an imidazoline-based corrosion inhibitor composition. More specifically, an amide imidazolium cationic surfactant is used as the main component to form a corrosion resistant film by the adsorption force on the metal surface of the imidazoline molecule to improve the corrosion inhibitory function and polyoxyethylene oleylamine The present invention relates to an imidazoline-based corrosion inhibitor composition by improving the dispersing function and penetration by using a nonionic surfactant as an auxiliary component.

부식성 물질이 함유된 액체와 접촉하는 금속, 특히 철 또는 철 성분을 포함한 금속의 부식속도를 억제하기 위해 부식억제제를 액체에 첨가한다. 산업 현장에서 사용되는 금속 파이프라인, 금속 반응기, 탱크 등과 같은 장치, 즉 액체를 반응, 증류, 운반 또는 저장하는 장치들은 부식에 노출되어 있어 부식억제제 사용이 필요하다. 정유공장과 석유화학공장에는 여러 종류의 장치들이 있는데 냉각장치(cooling system), 금속배관, 증류탑, 보일러 등의 다양한 분야에 부식방지제가 적용되고 있다. 한가지 예로, 정유공장 원유정제공정의 상압증류탑 상단부에서는 증류과정에서 원유에 포함된 부식물질의 증발 또는 열분해 등으로 산성이 강한 부식성 물질이 상단부 배관에 응축되어 부식을 빠르게 진행시킨다.Corrosion inhibitors are added to the liquid to suppress the rate of corrosion of metals, especially iron or metals containing iron, in contact with the liquid containing corrosive substances. Devices such as metal pipelines, metal reactors, tanks, etc. used in industrial sites, that is, devices that react, distill, transport or store liquids, are exposed to corrosion and require the use of corrosion inhibitors. Oil refineries and petrochemical plants have various types of equipment, and corrosion inhibitors are applied to various fields such as cooling systems, metal pipes, distillation towers, boilers, and the like. For example, in the upper end of the atmospheric distillation column of the refinery crude oil refining process, acidic corrosive substances condense on the upper pipe by rapidly evaporating or pyrolyzing the corrosive substances contained in the crude oil during the distillation process to accelerate the corrosion.

배관의 부식속도를 제어하기 위해 부식방지제를 사용하여 부식성 물질로부터 금속표면을 보호하여야 한다. 부식의 정도는 부식성 물질 존재 외 다른 여러 인자와 관계되는데 금속의 메탈러지(metallurgy), 유체의 속도, 전단율(shear rate), 유체의 온도, 유체의 압력 등이다.To control the corrosion rate of the pipes, corrosion inhibitors should be used to protect the metal surface from corrosive substances. The degree of corrosion is related to many other factors besides the presence of corrosive substances such as metallurgy of metals, fluid velocity, shear rate, fluid temperature, and fluid pressure.

부식억제제를 사용하여 금속의 부식 속도를 늦추는 방법에서 부식방지제의 성능은 적어도 두 가지의 요인에 주로 기인한다. 첫째는 부식억제제 성분 화학물질의 금속표면에 대한 친밀도(affinity)이다. 이 과정은 부식억제제 화학물질의 분자가 액체에서 금속 고체 표면에 흡착(adsorption)하는 것으로 흡착되는 분자와 고체표면 간의 친밀도에 따라 표면의 유기층(organic film)이 고밀도의 질서있는 배열(odered arrangement) 형성에 영향을 미친다. 금속표면에 형성된 부식억제 화학물질 유기층이 다른 요인으로 영향을 받거나 부식물질 자체의 성능이 떨어져 엉성하게 되거나 쉽게 탈착되면 부식물질이 파괴된 유기층을 통해 금속표면과 접하여 부식 과정이 진행된다. 둘째는 부식억제제의 높은 전단율에 대한 저항 성능이다. 실제 공정에서는 일반적으로 유속이 빠른 액체가 배관 또는 장치 내부에서 흐르므로 높은 전단율을 받게 된다. 부식방지제가 부식성능을 유지하려면 부식억제 유기층이 전단율에 저항하여 조밀한 층을 계속 유지해야 한다. 하지만 여러 종류의 부식방지제가 개발되었으나 성능이 떨어져 유속이 빠른 배관에서 부식이 발생하기 때문에 부식억제제 농도를 높여 사용하므로 운영비용이 상승하는 문제가 발생한다.The use of corrosion inhibitors in slowing down the corrosion of metals is mainly due to at least two factors. The first is the affinity of the corrosion inhibitor chemicals to the metal surface. This process involves the adsorption of molecules from corrosion inhibitor chemicals into the solid surface of the metal in the liquid, resulting in a dense, ordered arrangement of organic films on the surface, depending on the intimacy between the molecules and the solid surface. Affects. When the organic layer of corrosion inhibitory chemicals formed on the metal surface is affected by other factors, or is degraded due to poor performance of the corrosion substance itself, or is easily desorbed, the corrosion process proceeds in contact with the metal surface through the organic layer in which the corrosion substance is destroyed. Second is the resistance to high shear rates of corrosion inhibitors. In a real process, high velocity liquids typically flow inside a pipe or device, resulting in high shear rates. In order for a preservative to maintain corrosion performance, the corrosion inhibiting organic layer must resist shear rates to maintain a dense layer. However, various types of corrosion inhibitors have been developed, but since the performance is degraded due to the poor performance of the pipe, the operation cost increases due to the use of a high corrosion inhibitor concentration.

이에 본 발명에서는 전술한 종래기술의 문제점을 해결하기 위하여 광범위한 연구를 거듭한 결과, 주성분으로 아미드 이미다졸리움 양이온 계면활성제를 사용하고, 보조성분으로 폴리옥시에틸렌올레일아민 비이온계면활성제를 사용하여 주성분의 용액 내에 분산력을 높이는 것과 폴리옥시에틸렌올레일아민 자체의 두터운 유기층 형성 성능이 있어 주성분과 보조성분이 서로 상호작용을 통하여 유기층 형성 상승효과를 나타낸다는 것을 발견하였고, 본 발명은 이에 기초하여 완성되었다.Therefore, in the present invention, as a result of extensive research in order to solve the above-mentioned problems of the prior art, an amide imidazolium cationic surfactant is used as a main component and a polyoxyethylene oleylamine nonionic surfactant is used as an auxiliary component. It has been found that there is a thick organic layer formation performance of the polyoxyethylene oleyl amine itself by increasing the dispersing power in the solution of the main component, and the main component and the auxiliary component have a synergistic effect of forming the organic layer through interaction with each other. It became.

따라서, 본 발명의 목적은 부식억제력을 향상시키기 위해 상호보완 효과를 나타내는 계면활성제 2성분 혼합 조성물인 이미다졸린계 부식억제제 조성물을 제공하는 데 있다.Accordingly, an object of the present invention is to provide an imidazoline-based corrosion inhibitor composition which is a surfactant two-component mixture composition exhibiting a complementary effect in order to improve the corrosion inhibitory power.

상기 목적을 달성하기 위한 본 발명에 따른 이미다졸린계 부식억제제 조성물은 양이온 계면활성제로 아미드 이미다졸리움 10~50중량%, 비이온 계면활성제로 폴리옥시에틸렌올레일아민 1~10중량%, 및 나머지는 등유범위의 탄화수소용제를 포함하는 것을 특징으로 한다.Imidazoline-based corrosion inhibitor composition according to the present invention for achieving the above object is 10 to 50% by weight of amide imidazolium as a cationic surfactant, 1 to 10% by weight of polyoxyethylene oleylamine as a nonionic surfactant, and The remainder is characterized by including a hydrocarbon solvent in the kerosene range.

이하 본 발명을 좀 더 구체적으로 살펴보면 다음과 같다.Looking at the present invention in more detail as follows.

전술한 바와 같이, 본 발명은 주성분인 아미드 이미다졸리움 10~50중량%, 보조성분인 폴리옥시에틸렌올레아민 1~10중량%, 및 등유범위의 탄화수소용제를 포함하는 조성물을 사용하여 부식억제력을 상승시켜 기존 부식억제제가 가지는 빠른 유속에서의 성능이 떨어지는 단점을 해결하면서 저농도로도 부식억제력을 얻을 수 있어 운용비용을 절감할 수 있는 이미다졸린계 부식억제제 조성물에 관한 것이다. As described above, the present invention uses a composition comprising 10 to 50% by weight of amide imidazolium as a main component, 1 to 10% by weight of polyoxyethylene oleamine as a secondary component, and a hydrocarbon solvent in the kerosene range. The present invention relates to an imidazoline-based corrosion inhibitor composition that can reduce operating costs by solving corrosion shortcomings of the existing corrosion inhibitors at low flow rates, thereby reducing operating costs.

본 발명에서는 양이온 계면활성제로서 아마이드 작용기를 가진 올레아마이드(Oleamide)와 알킬폴리아민(Alkyl polyamine)인 다이에틸렌트라이아민 (Diethylenetriamine)을 반응시키고 이 중간체를 4급화(quarternized) 반응으로 합성한 아미드 이미다졸리움을 10~50중량%, 바람직하게는 30~40중량% 사용한다. 여기서, 상기 아미드 이미다졸리움의 사용량이 10중량% 미만이면 부식억제제의 활성 농도가 떨어져 과량 투입해야하고, 50중량%를 초과하면 조성물의 액체 점도가 증가하여 공정내 펌프설비를 사용하여 주입시 펌핑이 어려운 문제점이 있다.In the present invention, an amide imidazolium obtained by reacting oleamide having an amide functional group with a amide functional group and diethylenetriamine, which is an alkyl polyamine, and synthesizing the intermediate by a quarternized reaction. 10 to 50% by weight, preferably 30 to 40% by weight. Here, when the amount of the amide imidazolium is less than 10% by weight, the active concentration of the corrosion inhibitor is dropped and excessively added. When the amount of the amide imidazolium exceeds 50% by weight, the liquid viscosity of the composition increases, which is pumped during injection using an in-process pump facility. There is this difficult problem.

바람직한 상기 아미드 이미다졸리움은 탄소수가 18개의 긴 알킬체인이 이미다졸린 고리에 연결되어 있고 상기 이미다졸린 고리는 질소(nitrogen) 원자 2개와 탄소(carbon) 원자 3개로 이루어진 5각형의 구조를 가지며, 이 구조를 나타내면 하기 화학식 1과 같다.Preferred amide imidazolium is an alkyl chain of 18 long carbon atoms connected to an imidazoline ring, and the imidazoline ring has a pentagonal structure consisting of two nitrogen atoms and three carbon atoms. , When this structure is shown, it is represented by following Chemical formula 1.

Figure 112006069341081-pat00001
Figure 112006069341081-pat00001

여기서, R1 및 R2는 이중결합수가 1이고 알킬체인이 C14 -18 탄화수소이다.Wherein, R 1 and R 2 is a double bond, the number is 1 and the alkyl chain, C 14 -18 hydrocarbons.

부식억제 메카니즘은 금속표면에 유기 또는 무기 화합물이 흡착(adsorption)되어 연속된 얇은 막(Thin film)을 이루어 부식물질과 금속표면의 접촉이나 전자이동을 막아 부식을 진행되지 않게 하는 것이다. 부식억제 성능은 연속된 얇은 막이 조밀하고 견고히 형성되는 정도에 따라 좌우된다. 장치 내 유체의 흐름은 국부적으로 빠른 영역이 있어 높은 전단율(shear stress)에도 방지막이 깨어지지 않아야 부식성능을 효과적으로 나타낸다. 조밀하고 견고한 방지막의 형성 여부는 부식방지제 성분 화합물의 금속에 대한 흡착능력과 관계가 있다. 흡착은 물리적 흡착(physiosorption) 과정으로 진행한다. 일반적인 부식방지제의 경우 금속표면에 대한 흡착은 화합물 중의 질소원자의 비공유 전자쌍(unpaired electron pair)이 금속원자에 대한 친화도(affinity)가 높아 물리적 흡착을 통한 견고한 방지막 형성을 가능하게 한다. 그러나 이것만으로는 견고한 방지막 형성에 부족한 면이 있다.Corrosion suppression mechanism is to adsorb organic or inorganic compounds on metal surface to form a continuous thin film to prevent contact between corrosive material and metal surface or electron transfer and prevent corrosion. Corrosion inhibiting performance depends on the extent to which a continuous thin film is densely and firmly formed. The flow of fluid in the device has a locally rapid area, which effectively shows corrosion performance when the barrier is not broken even at high shear stresses. The formation of a dense and rigid barrier film is related to the adsorption capacity of the corrosion inhibitor component compound to the metal. Adsorption proceeds with a physiosorption process. In the case of a general corrosion inhibitor, the adsorption on the metal surface allows the unpaired electron pair of nitrogen atoms in the compound to have a high affinity for the metal atom, thereby forming a solid barrier film through physical adsorption. However, this alone is insufficient to form a solid barrier film.

하지만, 상기 이미다졸린 분자는 질소와 탄소의 5각형의 구조를 가지고 있어 질소의 비공유전자쌍에 의한 금속에 대한 친화도는 물론이고 부가적으로 5각형 고리에 의한 금속에 대한 친밀도가 증가하는 효과가 있다. 이미다졸린 5각형 고리는 평면구조로 평면 아래 위로 전자가 분포되어 있어 금속표면에 5각형 고리가 평형으로 접하므로 질소 원자 1개가 접할 때보다 5각형 고리가 평면으로 접하는 것이 강하게 흡착할 수 있다. 본 발명의 아미드 이미다졸리움 분자는 앞에 열거한 5각형 고리의 흡착력 증가에 추가하여 5각형 고리에 붙어있는 아미드 작용기의 질소 원자가 부착력을 추가로 제공하여 기존의 부식억제제보다 향상된 부착능력을 나타낸다.However, the imidazoline molecule has a pentagonal structure of nitrogen and carbon, so that the affinity for metal by the lone pair of nitrogen as well as the affinity for the metal by the pentagonal ring is additionally increased. have. Since the imidazoline pentagonal ring has a planar structure with electrons distributed above and below the plane, the pentagonal ring is in equilibrium with the metal surface, so that the pentagonal ring is in contact with the plane more strongly than when one nitrogen atom is in contact. The amide imidazolium molecule of the present invention exhibits an improved adhesion ability than conventional corrosion inhibitors by providing additional adhesion of the nitrogen atoms of the amide functional groups attached to the pentagonal ring in addition to the increase in the adsorption power of the pentagonal ring.

한편, 부식억제제의 구조는 머리(head) 부분과 꼬리(tail) 부분으로 구분할 수 있는데 머리 부분은 금속표면과 접하는 부분으로 위에서 설명한 질소 원자를 가진 작용기로 금속표면에 달라붙는 역할을 하며 꼬리 부분은 탄화수소로 구성된 긴 사슬구조를 가져 얇은 층을 형성할 때 옆에 분자와 분자가 상호작용으로 나란히 배열할 수 있게 하고 부식물질과 금속과의 접촉을 막는 역할을 한다. 꼬리의 사슬 길이에 따라 부식물질과의 접촉 방지 효과가 차이가 있는데 탄소수가 18개일 때가 최적으로 본 발명에서 부식억제제 화합물 분자의 꼬리구조는 탄소수가 18개인 직쇄 탄화수소 사슬구조이다.On the other hand, the structure of the corrosion inhibitor can be divided into the head and the tail portion, the head portion is in contact with the metal surface and serves to adhere to the metal surface with the functional group having a nitrogen atom as described above. It has a long chain structure composed of hydrocarbons, which forms a thin layer that allows molecules and molecules to interact side by side and prevents contact between corrosive substances and metals. In the present invention, the tail structure of the corrosion inhibitor compound molecule is a straight chain hydrocarbon chain having 18 carbon atoms.

본 발명에서 비이온 계면활성제로 사용되는 폴리옥시에틸렌올레일아민은 용액 내에 주성분인 아미드 이미다졸리움의 분산력을 높이는 것과 폴리옥시에틸렌올레일아민 자체가 부식억제 성능이 있어 주성분과 보조성분이 서로 상호작용을 통하여 부식억제력 상승효과를 나타내는 목적으로 사용하며, 그 사용량은 1~10중량%, 바람직하게는 3~7중량%이다. 여기서, 상기 아미드 이미다졸리움의 사용량이 1중량% 미만이면 계면활성의 활성 농도 이하가 되어 보조성분으로 기능을 나타내지 못하고, 10중량%를 초과하면 활성농도 이상이 되어 농도를 높여도 효과 증대와는 무관하게 된다.In the present invention, the polyoxyethylene oleyl amine used as a nonionic surfactant increases the dispersibility of the amide imidazolium, which is a main component in the solution, and the polyoxyethylene oleyl amine itself has a corrosion inhibitory ability, so that the main and auxiliary components mutually interact with each other. It is used for the purpose of showing the corrosion inhibitory effect through the action, the amount of the use is 1 to 10% by weight, preferably 3 to 7% by weight. Here, when the amount of the amide imidazolium used is less than 1% by weight, it becomes less than the active concentration of the surfactant and does not exhibit a function as an auxiliary component. It becomes irrelevant.

상기 폴리옥시에틸렌올레일아민은 불포화지방산인 올레익산(Oleic acid)을 에틸렌옥사이드(Ethylene Oxide)와 반응시킨 것으로 상기 반응되는 에틸렌옥사이드의 몰수를 늘릴수록 에틸렌옥사이드 기가 그 몰수만큼 늘어나는데, 본 발명에서는 상기 에틸렌옥사이드는 8~20몰, 바람직하게는 10~15몰이 부가된다. 상기 에틸렌옥사이드의 부가량이 8몰 미만이면 친수성이 떨어져 상안정성이 떨어지고, 20몰을 초과하면 친유성이 떨어져 상안정성이 떨어진다.The polyoxyethylene oleyl amine is a reaction of an unsaturated fatty acid oleic acid (Oleic acid) with ethylene oxide (Ethylene Oxide) as the number of moles of the ethylene oxide reacted increases as the number of moles of ethylene oxide, in the present invention 8-20 mol, preferably 10-15 mol of ethylene oxide is added. If the added amount of the ethylene oxide is less than 8 mol, the hydrophilicity is lowered, the phase stability is lowered.

본 발명은 정유 및 석유화학공정의 유성류의 스트림에 적용하는 것이지만 부식물질은 주로 수층으로 농축된다. 예를 들어 원유 정제공정의 상압증류공정에서는 원유 속에 포함된 수분과 부식유발물질들이 상단의 라인에 응축하게 되는데 수층에 부식성이 강한 물질이 같이 응축된다. 상압증류탑 상단부는 물과 오일이 섞여있는 형태이므로 부식억제제 물질은 물과 오일 양쪽 층(phase)에 모두 용해될 수 있거나 물과 오일 계면에서 활성을 뛸 수 있는 계면활성능을 가져야 한다. Although the present invention applies to oily streams in oil refining and petrochemical processes, the corrosives are mainly concentrated in the water column. For example, in the atmospheric distillation process of crude oil refining process, the moisture and corrosion-causing substances contained in the crude oil condense in the upper line. Since the upper part of the atmospheric distillation column is a mixture of water and oil, the corrosion inhibitor material must have an interfacial ability to dissolve in both phases of water and oil or to be active at the water and oil interface.

본 발명의 주성분인 아미드 이미다졸리움은 유기염(organic salt) 구조여서 수층에 용해도를 어느 정도 가지지만 여전히 유기층에 대한 용해도가 높아 수층에 대한 분배력이 떨어진다. 이러한 단점을 보조성분인 폴리옥시에틸렌올레일아민이 보완할 수 있는데 폴리옥시에틸렌올레일아민의 폴리옥시에틸렌기의 산소원자에 의해 강한 친수성을 나타내어 계면활성력이 강해 주성분의 수층에 대한 분산력를 확보하여 적용 대상 장치 내에서 골고루 금속표면과 접할 수 있는 확률을 높이게 된다. 또한 폴리옥시에틸렌올레일아민의 아민기의 질소 원자의 비공유 전자쌍에 의한 금속에 대한 친화도를 가지고 있어 금속 표면에 잘 흡착할 수 있어 보조성분 자체도 부식억제력을 가지고 있다. 이와 같이 보조성분을 추가하여 부식억제 성능을 향상시킬 수 있다. Amide imidazolium, which is a main component of the present invention, has an organic salt structure and thus has some solubility in the aqueous layer, but still has high solubility in the organic layer, resulting in poor distribution of the aqueous layer. This problem can be compensated by the polyoxyethylene oleyl amine as an auxiliary component, which shows strong hydrophilicity by the oxygen atom of the polyoxy ethylene oleyl amine of the polyoxyethylene oleyl amine, which has strong interfacial activity to secure dispersion of the main component in the water layer. The probability of evenly contacting the metal surface within the device to be applied is increased. In addition, the polyoxyethylene oleyl amine has an affinity for the metal by the non-covalent electron pair of the nitrogen atom of the amine group, so that it can be adsorbed well on the metal surface, the auxiliary component itself also has corrosion inhibitory power. In this way, it is possible to improve the corrosion inhibiting performance by adding auxiliary components.

본 발명에서 등유범위의 탄화수소용제를 사용하는데, 이는 제품 취급의 용이성과 용해 및 희석 목적으로 사용되는 것으로서, 예를 들어 [YK-MD80, SK(주)], [YK-2427, SK(주)], 및 [YK-D80, SK(주)] 등이 있으나, 이에 한정되는 되는 것은 아니다.In the present invention, a hydrocarbon solvent in the kerosene range is used, which is used for ease of product handling and for the purpose of dissolution and dilution. For example, [YK-MD80, SK Corporation], [YK-2427, SK Corporation] ], And [YK-D80, SK Corporation] and the like, but is not limited thereto.

상술한 바와 같이, 본 발명에 따른 이미다졸린계 부식억제제 조성물은 종래와 달리 금속에 대한 흡착력과 분산력을 증가시켜 부식억제 성능을 향상시킨다는 효과를 가진다. As described above, the imidazoline-based corrosion inhibitor composition according to the present invention has an effect of improving the corrosion inhibition performance by increasing the adsorption and dispersing force to the metal, unlike the conventional.

이하 하기 실시예를 통하여 본 발명을 좀 더 구체적으로 설명하지만 이에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited thereto.

실시예 1Example 1

양이온 계면활성제로 아미드 이미다졸리움인 [2-Heptadec-8-methyl-1-(2-nonadec-10-enoylamino-ethyl)-4,5-dihydro-1-H-imidazolium acetate] 35중량%, 비이온 계면활성제로 폴리옥시에틸렌올레일아민(ethylene oxide 부가몰수 20몰) 5중량%, 및 나머지는 희석용액인 탄화수소계 용제[YK-MD80, SK(주)]로 제조된 부식억제제 조성물을 가지고 각종 부식억제관련 물성평가 실험을 다음과 같이 수행하였고, 그 결과를 하기 표 1에 나타내었다.35% by weight of amide imidazolium [2-Heptadec-8-methyl-1- (2-nonadec-10-enoylamino-ethyl) -4,5-dihydro-1- H -imidazolium acetate] as a cationic surfactant; 5% by weight of polyoxyethylene oleylamine (20 moles of ethylene oxide added mole) as an ionic surfactant, and the rest are corrosion inhibitor compositions prepared from a hydrocarbon-based solvent [YK-MD80, SK Corporation], which is a diluting solution. Corrosion inhibition-related property evaluation experiments were performed as follows, and the results are shown in Table 1 below.

A. 부식 실험은 Annual book of ASTM Standards G31 「Standard Practice for Laboratory Immersion Corrosion testing of Metals」의 내용에 준하여 수행하였다. 반응 레진 플라스크(resin flask)는 4개의 넥(neck)이 있어 리플럭스(reflux)를 위한 냉각관 연결구, 액체 내 산소 제거를 위한 질소가스 순환(purge)관 연결구, 액체 온도 측정을 위한 온도계 주입구로 사용하였다. 유속은 마그네틱 바(magnetic bar)로 교반시켜 조절하고 가온과 온도 조절은 가열 맨 틀(Heating mantle)과 자동온도조절기를 사용하였다. 부식물질 용액은 5% NaCl 용액과 등유(kerosene)로 제조했다. 부식률 측정은 부식쿠폰(Carbon Steel 316 재질)을 사용하였다. 부식억제제 적용 농도는 10ppm이고 온도는 80℃를 유지한다.A. The corrosion test was performed according to the contents of Annual book of ASTM Standards G31 「Standard Practice for Laboratory Immersion Corrosion Testing of Metals」. The reaction resin flask has four necks for cooling pipe connections for reflux, nitrogen gas purge pipe connections for oxygen removal in liquids, and thermometer inlets for liquid temperature measurement. Used. The flow rate was controlled by stirring with a magnetic bar, and heating and temperature control were performed using a heating mantle and a thermostat. The caustic solution was prepared with 5% NaCl solution and kerosene. Corrosion rate was measured using a corrosion coupon (Carbon Steel 316). Corrosion inhibitor application concentration is 10ppm and the temperature is maintained at 80 ℃.

B. 높은 전단율(High shear rate) 조건하에서 부식억제력은 1인치 Carbon steel 316 재질의 관을 폐 루프(Closed Loop)로 구성하여 측정하였다. 부식물질, 부식억제제 농도 및 온도 조건은 위의 실험조건과 동일하게 유지하였다. 사용된 용액은 총 50ℓ이고 유속은 3.4m/s였다. 부식률 측정은 부식쿠폰(Carbon Steel 316 재질)을 사용하였다.B. Corrosion inhibition under high shear rate was measured by constructing a 1-inch carbon steel 316 tube in a closed loop. Corrosive materials, corrosion inhibitor concentration and temperature conditions were kept the same as the above experimental conditions. The total solution used was 50 liters in total and the flow rate was 3.4 m / s. Corrosion rate was measured using a corrosion coupon (Carbon Steel 316).

비교예 1Comparative Example 1

현재 상용되고 있는 제품인 부식억제제(국내 A사)를 가지고 각종 부식억제관련 물성평가 실험을 실시예 1과 동일한 방법으로 수행하였고, 그 결과를 하기 표 1에 나타내었다.Using a corrosion inhibitor (domestic company A), which is a commercially available product, various corrosion inhibition-related property evaluation experiments were performed in the same manner as in Example 1, and the results are shown in Table 1 below.

부식율(MPY) Corrosion Rate (MPY) 실시예 1Example 1 비교예 1Comparative Example 1 A. 레진 플라스크
(Resin flask)
A. Resin Flask
(Resin flask)
0.30.3 0.60.6
B. 플로우 폐 루프
(Flow Closed Loop)
B. Flow Closed Loop
(Flow Closed Loop)
5.05.0 15.015.0

상기 표 1에서와 같이 본 발명에 따른 이미다졸린계 부식억제제 조성물이 기존의 일반 부식억제제보다 부식억제 성능이 뛰어남을 확인할 수 있고 빠른 유속으로 인한 높은 전단율 조건하에서는 더욱 성능이 차이가 벌어짐을 확인할 수 있다.As shown in Table 1, the imidazoline-based corrosion inhibitor composition according to the present invention can confirm that the corrosion inhibitory performance is superior to the conventional corrosion inhibitors, and that the performance difference is increased under high shear rate conditions due to the high flow rate. Can be.

이상과 같은 본 발명의 복합 계면활성제 조성물인 이미다졸린계 부식억제제 조성물은 기존의 부식억제제와 달리 부식억제 성능이 향상된 특징이 있어 빠른 유속에서도 부식방지 성능을 유지하고 우수한 부식억제성능으로 인해 부식억제제를 과량 투입하지 않아 운영비용을 절감할 수 있는 장점이 있다.As described above, the imidazoline-based corrosion inhibitor composition, which is a composite surfactant composition of the present invention, has a feature of improving corrosion inhibitory performance, unlike conventional corrosion inhibitors, so that the corrosion inhibitor is maintained at a high flow rate and has excellent corrosion inhibitory performance. There is an advantage that can reduce the operating cost by not overdose.

Claims (3)

양이온 계면활성제로 아미드 이미다졸리움 10~50중량%, 비이온 계면활성제로 폴리옥시에틸렌올레일아민 1~10중량%, 및 나머지는 비점이 등유범위인 탄화수소용제를 포함하는 것을 특징으로 하는 이미다졸린계 부식억제제 조성물.10 to 50% by weight of amide imidazolium as a cationic surfactant, 1 to 10% by weight of polyoxyethylene oleylamine as a nonionic surfactant, and the remainder are imides comprising a hydrocarbon solvent having a boiling point in the kerosene range. Sleepy corrosion inhibitor composition. 제1항에 있어서, 상기 아미드 이미다졸리움은 하기 화학식 1의 구조를 가지는 것을 특징으로 하는 이미다졸린계 부식억제제 조성물.The imidazoline-based corrosion inhibitor composition according to claim 1, wherein the amide imidazolium has a structure represented by the following Chemical Formula 1. 화학식 1Formula 1
Figure 112006069341081-pat00002
Figure 112006069341081-pat00002
여기서, R1, R2는 이중결합수가 1이고 알킬체인이 C14 -18 탄화수소이다.Wherein, R 1, R 2 is a double bond, the number is 1 and the alkyl chain C 14 -18 hydrocarbons.
제1항에 있어서, 상기 폴리옥시에틸렌올레일아민의 에틸렌옥사이드 부가 몰수는 8~20몰인 것을 특징으로 하는 이미다졸린계 부식억제제 조성물.The imidazoline-based corrosion inhibitor composition according to claim 1, wherein the number of moles of ethylene oxide added of the polyoxyethylene oleyl amine is 8 to 20 moles.
KR1020060092952A 2006-09-25 2006-09-25 Imidazoline-based Corrosion Inhibitors Composition KR101223386B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060092952A KR101223386B1 (en) 2006-09-25 2006-09-25 Imidazoline-based Corrosion Inhibitors Composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060092952A KR101223386B1 (en) 2006-09-25 2006-09-25 Imidazoline-based Corrosion Inhibitors Composition

Publications (2)

Publication Number Publication Date
KR20080027618A KR20080027618A (en) 2008-03-28
KR101223386B1 true KR101223386B1 (en) 2013-01-16

Family

ID=39414478

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060092952A KR101223386B1 (en) 2006-09-25 2006-09-25 Imidazoline-based Corrosion Inhibitors Composition

Country Status (1)

Country Link
KR (1) KR101223386B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101829866B1 (en) * 2010-06-01 2018-02-20 바스프 에스이 Composition for metal electroplating comprising leveling agent
KR101041793B1 (en) * 2010-09-30 2011-06-17 주식회사 시노펙스 Preparation of volatile corrosion inhibitor of magnesium alloy
EA021390B1 (en) * 2012-12-10 2015-06-30 Владимир Витальевич Меркулов Composition for treating bottomhole zone and protection of oil-production equipment from hydrogen-sulfide and carbon-dioxide corrosions
CN110424017A (en) * 2019-08-27 2019-11-08 山东益丰生化环保股份有限公司 A kind of molten corrosion inhibiter of oil and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381249A (en) 1979-05-14 1983-04-26 Bouffard Joseph O Rust removing and metal surface protecting composition
JPH06128767A (en) * 1992-10-16 1994-05-10 Seiwa Koki Kk Corrosion inhibitor composition for nonferrous metal
US6303079B1 (en) 1999-03-15 2001-10-16 Nalco/Exxon Energy Chemicals, L.P. Corrosion inhibitor compositions
KR100428574B1 (en) 1999-12-17 2004-04-28 주식회사 포스코 Electrolytic cleaning pollution preventing agents having alkarine resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381249A (en) 1979-05-14 1983-04-26 Bouffard Joseph O Rust removing and metal surface protecting composition
JPH06128767A (en) * 1992-10-16 1994-05-10 Seiwa Koki Kk Corrosion inhibitor composition for nonferrous metal
US6303079B1 (en) 1999-03-15 2001-10-16 Nalco/Exxon Energy Chemicals, L.P. Corrosion inhibitor compositions
KR100428574B1 (en) 1999-12-17 2004-04-28 주식회사 포스코 Electrolytic cleaning pollution preventing agents having alkarine resistance

Also Published As

Publication number Publication date
KR20080027618A (en) 2008-03-28

Similar Documents

Publication Publication Date Title
US7989403B2 (en) Corrosion inhibitors containing amide surfactants for a fluid
US11085002B2 (en) Development of a novel high temperature stable scavenger for removal of hydrogen sulfide
US8105988B2 (en) Corrosion inhibitors for a fluid
US8858717B2 (en) Inhibiting corrosion and scaling of surfaces contacted by sulfur-containing materials
US5556575A (en) Corrosion inhibition in refineries using the reaction product of hydrocarbyl succinic anhydride and an amine
US20090149356A1 (en) Environmentally friendly bis-quaternary compounds for inhibiting corrosion and removing hydrocarbonaceous deposits in oil and gas applications
US8518868B2 (en) Gemini surfactants, process of manufacture and use as multifunctional corrosion inhibitors
JPH06240264A (en) Inhibitor of naphthenic acid corrosion
US3553101A (en) Prevention of corrosion using heterocyclic nitrogen compounds
CA3021519C (en) Corrosion inhibitor compositions and methods of using same
KR101223386B1 (en) Imidazoline-based Corrosion Inhibitors Composition
US6593278B2 (en) Method for inhibiting corrosion using certain phosphorus and sulfur-free compounds
US20110040126A1 (en) Novel mercaptan-based corrosion inhibitors
US5961885A (en) Solutions and methods for inhibiting corrosion
RU2734393C1 (en) Weakening of internal corrosion in pipeline for transportation of crude oil
JPS63183183A (en) Carbon dioxide corrosion inhibiting composition and its use
US6706669B2 (en) Method for inhibiting corrosion using phosphorous acid
US10851299B2 (en) Corrosion inhibitor compositions and methods of using same
US10988689B2 (en) Corrosion inhibitor compositions and methods of using same
US20150240365A1 (en) Quaternary fatty acid esters as corrosion inhibitors
US11846029B2 (en) Oleyl propylenediamine-based corrosion inhibitors
US20130101460A1 (en) Inhibiting corrosion in aqueous films
EP0517376A1 (en) Corrosion inhibition in highly acidic environments
US20030012684A1 (en) Method for inhibiting corrosion using 4-sulfophthalic acid
US10876212B2 (en) Corrosion inhibitor compositions and methods of using same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151230

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171227

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181218

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 8