KR101214546B1 - Organic photoelectric transfer polymer and organic photovoltaic device - Google Patents

Organic photoelectric transfer polymer and organic photovoltaic device Download PDF

Info

Publication number
KR101214546B1
KR101214546B1 KR1020090096634A KR20090096634A KR101214546B1 KR 101214546 B1 KR101214546 B1 KR 101214546B1 KR 1020090096634 A KR1020090096634 A KR 1020090096634A KR 20090096634 A KR20090096634 A KR 20090096634A KR 101214546 B1 KR101214546 B1 KR 101214546B1
Authority
KR
South Korea
Prior art keywords
photoelectric conversion
carbon atoms
organic photoelectric
polymer
organic
Prior art date
Application number
KR1020090096634A
Other languages
Korean (ko)
Other versions
KR20100040695A (en
Inventor
문두경
이장용
허수원
원종우
송호준
송관욱
이우정
송인성
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Publication of KR20100040695A publication Critical patent/KR20100040695A/en
Application granted granted Critical
Publication of KR101214546B1 publication Critical patent/KR101214546B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/125Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1475Heterocyclic containing nitrogen and oxygen as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1483Heterocyclic containing nitrogen and sulfur as heteroatoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

본 발명은 새로운 유기광전변환 고분자 및 이를 활성층으로 채용한 유기광전자소자(Organic photovoltaic device; OPV device)에 관한 것으로, 더욱 상세하게는 우수한 광전변환 효율을 나타내는 다양한 전자끌게 특성을 갖는 분자(n-type molecular)와 디알킬씨에노싸이오펜을 주쇄로 하되 치환체를 도입하여 용해도를 증가시키고, 분자간 상호작용으로 정공(hole)의 이동 특성을 향상시켜 고효율의 광전변환특성을 나타내는 유기광전변환 고분자 및 상기 고분자와 PCBM을 이용한 벌크헤테로정션 타입(bulk heterojuction type) 광전변환소자에 관한 것이다. The present invention relates to a novel organic photoelectric conversion polymer and an organic photovoltaic device (OPV device) employing the same as an active layer, and more particularly, a molecule having various electron attracting characteristics (n-type) showing excellent photoelectric conversion efficiency. organic photoelectric conversion polymers having high efficiency photoelectric conversion properties by increasing molecular solubility and dialkylcyenothiophene as main chains and introducing substituents to increase solubility, and improving hole transport characteristics through intermolecular interactions; The present invention relates to a bulk heterojuction type photoelectric conversion device using a polymer and a PCBM.

본 발명의 유기광전변환소자는 스핀코팅 등의 비교적 간단한 공정으로 제조가 용이하며, 적절한 전자주게와 전자받게 물질을 선택하여 분자내 상호작용을 이용함으로써 안정된 HOMO, LUMO 레벨 및 작은 밴드갭을 갖기 때문에 광전변환효율이 우수하다.The organic photoelectric conversion device of the present invention is easy to manufacture by a relatively simple process such as spin coating, and has a stable HOMO, LUMO level and small bandgap by selecting an appropriate electron donor and electron acceptor material and using intramolecular interactions. Excellent photoelectric conversion efficiency

유기광전변환 고분자, 광전변환소자, 광전변환효율, 퀴녹살린, 2,1,3-벤조싸이아다이아졸, 디알킬씨에노싸이오펜 Organic photoelectric conversion polymer, photoelectric conversion element, photoelectric conversion efficiency, quinoxaline, 2,1,3-benzothiadiazole, dialkylcyenothiophene

Description

유기광전변환 고분자 및 이를 활성층으로 채용한 유기광전소자{Organic photoelectric transfer polymer and organic photovoltaic device}Organic photoelectric transfer polymer and organic photovoltaic device employing the same as active layer

본 발명은 새로운 유기광전변환 고분자 및 이를 활성층으로 채용한 유기광전자소자(Organic photovoltaic device; OPV device)에 관한 것으로, 더욱 상세하게는 우수한 광전변환 효율을 나타내는 다양한 전자끌게 특성을 갖는 분자(n-type molecular)와 디알킬씨에노싸이오펜을 주쇄로 하되 치환체를 도입하여 용해도를 증가시키고, 분자간 상호작용으로 정공(hole)의 이동 특성을 향상시켜 고효율의 광전변환특성을 나타내는 유기광전변환 고분자 및 상기 고분자와 PCBM을 이용한 벌크헤테로정션 타입(bulk heterojunction type) 광전변환소자에 관한 것이다. The present invention relates to a novel organic photoelectric conversion polymer and an organic photovoltaic device (OPV device) employing the same as an active layer, and more particularly, a molecule having various electron attracting characteristics (n-type) showing excellent photoelectric conversion efficiency. organic photoelectric conversion polymers having high efficiency photoelectric conversion properties by increasing molecular solubility and dialkylcyenothiophene as main chains and introducing substituents to increase solubility, and improving hole transport characteristics through intermolecular interactions; The present invention relates to a bulk heterojunction type photoelectric conversion device using a polymer and a PCBM.

최근, 고유가 및 환경오염 문제가 대두되면서 저가의 친환경에너지원에 대한 요구가 급격히 증대되고 있다.Recently, as high oil prices and environmental pollution problems arise, the demand for low-cost eco-friendly energy sources is rapidly increasing.

친환경 에너지원으로는 태양광, 풍력, 수력, 파력, 지열 등이 대표적인데, 이중 태양광을 이용하여 전력을 생산할 수 있는 태양광 발전을 환경오염의 위험이 없는 무궁무진한 에너지원이다.Eco-friendly energy sources include solar, wind, hydro, wave, and geothermal energy. Solar power, which can generate electricity using solar power, is an endless energy source without the risk of environmental pollution.

일례로 지구상에서 실제 사용가능한 태양에너지 양은 600TW(1TW=1×1,012 Watts)로, 현재 사용되고 있는 모든 에너지의 60배로 평가되는 매우 막대한 양이다. 이러한 연유로, 태양광을 이용한 광전소자에 대한 연구는 지난 수십 년간 수행되어 왔으며, 현재는 실리콘 웨이퍼를 이용한 무기 태양전지가 상용화되어 있다.For example, the actual amount of solar energy available on Earth is 600 TW (1 TW = 1 × 012 Watts), a massive amount estimated at 60 times all the energy currently in use. For this reason, research on photovoltaic devices using solar light has been conducted for several decades, and now inorganic solar cells using silicon wafers are commercially available.

그러나, 무기 태양전지는 원료비용이 많이 들어 장기간의 대단위 발전용으로 사용될 뿐 저가의 전자제품용 에너지원이나 유연디스플레이와 결합된 유연태양전지 또는 입을 수 있는 태양전지에는 적합하지 않다. 이에 유기반도체를 이용한 태양전지에 대한 연구가 활발히 진행되고 있다.However, inorganic solar cells are used for long-term large-scale power generation due to high raw material costs, and are not suitable for flexible solar cells or wearable solar cells combined with low-cost energy sources or flexible displays. Accordingly, researches on solar cells using organic semiconductors are being actively conducted.

태양광은 5%의 자외선, 46%의 가시광선과 49%의 적외선으로 이루어져 있다. 구부릴 수 있는 태양전지의 구현을 위해 지금까지 개발된 공액고분자는 2eV 이상의 밴드갭을 갖기 때문에 광자(photon)를 흡수할 수 있는 범위가 한정되어 있다. 이를 극복하기 위해서는 보다 작은 밴드갭을 갖는 low band gap 고분자 물질의 개발이 절실하다.Sunlight is made up of 5% ultraviolet light, 46% visible light and 49% infrared light. Conjugated polymers, which have been developed so far to implement bendable solar cells, have a bandgap of 2 eV or more, so the range of absorbing photons is limited. To overcome this, the development of a low band gap polymer material having a smaller band gap is urgently needed.

유기 전기발광현상(photovoltaic, PV)은 태양광을 받은 유기활성층에서 광자나 전자(electron)과 정공(hole)으로 분리되어 엑시톤을 형성하고, 이는 전자주게(donor)와 전자받게(acceptor) 물질의 계면으로 이동하고 각각의 LUMO 레벨의 차이에 의해 분리되어 전기를 생산하는 것을 의미한다. Photovoltaic (PV) is formed into excitons by photons, electrons, and holes in the organic active layer that receives sunlight, which forms electron excitons and electron acceptor materials. This means moving to the interface and separating electricity by the difference in each LUMO level to produce electricity.

유기물에서의 광전변환현상은 1987년 이스트만 코닥사(Eastmann Kodak Co.)의 탕 등(Tang et al.,)이 ITO/CuPc(30㎚)/PV(50㎚)/Ag의 구조로 소자를 만들어 AM2.0 조건 하에서 0.95%의 광전변환효율을 처음 보고하였다. 이후 1% 이하의 광전변환효율에 머물던 것이 풀러렌(fullerene)의 도입 및 이의 유도체인 PCBM의 개발 에 힘입어 상당한 진보를 이루었다.Photoelectric conversion in organic materials was made in 1987 by Tang et al., Eastman Kodak Co., in which ITO / CuPc (30nm) / PV (50nm) / Ag First reported photoelectric conversion efficiency of 0.95% under AM2.0 conditions. Subsequent to the photoelectric conversion efficiency of less than 1% has made significant progress thanks to the introduction of fullerene and the development of its derivative PCBM.

일반적으로 유기막 형성시 저분자를 이용하는 경우, 저분자는 정제하기가 용이하여 불순물을 거의 제거할 수 있으므로 전기적 특성이 우수하다. 그러나, 고효율의 광전변환 효율을 위해서는 넓은 범위의 태양광을 흡수할 수 있는 photon harvesting 특성이 선행되어야 한다. 이를 위해서는 고분자의 주쇄에 전자를 제공할 수 있는 전자주게와 전자받게 물질을 교대로 도입하여 push-pull 구조를 형성함으로서 효과적으로 작은 밴드갭을 갖는 고분자를 합성할 수 있지만, 동시에 작은 밴드갭을 갖는 물질은 빛에 산화안정성이 떨어진다는 단점도 갖고 있다. 따라서, 고효율의 유기태양전지를 사용화하기 위해서는 산화안정성을 갖고 잘 조화된 HOMO, LUMO 레벨을 갖는 물질의 합성이 요구되고 있다.In general, in the case of using a low molecule in forming an organic film, the low molecule is easy to purify and can almost remove impurities, it is excellent in electrical characteristics. However, for high efficiency photoelectric conversion efficiency, photon harvesting characteristics that can absorb a wide range of sunlight should be preceded. To this end, an electron donor and an electron acceptor that can provide electrons to the main chain of the polymer are alternately introduced to form a push-pull structure, thereby effectively synthesizing a polymer having a small band gap, but at the same time, a material having a small band gap. It also has the disadvantage of inferior oxidation stability to silver light. Therefore, in order to use high efficiency organic solar cells, synthesis of materials having HOMO and LUMO levels well balanced with oxidation stability is required.

이에 본 발명자들은 우수한 광전변환 효율을 가지며 용해도가 우수하고, 산화안정성이 우수한 다양한 전자끌게 특성을 갖는 분자(n-type molecular)와 디알킬씨에노싸이오펜을 포함하는 새로운 광전변환고분자와 이를 이용한 광전변환소자를 개발하고 본 발명을 완성하였다. Therefore, the present inventors have a novel photoelectric conversion polymer including n-type molecular and dialkylcyenothiophene having excellent photoelectric conversion efficiency, excellent solubility and excellent oxidation stability, and using the same. The photoelectric conversion device was developed and the present invention was completed.

결국, 본 발명의 주된 목적은 용해도와 산화안정성이 우수하고 분자간 상호작용에 의해 안정된 에너지 레벨을 갖는 우수한 광전변환효율의 유기광전변환 고분자를 제공하는데 있다.After all, the main object of the present invention is to provide an organic photoelectric conversion polymer of excellent photoelectric conversion efficiency having excellent solubility and oxidation stability and stable energy level by intermolecular interaction.

또한, 본 발명의 다른 목적은 상기 유기광전변환 고분자를 광활성층으로 채용한 유기광전자소자(Organic photovoltaic device; OPV device)를 제공하는데 있다.Another object of the present invention is to provide an organic photovoltaic device (OPV device) employing the organic photoelectric conversion polymer as a photoactive layer.

상기 목적을 달성하기 위하여, 본 발명은 다양한 전자끌게 특성을 갖는 분자(n-type molecular)와 디알킬씨에노싸이오펜을 주쇄로 하고, 하기 화학식 1로 표시되는 유기광전변환 고분자를 제공한다.In order to achieve the above object, the present invention provides an organic photoelectric conversion polymer represented by the following formula (1) having a main chain of the molecule (n-type molecular) and dialkylcyenothiophene having a variety of electron attracting properties.

Figure 112009062253012-pat00001
Figure 112009062253012-pat00001

본 발명에 있어서, 상기 전자끌게 특성을 갖는 분자는 하기 화학식 2로 표시되는 화합물 중에서 선택되는 1종 이상인 것이 바람직하다.In the present invention, the molecule having the electron attracting property is preferably one or more selected from compounds represented by the following general formula (2).

Figure 112009062253012-pat00002
Figure 112009062253012-pat00002

상기 화학식 2에서 R2부터 R36까지는 독립적으로 수소원자; 탄소수 1 내지 25의 알킬기; 탄소수 1 내지 25의 알콕시기; 수소원자, 탄소수 1 내지 25의 알킬기가 치환된 탄소수 1 내지 25의 알콕시기가 치환된 싸이오펜; 수소원자, 탄소수 1 내지 25의 알킬기가 치환된 탄소수 1 내지 25의 알콕시기가 치환된 셀레노펜; 수소원자, 탄소수 1 내지 25의 알킬기가 치환된 탄소수 1 내지 25의 알콕시기가 치환된 피롤; 수소원자, 탄소수 1 내지 25의 알킬기가 치환된 탄소수 1 내지 25의 알콕시기가 치환된 아릴렌기; 수소원자, 탄소수 1 내지 25의 알킬기가 치환된 탄소수 1 내지 25의 알콕시기가 치환된 아릴기; 수소원자, 탄소수 1 내지 25의 알킬기가 치환된 탄 소수 1 내지 25의 알콕시기가 치환된 싸이아졸; 융합된 방향족 고리화합물을 갖는 탄소수 10 내지 24의 아릴기로 이루어진 군으로부터 선택되고, R37은 비치환기; 수소원자, 탄소수 1 내지 25의 알킬기가 치환된 탄소수 1 내지 25의 알콕시기가 치환된 싸이오펜; 수소원자, 탄소수 1 내지 25의 알킬기가 치환된 탄소수 1 내지 25의 알콕시기가 치환된 셀레노펜; 수소원자, 탄소수 1 내지 25의 알킬기가 치환된 탄소수 1 내지 25의 알콕시기가 치환된 피롤; 수소원자, 탄소수 1 내지 25의 알킬기가 치환된 탄소수 1 내지 25의 알콕시기가 치환된 아릴렌기; 수소원자, 탄소수 1 내지 25의 알킬기가 치환된 탄소수 1 내지 25의 알콕시기가 치환된 아릴기; 수소원자, 탄소수 1 내지 25의 알킬기가 치환된 탄소수 1 내지 25의 알콕시기가 치환된 싸이아졸; 융합된 방향족 고리화합물을 갖는 탄소수 10 내지 24의 아릴기로 이루어진 군으로부터 선택되며, l과 m은 독립적으로 1~100,000의 정수이고, n은 1~100,000의 정수인 것이 바람직하다. 더욱 바람직하게는 상기 전자끌게 특성을 갖는 분자는 퀴녹살린(quinoxaline) 혹은 2,1,3-벤조싸이아다이아졸(2,1,3-benzothiadiazole)인 것이 좋다.R 2 to R 36 in Formula 2 are independently a hydrogen atom; An alkyl group having 1 to 25 carbon atoms; An alkoxy group having 1 to 25 carbon atoms; Thiophene substituted with a hydrogen atom, an alkoxy group having 1 to 25 carbon atoms substituted with an alkyl group having 1 to 25 carbon atoms; Selenophene substituted with a hydrogen atom, an alkoxy group having 1 to 25 carbon atoms substituted with an alkyl group having 1 to 25 carbon atoms; Pyrrole substituted with a hydrogen atom, an alkoxy group having 1 to 25 carbon atoms substituted with an alkyl group having 1 to 25 carbon atoms; An arylene group substituted with a hydrogen atom and an alkoxy group having 1 to 25 carbon atoms substituted with an alkyl group having 1 to 25 carbon atoms; An aryl group substituted with a hydrogen atom and an alkoxy group having 1 to 25 carbon atoms substituted with an alkyl group having 1 to 25 carbon atoms; Thiazoles substituted with a hydrogen atom, an alkoxy group having 1 to 25 carbon atoms substituted with an alkyl group having 1 to 25 carbon atoms; It is selected from the group consisting of aryl groups having 10 to 24 carbon atoms having a fused aromatic ring compound, R 37 is an unsubstituted group; Thiophene substituted with a hydrogen atom, an alkoxy group having 1 to 25 carbon atoms substituted with an alkyl group having 1 to 25 carbon atoms; Selenophene substituted with a hydrogen atom, an alkoxy group having 1 to 25 carbon atoms substituted with an alkyl group having 1 to 25 carbon atoms; Pyrrole substituted with a hydrogen atom, an alkoxy group having 1 to 25 carbon atoms substituted with an alkyl group having 1 to 25 carbon atoms; An arylene group substituted with a hydrogen atom and an alkoxy group having 1 to 25 carbon atoms substituted with an alkyl group having 1 to 25 carbon atoms; An aryl group substituted with a hydrogen atom and an alkoxy group having 1 to 25 carbon atoms substituted with an alkyl group having 1 to 25 carbon atoms; Thiazoles substituted with a hydrogen atom and an alkoxy group having 1 to 25 carbon atoms substituted with an alkyl group having 1 to 25 carbon atoms; It is selected from the group consisting of aryl groups having 10 to 24 carbon atoms having a fused aromatic ring compound, l and m are independently an integer of 1 to 100,000, n is preferably an integer of 1 to 100,000. More preferably, the molecule having the electron attracting property is quinoxaline or 2,1,3-benzothiadiazole.

또한, 본 발명은 가장 바람직한 일실시예로서 하기 화학식 3으로 표시되고, 전자끌게 특성을 갖는 분자가 퀴녹살린으로 R13과 R14는 각각 헥톡시벤젠이며, R37은 수소이고, l과 m은 0인 유기광전변환고분자를 제공한다. In addition, the present invention is represented by the following general formula (3) as the most preferred embodiment, the molecule having an electron attracting property is quinoxaline R 13 and R 14 are each hexoxybenzene, R 37 is hydrogen, l and m are Provide an organic photoelectric conversion polymer of zero.

Figure 112009062253012-pat00003
Figure 112009062253012-pat00003

단, 상기 식에서 n은 1~100,000의 정수이다. Wherein n is an integer of 1-100,000.

또한, 본 발명은 가장 바람직한 다른 일실시예로서 하기 화학식 4로 표시되고, 전자끌게 특성을 갖는 분자가 퀴녹살린으로 R13과 R14는 각각 헥톡시벤젠이며, R37은 펜타데실이고, l과 m은 1인 유기광전변환고분자를 제공한다. In addition, as another preferred embodiment of the present invention is represented by the following formula (4), a molecule having an electron attracting property is quinoxaline R 13 and R 14 are each hexoxybenzene, R 37 is pentadecyl, l and m provides an organic photoelectric conversion polymer of 1.

Figure 112009062253012-pat00004
Figure 112009062253012-pat00004

단, 상기 식에서 n은 1~100,000의 정수이다. Wherein n is an integer of 1-100,000.

또한, 본 발명은 가장 바람직한 또 다른 일실시예로서 하기 화학식 5로 표시되고, 전자끌게 특성을 갖는 분자가 2,1,3-벤조싸이아다이아졸로 R3과 R4는 수소이며, R37은 펜타데실이고, l과 m은 1인 유기광전변환고분자를 제공한다. In addition, as another preferred embodiment of the present invention is represented by the following formula (5), the molecule having an electron attracting property is 2,1,3-benzothiadiazole R 3 and R 4 is hydrogen, R 37 is Pentadecyl, with l and m giving 1 organic photoelectric conversion polymer.

Figure 112009062253012-pat00005
Figure 112009062253012-pat00005

단, 상기 식에서 n은 1~100,000의 정수이다. Wherein n is an integer of 1-100,000.

본 발명에 따른 상기 유기광전변환 고분자는 하기 반응식 1 및 2에 도시된 바와 같은 알킬화 반응, 그리그냐드 반응, 스즈끼(Suzuki) 커플링반응, 스틸(Stille) 반응 등을 통하여 모노머들을 제조한 후, 스틸 커플링 반응 등의 C-C 커플링 반응을 통해 최종적으로 청색발광 고분자들을 제조할 수 있다. 이렇게 제조된 고분자들의 수평균분자량은 500~10,000,000이고, 1~100의 분자량분포를 가질 수 있다.The organic photoelectric conversion polymer according to the present invention after preparing the monomers through the alkylation reaction, Grignard reaction, Suzuki coupling reaction, Stille reaction (Stille), etc., as shown in Schemes 1 and 2, Through the CC coupling reaction such as steel coupling reaction can be finally produced blue light emitting polymers. The number average molecular weight of the polymers thus prepared is 500 to 10,000,000, and may have a molecular weight distribution of 1 to 100.

Figure 112009062253012-pat00006
Figure 112009062253012-pat00006

Figure 112009062253012-pat00007
Figure 112009062253012-pat00007

또한, 본 발명은 상기 화학식 1로 표시되는 유기광전변환 고분자를 광활성층(active layer)으로 채용한 유기광전소자를 제공한다. In addition, the present invention provides an organic photoelectric device employing the organic photoelectric conversion polymer represented by the formula (1) as a photoactive layer (active layer).

본 발명에 따른 상기 화학식 1의 고분자는 유기광전소자의 광전변환층 물질 로 사용될 수 있으며, 이를 적용한 유기광전변환소자의 제조방법은 구체적으로 다음과 같다.The polymer of Chemical Formula 1 according to the present invention may be used as a photoelectric conversion layer material of an organic photoelectric device, and a method of manufacturing the organic photoelectric conversion device using the same is as follows.

먼저, 기판 상부에 애노드 전극용 물질을 코팅한다. 이때, 기판으로는 통상적인 유기광전변환소자에서 사용되는 기판을 사용하는데, 투명성, 표면평활성, 취급용이성 및 방수성이 우수한 유리기판 또는 투명 플라스틱 기판을 사용하는 것이 바람직하다. 또한, 애노드 전극용 물질로는 투명하고 전도성이 우수한 산화인듐주석(ITO), 산화주석(SnO2), 산화아연(ZnO) 등을 사용하는 것이 바람직하고, 캐소드 형성용 금속으로는 일함수(Work function)가 작은 리튬(Li), 마그네슘(Mg), 알루미늄(Al), Al:Li, Al:BaF2, Al:BaF2:Ba 등을 사용하는 것이 바람직하다.First, an anode electrode material is coated on the substrate. In this case, the substrate used in the conventional organic photoelectric conversion device is used, it is preferable to use a glass substrate or a transparent plastic substrate excellent in transparency, surface smoothness, ease of handling and waterproof. In addition, it is preferable to use indium tin oxide (ITO), tin oxide (SnO 2 ), zinc oxide (ZnO), or the like, which is transparent and has excellent conductivity as an anode electrode material, and a work function (Work It is preferable to use lithium (Li), magnesium (Mg), aluminum (Al), Al: Li, Al: BaF 2 , Al: BaF 2 : Ba and the like having a small function).

본 발명의 유기광전변환소자의 구성은 애노드/광전변환층/캐소드의 가장 일반적인 소자 구성은 물론 정공수송층 및/또는 전자수송층이 더 포함될 수 있다. 이때, 상기 광전변환층은 스핀 코팅에 의해 형성될 수 있고, 그 두께는 10~10,000Å의 범위를 갖는 것이 바람직하다. 또한, 상기 정공수송층은 애노드 전극 상부에 진공증착 또는 스핀코팅으로 형성될 수 있으며, 상기 전자수송층은 캐소드를 형성하기 전에 광전변환층의 상부에 형성된다. 또한, 상기 전자수송층은 통상적인 전자수송층 형성용 물질을 사용할 수 있고, 상기 정공수송층 및 전자수송층의 두께는 1~10,000Å의 범위인 것이 바람직하다. The organic photoelectric conversion device of the present invention may further include a hole transport layer and / or an electron transport layer, as well as the most common device configuration of the anode / photoelectric conversion layer / cathode. At this time, the photoelectric conversion layer may be formed by spin coating, the thickness thereof is preferably in the range of 10 ~ 10,0001. In addition, the hole transport layer may be formed by vacuum deposition or spin coating on the anode, and the electron transport layer is formed on the photoelectric conversion layer before forming the cathode. In addition, the electron transport layer may use a conventional material for forming an electron transport layer, the thickness of the hole transport layer and the electron transport layer is preferably in the range of 1 ~ 10,000Å.

본 발명에서 상기 정공수송층 및 전자수송층 물질은 특별히 제한되지는 않으나, 바람직하게는 정공수송층 물질로는 PEDOT:PSS(Poly(3,4-ethylenediocy- thiophene) doped with poly(styrenesulfonic acid)), N,N'-비스(3-메틸페닐)-N,N-디페닐-[1,1'-비페닐]-4,4'-디아민(TPD)을 사용하는 것이 좋으며, 전자수송층 물질로는 알루미늄 트리하이드록시퀴놀린(aluminium trihydroxyquinoline; Alq3), 1,3,4-옥사다이아졸 유도체인 PBD(2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole, 퀴녹살린 유도체인 TPQ(1,3,4-tris[(3-phenyl-6-trifluoromethyl)quinoxaline-2-yl]benzene) 및 트리아졸 유도체 등을 사용하는 것이 좋다. 상기 전자수송층 및 정공수송층은 전자와 정공을 광전변환고분자로 효율적으로 전달시켜 줌으로써 생성되는 전하의 전극으로의 이동확률을 높이는 역할을 한다.In the present invention, the hole transport layer and the electron transport layer material is not particularly limited, but preferably, the hole transport layer material is PEDOT: PSS (Poly (3,4-ethylenediocy-thiophene) doped with poly (styrenesulfonic acid)), N, It is preferable to use N'-bis (3-methylphenyl) -N, N-diphenyl- [1,1'-biphenyl] -4,4'-diamine (TPD), and as the electron transport layer material, aluminum trihydride. Aluminum trihydroxyquinoline (Alq3), 1,3,4-oxadiazole derivative PBD (2- (4-biphenylyl) -5-phenyl-1,3,4-oxadiazole, quinoxaline derivative TPQ (1, 3,4-tris [(3-phenyl-6-trifluoromethyl) quinoxaline-2-yl] benzene), triazole derivatives, etc. The electron transport layer and the hole transport layer are used to efficiently convert electrons and holes into photoelectric conversion polymers. It increases the probability of transfer of the generated charges to the electrode.

또한, 광전변환층은 상기의 화학식 1과 같은 구조로 합성된 고분자와 PC61BM(phenyl C61-butyric acid methyl ester) 혹은 PC71BM(phenyl C71-butyric acid methyl ester) 및 다양한 풀러렌(fullerene) 유도체와의 벌크헤테로정션 타입으로 형성된다. 이때, 고분자와 PCBM은 1:10 내지 10:1 범위의 비율(w/w)로 혼합되는 것이 바람직하고, 혼합 후에는 최대의 특성을 나타낼 수 있도록 50 내지 300℃의 온도에서 1초 내지 24시간 동안 어닐링하는 것이 바람직하다.In addition, the photoelectric conversion layer is a bulk hetero with a polymer synthesized in the same structure as in Chemical Formula 1 with PC61BM (phenyl C61-butyric acid methyl ester) or PC71BM (phenyl C71-butyric acid methyl ester) and various fullerene derivatives. It is formed as a junction type. In this case, the polymer and the PCBM are preferably mixed in a ratio (w / w) in the range of 1:10 to 10: 1, and after mixing, 1 second to 24 hours at a temperature of 50 to 300 ° C. so as to exhibit maximum properties. Annealing is preferred.

또한, 본 발명의 유기전기발광소자는 상술한 바와 같이 애노드/정공수송층/광전변환층/전자수송층/캐소드의 순으로 제조될 수도 있고, 그 반대의 순서, 즉 캐소드/전자수송층/광전변환층/정공수송층/애노드의 순으로 제조하여도 무방하다. In addition, the organic electroluminescent device of the present invention may be manufactured in the order of anode / hole transporting layer / photoelectric conversion layer / electron transporting layer / cathode as described above, and vice versa, that is, cathode / electron transporting layer / photoelectric conversion layer / It may be manufactured in the order of the hole transport layer / anode.

본 발명은 산화안정성 및 우수한 광전변환효율을 갖는 유기광전변환 고분자 및 상기 고분자를 활성층으로 채용한 유기광전소자를 제공하는 효과가 있다.The present invention has the effect of providing an organic photoelectric conversion polymer having oxidation stability and excellent photoelectric conversion efficiency and an organic photoelectric device employing the polymer as an active layer.

본 발명에 따른 유기광전소자는 스핀코팅 등의 비교적 간단한 공정으로 제조가 용이하며, 적절한 전자주게물질과 전자받게물질을 선택하여 분자내 상호작용을 이용함으로써 안정된 HOMO, LUMO 레벨 및 작은 밴드갭을 갖기 때문에 광전변환효율이 우수하다.The organic photoelectric device according to the present invention can be easily manufactured by a relatively simple process such as spin coating, and has a stable HOMO, LUMO level and a small band gap by selecting an appropriate electron donor material and electron acceptor material and utilizing intramolecular interactions. Therefore, the photoelectric conversion efficiency is excellent.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

실시예Example 1.  One. 모노머의Monomeric 합성(1) Synthesis (1)

Figure 112009062253012-pat00008
Figure 112009062253012-pat00008

본 발명에서 4,7-디브로모-2,1,3-벤조싸이아다이아졸(4,7-Dibromo-2,1,3- benzothiadiazole, 1) 및 3,6-디브로모-1,2-페닐렌디아민(3,6-dibromo-1,2-phenylenediamine, 2)은 이전의 문헌을 참고하여 제조하였다(X. Li, W. Zeng, Y. Zhang, Q. Hou, W. Yang and Y. Cao, Eur. Polym. J., 2005, 41, 2923-2933; R. Yang, R. Tian, J. Yan, Y. Zhang, J. Yang, Q. Hou, W. Yang, C. Zhang and Y. Cao, Macromolecules, 2005, 38, 244-253).In the present invention, 4,7-dibromo-2,1,3-benzothiadiazole (4,7-Dibromo-2,1,3-benzothiadiazole, 1 ) and 3,6-dibromo-1, 2-phenylenediamine (3,6-dibromo-1,2-phenylenediamine, 2 ) was prepared with reference to previous literature (X. Li, W. Zeng, Y. Zhang, Q. Hou, W. Yang and Y. Cao, Eur.Polym. J., 2005, 41, 2923-2933; R. Yang, R. Tian, J. Yan, Y. Zhang, J. Yang, Q. Hou, W. Yang, C. Zhang and Y. Cao, Macromolecules, 2005, 38, 244-253).

1-(1). 2,3-1- (1). 2,3- 비스Vis (4-(4- 메톡시페닐Methoxyphenyl )-5,8-디브로모퀴녹살린(2,3-Bis(4-methoxyphenyl)-5,8-dibromoquinoxaline, 3)의 제조Preparation of 5,8-dibromoquinoxaline (2,3-Bis (4-methoxyphenyl) -5,8-dibromoquinoxaline, 3)

부탄올 100㎖에 3,6-디브로모-1,2-페닐렌디아민(3,6-dibromo-1,2-phenylenediamine, 2) 6g(12.4mmol)과 4,4'-디메톡시벤질(4,4'-methoxybenzil) 7.2g(26.9mmol)을 녹이고, 빙초산(glacial acetic acid)를 2~3방울 적하한 후 120℃에서 5시간 교반하였다. 반응 혼합물은 0℃로 냉각하여 여과한 다음, 분리된 고체를 뜨거운 에탄올로 두번 씻어주고 진공하에서 건조하여 노란색 고체 4g 을 얻었다(65% 수율).6 g (12.4 mmol) of 3,6-dibromo-1,2-phenylenediamine ( 2 ) and 4,4'-dimethoxybenzyl (4) in 100 ml of butanol After dissolving 7.2 g (26.9 mmol) of 4'-methoxybenzil) and dropping 2-3 drops of glacial acetic acid, the mixture was stirred at 120 ° C. for 5 hours. The reaction mixture was cooled to 0 ° C., filtered, and the separated solid was washed twice with hot ethanol and dried under vacuum to give 4 g of a yellow solid (65% yield).

Found: C, 52.68; H, 3.17; N, 5.6. C22H16N2O2Br2 requires C, 52.76; H, 3.17; N, 5.6%; δH(400㎒; CDCl3; Me4Si) 3.85 (6H, s), 6.88 (4H, d, J= 8㎐), 7.65 (4H, d, J = 8㎐), 7.85 (2H, s); δC(400㎒; CDCl3; Me4Si) 62.4, 114.6, 130.2, 132.9, 133.2, 142.2, 149.8, 157.3, 161.4.Found: C, 52.68; H, 3.17; N, 5.6. C 22 H 16 N 2 O 2 Br 2 requires C, 52.76; H, 3.17; N, 5.6%; δ H (400 MHz; CDCl 3 ; Me 4 Si) 3.85 (6H, s), 6.88 (4H, d, J = 8 Hz), 7.65 (4H, d, J = 8 Hz), 7.85 (2H, s) ; δ C (400 MHz; CDCl 3 ; Me 4 Si) 62.4, 114.6, 130.2, 132.9, 133.2, 142.2, 149.8, 157.3, 161.4.

1-(2). 2,3-1- (2). 2,3- 비스Vis (4-(4- 하이드록시페닐Hydroxyphenyl )-5,8-디브로모퀴녹살린(2,3-Bis(4-hydroxyphenyl)-5,8-dibromoquinoxaline, ) -5,8-dibromoquinoxaline (2,3-Bis (4-hydroxyphenyl) -5,8-dibromoquinoxaline, 44 )의 제조Manufacturing

2구 플라스크(two neck flask)에 상기에서 제조한 2,3-비스(4-메톡시페닐)-5,8-디브로모퀴녹살린(2,3-Bis(4-methoxyphenyl)-5,8-dibromoquinoxaline, 3) 4g(8mmol)과 염산피리딘드(pyridine hydrochloride) 30eq.을 넣고 200℃에서 8시간 동안 교반한 후 혼합물을 실온까지 냉각하여 염산 수용액(aqueous hydrochloric acid)을 넣어주고, 에테르(ether)로 추출하였다. 유기층은 희석 염산 수용액(dilute aqueous hydrochloric acid), 수산화나트륨 수용액(aqueous sodium hydroxide) 및 염산 수용액으로 씻은 다음 염수(brine)로 다시 씻어준 후 Na2SO4로 수분을 제거하였다. 용매 제거 후에는 노란색 고체 3.58g을 얻었다(95% 수율).2,3-bis (4-methoxyphenyl) -5,8-dibromoquinoxaline (2,3-Bis (4-methoxyphenyl) -5,8 prepared above in a two neck flask -dibromoquinoxaline, 3) 4g (8mmol) and pyridine hydrochloride (30eq.) were added and stirred at 200 ° C for 8 hours. Extracted). The organic layer was washed with dilute aqueous hydrochloric acid, aqueous sodium hydroxide and hydrochloric acid, and then washed again with brine, and then water was removed with Na 2 SO 4 . 3.58 g of a yellow solid was obtained after solvent removal (95% yield).

Found: C, 50.77; H, 2.55; N, 5.93. C20H12N2O2Br2 requires C, 50.85; H, 2.54; N, 5.93%; δH(400㎒; CDCl3; Me4Si) 5.17 (2H, s), 6.82 (4H, d, J = 8㎐), 7.62 (4H, d, J = 8㎐), 7.85 (2H, s); δC(400㎒; CDCl3; Me4Si) 118.7, 130.2, 132.9, 133.2, 142.2, 149.8, 158.1, 169.1.Found: C, 50.77; H, 2.55; N, 5.93. C 20 H 12 N 2 0 2 Br 2 requires C, 50.85; H, 2.54; N, 5.93%; δ H (400 MHz; CDCl 3 ; Me 4 Si) 5.17 (2H, s), 6.82 (4H, d, J = 8 Hz), 7.62 (4H, d, J = 8 Hz), 7.85 (2H, s) ; δ C (400 MHz; CDCl 3 ; Me 4 Si) 118.7, 130.2, 132.9, 133.2, 142.2, 149.8, 158.1, 169.1.

1-(3). 2,5-1- (3). 2,5- 비스Vis (4-(4- 헥실옥시페닐Hexyloxyphenyl )-5,8-디브로모퀴녹살린(2,5-Bis(4-hexyloxyphenyl)-5,8-dibromoquinoxaline, ) -5,8-dibromoquinoxaline (2,5-Bis (4-hexyloxyphenyl) -5,8-dibromoquinoxaline, 55 )의 제조Manufacturing

에탄올 50㎖에 상기에서 제조한 2,3-비스(4-하이드록시페닐)-5,8-디브로모퀴녹살린(2,3-Bis(4-hydroxyphenyl)-5,8-dibromoquinoxaline, 4) 3.58g(7.6mmol)을 수산화칼륨 수용액(aqueous potassium hydroxide) 4eq.을 녹여, 반응용액을 상온에서 1시간 동안 교반하고, n-브로모헥산(n-bromohexane)을 첨가하였다. 용액은 70℃에서 24시간 동안 교반하고, -20℃까지 냉각시킨 후 여과하고 메탄올로 재결정하여 노란색 고체 2.35g을 얻었다(48% 수율).2,3-bis (4-hydroxyphenyl) -5,8-dibromoquinoxaline (2,3-Bis (4-hydroxyphenyl) -5,8-dibromoquinoxaline, 4) prepared above in 50 ml of ethanol 3.58 g (7.6 mmol) of 4eq. Of aqueous potassium hydroxide was dissolved, and the reaction solution was stirred at room temperature for 1 hour, and n-bromohexane was added. The solution was stirred at 70 ° C. for 24 hours, cooled to −20 ° C., filtered and recrystallized with methanol to give 2.35 g of a yellow solid (48% yield).

Found: C, 59.88; H, 5.64; N, 4.33. C32H36N2O2Br2 requires C, 59.97; H, 5.63; N, 4.38%; δH(400㎒; CDCl3; Me4Si) 0.91 (6H, t, J = 8㎐), 1.34 (8H, m, J = 4㎐), 1.48 (4H, m, J = 6㎐), 1.79 (4H, m, J = 6㎐), 3.99 (4H, t, J = 6㎐), 6.88 (4H, d, J = 8㎐), 7.65 (4H, d, J = 8㎐), 7.85 (2H, s); δC(400㎒; CDCl3; Me4Si) 14.5, 23.1, 29.6, 29.7, 30.1, 32.3, 68.8, 114.6, 130.2, 132.9, 133.2, 142.2, 149.8, 157.3, 160.4.Found: C, 59.88; H, 5.64; N, 4.33. C 32 H 36 N 2 O 2 Br 2 requires C, 59.97; H, 5.63; N, 4.38%; δ H (400 MHz; CDCl 3 ; Me 4 Si) 0.91 (6H, t, J = 8 μs), 1.34 (8H, m, J = 4 μs), 1.48 (4H, m, J = 6 μs), 1.79 (4H, m, J = 6 μs), 3.99 (4H, t, J = 6 μs), 6.88 (4H, d, J = 8 μs), 7.65 (4H, d, J = 8 μs), 7.85 (2H , s); δ C (400 MHz; CDCl 3 ; Me 4 Si) 14.5, 23.1, 29.6, 29.7, 30.1, 32.3, 68.8, 114.6, 130.2, 132.9, 133.2, 142.2, 149.8, 157.3, 160.4.

실시예Example 2.  2. 모노머Monomer 합성(2) Synthesis (2)

Figure 112009062253012-pat00009
Figure 112009062253012-pat00009

본 발명에서 3,6-디펜타데실테에노[3,2-비]티오펜(3,6-dipentadecylthieno[3,2-b]thiophene, 11), 2,5-디브로모-3,6-디펜타데실티에노[3,2-비]티오펜(2,5-dibromo-3,6-dipentadecylthieno[3,2-b]thiophene, 12), 및 2,5-비스(2-티에닐)-3,6-디펜타데실티에노[3,2-비]티오펜(2,5-bis(2-thienyl)-3,6-dipentadecylthieno[3,2-b]thiophene, 13)은 이전의 문헌을 참고하여 제조하였다(L. S. Fuller, B. Iddon and K. A. Smith, J. Chem. Soc., Perkin Trans. 1, 1997, 3465-3470; H. S. Kim, Y. H. Kim, T. H. Kim, Y. Y. Noh, S. Pyo, M. H. Yi, D. Y. Kim and S. K. Kwon, Chem. Mater., 2007, 19, 3561-3567; Y. Li, Y. Wu, P. Liu, M. Birau, H. Pan and B. S. Ong, Adv. Mater., 2006, 18, 3029-3032).In the present invention, 3,6-dipentadedecylteeno [3,2-bi] thiophene (3,6-dipentadecylthieno [3,2-b] thiophene, 11 ), 2,5-dibromo-3, 6-dipentadedecylthieno [3,2-bi] thiophene (2,5-dibromo-3,6-dipentadecylthieno [3,2-b] thiophene, 12 ), and 2,5-bis (2-thier Yl) -3,6-dipentadedecylthieno [3,2-bi] thiophene (2,5-bis (2-thienyl) -3,6-dipentadecylthieno [3,2-b] thiophene, 13 ) Prepared with reference to previous literature (LS Fuller, B. Iddon and KA Smith, J. Chem. Soc., Perkin Trans. 1, 1997, 3465-3470; HS Kim, YH Kim, TH Kim, YY Noh, S Pyo, MH Yi, DY Kim and SK Kwon, Chem. Mater., 2007, 19, 3561-3567; Y. Li, Y. Wu, P. Liu, M. Birau, H. Pan and BS Ong, Adv. Mater., 2006, 18, 3029-3032).

2-(1). 2,5-비스(2- (1). 2,5-bis ( 트리메틸스태닐Trimethylstannyl )) 티에노Tieno [3,2-비]티오펜(2,5-Bis(trimethylstannyl)thieno[3,2-b]thiophene, [3,2-bi] thiophene (2,5-Bis (trimethylstannyl) thieno [3,2-b] thiophene, 1414 )의 제조Manufacturing

THF 50㎖에 2,5-디브로모-3,6-디펜타데실티에노[3,2-비]티오펜(2,5-dibromo-3,6-dipentadecylthieno[3,2-b]thiophene, 12) 1g(1.38mmol)을 녹인 후 -50℃ 질소분위기 하에서 n-부틸리튬(n-BuLi)을 천천히 적하하여 온도를 유지하면서 2시간 동안 교반하고, 1M Me3SnCl 용액 15.7㎖를 천천히 첨가한 후 온도를 유지하며 다시 2시간 동안 교반하고, 상온으로 서서히 온도를 상승시켜 24시간 동안 교반하였다.2,5-dibromo-3,6-dipentadedecylthieno [3,2-bi] thiophene (2,5-dibromo-3,6-dipentadecylthieno [3,2-b] thiophene in 50 ml of THF , 12 ) 1 g (1.38 mmol) was dissolved, and n-butyllithium (n-BuLi) was slowly added dropwise under a nitrogen atmosphere at -50 ° C., stirred for 2 hours while maintaining the temperature, and 15.7 ml of 1M Me 3 SnCl solution was slowly added thereto. After stirring for 2 hours while maintaining the temperature, the temperature was slowly raised to room temperature and stirred for 24 hours.

혼합물은 증류수에 부어 클로로포름으로 추출한 다음 증류수와 염수로 씻은 후 Na2SO4로 수분을 제거하고 용매를 제거하였다. 얻은 고체는 Et2O로 재결정하여 무색을 결정 1.96g을 얻었다(59% 수율).The mixture was poured into distilled water, extracted with chloroform, washed with distilled water and brine, and then water was removed with Na 2 SO 4 and the solvent was removed. The obtained solid was recrystallized from Et 2 O to give 1.96 g of colorless crystals (59% yield).

Found: C, 57.12; H, 9.08; S, 7.23. C12H20S2Sn2 requires C, 56.93; H, 9.04; S, 7.23%; δH(400㎒; CDCl3;Me4Si) 0.38 (6H, s, J = 6.5㎐), 7.25 (2H, s). δC(400㎒; CDCl3; Me4Si) -7.8, 126.5, 141.6, 147.9. Found: C, 57.12; H, 9.08; S, 7.23. C 12 H 20 S 2 Sn 2 requires C, 56.93; H, 9.04; S, 7.23%; δ H (400 MHz; CDCl 3 ; Me 4 Si) 0.38 (6H, s, J = 6.5 μs), 7.25 (2H, s). δ C (400 MHz; CDCl 3 ; Me 4 Si) −7.8, 126.5, 141.6, 147.9.

2-(2). 2,5-2- (2). 2,5- 비스Vis (5-(5- 트리메틸스태닐Trimethylstannyl -- 티에닐Thienyl -2일)-3,6-디펜타데실티에노[3,2-비]티오펜(2,5--2 days) -3,6-dipentadedecylthieno [3,2-bi] thiophene (2,5- BisBis (5-(5- trimethylstannyltrimethylstannyl -- thienylthienyl -2-2 ylyl )-3,6-) -3,6- dipentadecylthienodipentadecylthieno [3,2-b]thiophene, [3,2-b] thiophene, 1515 )의 제조Manufacturing

THF 20㎖에 상기에서 제조한 2,5-비스(트리메틸스태닐)티에노[3,2-비]티오펜(2,5-Bis(trimethylstannyl)thieno[3,2-b]thiophene, 14) 1g(1.38mmol)을 녹인 후 -25℃ 질소분위기 하에서 헥산에 녹인 n-부틸리튬(n-butyllithium in hexane) 1.6M을 천천히 첨가하여 온도를 유지하면서 1시간 동안 교반하고, Me3SnCl 용액을 천천히 첨가하였다. 상온으로 온도를 올려 24시간 동안 교반한 다음 증류수에 부어 클로로포름으로 추출한 다음 증류수와 염수로 씻은 후 Na2SO4로 수분을 제거하고 용매를 제거하였다. 용매를 제거한 후 노란색 고체 0.57g을 얻었으며(40% 수율), 얻은 물질은 더 이상의 정제 없이 다음 단계에서 사용하였다.2,5-bis (trimethylstannyl) thieno [3,2-bi] thiophene (2,5-Bis (trimethylstannyl) thieno [3,2-b] thiophene, 14 , prepared above in THF After dissolving 1 g (1.38 mmol) and slowly adding 1.6 M of n-butyllithium in hexane dissolved in hexane under a -25 ° C nitrogen atmosphere, the mixture was stirred for 1 hour while maintaining the temperature, and the Me 3 SnCl solution was slowly Added. After raising the temperature to room temperature, the mixture was stirred for 24 hours, poured into distilled water, extracted with chloroform, washed with distilled water and brine, water was removed with Na 2 SO 4 , and solvent was removed. 0.57 g of a yellow solid was obtained after removal of the solvent (40% yield), and the obtained material was used in the next step without further purification.

δH(400㎒; CDCl3; Me4Si) 7.34 (d, J = 4.9㎐, 2H) 0.88 (6H, t, J = 6.5㎐), 1.25-1.40 (48H, m), 1.76 (4H, m), 2.87 (4H, t, J = 7.9㎐), 7.09 (2H, dd, J1 = 4.9㎐, J2 = 2.6㎐), 7.16 (2H, d, J = 2.6㎐); δC(400㎒; CDCl3; Me4Si) -8.1, 14.4, 23.1, 29.1, 29.6, 31.5, 32.0, 32.1, 128.2, 129.6, 131, 133.3, 137.2, 140.9, 142.3.δ H (400 MHz; CDCl 3 ; Me 4 Si) 7.34 (d, J = 4.9 μs, 2H) 0.88 (6H, t, J = 6.5 μs), 1.25-1.40 (48H, m), 1.76 (4H, m ), 2.87 (4H, t, J = 7.9 ms), 7.09 (2H, dd, J1 = 4.9 ms, J2 = 2.6 ms), 7.16 (2H, d, J = 2.6 ms); δ C (400 MHz; CDCl 3 ; Me 4 Si) −8.1, 14.4, 23.1, 29.1, 29.6, 31.5, 32.0, 32.1, 128.2, 129.6, 131, 133.3, 137.2, 140.9, 142.3.

실시예Example 3. 고분자 합성 3. Polymer Synthesis

Figure 112009062253012-pat00010
Figure 112009062253012-pat00010

3-(1). 폴리([2,3-3- (1). Poly ([2,3- 비스(4-헥실옥시페닐)퀴녹살린Bis (4-hexyloxyphenyl) quinoxaline -- 알트Alt -- 티에노[3,2-비]티오펜Thieno [3,2-bi] thiophene ](Poly[2,3-] (Poly [2,3- bisbis (4-(4- hexyloxyphenylhexyloxyphenyl )quinoxaline-) quinoxaline- altalt -- thienothieno [3,2-b]thiophene, [3,2-b] thiophene, P1P1 )의 제조Manufacturing

DMF와 THF를 동량으로 혼합한 혼합 용매에 상기 실시예 제조한 2,5-비스(트리메틸스태닐)티에노[3,2-비]티오펜(2,5-Bis(trimethylstannyl)thieno[3,2-b]thiophene, 14)과 2,5-비스(4-헥실옥시페닐)-5,8-디브로모퀴녹살린(2,5-Bis(4-hexyloxyphenyl)-5,8-dibromoquinoxaline, 5) 및 Pd(PPh3)Cl2 1.0mol%를 넣고 질소분위기 하 85~90℃에서 48시간 동안 교반하고, 혼합물은 상온까지 서서히 식힌 후 메탄올에 부어 여과한 다음 메탄올로 수차례 재침전하였다. Soxhlet 장치를 이용하여 메탄올, 아세톤 및 헥산으로 각각 24시간 동안 씻어준 후 클로로포름으로 녹는 부분을 수거하여, 수거한 고분자 용액은 용매를 제거하고 50℃에서 24시간 동안 건 조시켜 어두운 붉은색 고체 0.24g을 얻었다(48.5% 수율).2,5-bis (trimethylstannyl) thieno [3,2-bi] thiophene (2,5-Bis (trimethylstannyl) thieno [3,2] was prepared in the mixed solvent in which DMF and THF were mixed in the same amount. 2-b] thiophene, 14 ) and 2,5-bis (4-hexyloxyphenyl) -5,8-dibromoquinoxaline (2,5-Bis (4-hexyloxyphenyl) -5,8-dibromoquinoxaline, 5 ) And Pd (PPh 3 ) Cl 2 were added and stirred at 85-90 ° C. for 48 hours under a nitrogen atmosphere. The mixture was cooled slowly to room temperature, poured into methanol, filtered and reprecipitated several times with methanol. After washing with methanol, acetone and hexane for 24 hours each using a Soxhlet apparatus, the soluble portion was collected by chloroform. The collected polymer solution was removed with solvent and dried at 50 ° C for 24 hours to give 0.24 g of a dark red solid. Was obtained (48.5% yield).

Found: C, 73.42; H, 6.18; N, 4.53; S, 10.33; O, 5.32. C38H38N2S2O2 requires C, 73.77; H, 6.19; N, 4.53; S, 10.34; O, 5.17%; Tg= 75℃, Tm= 168 ℃, Td= 314℃; δH(400㎒; CDCl3; Me4Si) 0.92 (6H, br), 1.37 (6H, br), 1.80 (4H, br), 3.95 (4H, br), 6.45 (4H, br), 6.9 (4H, br), 7.70 (4H, d); δC(400㎒; CDCl3; Me4Si) 14.4, 14.5, 23.0, 23.1, 26.1, 29.4, 29.6, 29.7, 29.9, 30.1, 32.0, 32.3, 68.4, 114.5, 130.9, 131.7, 132.1, 133.9, 139.1, 141.2, 147.1, 151.7, 156.3, 160.3.Found: C, 73.42; H, 6. 18; N, 4.53; S, 10.33; O, 5.32. C 38 H 38 N 2 S 2 0 2 requires C, 73.77; H, 6.19; N, 4.53; S, 10.34; 0, 5.17%; Tg = 75 ° C., Tm = 168 ° C., Td = 314 ° C .; δ H (400 MHz; CDCl 3 ; Me 4 Si) 0.92 (6H, br), 1.37 (6H, br), 1.80 (4H, br), 3.95 (4H, br), 6.45 (4H, br), 6.9 ( 4H, br), 7.70 (4H, d); δ C (400 MHz; CDCl 3 ; Me 4 Si) 14.4, 14.5, 23.0, 23.1, 26.1, 29.4, 29.6, 29.7, 29.9, 30.1, 32.0, 32.3, 68.4, 114.5, 130.9, 131.7, 132.1, 133.9, 139.1 , 141.2, 147.1, 151.7, 156.3, 160.3.

3-(2). 폴리[2,3-3- (2). Poly [2,3- 비스(4-헥실옥시페닐)퀴녹살린Bis (4-hexyloxyphenyl) quinoxaline -- 알트Alt -2,5--2,5- 비스Vis (( 티에노Tieno -2-일)-3,6--2-yl) -3,6- 디펜타데실티에노Defentadecylthieno [3,2-b]티오펜(Poly[2,3-bis(4-[3,2-b] thiophene (Poly [2,3-bis (4- hexyloxyphenylhexyloxyphenyl )) quinoxalinequinoxaline -- altalt -2,5--2,5- bisbis (( thienothieno -2--2- ylyl )-3,6-dipentadecylthieno[3,2-b]thiophene, ) -3,6-dipentadecylthieno [3,2-b] thiophene, P2P2 )의 제조Manufacturing

DMF와 THF를 동량으로 혼합한 혼합 용매에 상기 실시예 제조한 2,5-비스(5-트리메틸스태닐-티에닐-2일)-3,6-디펜타데실티에노[3,2-비]티오펜(2,5-Bis(5-trimethylstannyl-thienyl-2yl)-3,6-dipentadecylthieno[3,2-b]thiophene, 15)과 2,5-비스(4-헥실옥시페닐)-5,8-디브로모퀴녹살린(2,5-Bis(4-hexyloxyphenyl)-5,8-dibromoquinoxaline, 5) 및 Pd(PPh3)Cl2 1.0mol%를 넣고 질소분위기하 85~90℃에서 48시간 동안 교반하고, 혼합물은 상온까지 서서히 식힌 후 메탄올에 부어 여과한 다음 메탄올로 수차례 재침전하였다. Soxhlet 장치를 이용하여 메탄올, 아세톤 및 헥산으로 각각 24시간 동안 씻어준 후 클로로포름으로 녹는 부분을 수거하여, 수거한 고분자 용액은 용매를 제거하고 50℃에서 24시간 동안 건조시켜 어두운 붉은색 고체 0.3g을 얻었다(63.7% 수율).2,5-bis (5-trimethylstannyl-thienyl-2yl) -3,6-dipentadedecylthieno [3,2-ratio prepared in the above example in a mixed solvent in which DMF and THF were mixed in the same amount. ] Thiophene (2,5-Bis (5-trimethylstannyl-thienyl-2yl) -3,6-dipentadecylthieno [3,2-b] thiophene, 15 ) and 2,5-bis (4-hexyloxyphenyl) -5 1.0 mol% of 8-dibromoquinoxaline (2,5-Bis (4-hexyloxyphenyl) -5,8-dibromoquinoxaline, 5 ) and Pd (PPh 3 ) Cl 2 were added at 48-90 ° C. under nitrogen atmosphere. After stirring for an hour, the mixture was cooled slowly to room temperature, poured into methanol, filtered, and reprecipitated several times with methanol. After washing with methanol, acetone and hexane for 24 hours using a Soxhlet apparatus, the soluble portion was collected with chloroform. The collected polymer solution was removed with solvent and dried at 50 ° C for 24 hours to obtain 0.3 g of a dark red solid. Obtained (63.7% yield).

Found: C, 75.14; H, 8.54; N, 2.20; S, 10.66; O, 2.68. C76H102N2S4O2 requires C, 75.84; H, 8.54; N, 2.33; S, 10.64; O, 2.66%; Tg= 70℃, Tm= 161℃, Td= 303℃; δH(400㎒; CDCl3; Me4Si) 0.85 (6H, br), 0.92 (6H, br), 1.24 (40H, br), 1.35 (6H, br), 1.48 (4H, br), 1.56 (4H, br), 1.81 (8H, br), 3.0 (4H, br), 3.99 (4H, br), 6.88 (4H, br), 7.09 (2H, br), 7.6 (4H, br), 7.69 (2H, br), 7.91(2H, br); δC(400㎒; CDCl3; Me4Si) 14.4, 14.5, 23.0, 23.1, 26.1, 29.4, 29.6, 29.7, 29.9, 30.1, 32.0, 32.3, 68.4, 114.5, 130.9, 131.7, 132.1, 133.9, 139.1, 141.2, 147.1, 151.7, 156.3, 160.3.Found: C, 75.14; H, 8.54; N, 2.20; S, 10.66; 0, 2.68. C 76 H 102 N 2 S 4 O 2 requires C, 75.84; H, 8.54; N, 2.33; S, 10.64; 0, 2.66%; Tg = 70 ° C., Tm = 161 ° C., Td = 303 ° C .; δ H (400 MHz; CDCl 3 ; Me 4 Si) 0.85 (6H, br), 0.92 (6H, br), 1.24 (40H, br), 1.35 (6H, br), 1.48 (4H, br), 1.56 ( 4H, br), 1.81 (8H, br), 3.0 (4H, br), 3.99 (4H, br), 6.88 (4H, br), 7.09 (2H, br), 7.6 (4H, br), 7.69 (2H , br), 7.91 (2H, broad singlet); δ C (400 MHz; CDCl 3 ; Me 4 Si) 14.4, 14.5, 23.0, 23.1, 26.1, 29.4, 29.6, 29.7, 29.9, 30.1, 32.0, 32.3, 68.4, 114.5, 130.9, 131.7, 132.1, 133.9, 139.1 , 141.2, 147.1, 151.7, 156.3, 160.3.

3-(3). 폴리[2,5-3- (3). Poly [2,5- 비스Vis (( 티에노Tieno -2-일)-3,6--2-yl) -3,6- 디펜타데실티에노[3,2-비]티오펜Dipentadecylthieno [3,2-bi] thiophene -코-2,1,3-벤조싸이아다이아졸(Poly[2,5--Co-2,1,3-benzothiadiazole (Poly [2,5- bisbis (( thienothieno -2--2- ylyl )-3,6-) -3,6- dipentadecylthienodipentadecylthieno [3,2-b]thiophene-co-2,1,3-benzothiadiazole, [3,2-b] thiophene-co-2,1,3-benzothiadiazole, P3P3 )의 제조Manufacturing

DMF와 THF를 동량으로 혼합한 혼합 용매에 상기 실시예 제조한 2,5-비스(5-트리메틸스태닐-티에닐-2일)-3,6-디펜타데실티에노[3,2-비]티오펜(2,5-Bis(5- trimethylstannyl-thienyl-2yl)-3,6-dipentadecylthieno[3,2-b]thiophene, 15)과 4,7-디브로모-2,1,3-벤조싸이아다이아졸(4,7-Dibromo-2,1,3-benzothiadiazole, 1) 및 Pd(PPh3)Cl2 1.0mol%를 넣고 질소분위기 하 85~90℃에서 48시간 동안 교반하고, 혼합물은 상온까지 서서히 식힌 후 메탄올에 부어 여과한 다음 메탄올로 수차례 재침전하였다. Soxhlet 장치를 이용하여 메탄올, 아세톤 및 헥산으로 각각 24시간 동안 씻어준 후 클로로포름으로 녹는 부분을 수거하여, 수거한 고분자 용액은 용매를 제거하고 50℃에서 24시간 동안 건조시켜 어두운 붉은색 고체 0.2g을 얻었다(49% 수율).2,5-bis (5-trimethylstannyl-thienyl-2yl) -3,6-dipentadedecylthieno [3,2-ratio prepared in the above example in a mixed solvent in which DMF and THF were mixed in the same amount. ] Thiophene (2,5-Bis (5-trimethylstannyl-thienyl-2yl) -3,6-dipentadecylthieno [3,2-b] thiophene, 15 ) and 4,7-dibromo-2,1,3- Benzothiadiazole (4,7-Dibromo-2,1,3-benzothiadiazole, 1 ) and Pd (PPh 3 ) Cl 2 were added 1.0 mol%, and the mixture was stirred for 48 hours at 85-90 ° C. under a nitrogen atmosphere, and the mixture was The silver was slowly cooled to room temperature, poured into methanol, filtered, and reprecipitated with methanol several times. After washing with methanol, acetone and hexane for 24 hours using a Soxhlet apparatus, the soluble portion was collected with chloroform. The collected polymer solution was removed with solvent and dried at 50 ° C for 24 hours to obtain 0.2 g of a dark red solid. Obtained (49% yield).

δH(400㎒; CDCl3; Me4Si) 7.70 (2H, d), 7.58 (2H, d), 7.54 (2H, s), 7.25 (2H, s), 7.10 (2H, d), 7.05 (2H, d), 2.63 (4H, t), 1.94 (4H, t), 1.58 (4H, m), 1.24 (20H, m), 1.18 (4H, m), 1.05 (20H, m), 0.86 (6H, t), 0.80 (6H, t).δ H (400 MHz; CDCl 3 ; Me 4 Si) 7.70 (2H, d), 7.58 (2H, d), 7.54 (2H, s), 7.25 (2H, s), 7.10 (2H, d), 7.05 ( 2H, d), 2.63 (4H, t), 1.94 (4H, t), 1.58 (4H, m), 1.24 (20H, m), 1.18 (4H, m), 1.05 (20H, m), 0.86 (6H , t), 0.80 (6H, t).

실시예Example 4. 소자제작 4. Device Fabrication

상기 실시예 3에서 제조한 고분자와 PCBM을 1,2-디클로로벤젠(1,2-dichlorobenzene, DCB)에 녹여 복합 용액(composite solution)을 제조하였다. 이때, 농도는 1.0~2.0wt%로 조절하였으며, 광전변환소자는 ITO/PEDOT:PSS/활성층(active layer)/LiF/Al의 전형적인 샌드위치 구조로 하였다.The polymer and PCBM prepared in Example 3 were dissolved in 1,2-dichlorobenzene (DCB) to prepare a composite solution. At this time, the concentration was adjusted to 1.0 ~ 2.0wt%, the photoelectric conversion device is a typical sandwich structure of ITO / PEDOT: PSS / active layer (LiF / Al).

ITO가 코팅된 유리 기판은 증류수, 아세톤, 2-프로판올을 이용하여 초음파 세척하고, ITO 표면을 10분 동안 오존 처리한 후 45㎚ 두께로 PEDOT:PSS(baytron P)를 스핀코팅 하여 120℃에서 10분 동안 열처리하였다.The glass substrate coated with ITO was ultrasonically cleaned with distilled water, acetone and 2-propanol, ozonated the surface of ITO for 10 minutes, and spin-coated PEDOT: PSS (baytron P) to 45 nm thickness at 10 ° C. for 10 minutes. Heat treated for minutes.

광활성층의 코팅을 위해서는 고분자-PCBM 복합용액을 0.45㎛ PP 주사기 필터(syringe filter)로 여과한 다음 스핀코팅하여 120℃에서 5분간 열처리하고, 3×10-6 torr 진공 하에서 열 증발기(thermal evarporator)를 이용하여 LiF를 7Å로 증착한 후 200㎚ 두께로 Al을 증착하였다.For the coating of the photoactive layer, the polymer-PCBM composite solution was filtered through a 0.45 μm PP syringe filter, spin-coated, and then heat-treated at 120 ° C. for 5 minutes, and a thermal evarporator under 3 × 10 −6 torr vacuum. LiF was deposited using 7 Å and then Al was deposited to a thickness of 200 nm.

상기와 같이 제조된 소자의 광전변환특성을 100㎽/㎠(AM 1.5) 조건에서 측정하고, 하기 표 1에 그 결과를 나타내었다.The photoelectric conversion characteristics of the device manufactured as described above were measured under conditions of 100 mA / cm 2 (AM 1.5), and the results are shown in Table 1 below.

활성층Active layer 층두께
(㎚)
Layer thickness
(Nm)
Voc
(V)
V oc
(V)
Jsc
(㎃/㎠)
J sc
(㎃ / ㎠)
FFFF IPCE/λ
(%, ㎚)
IPCE / λ
(%, Nm)
PCE
(%)
PCE
(%)
P1/PC61BM=1:3P1 / PC 61 BM = 1: 3 6060 0.610.61 4.124.12 0.330.33 28/400,
20/500
28/400,
20/500
0.840.84
P2/PC61BM=1:3P2 / PC 61 BM = 1: 3 6464 0.70.7 4.634.63 0.390.39 35/400,
33/500
35/400,
33/500
1.281.28
P3/PC61BM=1:3P3 / PC 61 BM = 1: 3 6363 0.670.67 4.464.46 0.380.38 34/410,
27/510
34/410,
27/510
1.151.15
P1/PC71BM=1:3P1 / PC 71 BM = 1: 3 5050 0.690.69 5.295.29 0.380.38 45/420,
30/510
45/420,
30/510
1.391.39
P2/PC71BM=1:3P2 / PC 71 BM = 1: 3 9999 0.710.71 8.88.8 0.360.36 60/420,
56/510
60/420,
56/510
2.272.27
P3/PC71BM=1:3P3 / PC 71 BM = 1: 3 5858 0.670.67 6.866.86 0.370.37 50/400,
47/500
50/400,
47/500
1.721.72

이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. As described above, specific portions of the contents of the present invention have been described in detail, and for those skilled in the art, these specific techniques are merely preferred embodiments, and the scope of the present invention is not limited thereto. Will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

도 1은 본 발명에 따른 화학식 3으로 표시되는 유기광전변환고분자의 1H-NMR 스펙트럼을 나타낸 것이다.Figure 1 shows the 1 H-NMR spectrum of the organic photoelectric conversion polymer represented by the formula (3) according to the present invention.

도 2는 본 발명에 따른 화학식 4로 표시되는 유기광전변환고분자의 1H-NMR 스펙트럼을 나타낸 것이다.Figure 2 shows the 1 H-NMR spectrum of the organic photoelectric conversion polymer represented by the formula (4) according to the present invention.

도 3은 본 발명에 따른 화학식 5로 표시되는 유기광전변환고분자의 1H-NMR 스펙트럼을 나타낸 것이다.Figure 3 shows the 1 H-NMR spectrum of the organic photoelectric conversion polymer represented by the formula (5) according to the present invention.

도 4는 본 발명에 따른 화학식 3으로 표시되는 유기광전변환 고분자의 전기화학측정결과를 나타낸 것이다.Figure 4 shows the electrochemical measurement results of the organic photoelectric conversion polymer represented by the formula (3) according to the present invention.

도 5는 본 발명에 따른 화학식 4로 표시되는 유기광전변환 고분자의 전기화학측정결과를 나타낸 것이다. 5 shows the electrochemical measurement results of the organic photoelectric conversion polymer represented by the formula (4) according to the present invention.

도 6은 본 발명에 따른 화학식 5로 표시되는 유기광전변환 고분자의 전기화학측정결과를 나타낸 것이다. 6 shows the electrochemical measurement results of the organic photoelectric conversion polymer represented by the formula (5) according to the present invention.

도 7은 본 발명에 따른 화학식 3으로 표시되는 유기광전변환 고분자의 UV흡수스펙트럼 나타낸 것이다.Figure 7 shows the UV absorption spectrum of the organic photoelectric conversion polymer represented by the formula (3) according to the present invention.

도 8은 본 발명에 따른 화학식 4로 표시되는 유기광전변환 고분자의 UV흡수스펙트럼 나타낸 것이다.Figure 8 shows the UV absorption spectrum of the organic photoelectric conversion polymer represented by the formula (4) according to the present invention.

도 9는 본 발명에 따른 화학식 5로 표시되는 유기광전변환 고분자의 UV흡수스펙트럼 나타낸 것이다.Figure 9 shows the UV absorption spectrum of the organic photoelectric conversion polymer represented by the formula (5) according to the present invention.

도 10은 본 발명에 따른 화학식 3으로 표시되는 유기광전변환 고분자와 PCBM70을 이용한 벌크헤테로정션 타입 광전변환소자를 나타낸 것이다.10 illustrates a bulk heterojunction type photoelectric conversion device using the organic photoelectric conversion polymer and PCBM70 represented by Chemical Formula 3 according to the present invention.

도 11은 본 발명에 따른 화학식 3으로 표시되는 유기광전변환 고분자의 광전변환소자 특성을 나타낸 결과 그래프이다.11 is a result graph showing the characteristics of the photoelectric conversion device of the organic photoelectric conversion polymer represented by the formula (3) according to the present invention.

도 12는 본 발명에 따른 화학식 4로 표시되는 유기광전변환 고분자의 광전변환소자 특성을 나타낸 결과 그래프이다.12 is a graph illustrating the photoelectric conversion device characteristics of the organic photoelectric conversion polymer represented by Chemical Formula 4 according to the present invention.

도 13은 본 발명에 따른 화학식 5로 표시되는 유기광전변환 고분자의 광전변환소자 특성을 나타낸 결과 그래프이다.13 is a result graph showing the characteristics of the photoelectric conversion device of the organic photoelectric conversion polymer represented by the formula (5) according to the present invention.

Claims (9)

전자끌게 특성을 갖는 분자(n-type molecular)와 디알킬씨에노싸이오펜을 주쇄로 하고, 하기 화학식 1로 표시되는 유기광전변환 고분자.An organic photoelectric conversion polymer represented by the following Chemical Formula 1, having a molecule having n-type molecular and dialkylcyenothiophene as a main chain. [화학식 1][Formula 1]
Figure 112012091632097-pat00011
Figure 112012091632097-pat00011
단, 상기 l과 m은 독립적으로 0 ~ 100,000의 정수, n은 1 ~ 100,000의 정수이고, R37은 탄소수 1 내지 25의 알킬기에서 선택된다.However, l and m are independently an integer of 0 to 100,000, n is an integer of 1 to 100,000, R 37 is selected from alkyl groups of 1 to 25 carbon atoms.
제 1항에 있어서,The method of claim 1, 상기 전자끌게 특성을 갖는 분자(n-type molecular)는 하기 화학식 2로 표시되는 화합물 중에서 선택되는 1종 이상인 것을 특징으로 하는 유기광전변환 고분자.The electron-transducing molecule (n-type molecular) is an organic photoelectric conversion polymer, characterized in that at least one selected from the compounds represented by the formula (2). [화학식 2][Formula 2]
Figure 112011075271817-pat00012
Figure 112011075271817-pat00012
단, 상기에서 R2부터 R36까지는 독립적으로 수소원자; 탄소수 1 내지 25의 알킬기; 탄소수 1 내지 25의 알콕시기; 수소원자, 탄소수 1 내지 25의 알킬기와 탄소수 1 내지 25의 알콕시기가 치환된 싸이오펜; 수소원자, 탄소수 1 내지 25의 알킬기와 탄소수 1 내지 25의 알콕시기가 치환된 셀레노펜; 수소원자, 탄소수 1 내지 25의 알킬기와 탄소수 1 내지 25의 알콕시기가 치환된 피롤; 수소원자, 탄소수 1 내지 25의 알킬기와 탄소수 1 내지 25의 알콕시기가 치환된 아릴렌기; 수소원자, 탄소수 1 내지 25의 알킬기와 탄소수 1 내지 25의 알콕시기가 치환된 아릴기; 수소원자, 탄소수 1 내지 25의 알킬기와 탄소수 1 내지 25의 알콕시기가 치환된 싸이아졸; 융합된 방향족 고리화합물을 갖는 탄소수 10 내지 24의 아릴기로 이루어진 군에서 선택된다.Provided that R 2 to R 36 are independently a hydrogen atom; An alkyl group having 1 to 25 carbon atoms; An alkoxy group having 1 to 25 carbon atoms; Thiophene substituted with a hydrogen atom, an alkyl group having 1 to 25 carbon atoms and an alkoxy group having 1 to 25 carbon atoms; Selenophene substituted with a hydrogen atom, an alkyl group having 1 to 25 carbon atoms and an alkoxy group having 1 to 25 carbon atoms; Pyrrole substituted with a hydrogen atom, an alkyl group having 1 to 25 carbon atoms and an alkoxy group having 1 to 25 carbon atoms; An arylene group substituted with a hydrogen atom, an alkyl group having 1 to 25 carbon atoms and an alkoxy group having 1 to 25 carbon atoms; An aryl group substituted with a hydrogen atom, an alkyl group having 1 to 25 carbon atoms and an alkoxy group having 1 to 25 carbon atoms; Thiazoles substituted with a hydrogen atom, an alkyl group having 1 to 25 carbon atoms and an alkoxy group having 1 to 25 carbon atoms; It is selected from the group consisting of aryl groups having 10 to 24 carbon atoms having a fused aromatic ring compound.
제 1항에 있어서,The method of claim 1, 상기 전자끌게 특성을 갖는 분자(n-type molecular)는 퀴녹살린(quinoxaline) 혹은 2,1,3-벤조싸이아다이아졸(2,1,3-benzothiadiazole)인 것을 특징으로 하는 유기광전변환 고분자.The electron-transducing molecule (n-type molecular) is a quinoxaline (quinoxaline) or 2,1,3-benzothiadiazole (2,1,3-benzothiadiazole), characterized in that the organic photoelectric conversion polymer. 삭제delete 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 상기 전자끌게 특성을 갖는 분자(n-type molecular)는 퀴녹살린으로 R13과 R14는 각각 헥톡시벤젠이며, R37은 펜타데실이고, l과 m은 1인 하기 화학식 4로 표시되는 유기광전변환 고분자.The electron-extracting molecule (n-type molecular) is quinoxaline R 13 and R 14 are each hexoxybenzene, R 37 is pentadecyl, l and m is 1, the organic photoelectric represented by the following formula (4) Transformation polymer. [화학식 4][Formula 4]
Figure 112009062253012-pat00014
Figure 112009062253012-pat00014
단, 상기 식에서 n은 1~100,000의 정수이다.Wherein n is an integer of 1-100,000.
제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 상기 전자끌게 특성을 갖는 분자(n-type molecular)는 2,1,3-벤조싸이아다이아졸로 R3과 R4는 각각 수소이며, R37은 펜타데실이고, l과 m은 1인 하기 화학식 5로 표시되는 유기광전변환 고분자.The electron-extracting molecule (n-type molecular) is 2,1,3-benzothiadiazole, R 3 and R 4 are each hydrogen, R 37 is pentadecyl, l and m is 1 Organic photoelectric conversion polymer represented by 5. [화학식 5][Chemical Formula 5]
Figure 112009062253012-pat00015
Figure 112009062253012-pat00015
단, 상기 식에서 n은 1~100,000의 정수이다.Wherein n is an integer of 1-100,000.
제 1항의 유기광전변환 고분자를 활성층으로 채용한 유기광전소자.An organic photoelectric device employing the organic photoelectric conversion polymer of claim 1 as an active layer. 제 3항의 유기광전변환 고분자를 활성층으로 채용한 유기광전소자.An organic photoelectric device employing the organic photoelectric conversion polymer of claim 3 as an active layer. 제 7항 또는 제 8항에 있어서,The method according to claim 7 or 8, 상기 유기광전소자는 풀러렌 유도체(PCBM)를 이용한 벌크헤테로정션 타입(bulk heterojunction type)의 광전변환소자인 것을 특징으로 하는 유기광전소자.The organic photoelectric device is a bulk heterojunction type photoelectric conversion device using a fullerene derivative (PCBM).
KR1020090096634A 2008-10-10 2009-10-12 Organic photoelectric transfer polymer and organic photovoltaic device KR101214546B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20080099836 2008-10-10
KR1020080099836 2008-10-10

Publications (2)

Publication Number Publication Date
KR20100040695A KR20100040695A (en) 2010-04-20
KR101214546B1 true KR101214546B1 (en) 2012-12-24

Family

ID=42216725

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090096634A KR101214546B1 (en) 2008-10-10 2009-10-12 Organic photoelectric transfer polymer and organic photovoltaic device

Country Status (1)

Country Link
KR (1) KR101214546B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210109408A (en) * 2020-02-26 2021-09-06 광운대학교 산학협력단 Thiazole derivative, manufacturing method for same, thiazole polymer and manufacturing method for same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201906832TA (en) * 2012-12-28 2019-08-27 Agency Science Tech & Res P-type semiconducting polymers and related methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210109408A (en) * 2020-02-26 2021-09-06 광운대학교 산학협력단 Thiazole derivative, manufacturing method for same, thiazole polymer and manufacturing method for same
KR20210109409A (en) * 2020-02-26 2021-09-06 광운대학교 산학협력단 Composition, conductive polymer, manufacturuing method for same, conductive film comprising same, capacitor comprising same and electrochromic device comprising same
KR102303750B1 (en) 2020-02-26 2021-09-23 광운대학교 산학협력단 Thiazole derivative, manufacturing method for same, thiazole polymer and manufacturing method for same
KR102313152B1 (en) 2020-02-26 2021-10-18 광운대학교 산학협력단 Composition, conductive polymer, manufacturuing method for same, conductive film comprising same, capacitor comprising same and electrochromic device comprising same

Also Published As

Publication number Publication date
KR20100040695A (en) 2010-04-20

Similar Documents

Publication Publication Date Title
KR101473083B1 (en) Polymer and organic solar cell comprising the same
KR101946076B1 (en) Photovoltaic cell containing novel photoactive polymer
EP3134458B1 (en) Photovoltaic cell with benzodithiophene-containing polymer
US8058550B2 (en) Polymers with low band gaps and high charge mobility
US8912308B2 (en) Copolymer, organic solar cell using the same and manufacturing method thereof
US8883954B2 (en) Photoactive polymers
JP5501526B2 (en) Quinoxaline conjugated polymer containing fused-ring thiophene units, method for producing the conjugated polymer and application thereof
KR101853395B1 (en) Electron donating polymer and solar cell including the same
Ong et al. Design and synthesis of benzothiadiazole–oligothiophene polymers for organic solar cell applications
KR101595147B1 (en) Aromatic compound and organic solar cell comprising the same
KR102439270B1 (en) Novel polymer and organic electronic device using them
KR101328526B1 (en) Organic photovoltain polymer and manufacturing method thereof
KR102291239B1 (en) N-type organic semiconducting compounds, manufacturing method thereof, and organic photovoltaics containing the same
KR101562426B1 (en) Heterofused-ring compound and organic solar cell comprising the same
KR101214546B1 (en) Organic photoelectric transfer polymer and organic photovoltaic device
JP2014185191A (en) Copolymer, organic solar cell using the same and manufacturing method thereof
KR101400077B1 (en) new polymer process for producing the polymer and organic optoelectronic devices using the same
KR20130038548A (en) The organic photovoltaic polymer containing phenazine derivative and manufacturing method thereof
KR20120122924A (en) Organic semiconductor compound, process for producing the organic semiconductor compound and organic semiconductor device using the same
KR101838531B1 (en) Organic photovoltaic donor polymer containing alkylidenefluorene and organic solar cell device using the same
KR101386049B1 (en) ORGANIC PHOTOVOLTAIC π-π CONJUGATED POLYMER AND MANUFACTURING METHOD THEREOF
KR101633261B1 (en) Conductive polymer and organic solar cell including the same
KR101585288B1 (en) Aromatic compound and organic solar cell comprising the same
KR101637058B1 (en) Nitrogen-containg compound and organic solar cell comprising the same
KR20120100529A (en) Organic photoelectric transfer polymer and organic photovoltaic device

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151214

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161201

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171211

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200110

Year of fee payment: 8