KR101206538B1 - Electroless copper plating solution and method for electroless copper plating - Google Patents

Electroless copper plating solution and method for electroless copper plating Download PDF

Info

Publication number
KR101206538B1
KR101206538B1 KR1020120078697A KR20120078697A KR101206538B1 KR 101206538 B1 KR101206538 B1 KR 101206538B1 KR 1020120078697 A KR1020120078697 A KR 1020120078697A KR 20120078697 A KR20120078697 A KR 20120078697A KR 101206538 B1 KR101206538 B1 KR 101206538B1
Authority
KR
South Korea
Prior art keywords
copper plating
electroless copper
plating solution
acid
zirconium
Prior art date
Application number
KR1020120078697A
Other languages
Korean (ko)
Inventor
윤종오
이을규
Original Assignee
이을규
윤종오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이을규, 윤종오 filed Critical 이을규
Priority to KR1020120078697A priority Critical patent/KR101206538B1/en
Application granted granted Critical
Publication of KR101206538B1 publication Critical patent/KR101206538B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic

Abstract

PURPOSE: An electroless copper plating solution and an electroless copper plating method are provided to reduce the use of copper cyanide by securing high activity in surface treatment of aluminum and zinc. CONSTITUTION: An electroless copper plating solution is prepared through the steps of: liquefying and ionizing a copper compound, liquefying and ionizing a zirconium compound to be added into the liquid, putting a stabilizing agent into the liquid to stabilize the zirconium ion, putting a complexing agent into the liquid, putting a reducing agent into the liquid, putting a stabilizing agent for electroless copper plating into the liquid, and controlling the pH of the plating solution to 1.0-10.0.

Description

무전해 구리 도금액 및 무전해 구리 도금 방법 {ELECTROLESS COPPER PLATING SOLUTION AND METHOD FOR ELECTROLESS COPPER PLATING} ELECTROLESS COPPER PLATING SOLUTION AND METHOD FOR ELECTROLESS COPPER PLATING}

본 기술은 무전해 구리 도금 및 구리 도금 방법에 관한 것이다.
The present technology relates to electroless copper plating and copper plating methods.

무전해 구리 도금액은 환원제에 따라 크게 3가지 욕으로 구분할 수 있다. The electroless copper plating solution can be classified into three baths according to the reducing agent.

그 첫째가 가장 흔하게 볼 수 있는 포름알데히드를 환원제로 사용하는 무전해 구리 도금액으로서 세계적으로 널리 퍼져있으며, 대부분 이 도금액을 사용하고 있다. The first and most common form of electroless copper plating solution using formaldehyde as a reducing agent is widely used around the world, and most of them use the plating solution.

그러나, 포름알데히드가 1급 발암물질이면서 증발속도 및 증발양이 많아 각종 산업재해를 일으키고 작업자의 건강을 해치기 때문에 환경적인 측면에서 사용 규제가 심화되고 있는 실정이다.However, since formaldehyde is a first-class carcinogen and has a high evaporation rate and a large amount of evaporation, it causes various industrial accidents and harms the health of workers.

두 번째로 검토되고 있는 무전해 구리 도금액은 글리옥실산을 환원제로 사용하는 무전해 도금액이다.The second electroless copper plating solution under consideration is an electroless plating solution using glyoxylic acid as a reducing agent.

글리옥실산(CHOCOOH)은 포름알데히드(HCHO)의 유도체이기 때문에 포름알데히드욕과 완전히 같은 조건하에서 제2동 이온을 금속 동으로 환원 석출시키는 것이 가능하다.Since glyoxylic acid (CHOCOOH) is a derivative of formaldehyde (HCHO), it is possible to reduce and precipitate secondary copper ions to metallic copper under the same conditions as the formaldehyde bath.

그럼에도 포름알데히드 같은 냄새가 전혀 없어 작업환경 문제가 없다.
Nevertheless, there is no smell like formaldehyde, so there is no work environment problem.

주반응 : Cu2 + + 2CHOCOOH + 4OH- -> Cuo + 2C2O4 2 - + 2H + 2H2O
Main reaction: Cu 2 + + 2CHOCOOH + 4OH- -> Cuo + 2C 2 O 4 2 - + 2H + 2H 2 O

글리옥실산은 고온 및 고알칼리성 수용액 중에서 포름알데히드보다 쉽게 카니체로 반응이 진행된다.
Glyoxylic acid proceeds to carnitase more easily than formaldehyde in high temperature and highly alkaline aqueous solutions.

2CHOCOOH + 2OH- -> C2O4 2 - + HOCH2COOH + H2O
2CHOCOOH + 2OH- -> C 2 O 4 2 - + HOCH 2 COOH + H 2 O

pH 조정제에 수산화칼륨을 사용하면 수산화나트륨보다 카니체로 반응이 30% 정도로 억제된다. 또한 부생성물인 옥살산이온의 물에 대한 용해도(60도)도 옥살산칼륨이 51.4g/100mL, 옥살산나트륨이 4.8g/100ml이기 때문에 pH 조정제로 수산화칼륨을 사용하는 것이 좋다. When potassium hydroxide is used as the pH adjuster, the reaction is inhibited to about 30% by carnice than sodium hydroxide. In addition, it is recommended to use potassium hydroxide as a pH adjuster because the byproduct oxalate ion has a solubility in water (60 degrees) of 51.4 g / 100 mL of potassium oxalate and 4.8 g / 100 mL of sodium oxalate.

글리옥실산욕은 포름알데히드욕보다 균일 석출성 등이 우수하기는 하지만, 자체 가격이 매우 높고 사용 가능한 턴수가 적기 때문에 처리 비용이 높아지는 단점이 있다.
Although glyoxylic acid baths have better uniformity and precipitation than formaldehyde baths, the glyoxylic acid baths have disadvantages of high processing costs due to their high price and low number of turns.

셋째로 차아인산이온을 환원제로 사용하는 무전해 구리 도금액이 있다. Third, there is an electroless copper plating solution using hypophosphite as a reducing agent.

차아인산이온을 환원제로 사용하는 무전해 구리 도금액은, 구리 자체의 반응을 일으키기 위하여 반응 개시 금속을 일부 포함한다.The electroless copper plating solution which uses hypophosphite ion as a reducing agent contains the reaction start metal partly in order to cause reaction of copper itself.

차아인산염의 양극 산화 개시 전위로부터 평가한 금속의 촉매활성도는 Au > Ni > Co > Pt > Cu 의 순서로 낮아진다. 따라서 촉매로 미리 소재에 흡착시킨 팔라듐이 석출된 구리(Cu)로 피복되면 촉매활성도가 낮아지고 석출막두께 1㎛ 이하에서 반응이 정지한다.
The catalytic activity of metals evaluated from the anodic oxidation initiation potential of hypophosphite decreases in the order of Au>Ni>Co>Pt> Cu. Therefore, when palladium previously adsorbed on a material with a catalyst is coated with precipitated copper (Cu), the catalytic activity is lowered and the reaction stops at a thickness of 1 µm or less.

Cu2+ + 2H2PO2- + 2OH- -> Cuo + 2H2PO3- + 2H
Cu2 + + 2H2PO2- + 2OH--> Cuo + 2H2PO3- + 2H

연속적으로 석출반응을 진행시키기 위해서는 도금액 중에 촉매활성도가 높은 니켈염이나 코발트염 등을 미량으로 첨가하여 석출피막 중에 니켈이나 코발트를 공석시킬 필요가 있다.
In order to proceed with the precipitation reaction continuously, it is necessary to add a small amount of nickel salt or cobalt salt having high catalytic activity in the plating solution, and make the nickel or cobalt vacancy in the precipitation coating.

니켈염을 첨가한 욕은 코발트염욕보다 석출속도가 빠르다. Baths containing nickel salts have a faster precipitation rate than cobalt salt baths.

니켈염을 함유한 욕은 비교적 불안정하며 도금 욕 중의 니켈염농도의 증가에 따라 석출막 중 니켈과 인의 공석량이 높아진다. 또한, 도금막 중 Ni/Cu 함유율은 전기저항치에 정비례한다. 코발트 염도 차아인산염의 산화에 대해 촉매로 되지만 얻어지는 피막의 Co/Cu 함유율(전체금속이온 0.025mol/L)은 니켈을 첨가한 때의 Ni/Cu 함유율보다 낮다. 이 욕은 니켈 및 코발트 이온의 양의 조절이 쉽지 않은 단점이 존재하며, 특히, 구리와의 관계에 있어서 이온화경향이 너무 가까워 공석량의 변화에 따라 전기 저항치에 많은 영향을 미치는 단점이 존재하고, 액이 불안정하다는 점이 존재한다.Baths containing nickel salts are relatively unstable and the amount of vacancy between nickel and phosphorus in the precipitation film increases with increasing nickel salt concentration in the plating bath. In addition, Ni / Cu content rate in a plating film is directly proportional to an electrical resistance value. Cobalt salts also catalyze the oxidation of hypophosphite, but the Co / Cu content (0.025 mol / L total metal ions) of the resulting film is lower than the Ni / Cu content when nickel is added. This bath has a disadvantage in that it is not easy to control the amount of nickel and cobalt ions, in particular, there is a disadvantage that the ionization tendency is too close in relation to copper, which affects the electrical resistance according to the change in the amount of vacancy, The liquid is unstable.

이와 같이 포름알데히드(포르말린)을 사용하는 무전해 구리도금욕을 제외하고는, 금속이온을 반응 개시 금속으로 사용하는 무전해 구리도금액은 그 도금액이 불안정하고, 반응 개시금속을 사용하지 않는 차아인산염 욕에서는 1미크론 이하에서 도금 반응이 멈추어서 두께 도금이 불가능하며, 글리옥실산 욕을 사용하는 경우에는 높은 도금비용과 함께 도금액을 자주 폐기해야 하는 문제가 있어서, 이러한, 다양한 문제를 해결하기 위한 새로운 친환경적인 무전해 구리도금액의 개발이 절실히 필요하다.
As described above, except for the electroless copper plating bath using formaldehyde (formalin), the electroless copper plating solution using metal ions as the reaction starting metal is unstable in its plating solution and does not use the reaction starting metal. In the bath, the plating reaction stops at 1 micron or less, so that thickness plating is impossible. When using a glyoxylic acid bath, there is a problem that the plating solution must be disposed of frequently with high plating cost. Development of environment-friendly electroless copper plating solution is urgently needed.

본 발명은 포름알데히드의 환경적 문제를 해결하고, 단일금속으로는 도금이 어려운 금속이면서, 이온화경향상 니켈이나 코발트 보다 귀한 금속이 아닌 지르코늄을 반응 지속 금속 이온으로 하여 무전해 구리 도금의 반응을 지속시켜 산업상 이용 가능한 친환경적인 무전해 구리 도금액 및 구리 도금 방법을 제시하는 것이다.
The present invention solves the environmental problems of formaldehyde, and is a metal that is difficult to plate with a single metal, and the reaction of the electroless copper plating is continued by using zirconium as a reaction-continuous metal ion rather than a metal more precious than ionization-enhancing nickel or cobalt. The present invention proposes an environmentally friendly electroless copper plating solution and copper plating method that can be used industrially.

본 발명의 목적은 반응지속금속으로 지르코늄 이온을 포함하는 무전해 구리 도금액을 제공한다. An object of the present invention is to provide an electroless copper plating solution containing zirconium ions as a reactive metal.

본 발명의 다른 목적은 제공된 무전해 도금액을 이용하여 무전해 구리 도금 하는 방법을 제공하는 것이다.
Another object of the present invention is to provide a method for electroless copper plating using the provided electroless plating solution.

본 발명에 의한 무전해 구리 도금액은 환원제로 1급 발암물질인 포름알데히드를 사용하지 않아 친환경적인 도금액이다.The electroless copper plating solution according to the present invention is an environmentally friendly plating solution without using formaldehyde, which is a primary carcinogen, as a reducing agent.

특히 이온화경향상 지르코늄이 니켈이나 코발트 보다 귀하지 않은 위치에 있는 금속이기 때문에 공석양이 미미하여 더욱 안정한 도금액이다.In particular, since zirconium is a metal that is less desirable than nickel or cobalt in terms of ionization, the amount of vacancy is insignificant, making it a more stable plating solution.

본 발명의 기술적 사상 또는 보호 범위 내에서 당 분야의 통상의 지식을 가진 자에 의해 본 발명의 변형이나 개량이 가능함이 명백하다. 따라서, 본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허 청구 범위 및 그 동등범위에 의하여 명확해질 것이다.
It is apparent that modifications and improvements of the present invention are possible by those skilled in the art within the technical spirit or protection scope of the present invention. Therefore, all the simple modifications and variations of this invention belong to the scope of the present invention, The specific protection scope of this invention will become clear by the attached claim and its equal range.

도 1 본 발명의 도금액으로 알루미늄 위에 도금한 제품 사진.
도 2 본 발명의 도금액으로 니켈 위에 도금한 제품 사진.
도 3 본 발명의 도금액으로 전자부품 커넥터에 도금한 제품 사진.
1 is a product picture plated on aluminum with a plating solution of the present invention.
2 is a product picture plated on nickel with the plating solution of the present invention.
3 is a product photograph plated on an electronic component connector with a plating solution of the present invention.

상기 목적을 달성하기 위하여 본 발명에서는, 무전해 구리 도금층을 형성하기 위한 무전해 구리도금액을 제공한다.In order to achieve the above object, the present invention provides an electroless copper plating solution for forming an electroless copper plating layer.

또한 본 발명은 도금액의 제조방법에 있어서,In addition, the present invention provides a method for producing a plating liquid,

a) 구리 화합물을 제공하여 용해하는 단계 및a) providing and dissolving a copper compound and

b) 상기 a)단계의 액상에 지르코늄 화합물을 액상화하여 이온화 시키는 단계b) liquefying and ionizing the zirconium compound in the liquid phase of step a)

c) 상기 b)단계의 액상에 지르코늄 이온의 안정을 위한 안정제를 투입하는 단계c) adding a stabilizer for stabilizing zirconium ions in the liquid phase of step b)

d) 상기 c)단계의 액상에 착화제를 투입하는 단계d) adding a complexing agent to the liquid phase of step c)

e) 상기 d)단계의 액상에 환원제를 투입하는 단계e) adding a reducing agent to the liquid phase of step d)

f) 상기 e)단계의 액상에 무전해 동 도금용 안정제를 투입하는 단계f) adding an electroless copper plating stabilizer to the liquid phase of step e)

g) 상기 도금액의 pH를 1.0 이상 10.0 미만으로 조절하는 단계g) adjusting the pH of the plating liquid to 1.0 or more and less than 10.0

를 포함하는 무전해 구리 도금액의 제조방법을 제공한다.
It provides a method for producing an electroless copper plating solution comprising a.

무전해 구리 도금액에 지르코늄 이온을 첨가하는 방법은 지르코늄 화합물이 다양하기 때문에 손쉽게 얻을 수 있다. 예를 들면, 사염화 지르코늄(ZrCl4), 황산지르코늄(Zr(SO4)2?4H2O), 지르코늄 옥시 클로라이드 (ZrOCl2?8H2O), 이산화지르코늄 (ZrO2), 아세트산, 지르코늄 염(cas no. 7585-20-8 ) 등 약 40여종에 이른다. The method of adding zirconium ions to an electroless copper plating solution can be easily obtained because of various zirconium compounds. For example, zirconium tetrachloride (ZrCl 4), sulfuric acid, zirconium (Zr (SO 4) 2? 4H 2 O), zirconium oxychloride (ZrOCl 2? 8H 2 O) , zirconium dioxide (ZrO 2), acetic acid, a zirconium salt ( cas no.7585-20-8) and about 40 species.

따라서 본 발명은 상기 목적을 달성하기 위한 방편으로 손쉽게 지르코늄 이온을 얻을 수 있는 황산지르코늄을 출발물질로 하여 설명하지만 여기에 국한되는 것은 아니다.Therefore, the present invention is described as a starting material of zirconium sulfate, which can easily obtain zirconium ions as a means for achieving the above object, but is not limited thereto.

구리 화합물은 황산구리, 염화구리, 질산구리, 포름산구리에서 선택되는 하나 또는 둘 이상을 혼합하여 사용할 수 있다.
The copper compound may be used by mixing one or two or more selected from copper sulfate, copper chloride, copper nitrate, and copper formate.

[실시예] 1. EXAMPLES 1.

황산구리 5수화물 10g/LCopper Sulfate Pentahydrate 10g / L

EDTA 15g/LEDTA 15g / L

구연산 30g/LCitric Acid 30g / L

황산지르코늄 5g/LZirconium Sulfate 5g / L

차인산나트륨 30g/L Sodium Tea Phosphate 30g / L

글리옥실산 3.5g/LGlyoxylic Acid 3.5g / L

티오황산나트륨 0.1mg/LSodium Thiosulfate 0.1mg / L

온도 : 70℃Temperature: 70 ℃

pH : 4.0pH: 4.0

상기와 같이 무전해 구리 도금액을 제조하였다.An electroless copper plating solution was prepared as described above.

상기 도금액에 알루미늄의 표면에 아연치환을 실시한 소지금속을 침적하여 도금을 실시하여 반응이 멈추는지 여부를 지속적으로 관찰하였으나, 반응이 멈추지 않고 지속되었다.
Although the plating solution was deposited by depositing a metal on which zinc was substituted on the surface of aluminum in the plating solution, it was continuously observed whether the reaction was stopped, but the reaction was continued without stopping.

[실시예] 2. EXAMPLE 2.

황산구리 5수화물 10g/LCopper Sulfate Pentahydrate 10g / L

EDTA 15g/LEDTA 15g / L

구연산 30g/LCitric Acid 30g / L

황산지르코늄 5g/LZirconium Sulfate 5g / L

차인산나트륨 30g/L Sodium Tea Phosphate 30g / L

티오황산나트륨 0.1mg/LSodium Thiosulfate 0.1mg / L

온도 : 70℃Temperature: 70 ℃

pH : 4.0
pH: 4.0

상기 실시예 1의 도금이 글리옥실산에 의한 반응 지속효과인지 지르코늄 금속 이온이 반응지속력을 유지하는지 구분해보기 위해 글리옥실산을 넣지 않고 조성하여 도금하여 보았다. In order to distinguish whether the plating of Example 1 is a reaction sustaining effect by glyoxylic acid or whether zirconium metal ions maintain the reaction sustainability, the composition was plated without glyoxylic acid.

도금을 실시하여 반응이 멈추는지 여부를 지속적으로 관찰하였으나, 반응이 멈추지 않고 지속되었다.Plating was continuously observed whether the reaction was stopped, but the reaction was continued without stopping.

해당 도금 제품은 도 1로 확인할 수 있다. X-RAY 도금 두께측정기로 측정한 결과 3.16미크론이 측정되었다.
The plated product can be found in FIG. 3.16 microns was measured using an X-RAY plated thickness gauge.

[실시예] 3.EXAMPLES 3.

황산구리 5수화물 20g/LCopper Sulfate Pentahydrate 20g / L

EDTA 15g/LEDTA 15g / L

구연산 30g/LCitric Acid 30g / L

황산지르코늄 5g/LZirconium Sulfate 5g / L

차인산나트륨 30g/LSodium Tea Phosphate 30g / L

티오황산나트륨 0.1mg/LSodium Thiosulfate 0.1mg / L

온도 : 70℃Temperature: 70 ℃

pH : 2.0
pH: 2.0

상기와 같이 무전해 구리 도금액을 제조하였다.An electroless copper plating solution was prepared as described above.

상기 도금액에 니켈이 도금된 소지 위에 염화 팔라듐 촉매 처리를 하여 도금액에 침적하여 도금을 실시하여 반응이 멈추는지 여부를 지속적으로 관찰하였으나, 반응이 멈추지 않고 지속되었다.The plating solution was treated with a palladium chloride catalyst on a nickel-plated substrate to deposit the plating solution, followed by plating to continuously observe whether the reaction was stopped, but the reaction was continued without stopping.

해당 도금 제품은 도 2로 확인할 수 있다. X-RAY 도금 두께 측정기로 측정한 결과 도금층은 9.26 미크론이었다.
The plated product can be seen in FIG. The plated layer was 9.26 microns as measured by the X-RAY plating thickness meter.

지르코늄 이온은 금속분 함량으로 100ppb 이상이면 충분히 반응을 지속 하고, 1ppm 이상이면 더욱 좋다. 그러나, 굳이 많은 양을 넣을 필요는 없으므로, 최대 10g/L 이상 투입할 필요는 없다.
If the zirconium ion is 100ppb or more in the metal content, the reaction is sufficiently continued, and more preferably 1ppm or more. However, since it is not necessary to add a large amount, it is not necessary to add more than 10g / L maximum.

[실시예] 4.EXAMPLES 4.

상기 실시예 2의 도금액에 플라스틱 사출물로 제작된 전자제품 부품을 팔라듐 촉매를 흡착시킨 후 침적하여 도금여부를 검토하였다. 도금 반응이 너무 늦게 일어나서 상품적 가치를 가지기 어려웠다. 팔라듐 촉매 위에서의 도금 반응은 기존의 니켈이나 코발트에 비해서는 지르코늄 이온의 환원력이 약한 것으로 판단되었다.
In the plating solution of Example 2, an electronic component made of a plastic injection molded product was adsorbed after palladium catalyst was deposited and examined for plating. The plating reaction took place so late that it was difficult to have commercial value. The plating reaction on the palladium catalyst was judged to have a weaker reducing power of zirconium ions than conventional nickel or cobalt.

[실시예] 5.EXAMPLES 5.

다시 플라스틱 사출물로된 전자제품 부품을 팔라듐 촉매를 흡착시킨 후 실시예1의 도금액에서 1차 반응 시킨후 실시예2의 도금액에 침적하여 반응 지속 여부를 검토하였다.Again, the electronic parts made of plastic injection products were adsorbed with a palladium catalyst, first reacted in the plating solution of Example 1, and then deposited in the plating solution of Example 2 to examine whether the reaction was continued.

정상적으로 도금이 이루어지는 것을 확인할 수 있었다. 해당 도금제품은 도 3으로 확인할 수 있다.
It was confirmed that plating was normally performed. The plated product can be found in FIG.

실험결과 팔라듐 촉매의 경우 반응속도가 아연치환의 경우에 비하여 종래의 포름알데히드를 환원제로 사용하는 무전해 구리도금액보다 늦게 나타나는 경향이 있었다.
As a result of the experiment, the palladium catalyst tended to appear later than the electroless copper plating solution using the conventional formaldehyde as a reducing agent compared to the case of zinc substitution.

이러한 문제는 본 발명의 도금욕에 맞게 팔라듐 촉매의 농도나 온도 등의 변화 등을 통하여 충분히 조정가능 할 것으로 사료되며, 팔라듐 촉매 분야 연구 개발이 추가적으로 필요한 것으로 사료되었다.
This problem is considered to be sufficiently adjustable by changing the concentration or temperature of the palladium catalyst according to the plating bath of the present invention, it is believed that additional research and development in the palladium catalyst field.

이러한 팔라듐 촉매 분야의 연구개발이 이루어지는 동안은 이중도금으로 도금층을 형성하여 문제를 해결할 수 있다. 즉, 글리옥실산을 포함하는 환원제와 지르코늄 이온을 포함하는 무전해 구리도금욕에서 1차 도금을 하고, + 차아인산이온과 지르코늄 이온으로 된 무전해 구리 도금욕에서 2차 도금을 하여 문제를 해결할 수 있다.
While the research and development in the field of the palladium catalyst is made can be solved by forming a plating layer by double plating. In other words, primary plating is performed in an electroless copper plating bath containing a reducing agent containing glyoxylic acid and zirconium ions, and secondary plating is performed in an electroless copper plating bath comprising + hypophosphite and zirconium ions to solve the problem. Can be.

본 발명의 반응 지속금속을 지르코늄으로 하는 무전해 구리 도금액에 있어서 착화제는 종래 구리 도금액에 사용하던 각종 착화제를 모두 사용할 수 있으며 섞어서 사용할 수도 있다. 예를 들면 EDTA, 트리에탄올 아민, 히드록시에틸에틸렌트리아세트산, 시클로헥산디아민테트라아세트산, 디에틸렌트리아민펜타아세트산, 테트라키스(2-히드록시프로필)에틸렌디아민구연산, 롯셀염(주석산칼륨나트륨염), 주석산, 사과산, QUADROL 및 이들의 혼합물을 들 수 있다.
In the electroless copper plating solution containing zirconium as the reaction sustaining metal of the present invention, the complexing agent may use all of the various complexing agents used in the conventional copper plating solution, and may be mixed. For example, EDTA, triethanol amine, hydroxyethyl ethylene triacetic acid, cyclohexanediamine tetraacetic acid, diethylenetriamine pentaacetic acid, tetrakis (2-hydroxypropyl) ethylenediamine citric acid, loxel salt (potassium tartrate sodium salt), Tartaric acid, malic acid, QUADROL and mixtures thereof.

또한 환원제도 종래에 사용하던 환원제들을 모두 사용할 수 있다. 그러나 포름알데히드는 1급 발암물질이므로 굳이 사용할 필요가 없고, 글리옥실산은 고가이며, 도금액을 오래사용하지 못하게 하므로 굳이 사용할 필요성은 없지만, 반응속도 개선을 위해 사용한다면 소량 사용할 필요성은 있다. 이 이외에 차아인산이온 화합물로 차아인산, 차아인산 나트륨, 차아인산칼륨, 차아인산 암모늄이나, 보란 화합물로 디메틸아민보란(DMAB) ,디에틸아민보란(DEAB), 수소화붕소나트륨 및 히드라진, 포도당 등을 사용할 수 있다. 따라서 이들 군에서 하나 이상 선택하여 사용하는 것이 바람직하다.
In addition, reducing agents may be used all of the reducing agents used conventionally. However, formaldehyde is a primary carcinogen and does not need to be used. Glyoxylic acid is expensive and does not need to be used because it prevents the plating solution from being used for a long time. However, if it is used to improve the reaction rate, it is necessary to use a small amount. In addition, hypophosphite, sodium hypophosphite, potassium hypophosphite, ammonium hypophosphite and borane compounds include dimethylamine borane (DMAB), diethylamineborane (DEAB), sodium borohydride, hydrazine and glucose. Can be used. Therefore, it is preferable to use at least one selected from these groups.

또한 구리석출 억제용 안정제로서도 기존에 사용하던 2,2'-비피리딜, 이미다졸, 니코틴산, 티오요소, 2-메르캅토벤조티아졸, 시안화나트륨, 티오글리콜산 등 대부분의 안정제를 모두 사용할 수 있다.
In addition, most stabilizers such as 2,2'-bipyridyl, imidazole, nicotinic acid, thiourea, 2-mercaptobenzothiazole, sodium cyanide and thioglycolic acid can be used as stabilizers for inhibiting copper precipitation. have.

pH 조정제도 종래에 사용하던 황산 및 수산화리튬, 수산화칼륨, 수산화나트륨등을 모두 사용할 수 있다.
The pH adjuster can also be used both sulfuric acid and lithium hydroxide, potassium hydroxide, sodium hydroxide and the like used conventionally.

계면활성제 또한 종래에 무전해 구리 도금액에 사용하던 대부분의 게면활성제를 모두 사용할 수 있다. 예를 들면, 폴리에틸렌글리콜, 포스포클로린(Phosphocholine), 카프릭 이미다졸린 디카르복실레이트(Capric Imidazoline Dicarboxylate), 소디움 라우릴 설페이트(Sodium Lauryl Sulfate), 암모늄 도데실 설페이트(ammonium dodecyl sulfate), 소디움 라우릴 에테르 설페이트(Sodium lauryl ether sulfate), 테트라에틸암모늄 퍼플루오로옥탄설포네이트(Tetraethylammonium perfluorooctanesulphonate), 노닐페놀 에톡실레이트(Nonylphenol Ethoxylates), 소디움 테트라프로필렌벤젠설포네이트(sodium tetrapropylenebezenesulfonates), 소디움 6-도데실벤젠설포네이트(sodium 6-dodecylbezenesulfonates), 소디움 n-도데실 설페이트(sodium ndodecyl sulfate), 소디움 n-도데실테트라에톡시설페이트(sodium n-dodecyltetraethoxysulfate), 소디움 하이드록시도데칸설포네이트(sodium hydroxydodecanesulfonate), 리그닌 술포네이트 성분(lignin sulfonate component), 알파-설포탤로 메틸 에스터 성분(alpha-sulfotallow methyl ester component), 소디움 도데실테트 라에톡시포스페이트(sodium dodecyltetraethoxyphosphate), 소디움 디옥틸 설포석시네이트(sodium dioctyl sulfosuccinate), 소디움 알킬 이세시오네이트(sodium alkyl isethionate), 소디움 라우로일 사르코시네이트 (sodium lauroyl sarcosinate) 및 소디움 스테아레이트(sodium stearate) 등을 들 수 있다.
Surfactants can also use most of the conventional surfactants used in electroless copper plating solutions. For example, polyethylene glycol, Phosphocholine, Capric Imidazoline Dicarboxylate, Sodium Lauryl Sulfate, Ammonium dodecyl sulfate, Sodium Sodium lauryl ether sulfate, Tetraethylammonium perfluorooctanesulphonate, Nonylphenol Ethoxylates, Sodium tetrapropylenebezenesulfonates, Sodium 6-dodede Sodium benzenesulfonate, sodium ndodecyl sulfate, sodium n-dodecyltetraethoxysulfate, sodium hydroxydodecanesulfonate , Lignin sulfonate component, alpha-sulfo Alpha-sulfotallow methyl ester component, sodium dodecyltetraethoxyphosphate, sodium dioctyl sulfosuccinate, sodium alkyl isethionate, Sodium lauroyl sarcosinate, sodium stearate, and the like.

본 발명의 무전해 구리 도금액은 특히 알루미늄 및 아연의 표면처리에 있어서 높은 활성을 나타내므로 비환경적인 청화동의 사용을 억제할 수 있다. The electroless copper plating solution of the present invention exhibits high activity especially in the surface treatment of aluminum and zinc, and therefore can suppress the use of non-environmental blue copper.

Claims (10)

지르코늄 이온을 구리도금의 환원반응지속 금속 원소로 포함하는 무전해 구리 도금액.
An electroless copper plating solution containing zirconium ions as a continuous metal element of reduction reaction of copper plating.
삭제delete 제 1항에 있어서, 지르코늄 이온은 황산지르코늄을 출발물질로 사용한 것을 특징으로 하는 환원반응 지속 금속을 포함하는 지르코늄 이온을 구리도금의 환원반응지속 금속 원소로 포함하는 무전해 구리 도금액.
2. The electroless copper plating solution according to claim 1, wherein the zirconium ions include zirconium ions containing a reduction reaction sustaining metal as a starting material of zirconium sulfate as a starting material.
a) 구리 화합물을 액상화하여 이온화 시키는 단계 및
b) 상기 a)단계의 액상에 지르코늄 화합물을 액상화하여 이온화 시키는 단계
c) 상기 b)단계의 액상에 지르코늄 이온의 안정을 위한 안정제를 투입하는 단계
d) 상기 c)단계의 액상에 착화제를 투입하는 단계
e) 상기 d)단계의 액상에 환원제를 투입하는 단계
f) 상기 e)단계의 액상에 무전해 동 도금용 안정제를 투입하는 단계
g) 상기 도금액의 pH를 1.0 이상 10.0 미만으로 조절하는 단계
로 제조되는 것을 특징으로 하는 지르코늄 이온을 구리도금의 환원반응지속 금속 원소로 포함하는 무전해 구리 도금액의 제조방법.
a) liquefying and ionizing the copper compound, and
b) liquefying and ionizing the zirconium compound in the liquid phase of step a)
c) adding a stabilizer for stabilizing zirconium ions in the liquid phase of step b)
d) adding a complexing agent to the liquid phase of step c)
e) adding a reducing agent to the liquid phase of step d)
f) adding an electroless copper plating stabilizer to the liquid phase of step e)
g) adjusting the pH of the plating liquid to 1.0 or more and less than 10.0
A method for producing an electroless copper plating solution comprising zirconium ions, characterized in that it is prepared as a continuous metal element of the reduction reaction of copper plating.
제 4항의 a) 단계에 있어서, 구리화합물은 황산구리, 염화구리(II), 질산구리, 포름산 구리중 어느 하나의 군 또는 2 이상의 군을 혼합하여 사용하는 것을 특징으로 하는 환원반응 지속금속을 포함하는 지르코늄 이온을 구리도금의 환원반응지속 금속 원소로 포함하는 무전해 구리 도금액의 제조방법.
The method of claim 4, wherein the copper compound is a copper sulfate, copper (II) chloride, copper nitrate, copper formate, any one of the group or a mixture of two or more groups comprising a continuous metal reduction reaction characterized in that it is used A method for producing an electroless copper plating solution containing zirconium ions as a metal element for reducing the reaction of copper plating.
제 4항의 c) 단계에 있어서, 지르코늄 이온의 안정을 위한 안정제는, 구연산, 구연산나트륨, 구연산칼륨, 구연산암모늄, DL-Tartaric acid 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 사용하는 것을 특징으로 하는 환원반응 지속금속을 포함하는 지르코늄 이온을 구리도금의 환원반응지속 금속 원소로 포함하는 무전해 구리 도금액의 제조방법.
In the step c) of claim 4, the stabilizer for stabilizing zirconium ions, characterized in that any one or two or more groups of citric acid, sodium citrate, potassium citrate, ammonium citrate, DL-Tartaric acid is used in combination A method for producing an electroless copper plating solution comprising zirconium ions containing a reduction reaction continuous metal as a reduction reaction sustaining metal element of copper plating.
제 4 항의 d) 단계에있어서, 착화제는 EDTA, 트리에탄올아민, 히드록시에틸에틸렌트리아세트산, 시클로헥산디아민테트라아세트산, 디에틸렌트리아민펜타아세트산, 테트라키스(2-히드록시프로필)에틸렌디아민구연산, 주석산칼륨나트륨염(롯셀염), 주석산, 사과산, QUADROL(독일 BASF사 제조 무전해 구리도금용 착화제의 상표) 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 사용하는 것을 특징으로 하는 지르코늄 이온을 구리도금의 환원반응지속금속 원소로 포함하는 무전해 구리 도금액의 제조방법.
In step d) of claim 4, the complexing agent is EDTA, triethanolamine, hydroxyethylethylenetriacetic acid, cyclohexanediaminetetraacetic acid, diethylenetriaminepentaacetic acid, tetrakis (2-hydroxypropyl) ethylenediaminecitric acid, A zirconium ion characterized by using any one group or two or more groups of potassium tartrate sodium salt (Losesel salt), tartaric acid, malic acid, and QUADROL (trademark of an electroless copper plating complex manufactured by BASF, Germany) A method for producing an electroless copper plating solution containing as a metal element for reducing reaction of copper plating.
제 4 항의 e) 단계에 있어서, 환원제는 글리옥실산, 차아인산, 차아인산 나트륨, 차아인산칼륨, 차아인산 암모늄, 디메틸아민보란(DMAB), 디에틸아민보란(DEAB), 수소화붕소나트륨, 히드라진, 포도당 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 사용하는 것을 특징으로 하는 지르코늄 이온을 구리도금의 환원반응지속 금속 원소로 포함하는 무전해 구리 도금액의 제조방법.
In step e), the reducing agent is glyoxylic acid, hypophosphorous acid, sodium hypophosphite, potassium hypophosphite, ammonium hypophosphite, dimethylamineborane (DMAB), diethylamineborane (DEAB), sodium borohydride, hydrazine , A method for producing an electroless copper plating solution comprising zirconium ions, characterized in that the mixture of any one group or two or more of the glucose used as a continuous metal element of the reduction reaction of copper plating.
제 4 항의 f) 단계에 있어서, 무전해 동 도금용 안정제는 2,2'-비피리딜, 이미다졸, 니코틴산, 티오요소, 2-메르캅토벤조티아졸, 시안화나트륨, 티오글리콜산 중 어느 하나의 군 또는 2 이상의 군을 혼합하여 사용하는 것을 특징으로 하는 지르코늄 이온을 구리도금의 환원반응지속 금속 원소로 포함하는 무전해 구리 도금액의 제조방법.
The method of claim 4, wherein the stabilizer for electroless copper plating is any one of 2,2'-bipyridyl, imidazole, nicotinic acid, thiourea, 2-mercaptobenzothiazole, sodium cyanide and thioglycolic acid. A method for producing an electroless copper plating solution comprising zirconium ions as a metal element of reducing reaction continuity of copper plating, characterized in that a group or two or more groups are mixed and used.
제 1항의 도금액으로 도금된 구리 도금층이 적어도 한 층 이상을 포함하는 제품.
An article comprising at least one layer of a copper plating layer plated with the plating liquid of claim 1.
KR1020120078697A 2012-07-19 2012-07-19 Electroless copper plating solution and method for electroless copper plating KR101206538B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120078697A KR101206538B1 (en) 2012-07-19 2012-07-19 Electroless copper plating solution and method for electroless copper plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120078697A KR101206538B1 (en) 2012-07-19 2012-07-19 Electroless copper plating solution and method for electroless copper plating

Publications (1)

Publication Number Publication Date
KR101206538B1 true KR101206538B1 (en) 2012-11-30

Family

ID=47565668

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120078697A KR101206538B1 (en) 2012-07-19 2012-07-19 Electroless copper plating solution and method for electroless copper plating

Country Status (1)

Country Link
KR (1) KR101206538B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076549A1 (en) * 2013-11-22 2015-05-28 한국생산기술연구원 Electroless copper plating solution composition and electroless copper plating method using same
KR101612476B1 (en) * 2013-11-22 2016-04-14 한국생산기술연구원 Electroless copper plating solution composition and methods of plating copper using the same
KR101660520B1 (en) * 2015-04-08 2016-09-29 한국생산기술연구원 Method of performing continuous electroless plating of copper and nickel and plating layer using the same
CN108265281A (en) * 2018-02-11 2018-07-10 长春通行智能科技有限公司 A kind of Al alloy composite and preparation method thereof
CN114507850A (en) * 2021-12-06 2022-05-17 华东理工大学 Chemical formula of environment-friendly plating solution for non-formaldehyde electroless copper plating on ceramic substrate by ink-jet printing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076549A1 (en) * 2013-11-22 2015-05-28 한국생산기술연구원 Electroless copper plating solution composition and electroless copper plating method using same
KR101612476B1 (en) * 2013-11-22 2016-04-14 한국생산기술연구원 Electroless copper plating solution composition and methods of plating copper using the same
CN105593403A (en) * 2013-11-22 2016-05-18 韩国生产技术研究院 Electroless copper plating solution composition and electroless copper plating method using same
CN105593403B (en) * 2013-11-22 2018-04-13 韩国生产技术研究院 Chemical bronze plating liquid composition and the electroless copper plating method using the chemical bronze plating liquid composition
KR101660520B1 (en) * 2015-04-08 2016-09-29 한국생산기술연구원 Method of performing continuous electroless plating of copper and nickel and plating layer using the same
CN108265281A (en) * 2018-02-11 2018-07-10 长春通行智能科技有限公司 A kind of Al alloy composite and preparation method thereof
CN114507850A (en) * 2021-12-06 2022-05-17 华东理工大学 Chemical formula of environment-friendly plating solution for non-formaldehyde electroless copper plating on ceramic substrate by ink-jet printing

Similar Documents

Publication Publication Date Title
KR101206538B1 (en) Electroless copper plating solution and method for electroless copper plating
KR101635661B1 (en) Beta-amino acid comprising electrolyte and method for the deposition of a metal layer
TWI253481B (en) Method for electroless metal plating
JP6298530B2 (en) Electroless nickel plating solution and electroless nickel plating method
US3096182A (en) Chemical plating solution and process for plating therewith
CN101260549B (en) Non-preplating type non-cyanide silver-plating electroplate liquid
EP2767614A1 (en) Method for depositing a first metallic layer onto non-conductive polymers
JPH0247551B2 (en)
TWI554643B (en) Catalyst solution for electroless plating
US3148072A (en) Electroless deposition of nickel
US3216835A (en) Synergistic chelate combinations in dilute immersion zincate solutions for treatment of aluminum and aluminum alloys
US2766138A (en) Processes of chemical nickel plating
US2976180A (en) Method of silver plating by chemical reduction
US2942990A (en) Metal plating by chemical reduction with borohydrides
GB1315548A (en) Stabilized nickel plating compositions
JP2013108170A (en) Electroless palladium plating solution
US3198659A (en) Thin nickel coatings
TW201718938A (en) Use of water soluble and air stable phosphaadamantanes as stabilizers in electrolytes for electroless metal deposition
US4189324A (en) Stabilized electroless plating solutions
JP2008063644A (en) Electroless nickel alloy plating liquid
US3674516A (en) Electroless codeposition of nickel alloys
CN109457238B (en) High-speed stable chemical copper plating solution and preparation method thereof
US2999770A (en) Processes of chemical nickel plating and baths therefor
US3211578A (en) Chemical nickel plating of magnesium and its alloys
JP5602790B2 (en) Electroless plating bath and electroless plating film

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151124

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161124

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171124

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180912

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 8